1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
|
/* mpfr_sin_cos -- sine and cosine of a floating-point number
Copyright 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
Contributed by the AriC and Caramel projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* (y, z) <- (sin(x), cos(x)), return value is 0 iff both results are exact
ie, iff x = 0 */
int
mpfr_sin_cos (mpfr_ptr y, mpfr_ptr z, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_prec_t prec, m;
int neg, reduce;
mpfr_t c, xr;
mpfr_srcptr xx;
mpfr_exp_t err, expx;
int inexy, inexz;
MPFR_ZIV_DECL (loop);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ASSERTN (y != z);
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN(x) || MPFR_IS_INF(x))
{
MPFR_SET_NAN (y);
MPFR_SET_NAN (z);
MPFR_RET_NAN;
}
else /* x is zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
MPFR_SET_ZERO (y);
MPFR_SET_SAME_SIGN (y, x);
/* y = 0, thus exact, but z is inexact in case of underflow
or overflow */
inexy = 0; /* y is exact */
inexz = mpfr_set_ui (z, 1, rnd_mode);
return INEX(inexy,inexz);
}
}
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
("sin[%Pu]=%.*Rg cos[%Pu]=%.*Rg", mpfr_get_prec(y), mpfr_log_prec, y,
mpfr_get_prec (z), mpfr_log_prec, z));
MPFR_SAVE_EXPO_MARK (expo);
prec = MAX (MPFR_PREC (y), MPFR_PREC (z));
m = prec + MPFR_INT_CEIL_LOG2 (prec) + 13;
expx = MPFR_GET_EXP (x);
/* When x is close to 0, say 2^(-k), then there is a cancellation of about
2k bits in 1-cos(x)^2. FIXME: in that case, it would be more efficient
to compute sin(x) directly. VL: This is partly done by using
MPFR_FAST_COMPUTE_IF_SMALL_INPUT from the mpfr_sin and mpfr_cos
functions. Moreover, any overflow on m is avoided. */
if (expx < 0)
{
/* Warning: in case y = x, and the first call to
MPFR_FAST_COMPUTE_IF_SMALL_INPUT succeeds but the second fails,
we will have clobbered the original value of x.
The workaround is to first compute z = cos(x) in that case, since
y and z are different. */
if (y != x)
/* y and x differ, thus we can safely try to compute y first */
{
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (
y, x, -2 * expx, 2, 0, rnd_mode,
{ inexy = _inexact;
goto small_input; });
if (0)
{
small_input:
/* we can go here only if we can round sin(x) */
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (
z, __gmpfr_one, -2 * expx, 1, 0, rnd_mode,
{ inexz = _inexact;
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
goto end; });
}
/* if we go here, one of the two MPFR_FAST_COMPUTE_IF_SMALL_INPUT
calls failed */
}
else /* y and x are the same variable: try to compute z first, which
necessarily differs */
{
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (
z, __gmpfr_one, -2 * expx, 1, 0, rnd_mode,
{ inexz = _inexact;
goto small_input2; });
if (0)
{
small_input2:
/* we can go here only if we can round cos(x) */
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (
y, x, -2 * expx, 2, 0, rnd_mode,
{ inexy = _inexact;
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
goto end; });
}
}
m += 2 * (-expx);
}
if (prec >= MPFR_SINCOS_THRESHOLD)
{
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_sincos_fast (y, z, x, rnd_mode);
}
mpfr_init (c);
mpfr_init (xr);
MPFR_ZIV_INIT (loop, m);
for (;;)
{
/* the following is copied from sin.c */
if (expx >= 2) /* reduce the argument */
{
reduce = 1;
mpfr_set_prec (c, expx + m - 1);
mpfr_set_prec (xr, m);
mpfr_const_pi (c, MPFR_RNDN);
mpfr_mul_2ui (c, c, 1, MPFR_RNDN);
mpfr_remainder (xr, x, c, MPFR_RNDN);
mpfr_div_2ui (c, c, 1, MPFR_RNDN);
if (MPFR_SIGN (xr) > 0)
mpfr_sub (c, c, xr, MPFR_RNDZ);
else
mpfr_add (c, c, xr, MPFR_RNDZ);
if (MPFR_IS_ZERO(xr)
|| MPFR_EXP(xr) < (mpfr_exp_t) 3 - (mpfr_exp_t) m
|| MPFR_EXP(c) < (mpfr_exp_t) 3 - (mpfr_exp_t) m)
goto next_step;
xx = xr;
}
else /* the input argument is already reduced */
{
reduce = 0;
xx = x;
}
neg = MPFR_IS_NEG (xx); /* gives sign of sin(x) */
mpfr_set_prec (c, m);
mpfr_cos (c, xx, MPFR_RNDZ);
/* If no argument reduction was performed, the error is at most ulp(c),
otherwise it is at most ulp(c) + 2^(2-m). Since |c| < 1, we have
ulp(c) <= 2^(-m), thus the error is bounded by 2^(3-m) in that later
case. */
if (reduce == 0)
err = m;
else
err = MPFR_GET_EXP (c) + (mpfr_exp_t) (m - 3);
if (!mpfr_can_round (c, err, MPFR_RNDN, MPFR_RNDZ,
MPFR_PREC (z) + (rnd_mode == MPFR_RNDN)))
goto next_step;
/* we can't set z now, because in case z = x, and the mpfr_can_round()
call below fails, we will have clobbered the input */
mpfr_set_prec (xr, MPFR_PREC(c));
mpfr_swap (xr, c); /* save the approximation of the cosine in xr */
mpfr_sqr (c, xr, MPFR_RNDU); /* the absolute error is bounded by
2^(5-m) if reduce=1, and by 2^(2-m)
otherwise */
mpfr_ui_sub (c, 1, c, MPFR_RNDN); /* error bounded by 2^(6-m) if reduce
is 1, and 2^(3-m) otherwise */
mpfr_sqrt (c, c, MPFR_RNDN); /* the absolute error is bounded by
2^(6-m-Exp(c)) if reduce=1, and
2^(3-m-Exp(c)) otherwise */
err = 3 + 3 * reduce - MPFR_GET_EXP (c);
if (neg)
MPFR_CHANGE_SIGN (c);
/* the absolute error on c is at most 2^(err-m), which we must put
in the form 2^(EXP(c)-err). */
err = MPFR_GET_EXP (c) + (mpfr_exp_t) m - err;
if (mpfr_can_round (c, err, MPFR_RNDN, MPFR_RNDZ,
MPFR_PREC (y) + (rnd_mode == MPFR_RNDN)))
break;
/* check for huge cancellation */
if (err < (mpfr_exp_t) MPFR_PREC (y))
m += MPFR_PREC (y) - err;
/* Check if near 1 */
if (MPFR_GET_EXP (c) == 1
&& MPFR_MANT (c)[MPFR_LIMB_SIZE (c)-1] == MPFR_LIMB_HIGHBIT)
m += m;
next_step:
MPFR_ZIV_NEXT (loop, m);
mpfr_set_prec (c, m);
}
MPFR_ZIV_FREE (loop);
inexy = mpfr_set (y, c, rnd_mode);
inexz = mpfr_set (z, xr, rnd_mode);
mpfr_clear (c);
mpfr_clear (xr);
end:
MPFR_SAVE_EXPO_FREE (expo);
/* FIXME: add a test for bug before revision 7355 */
inexy = mpfr_check_range (y, inexy, rnd_mode);
inexz = mpfr_check_range (z, inexz, rnd_mode);
MPFR_RET (INEX(inexy,inexz));
}
/*************** asymptotically fast implementation below ********************/
/* truncate Q from R to at most prec bits.
Return the number of truncated bits.
*/
static mpfr_prec_t
reduce (mpz_t Q, mpz_srcptr R, mpfr_prec_t prec)
{
mpfr_prec_t l = mpz_sizeinbase (R, 2);
l = (l > prec) ? l - prec : 0;
mpz_fdiv_q_2exp (Q, R, l);
return l;
}
/* truncate S and C so that the smaller has prec bits.
Return the number of truncated bits.
*/
static unsigned long
reduce2 (mpz_t S, mpz_t C, mpfr_prec_t prec)
{
unsigned long ls = mpz_sizeinbase (S, 2);
unsigned long lc = mpz_sizeinbase (C, 2);
unsigned long l;
l = (ls < lc) ? ls : lc; /* smaller length */
l = (l > prec) ? l - prec : 0;
mpz_fdiv_q_2exp (S, S, l);
mpz_fdiv_q_2exp (C, C, l);
return l;
}
/* return in S0/Q0 a rational approximation of sin(X) with absolute error
bounded by 9*2^(-prec), where 0 <= X=p/2^r <= 1/2,
and in C0/Q0 a rational approximation of cos(X), with relative error
bounded by 9*2^(-prec) (and also absolute error, since
|cos(X)| <= 1).
We have sin(X)/X = sum((-1)^i*(p/2^r)^i/(2i+1)!, i=0..infinity).
We use the following binary splitting formula:
P(a,b) = (-p)^(b-a)
Q(a,b) = (2a)*(2a+1)*2^r if a+1=b [except Q(0,1)=1], Q(a,c)*Q(c,b) otherwise
T(a,b) = 1 if a+1=b, Q(c,b)*T(a,c)+P(a,c)*T(c,b) otherwise.
Since we use P(a,b) for b-a=2^k only, we compute only p^(2^k).
We do not store the factor 2^r in Q().
Then sin(X)/X ~ T(0,i)/Q(0,i) for i so that (p/2^r)^i/i! is small enough.
Return l such that Q0 has to be multiplied by 2^l.
Assumes prec >= 10.
*/
static unsigned long
sin_bs_aux (mpz_t Q0, mpz_t S0, mpz_t C0, mpz_srcptr p, mpfr_prec_t r,
mpfr_prec_t prec)
{
mpz_t T[GMP_NUMB_BITS], Q[GMP_NUMB_BITS], ptoj[GMP_NUMB_BITS], pp;
mpfr_prec_t log2_nb_terms[GMP_NUMB_BITS], mult[GMP_NUMB_BITS];
mpfr_prec_t accu[GMP_NUMB_BITS], size_ptoj[GMP_NUMB_BITS];
mpfr_prec_t prec_i_have, r0 = r;
unsigned long alloc, i, j, k;
mpfr_prec_t l;
if (MPFR_UNLIKELY(mpz_cmp_ui (p, 0) == 0)) /* sin(x)/x -> 1 */
{
mpz_set_ui (Q0, 1);
mpz_set_ui (S0, 1);
mpz_set_ui (C0, 1);
return 0;
}
/* check that X=p/2^r <= 1/2 */
MPFR_ASSERTN(mpz_sizeinbase (p, 2) - (mpfr_exp_t) r <= -1);
mpz_init (pp);
/* normalize p (non-zero here) */
l = mpz_scan1 (p, 0);
mpz_fdiv_q_2exp (pp, p, l); /* p = pp * 2^l */
mpz_mul (pp, pp, pp);
r = 2 * (r - l); /* x^2 = (p/2^r0)^2 = pp / 2^r */
/* now p is odd */
alloc = 2;
mpz_init_set_ui (T[0], 6);
mpz_init_set_ui (Q[0], 6);
mpz_init_set (ptoj[0], pp); /* ptoj[i] = pp^(2^i) */
mpz_init (T[1]);
mpz_init (Q[1]);
mpz_init (ptoj[1]);
mpz_mul (ptoj[1], pp, pp); /* ptoj[1] = pp^2 */
size_ptoj[1] = mpz_sizeinbase (ptoj[1], 2);
mpz_mul_2exp (T[0], T[0], r);
mpz_sub (T[0], T[0], pp); /* 6*2^r - pp = 6*2^r*(1 - x^2/6) */
log2_nb_terms[0] = 1;
/* already take into account the factor x=p/2^r in sin(x) = x * (...) */
mult[0] = r - mpz_sizeinbase (pp, 2) + r0 - mpz_sizeinbase (p, 2);
/* we have x^3 < 1/2^mult[0] */
for (i = 2, k = 0, prec_i_have = mult[0]; prec_i_have < prec; i += 2)
{
/* i is even here */
/* invariant: Q[0]*Q[1]*...*Q[k] equals (2i-1)!,
we have already summed terms of index < i
in S[0]/Q[0], ..., S[k]/Q[k] */
k ++;
if (k + 1 >= alloc) /* necessarily k + 1 = alloc */
{
alloc ++;
mpz_init (T[k+1]);
mpz_init (Q[k+1]);
mpz_init (ptoj[k+1]);
mpz_mul (ptoj[k+1], ptoj[k], ptoj[k]); /* pp^(2^(k+1)) */
size_ptoj[k+1] = mpz_sizeinbase (ptoj[k+1], 2);
}
/* for i even, we have Q[k] = (2*i)*(2*i+1), T[k] = 1,
then Q[k+1] = (2*i+2)*(2*i+3), T[k+1] = 1,
which reduces to T[k] = (2*i+2)*(2*i+3)*2^r-pp,
Q[k] = (2*i)*(2*i+1)*(2*i+2)*(2*i+3). */
log2_nb_terms[k] = 1;
mpz_set_ui (Q[k], (2 * i + 2) * (2 * i + 3));
mpz_mul_2exp (T[k], Q[k], r);
mpz_sub (T[k], T[k], pp);
mpz_mul_ui (Q[k], Q[k], (2 * i) * (2 * i + 1));
/* the next term of the series is divided by Q[k] and multiplied
by pp^2/2^(2r), thus the mult. factor < 1/2^mult[k] */
mult[k] = mpz_sizeinbase (Q[k], 2) + 2 * r - size_ptoj[1] - 1;
/* the absolute contribution of the next term is 1/2^accu[k] */
accu[k] = (k == 0) ? mult[k] : mult[k] + accu[k-1];
prec_i_have = accu[k]; /* the current term is < 1/2^accu[k] */
j = (i + 2) / 2;
l = 1;
while ((j & 1) == 0) /* combine and reduce */
{
mpz_mul (T[k], T[k], ptoj[l]);
mpz_mul (T[k-1], T[k-1], Q[k]);
mpz_mul_2exp (T[k-1], T[k-1], r << l);
mpz_add (T[k-1], T[k-1], T[k]);
mpz_mul (Q[k-1], Q[k-1], Q[k]);
log2_nb_terms[k-1] ++; /* number of terms in S[k-1]
is a power of 2 by construction */
prec_i_have = mpz_sizeinbase (Q[k], 2);
mult[k-1] += prec_i_have + (r << l) - size_ptoj[l] - 1;
accu[k-1] = (k == 1) ? mult[k-1] : mult[k-1] + accu[k-2];
prec_i_have = accu[k-1];
l ++;
j >>= 1;
k --;
}
}
/* accumulate all products in T[0] and Q[0]. Warning: contrary to above,
here we do not have log2_nb_terms[k-1] = log2_nb_terms[k]+1. */
l = 0; /* number of accumulated terms in the right part T[k]/Q[k] */
while (k > 0)
{
j = log2_nb_terms[k-1];
mpz_mul (T[k], T[k], ptoj[j]);
mpz_mul (T[k-1], T[k-1], Q[k]);
l += 1 << log2_nb_terms[k];
mpz_mul_2exp (T[k-1], T[k-1], r * l);
mpz_add (T[k-1], T[k-1], T[k]);
mpz_mul (Q[k-1], Q[k-1], Q[k]);
k--;
}
l = r0 + r * (i - 1); /* implicit multiplier 2^r for Q0 */
/* at this point T[0]/(2^l*Q[0]) is an approximation of sin(x) where the 1st
neglected term has contribution < 1/2^prec, thus since the series has
alternate signs, the error is < 1/2^prec */
/* we truncate Q0 to prec bits: the relative error is at most 2^(1-prec),
which means that Q0 = Q[0] * (1+theta) with |theta| <= 2^(1-prec)
[up to a power of two] */
l += reduce (Q0, Q[0], prec);
l -= reduce (T[0], T[0], prec);
/* multiply by x = p/2^l */
mpz_mul (S0, T[0], p);
l -= reduce (S0, S0, prec); /* S0 = T[0] * (1 + theta)^2 up to power of 2 */
/* sin(X) ~ S0/Q0*(1 + theta)^3 + err with |theta| <= 2^(1-prec) and
|err| <= 2^(-prec), thus since |S0/Q0| <= 1:
|sin(X) - S0/Q0| <= 4*|theta*S0/Q0| + |err| <= 9*2^(-prec) */
mpz_clear (pp);
for (j = 0; j < alloc; j ++)
{
mpz_clear (T[j]);
mpz_clear (Q[j]);
mpz_clear (ptoj[j]);
}
/* compute cos(X) from sin(X): sqrt(1-(S/Q)^2) = sqrt(Q^2-S^2)/Q
= sqrt(Q0^2*2^(2l)-S0^2)/Q0.
Write S/Q = sin(X) + eps with |eps| <= 9*2^(-prec),
then sqrt(Q^2-S^2) = sqrt(Q^2-Q^2*(sin(X)+eps)^2)
= sqrt(Q^2*cos(X)^2-Q^2*(2*sin(X)*eps+eps^2))
= sqrt(Q^2*cos(X)^2-Q^2*eps1) with |eps1|<=9*2^(-prec)
[using X<=1/2 and eps<=9*2^(-prec) and prec>=10]
Since we truncate the square root, we get:
sqrt(Q^2*cos(X)^2-Q^2*eps1)+eps2 with |eps2|<1
= Q*sqrt(cos(X)^2-eps1)+eps2
= Q*cos(X)*(1+eps3)+eps2 with |eps3| <= 6*2^(-prec)
= Q*cos(X)*(1+eps3+eps2/(Q*cos(X)))
= Q*cos(X)*(1+eps4) with |eps4| <= 9*2^(-prec)
since |Q| >= 2^(prec-1) */
/* we assume that Q0*2^l >= 2^(prec-1) */
MPFR_ASSERTN(l + mpz_sizeinbase (Q0, 2) >= prec);
mpz_mul (C0, Q0, Q0);
mpz_mul_2exp (C0, C0, 2 * l);
mpz_submul (C0, S0, S0);
mpz_sqrt (C0, C0);
return l;
}
/* Put in s and c approximations of sin(x) and cos(x) respectively.
Assumes 0 < x < Pi/4 and PREC(s) = PREC(c) >= 10.
Return err such that the relative error is bounded by 2^err ulps.
*/
static int
sincos_aux (mpfr_t s, mpfr_t c, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_prec_t prec_s, sh;
mpz_t Q, S, C, Q2, S2, C2, y;
mpfr_t x2;
unsigned long l, l2, j, err;
MPFR_ASSERTD(MPFR_PREC(s) == MPFR_PREC(c));
prec_s = MPFR_PREC(s);
mpfr_init2 (x2, MPFR_PREC(x));
mpz_init (Q);
mpz_init (S);
mpz_init (C);
mpz_init (Q2);
mpz_init (S2);
mpz_init (C2);
mpz_init (y);
mpfr_set (x2, x, MPFR_RNDN); /* exact */
mpz_set_ui (Q, 1);
l = 0;
mpz_set_ui (S, 0); /* sin(0) = S/(2^l*Q), exact */
mpz_set_ui (C, 1); /* cos(0) = C/(2^l*Q), exact */
/* Invariant: x = X + x2/2^(sh-1), where the part X was already treated,
S/(2^l*Q) ~ sin(X), C/(2^l*Q) ~ cos(X), and x2/2^(sh-1) < Pi/4.
'sh-1' is the number of already shifted bits in x2.
*/
for (sh = 1, j = 0; mpfr_cmp_ui (x2, 0) != 0 && sh <= prec_s; sh <<= 1, j++)
{
if (sh > prec_s / 2) /* sin(x) = x + O(x^3), cos(x) = 1 + O(x^2) */
{
l2 = -mpfr_get_z_2exp (S2, x2); /* S2/2^l2 = x2 */
l2 += sh - 1;
mpz_set_ui (Q2, 1);
mpz_set_ui (C2, 1);
mpz_mul_2exp (C2, C2, l2);
mpfr_set_ui (x2, 0, MPFR_RNDN);
}
else
{
/* y <- trunc(x2 * 2^sh) = trunc(x * 2^(2*sh-1)) */
mpfr_mul_2exp (x2, x2, sh, MPFR_RNDN); /* exact */
mpfr_get_z (y, x2, MPFR_RNDZ); /* round towards zero: now
0 <= x2 < 2^sh, thus
0 <= x2/2^(sh-1) < 2^(1-sh) */
if (mpz_cmp_ui (y, 0) == 0)
continue;
mpfr_sub_z (x2, x2, y, MPFR_RNDN); /* should be exact */
l2 = sin_bs_aux (Q2, S2, C2, y, 2 * sh - 1, prec_s);
/* we now have |S2/Q2/2^l2 - sin(X)| <= 9*2^(prec_s)
and |C2/Q2/2^l2 - cos(X)| <= 6*2^(prec_s), with X=y/2^(2sh-1) */
}
if (sh == 1) /* S=0, C=1 */
{
l = l2;
mpz_swap (Q, Q2);
mpz_swap (S, S2);
mpz_swap (C, C2);
}
else
{
/* s <- s*c2+c*s2, c <- c*c2-s*s2, using Karatsuba:
a = s+c, b = s2+c2, t = a*b, d = s*s2, e = c*c2,
s <- t - d - e, c <- e - d */
mpz_add (y, S, C); /* a */
mpz_mul (C, C, C2); /* e */
mpz_add (C2, C2, S2); /* b */
mpz_mul (S2, S, S2); /* d */
mpz_mul (y, y, C2); /* a*b */
mpz_sub (S, y, S2); /* t - d */
mpz_sub (S, S, C); /* t - d - e */
mpz_sub (C, C, S2); /* e - d */
mpz_mul (Q, Q, Q2);
/* after j loops, the error is <= (11j-2)*2^(prec_s) */
l += l2;
/* reduce Q to prec_s bits */
l += reduce (Q, Q, prec_s);
/* reduce S,C to prec_s bits, error <= 11*j*2^(prec_s) */
l -= reduce2 (S, C, prec_s);
}
}
j = 11 * j;
for (err = 0; j > 1; j = (j + 1) / 2, err ++);
mpfr_set_z (s, S, MPFR_RNDN);
mpfr_div_z (s, s, Q, MPFR_RNDN);
mpfr_div_2exp (s, s, l, MPFR_RNDN);
mpfr_set_z (c, C, MPFR_RNDN);
mpfr_div_z (c, c, Q, MPFR_RNDN);
mpfr_div_2exp (c, c, l, MPFR_RNDN);
mpz_clear (Q);
mpz_clear (S);
mpz_clear (C);
mpz_clear (Q2);
mpz_clear (S2);
mpz_clear (C2);
mpz_clear (y);
mpfr_clear (x2);
return err;
}
/* Assumes x is neither NaN, +/-Inf, nor +/- 0.
One of s and c might be NULL, in which case the corresponding value is
not computed.
Assumes s differs from c.
*/
int
mpfr_sincos_fast (mpfr_t s, mpfr_t c, mpfr_srcptr x, mpfr_rnd_t rnd)
{
int inexs, inexc;
mpfr_t x_red, ts, tc;
mpfr_prec_t w;
mpfr_exp_t err, errs, errc;
MPFR_ZIV_DECL (loop);
MPFR_ASSERTN(s != c);
if (s == NULL)
w = MPFR_PREC(c);
else if (c == NULL)
w = MPFR_PREC(s);
else
w = MPFR_PREC(s) >= MPFR_PREC(c) ? MPFR_PREC(s) : MPFR_PREC(c);
w += MPFR_INT_CEIL_LOG2(w) + 9; /* ensures w >= 10 (needed by sincos_aux) */
mpfr_init2 (ts, w);
mpfr_init2 (tc, w);
MPFR_ZIV_INIT (loop, w);
for (;;)
{
/* if 0 < x <= Pi/4, we can call sincos_aux directly */
if (MPFR_IS_POS(x) && mpfr_cmp_ui_2exp (x, 1686629713, -31) <= 0)
{
err = sincos_aux (ts, tc, x, MPFR_RNDN);
}
/* if -Pi/4 <= x < 0, use sin(-x)=-sin(x) */
else if (MPFR_IS_NEG(x) && mpfr_cmp_si_2exp (x, -1686629713, -31) >= 0)
{
mpfr_init2 (x_red, MPFR_PREC(x));
mpfr_neg (x_red, x, rnd); /* exact */
err = sincos_aux (ts, tc, x_red, MPFR_RNDN);
mpfr_neg (ts, ts, MPFR_RNDN);
mpfr_clear (x_red);
}
else /* argument reduction is needed */
{
long q;
mpfr_t pi;
int neg = 0;
mpfr_init2 (x_red, w);
mpfr_init2 (pi, (MPFR_EXP(x) > 0) ? w + MPFR_EXP(x) : w);
mpfr_const_pi (pi, MPFR_RNDN);
mpfr_div_2exp (pi, pi, 1, MPFR_RNDN); /* Pi/2 */
mpfr_remquo (x_red, &q, x, pi, MPFR_RNDN);
/* x = q * (Pi/2 + eps1) + x_red + eps2,
where |eps1| <= 1/2*ulp(Pi/2) = 2^(-w-MAX(0,EXP(x))),
and eps2 <= 1/2*ulp(x_red) <= 1/2*ulp(Pi/2) = 2^(-w)
Since |q| <= x/(Pi/2) <= |x|, we have
q*|eps1| <= 2^(-w), thus
|x - q * Pi/2 - x_red| <= 2^(1-w) */
/* now -Pi/4 <= x_red <= Pi/4: if x_red < 0, consider -x_red */
if (MPFR_IS_NEG(x_red))
{
mpfr_neg (x_red, x_red, MPFR_RNDN);
neg = 1;
}
err = sincos_aux (ts, tc, x_red, MPFR_RNDN);
err ++; /* to take into account the argument reduction */
if (neg) /* sin(-x) = -sin(x), cos(-x) = cos(x) */
mpfr_neg (ts, ts, MPFR_RNDN);
if (q & 2) /* sin(x+Pi) = -sin(x), cos(x+Pi) = -cos(x) */
{
mpfr_neg (ts, ts, MPFR_RNDN);
mpfr_neg (tc, tc, MPFR_RNDN);
}
if (q & 1) /* sin(x+Pi/2) = cos(x), cos(x+Pi/2) = -sin(x) */
{
mpfr_neg (ts, ts, MPFR_RNDN);
mpfr_swap (ts, tc);
}
mpfr_clear (x_red);
mpfr_clear (pi);
}
/* adjust errors with respect to absolute values */
errs = err - MPFR_EXP(ts);
errc = err - MPFR_EXP(tc);
if ((s == NULL || MPFR_CAN_ROUND (ts, w - errs, MPFR_PREC(s), rnd)) &&
(c == NULL || MPFR_CAN_ROUND (tc, w - errc, MPFR_PREC(c), rnd)))
break;
MPFR_ZIV_NEXT (loop, w);
mpfr_set_prec (ts, w);
mpfr_set_prec (tc, w);
}
MPFR_ZIV_FREE (loop);
inexs = (s == NULL) ? 0 : mpfr_set (s, ts, rnd);
inexc = (c == NULL) ? 0 : mpfr_set (c, tc, rnd);
mpfr_clear (ts);
mpfr_clear (tc);
return INEX(inexs,inexc);
}
|