1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
|
/* mpfr_const_euler -- Euler's constant
Copyright 2001-2015 Free Software Foundation, Inc.
Contributed by the AriC and Caramel projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* Declare the cache */
MPFR_DECL_INIT_CACHE(__gmpfr_cache_const_euler, mpfr_const_euler_internal);
/* Set User Interface */
#undef mpfr_const_euler
int
mpfr_const_euler (mpfr_ptr x, mpfr_rnd_t rnd_mode) {
return mpfr_cache (x, __gmpfr_cache_const_euler, rnd_mode);
}
static void mpfr_const_euler_S2 (mpfr_ptr, unsigned long);
static void mpfr_const_euler_R (mpfr_ptr, unsigned long);
int
mpfr_const_euler_internal (mpfr_t x, mpfr_rnd_t rnd)
{
mpfr_prec_t prec = MPFR_PREC(x), m, log2m;
mpfr_t y, z;
unsigned long n;
int inexact;
MPFR_ZIV_DECL (loop);
log2m = MPFR_INT_CEIL_LOG2 (prec);
m = prec + 2 * log2m + 23;
mpfr_init2 (y, m);
mpfr_init2 (z, m);
MPFR_ZIV_INIT (loop, m);
for (;;)
{
mpfr_exp_t exp_S, err;
/* since prec >= 1, we have m >= 24 here, which ensures n >= 9 below */
n = 1 + (unsigned long) ((double) m * LOG2 / 2.0);
MPFR_ASSERTD (n >= 9);
mpfr_const_euler_S2 (y, n); /* error <= 3 ulps */
exp_S = MPFR_EXP(y);
mpfr_set_ui (z, n, MPFR_RNDN);
mpfr_log (z, z, MPFR_RNDD); /* error <= 1 ulp */
mpfr_sub (y, y, z, MPFR_RNDN); /* S'(n) - log(n) */
/* the error is less than 1/2 + 3*2^(exp_S-EXP(y)) + 2^(EXP(z)-EXP(y))
<= 1/2 + 2^(exp_S+2-EXP(y)) + 2^(EXP(z)-EXP(y))
<= 1/2 + 2^(1+MAX(exp_S+2,EXP(z))-EXP(y)) */
err = 1 + MAX(exp_S + 2, MPFR_EXP(z)) - MPFR_EXP(y);
err = (err >= -1) ? err + 1 : 0; /* error <= 2^err ulp(y) */
exp_S = MPFR_EXP(y);
mpfr_const_euler_R (z, n); /* err <= ulp(1/2) = 2^(-m) */
mpfr_sub (y, y, z, MPFR_RNDN);
/* err <= 1/2 ulp(y) + 2^(-m) + 2^(err + exp_S - EXP(y)) ulp(y).
Since the result is between 0.5 and 1, ulp(y) = 2^(-m).
So we get 3/2*ulp(y) + 2^(err + exp_S - EXP(y)) ulp(y).
3/2 + 2^e <= 2^(e+1) for e>=1, and <= 2^2 otherwise */
err = err + exp_S - MPFR_EXP(y);
err = (err >= 1) ? err + 1 : 2;
if (MPFR_LIKELY (MPFR_CAN_ROUND (y, m - err, prec, rnd)))
break;
MPFR_ZIV_NEXT (loop, m);
mpfr_set_prec (y, m);
mpfr_set_prec (z, m);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (x, y, rnd);
mpfr_clear (y);
mpfr_clear (z);
return inexact; /* always inexact */
}
static void
mpfr_const_euler_S2_aux (mpz_t P, mpz_t Q, mpz_t T, unsigned long n,
unsigned long a, unsigned long b, int need_P)
{
if (a + 1 == b)
{
mpz_set_ui (P, n);
if (a > 1)
mpz_mul_si (P, P, 1 - (long) a);
mpz_set (T, P);
mpz_set_ui (Q, a);
mpz_mul_ui (Q, Q, a);
}
else
{
unsigned long c = (a + b) / 2;
mpz_t P2, Q2, T2;
mpfr_const_euler_S2_aux (P, Q, T, n, a, c, 1);
mpz_init (P2);
mpz_init (Q2);
mpz_init (T2);
mpfr_const_euler_S2_aux (P2, Q2, T2, n, c, b, 1);
mpz_mul (T, T, Q2);
mpz_mul (T2, T2, P);
mpz_add (T, T, T2);
if (need_P)
mpz_mul (P, P, P2);
mpz_mul (Q, Q, Q2);
mpz_clear (P2);
mpz_clear (Q2);
mpz_clear (T2);
/* divide by 2 if possible */
{
unsigned long v2;
v2 = mpz_scan1 (P, 0);
c = mpz_scan1 (Q, 0);
if (c < v2)
v2 = c;
c = mpz_scan1 (T, 0);
if (c < v2)
v2 = c;
if (v2)
{
mpz_tdiv_q_2exp (P, P, v2);
mpz_tdiv_q_2exp (Q, Q, v2);
mpz_tdiv_q_2exp (T, T, v2);
}
}
}
}
/* computes S(n) = sum(n^k*(-1)^(k-1)/k!/k, k=1..ceil(4.319136566 * n))
using binary splitting.
We have S(n) = sum(f(k), k=1..N) with N=ceil(4.319136566 * n)
and f(k) = n^k*(-1)*(k-1)/k!/k,
thus f(k)/f(k-1) = -n*(k-1)/k^2
*/
static void
mpfr_const_euler_S2 (mpfr_t x, unsigned long n)
{
mpz_t P, Q, T;
unsigned long N = (unsigned long) (ALPHA * (double) n + 1.0);
mpz_init (P);
mpz_init (Q);
mpz_init (T);
mpfr_const_euler_S2_aux (P, Q, T, n, 1, N + 1, 0);
mpfr_set_z (x, T, MPFR_RNDN);
mpfr_div_z (x, x, Q, MPFR_RNDN);
mpz_clear (P);
mpz_clear (Q);
mpz_clear (T);
}
/* computes R(n) = exp(-n)/n * sum(k!/(-n)^k, k=0..n-2)
with error at most 4*ulp(x). Assumes n>=2.
Since x <= exp(-n)/n <= 1/8, then 4*ulp(x) <= ulp(1).
*/
static void
mpfr_const_euler_R (mpfr_t x, unsigned long n)
{
unsigned long k, m;
mpz_t a, s;
mpfr_t y;
MPFR_ASSERTN (n >= 2); /* ensures sum(k!/(-n)^k, k=0..n-2) >= 2/3 */
/* as we multiply the sum by exp(-n), we need only PREC(x) - n/LOG2 bits */
m = MPFR_PREC(x) - (unsigned long) ((double) n / LOG2);
mpz_init_set_ui (a, 1);
mpz_mul_2exp (a, a, m);
mpz_init_set (s, a);
for (k = 1; k <= n; k++)
{
mpz_mul_ui (a, a, k);
mpz_fdiv_q_ui (a, a, n);
/* the error e(k) on a is e(k) <= 1 + k/n*e(k-1) with e(0)=0,
i.e. e(k) <= k */
if (k % 2)
mpz_sub (s, s, a);
else
mpz_add (s, s, a);
}
/* the error on s is at most 1+2+...+n = n*(n+1)/2 */
mpz_fdiv_q_ui (s, s, n); /* err <= 1 + (n+1)/2 */
MPFR_ASSERTN (MPFR_PREC(x) >= mpz_sizeinbase(s, 2));
mpfr_set_z (x, s, MPFR_RNDD); /* exact */
mpfr_div_2ui (x, x, m, MPFR_RNDD);
/* now x = 1/n * sum(k!/(-n)^k, k=0..n-2) <= 1/n */
/* err(x) <= (n+1)/2^m <= (n+1)*exp(n)/2^PREC(x) */
mpfr_init2 (y, m);
mpfr_set_si (y, -(long)n, MPFR_RNDD); /* assumed exact */
mpfr_exp (y, y, MPFR_RNDD); /* err <= ulp(y) <= exp(-n)*2^(1-m) */
mpfr_mul (x, x, y, MPFR_RNDD);
/* err <= ulp(x) + (n + 1 + 2/n) / 2^prec(x)
<= ulp(x) + (n + 1 + 2/n) ulp(x)/x since x*2^(-prec(x)) < ulp(x)
<= ulp(x) + (n + 1 + 2/n) 3/(2n) ulp(x) since x >= 2/3*n for n >= 2
<= 4 * ulp(x) for n >= 2 */
mpfr_clear (y);
mpz_clear (a);
mpz_clear (s);
}
|