summaryrefslogtreecommitdiff
path: root/Build/source/libs/icu/icu-src/source/tools/makeconv/gencnvex.c
blob: dcc849d8edaefbc9aa61e69c7a3a6cfcfc323ac2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
*
*   Copyright (C) 2003-2014, International Business Machines
*   Corporation and others.  All Rights Reserved.
*
*******************************************************************************
*   file name:  gencnvex.c
*   encoding:   UTF-8
*   tab size:   8 (not used)
*   indentation:4
*
*   created on: 2003oct12
*   created by: Markus W. Scherer
*/

#include <stdio.h>
#include "unicode/utypes.h"
#include "unicode/ustring.h"
#include "cstring.h"
#include "cmemory.h"
#include "ucnv_cnv.h"
#include "ucnvmbcs.h"
#include "toolutil.h"
#include "unewdata.h"
#include "ucm.h"
#include "makeconv.h"
#include "genmbcs.h"

static void
CnvExtClose(NewConverter *cnvData);

static UBool
CnvExtIsValid(NewConverter *cnvData,
              const uint8_t *bytes, int32_t length);

static UBool
CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData);

static uint32_t
CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
            UNewDataMemory *pData, int32_t tableType);

typedef struct CnvExtData {
    NewConverter newConverter;

    UCMFile *ucm;

    /* toUnicode (state table in ucm->states) */
    UToolMemory *toUTable, *toUUChars;

    /* fromUnicode */
    UToolMemory *fromUTableUChars, *fromUTableValues, *fromUBytes;

    uint16_t stage1[MBCS_STAGE_1_SIZE];
    uint16_t stage2[MBCS_STAGE_2_SIZE];
    uint16_t stage3[0x10000<<UCNV_EXT_STAGE_2_LEFT_SHIFT]; /* 0x10000 because of 16-bit stage 2/3 indexes */
    uint32_t stage3b[0x10000];

    int32_t stage1Top, stage2Top, stage3Top, stage3bTop;

    /* for stage3 compaction of <subchar1> |2 mappings */
    uint16_t stage3Sub1Block;

    /* statistics */
    int32_t
        maxInBytes, maxOutBytes, maxBytesPerUChar,
        maxInUChars, maxOutUChars, maxUCharsPerByte;
} CnvExtData;

NewConverter *
CnvExtOpen(UCMFile *ucm) {
    CnvExtData *extData;
    
    extData=(CnvExtData *)uprv_malloc(sizeof(CnvExtData));
    if(extData==NULL) {
        printf("out of memory\n");
        exit(U_MEMORY_ALLOCATION_ERROR);
    }
    uprv_memset(extData, 0, sizeof(CnvExtData));

    extData->ucm=ucm; /* aliased, not owned */

    extData->newConverter.close=CnvExtClose;
    extData->newConverter.isValid=CnvExtIsValid;
    extData->newConverter.addTable=CnvExtAddTable;
    extData->newConverter.write=CnvExtWrite;
    return &extData->newConverter;
}

static void
CnvExtClose(NewConverter *cnvData) {
    CnvExtData *extData=(CnvExtData *)cnvData;
    if(extData!=NULL) {
        utm_close(extData->toUTable);
        utm_close(extData->toUUChars);
        utm_close(extData->fromUTableUChars);
        utm_close(extData->fromUTableValues);
        utm_close(extData->fromUBytes);
        uprv_free(extData);
    }
}

/* we do not expect this to be called */
static UBool
CnvExtIsValid(NewConverter *cnvData,
        const uint8_t *bytes, int32_t length) {
    return FALSE;
}

static uint32_t
CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
            UNewDataMemory *pData, int32_t tableType) {
    CnvExtData *extData=(CnvExtData *)cnvData;
    int32_t length, top, headerSize;

    int32_t indexes[UCNV_EXT_INDEXES_MIN_LENGTH]={ 0 };

    if(tableType&TABLE_BASE) {
        headerSize=0;
    } else {
        _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 };

        /* write the header and base table name for an extension-only table */
        length=(int32_t)uprv_strlen(extData->ucm->baseName)+1;
        while(length&3) {
            /* add padding */
            extData->ucm->baseName[length++]=0;
        }

        headerSize=MBCS_HEADER_V4_LENGTH*4+length;

        /* fill the header */
        header.version[0]=4;
        header.version[1]=2;
        header.flags=(uint32_t)((headerSize<<8)|MBCS_OUTPUT_EXT_ONLY);

        /* write the header and the base table name */
        udata_writeBlock(pData, &header, MBCS_HEADER_V4_LENGTH*4);
        udata_writeBlock(pData, extData->ucm->baseName, length);
    }

    /* fill indexes[] - offsets/indexes are in units of the target array */
    top=0;

    indexes[UCNV_EXT_INDEXES_LENGTH]=length=UCNV_EXT_INDEXES_MIN_LENGTH;
    top+=length*4;

    indexes[UCNV_EXT_TO_U_INDEX]=top;
    indexes[UCNV_EXT_TO_U_LENGTH]=length=utm_countItems(extData->toUTable);
    top+=length*4;

    indexes[UCNV_EXT_TO_U_UCHARS_INDEX]=top;
    indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]=length=utm_countItems(extData->toUUChars);
    top+=length*2;

    indexes[UCNV_EXT_FROM_U_UCHARS_INDEX]=top;
    length=utm_countItems(extData->fromUTableUChars);
    top+=length*2;

    if(top&3) {
        /* add padding */
        *((UChar *)utm_alloc(extData->fromUTableUChars))=0;
        *((uint32_t *)utm_alloc(extData->fromUTableValues))=0;
        ++length;
        top+=2;
    }
    indexes[UCNV_EXT_FROM_U_LENGTH]=length;

    indexes[UCNV_EXT_FROM_U_VALUES_INDEX]=top;
    top+=length*4;

    indexes[UCNV_EXT_FROM_U_BYTES_INDEX]=top;
    length=utm_countItems(extData->fromUBytes);
    top+=length;

    if(top&1) {
        /* add padding */
        *((uint8_t *)utm_alloc(extData->fromUBytes))=0;
        ++length;
        ++top;
    }
    indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]=length;

    indexes[UCNV_EXT_FROM_U_STAGE_12_INDEX]=top;
    indexes[UCNV_EXT_FROM_U_STAGE_1_LENGTH]=length=extData->stage1Top;
    indexes[UCNV_EXT_FROM_U_STAGE_12_LENGTH]=length+=extData->stage2Top;
    top+=length*2;

    indexes[UCNV_EXT_FROM_U_STAGE_3_INDEX]=top;
    length=extData->stage3Top;
    top+=length*2;

    if(top&3) {
        /* add padding */
        extData->stage3[extData->stage3Top++]=0;
        ++length;
        top+=2;
    }
    indexes[UCNV_EXT_FROM_U_STAGE_3_LENGTH]=length;

    indexes[UCNV_EXT_FROM_U_STAGE_3B_INDEX]=top;
    indexes[UCNV_EXT_FROM_U_STAGE_3B_LENGTH]=length=extData->stage3bTop;
    top+=length*4;

    indexes[UCNV_EXT_SIZE]=top;

    /* statistics */
    indexes[UCNV_EXT_COUNT_BYTES]=
        (extData->maxInBytes<<16)|
        (extData->maxOutBytes<<8)|
        extData->maxBytesPerUChar;
    indexes[UCNV_EXT_COUNT_UCHARS]=
        (extData->maxInUChars<<16)|
        (extData->maxOutUChars<<8)|
        extData->maxUCharsPerByte;

    indexes[UCNV_EXT_FLAGS]=extData->ucm->ext->unicodeMask;

    /* write the extension data */
    udata_writeBlock(pData, indexes, sizeof(indexes));
    udata_writeBlock(pData, utm_getStart(extData->toUTable), indexes[UCNV_EXT_TO_U_LENGTH]*4);
    udata_writeBlock(pData, utm_getStart(extData->toUUChars), indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]*2);

    udata_writeBlock(pData, utm_getStart(extData->fromUTableUChars), indexes[UCNV_EXT_FROM_U_LENGTH]*2);
    udata_writeBlock(pData, utm_getStart(extData->fromUTableValues), indexes[UCNV_EXT_FROM_U_LENGTH]*4);
    udata_writeBlock(pData, utm_getStart(extData->fromUBytes), indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]);

    udata_writeBlock(pData, extData->stage1, extData->stage1Top*2);
    udata_writeBlock(pData, extData->stage2, extData->stage2Top*2);
    udata_writeBlock(pData, extData->stage3, extData->stage3Top*2);
    udata_writeBlock(pData, extData->stage3b, extData->stage3bTop*4);

#if 0
    {
        int32_t i, j;

        length=extData->stage1Top;
        printf("\nstage1[%x]:\n", length);

        for(i=0; i<length; ++i) {
            if(extData->stage1[i]!=length) {
                printf("stage1[%04x]=%04x\n", i, extData->stage1[i]);
            }
        }

        j=length;
        length=extData->stage2Top;
        printf("\nstage2[%x]:\n", length);

        for(i=0; i<length; ++j, ++i) {
            if(extData->stage2[i]!=0) {
                printf("stage12[%04x]=%04x\n", j, extData->stage2[i]);
            }
        }

        length=extData->stage3Top;
        printf("\nstage3[%x]:\n", length);

        for(i=0; i<length; ++i) {
            if(extData->stage3[i]!=0) {
                printf("stage3[%04x]=%04x\n", i, extData->stage3[i]);
            }
        }

        length=extData->stage3bTop;
        printf("\nstage3b[%x]:\n", length);

        for(i=0; i<length; ++i) {
            if(extData->stage3b[i]!=0) {
                printf("stage3b[%04x]=%08x\n", i, extData->stage3b[i]);
            }
        }
    }
#endif

    if(VERBOSE) {
        printf("size of extension data: %ld\n", (long)top);
    }

    /* return the number of bytes that should have been written */
    return (uint32_t)(headerSize+top);
}

/* to Unicode --------------------------------------------------------------- */

/*
 * Remove fromUnicode fallbacks and SUB mappings which are irrelevant for
 * the toUnicode table.
 * This includes mappings with MBCS_FROM_U_EXT_FLAG which were suitable
 * for the base toUnicode table but not for the base fromUnicode table.
 * The table must be sorted.
 * Modifies previous data in the reverseMap.
 */
static int32_t
reduceToUMappings(UCMTable *table) {
    UCMapping *mappings;
    int32_t *map;
    int32_t i, j, count;
    int8_t flag;

    mappings=table->mappings;
    map=table->reverseMap;
    count=table->mappingsLength;

    /* leave the map alone for the initial mappings with desired flags */
    for(i=j=0; i<count; ++i) {
        flag=mappings[map[i]].f;
        if(flag!=0 && flag!=3) {
            break;
        }
    }

    /* reduce from here to the rest */
    for(j=i; i<count; ++i) {
        flag=mappings[map[i]].f;
        if(flag==0 || flag==3) {
            map[j++]=map[i];
        }
    }

    return j;
}

static uint32_t
getToUnicodeValue(CnvExtData *extData, UCMTable *table, UCMapping *m) {
    UChar32 *u32;
    UChar *u;
    uint32_t value;
    int32_t u16Length, ratio;
    UErrorCode errorCode;

    /* write the Unicode result code point or string index */
    if(m->uLen==1) {
        u16Length=U16_LENGTH(m->u);
        value=(uint32_t)(UCNV_EXT_TO_U_MIN_CODE_POINT+m->u);
    } else {
        /* the parser enforces m->uLen<=UCNV_EXT_MAX_UCHARS */

        /* get the result code point string and its 16-bit string length */
        u32=UCM_GET_CODE_POINTS(table, m);
        errorCode=U_ZERO_ERROR;
        u_strFromUTF32(NULL, 0, &u16Length, u32, m->uLen, &errorCode);
        if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) {
            exit(errorCode);
        }

        /* allocate it and put its length and index into the value */
        value=
            (((uint32_t)u16Length+UCNV_EXT_TO_U_LENGTH_OFFSET)<<UCNV_EXT_TO_U_LENGTH_SHIFT)|
            ((uint32_t)utm_countItems(extData->toUUChars));
        u=utm_allocN(extData->toUUChars, u16Length);

        /* write the result 16-bit string */
        errorCode=U_ZERO_ERROR;
        u_strFromUTF32(u, u16Length, NULL, u32, m->uLen, &errorCode);
        if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) {
            exit(errorCode);
        }
    }
    if(m->f==0) {
        value|=UCNV_EXT_TO_U_ROUNDTRIP_FLAG;
    }

    /* update statistics */
    if(m->bLen>extData->maxInBytes) {
        extData->maxInBytes=m->bLen;
    }
    if(u16Length>extData->maxOutUChars) {
        extData->maxOutUChars=u16Length;
    }

    ratio=(u16Length+(m->bLen-1))/m->bLen;
    if(ratio>extData->maxUCharsPerByte) {
        extData->maxUCharsPerByte=ratio;
    }

    return value;
}

/*
 * Recursive toUTable generator core function.
 * Preconditions:
 * - start<limit (There is at least one mapping.)
 * - The mappings are sorted lexically. (Access is through the reverseMap.)
 * - All mappings between start and limit have input sequences that share
 *   the same prefix of unitIndex length, and therefore all of these sequences
 *   are at least unitIndex+1 long.
 * - There are only relevant mappings available through the reverseMap,
 *   see reduceToUMappings().
 *
 * One function invocation generates one section table.
 *
 * Steps:
 * 1. Count the number of unique unit values and get the low/high unit values
 *    that occur at unitIndex.
 * 2. Allocate the section table with possible optimization for linear access.
 * 3. Write temporary version of the section table with start indexes of
 *    subsections, each corresponding to one unit value at unitIndex.
 * 4. Iterate through the table once more, and depending on the subsection length:
 *    0: write 0 as a result value (unused byte in linear-access section table)
 *   >0: if there is one mapping with an input unit sequence of unitIndex+1
 *       then defaultValue=compute the mapping result for this whole sequence
 *       else defaultValue=0
 *
 *       recurse into the subsection
 */
static UBool
generateToUTable(CnvExtData *extData, UCMTable *table,
                 int32_t start, int32_t limit, int32_t unitIndex,
                 uint32_t defaultValue) {
    UCMapping *mappings, *m;
    int32_t *map;
    int32_t i, j, uniqueCount, count, subStart, subLimit;

    uint8_t *bytes;
    int32_t low, high, prev;

    uint32_t *section;

    mappings=table->mappings;
    map=table->reverseMap;

    /* step 1: examine the input units; set low, high, uniqueCount */
    m=mappings+map[start];
    bytes=UCM_GET_BYTES(table, m);
    low=bytes[unitIndex];
    uniqueCount=1;

    prev=high=low;
    for(i=start+1; i<limit; ++i) {
        m=mappings+map[i];
        bytes=UCM_GET_BYTES(table, m);
        high=bytes[unitIndex];

        if(high!=prev) {
            prev=high;
            ++uniqueCount;
        }
    }

    /* step 2: allocate the section; set count, section */
    count=(high-low)+1;
    if(count<0x100 && (unitIndex==0 || uniqueCount>=(3*count)/4)) {
        /*
         * for the root table and for fairly full tables:
         * allocate for direct, linear array access
         * by keeping count, to write an entry for each unit value
         * from low to high
         * exception: use a compact table if count==0x100 because
         * that cannot be encoded in the length byte
         */
    } else {
        count=uniqueCount;
    }

    if(count>=0x100) {
        fprintf(stderr, "error: toUnicode extension table section overflow: %ld section entries\n", (long)count);
        return FALSE;
    }

    /* allocate the section: 1 entry for the header + count for the items */
    section=(uint32_t *)utm_allocN(extData->toUTable, 1+count);

    /* write the section header */
    *section++=((uint32_t)count<<UCNV_EXT_TO_U_BYTE_SHIFT)|defaultValue;

    /* step 3: write temporary section table with subsection starts */
    prev=low-1; /* just before low to prevent empty subsections before low */
    j=0; /* section table index */
    for(i=start; i<limit; ++i) {
        m=mappings+map[i];
        bytes=UCM_GET_BYTES(table, m);
        high=bytes[unitIndex];

        if(high!=prev) {
            /* start of a new subsection for unit high */
            if(count>uniqueCount) {
                /* write empty subsections for unused units in a linear table */
                while(++prev<high) {
                    section[j++]=((uint32_t)prev<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i;
                }
            } else {
                prev=high;
            }

            /* write the entry with the subsection start */
            section[j++]=((uint32_t)high<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i;
        }
    }
    /* assert(j==count) */

    /* step 4: recurse and write results */
    subLimit=UCNV_EXT_TO_U_GET_VALUE(section[0]);
    for(j=0; j<count; ++j) {
        subStart=subLimit;
        subLimit= (j+1)<count ? UCNV_EXT_TO_U_GET_VALUE(section[j+1]) : limit;

        /* remove the subStart temporary value */
        section[j]&=~UCNV_EXT_TO_U_VALUE_MASK;

        if(subStart==subLimit) {
            /* leave the value zero: empty subsection for unused unit in a linear table */
            continue;
        }

        /* see if there is exactly one input unit sequence of length unitIndex+1 */
        defaultValue=0;
        m=mappings+map[subStart];
        if(m->bLen==unitIndex+1) {
            /* do not include this in generateToUTable() */
            ++subStart;

            if(subStart<subLimit && mappings[map[subStart]].bLen==unitIndex+1) {
                /* print error for multiple same-input-sequence mappings */
                fprintf(stderr, "error: multiple mappings from same bytes\n");
                ucm_printMapping(table, m, stderr);
                ucm_printMapping(table, mappings+map[subStart], stderr);
                return FALSE;
            }

            defaultValue=getToUnicodeValue(extData, table, m);
        }

        if(subStart==subLimit) {
            /* write the result for the input sequence ending here */
            section[j]|=defaultValue;
        } else {
            /* write the index to the subsection table */
            section[j]|=(uint32_t)utm_countItems(extData->toUTable);

            /* recurse */
            if(!generateToUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) {
                return FALSE;
            }
        }
    }
    return TRUE;
}

/*
 * Generate the toUTable and toUUChars from the input table.
 * The input table must be sorted, and all precision flags must be 0..3.
 * This function will modify the table's reverseMap.
 */
static UBool
makeToUTable(CnvExtData *extData, UCMTable *table) {
    int32_t toUCount;

    toUCount=reduceToUMappings(table);

    extData->toUTable=utm_open("cnv extension toUTable", 0x10000, UCNV_EXT_TO_U_MIN_CODE_POINT, 4);
    extData->toUUChars=utm_open("cnv extension toUUChars", 0x10000, UCNV_EXT_TO_U_INDEX_MASK+1, 2);

    return generateToUTable(extData, table, 0, toUCount, 0, 0);
}

/* from Unicode ------------------------------------------------------------- */

/*
 * preprocessing:
 * rebuild reverseMap with mapping indexes for mappings relevant for from Unicode
 * change each Unicode string to encode all but the first code point in 16-bit form
 *
 * generation:
 * for each unique code point
 *   write an entry in the 3-stage trie
 *   check that there is only one single-code point sequence
 *   start recursion for following 16-bit input units
 */

/*
 * Remove toUnicode fallbacks and non-<subchar1> SUB mappings
 * which are irrelevant for the fromUnicode extension table.
 * Remove MBCS_FROM_U_EXT_FLAG bits.
 * Overwrite the reverseMap with an index array to the relevant mappings.
 * Modify the code point sequences to a generator-friendly format where
 * the first code points remains unchanged but the following are recoded
 * into 16-bit Unicode string form.
 * The table must be sorted.
 * Destroys previous data in the reverseMap.
 */
static int32_t
prepareFromUMappings(UCMTable *table) {
    UCMapping *mappings, *m;
    int32_t *map;
    int32_t i, j, count;
    int8_t flag;

    mappings=table->mappings;
    map=table->reverseMap;
    count=table->mappingsLength;

    /*
     * we do not go through the map on input because the mappings are
     * sorted lexically
     */
    m=mappings;

    for(i=j=0; i<count; ++m, ++i) {
        flag=m->f;
        if(flag>=0) {
            flag&=MBCS_FROM_U_EXT_MASK;
            m->f=flag;
        }
        if(flag==0 || flag==1 || (flag==2 && m->bLen==1) || flag==4) {
            map[j++]=i;

            if(m->uLen>1) {
                /* recode all but the first code point to 16-bit Unicode */
                UChar32 *u32;
                UChar *u;
                UChar32 c;
                int32_t q, r;

                u32=UCM_GET_CODE_POINTS(table, m);
                u=(UChar *)u32; /* destructive in-place recoding */
                for(r=2, q=1; q<m->uLen; ++q) {
                    c=u32[q];
                    U16_APPEND_UNSAFE(u, r, c);
                }

                /* counts the first code point always at 2 - the first 16-bit unit is at 16-bit index 2 */
                m->uLen=(int8_t)r;
            }
        }
    }

    return j;
}

static uint32_t
getFromUBytesValue(CnvExtData *extData, UCMTable *table, UCMapping *m) {
    uint8_t *bytes, *resultBytes;
    uint32_t value;
    int32_t u16Length, ratio;

    if(m->f==2) {
        /*
         * no mapping, <subchar1> preferred
         *
         * no need to count in statistics because the subchars are already
         * counted for maxOutBytes and maxBytesPerUChar in UConverterStaticData,
         * and this non-mapping does not count for maxInUChars which are always
         * trivially at least two if counting unmappable supplementary code points
         */
        return UCNV_EXT_FROM_U_SUBCHAR1;
    }

    bytes=UCM_GET_BYTES(table, m);
    value=0;
    switch(m->bLen) {
        /* 1..3: store the bytes in the value word */
    case 3:
        value=((uint32_t)*bytes++)<<16;
    case 2:
        value|=((uint32_t)*bytes++)<<8;
    case 1:
        value|=*bytes;
        break;
    default:
        /* the parser enforces m->bLen<=UCNV_EXT_MAX_BYTES */
        /* store the bytes in fromUBytes[] and the index in the value word */
        value=(uint32_t)utm_countItems(extData->fromUBytes);
        resultBytes=utm_allocN(extData->fromUBytes, m->bLen);
        uprv_memcpy(resultBytes, bytes, m->bLen);
        break;
    }
    value|=(uint32_t)m->bLen<<UCNV_EXT_FROM_U_LENGTH_SHIFT;
    if(m->f==0) {
        value|=UCNV_EXT_FROM_U_ROUNDTRIP_FLAG;
    } else if(m->f==4) {
        value|=UCNV_EXT_FROM_U_GOOD_ONE_WAY_FLAG;
    }

    /* calculate the real UTF-16 length (see recoding in prepareFromUMappings()) */
    if(m->uLen==1) {
        u16Length=U16_LENGTH(m->u);
    } else {
        u16Length=U16_LENGTH(UCM_GET_CODE_POINTS(table, m)[0])+(m->uLen-2);
    }

    /* update statistics */
    if(u16Length>extData->maxInUChars) {
        extData->maxInUChars=u16Length;
    }
    if(m->bLen>extData->maxOutBytes) {
        extData->maxOutBytes=m->bLen;
    }

    ratio=(m->bLen+(u16Length-1))/u16Length;
    if(ratio>extData->maxBytesPerUChar) {
        extData->maxBytesPerUChar=ratio;
    }

    return value;
}

/*
 * works like generateToUTable(), except that the
 * output section consists of two arrays, one for input UChars and one
 * for result values
 *
 * also, fromUTable sections are always stored in a compact form for
 * access via binary search
 */
static UBool
generateFromUTable(CnvExtData *extData, UCMTable *table,
                   int32_t start, int32_t limit, int32_t unitIndex,
                   uint32_t defaultValue) {
    UCMapping *mappings, *m;
    int32_t *map;
    int32_t i, j, uniqueCount, count, subStart, subLimit;

    UChar *uchars;
    UChar32 low, high, prev;

    UChar *sectionUChars;
    uint32_t *sectionValues;

    mappings=table->mappings;
    map=table->reverseMap;

    /* step 1: examine the input units; set low, high, uniqueCount */
    m=mappings+map[start];
    uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
    low=uchars[unitIndex];
    uniqueCount=1;

    prev=high=low;
    for(i=start+1; i<limit; ++i) {
        m=mappings+map[i];
        uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
        high=uchars[unitIndex];

        if(high!=prev) {
            prev=high;
            ++uniqueCount;
        }
    }

    /* step 2: allocate the section; set count, section */
    /* the fromUTable always stores for access via binary search */
    count=uniqueCount;

    /* allocate the section: 1 entry for the header + count for the items */
    sectionUChars=(UChar *)utm_allocN(extData->fromUTableUChars, 1+count);
    sectionValues=(uint32_t *)utm_allocN(extData->fromUTableValues, 1+count);

    /* write the section header */
    *sectionUChars++=(UChar)count;
    *sectionValues++=defaultValue;

    /* step 3: write temporary section table with subsection starts */
    prev=low-1; /* just before low to prevent empty subsections before low */
    j=0; /* section table index */
    for(i=start; i<limit; ++i) {
        m=mappings+map[i];
        uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
        high=uchars[unitIndex];

        if(high!=prev) {
            /* start of a new subsection for unit high */
            prev=high;

            /* write the entry with the subsection start */
            sectionUChars[j]=(UChar)high;
            sectionValues[j]=(uint32_t)i;
            ++j;
        }
    }
    /* assert(j==count) */

    /* step 4: recurse and write results */
    subLimit=(int32_t)(sectionValues[0]);
    for(j=0; j<count; ++j) {
        subStart=subLimit;
        subLimit= (j+1)<count ? (int32_t)(sectionValues[j+1]) : limit;

        /* see if there is exactly one input unit sequence of length unitIndex+1 */
        defaultValue=0;
        m=mappings+map[subStart];
        if(m->uLen==unitIndex+1) {
            /* do not include this in generateToUTable() */
            ++subStart;

            if(subStart<subLimit && mappings[map[subStart]].uLen==unitIndex+1) {
                /* print error for multiple same-input-sequence mappings */
                fprintf(stderr, "error: multiple mappings from same Unicode code points\n");
                ucm_printMapping(table, m, stderr);
                ucm_printMapping(table, mappings+map[subStart], stderr);
                return FALSE;
            }

            defaultValue=getFromUBytesValue(extData, table, m);
        }

        if(subStart==subLimit) {
            /* write the result for the input sequence ending here */
            sectionValues[j]=defaultValue;
        } else {
            /* write the index to the subsection table */
            sectionValues[j]=(uint32_t)utm_countItems(extData->fromUTableValues);

            /* recurse */
            if(!generateFromUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) {
                return FALSE;
            }
        }
    }
    return TRUE;
}

/*
 * add entries to the fromUnicode trie,
 * assume to be called with code points in ascending order
 * and use that to build the trie in precompacted form
 */
static void
addFromUTrieEntry(CnvExtData *extData, UChar32 c, uint32_t value) {
    int32_t i1, i2, i3, i3b, nextOffset, min, newBlock;

    if(value==0) {
        return;
    }

    /*
     * compute the index for each stage,
     * allocate a stage block if necessary,
     * and write the stage value
     */
    i1=c>>10;
    if(i1>=extData->stage1Top) {
        extData->stage1Top=i1+1;
    }

    nextOffset=(c>>4)&0x3f;

    if(extData->stage1[i1]==0) {
        /* allocate another block in stage 2; overlap with the previous block */
        newBlock=extData->stage2Top;
        min=newBlock-nextOffset; /* minimum block start with overlap */
        while(min<newBlock && extData->stage2[newBlock-1]==0) {
            --newBlock;
        }

        extData->stage1[i1]=(uint16_t)newBlock;
        extData->stage2Top=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
        if(extData->stage2Top>UPRV_LENGTHOF(extData->stage2)) {
            fprintf(stderr, "error: too many stage 2 entries at U+%04x\n", (int)c);
            exit(U_MEMORY_ALLOCATION_ERROR);
        }
    }

    i2=extData->stage1[i1]+nextOffset;
    nextOffset=c&0xf;

    if(extData->stage2[i2]==0) {
        /* allocate another block in stage 3; overlap with the previous block */
        newBlock=extData->stage3Top;
        min=newBlock-nextOffset; /* minimum block start with overlap */
        while(min<newBlock && extData->stage3[newBlock-1]==0) {
            --newBlock;
        }

        /* round up to a multiple of stage 3 granularity >1 (similar to utrie.c) */
        newBlock=(newBlock+(UCNV_EXT_STAGE_3_GRANULARITY-1))&~(UCNV_EXT_STAGE_3_GRANULARITY-1);
        extData->stage2[i2]=(uint16_t)(newBlock>>UCNV_EXT_STAGE_2_LEFT_SHIFT);

        extData->stage3Top=newBlock+MBCS_STAGE_3_BLOCK_SIZE;
        if(extData->stage3Top>UPRV_LENGTHOF(extData->stage3)) {
            fprintf(stderr, "error: too many stage 3 entries at U+%04x\n", (int)c);
            exit(U_MEMORY_ALLOCATION_ERROR);
        }
    }

    i3=((int32_t)extData->stage2[i2]<<UCNV_EXT_STAGE_2_LEFT_SHIFT)+nextOffset;
    /*
     * assume extData->stage3[i3]==0 because we get
     * code points in strictly ascending order
     */

    if(value==UCNV_EXT_FROM_U_SUBCHAR1) {
        /* <subchar1> SUB mapping, see getFromUBytesValue() and prepareFromUMappings() */
        extData->stage3[i3]=1;

        /*
         * precompaction is not optimal for <subchar1> |2 mappings because
         * stage3 values for them are all the same, unlike for other mappings
         * which all have unique values;
         * use a simple compaction of reusing a whole block filled with these
         * mappings
         */

        /* is the entire block filled with <subchar1> |2 mappings? */
        if(nextOffset==MBCS_STAGE_3_BLOCK_SIZE-1) {
            for(min=i3-nextOffset;
                min<i3 && extData->stage3[min]==1;
                ++min) {}

            if(min==i3) {
                /* the entire block is filled with these mappings */
                if(extData->stage3Sub1Block!=0) {
                    /* point to the previous such block and remove this block from stage3 */
                    extData->stage2[i2]=extData->stage3Sub1Block;
                    extData->stage3Top-=MBCS_STAGE_3_BLOCK_SIZE;
                    uprv_memset(extData->stage3+extData->stage3Top, 0, MBCS_STAGE_3_BLOCK_SIZE*2);
                } else {
                    /* remember this block's stage2 entry */
                    extData->stage3Sub1Block=extData->stage2[i2];
                }
            }
        }
    } else {
        if((i3b=extData->stage3bTop++)>=UPRV_LENGTHOF(extData->stage3b)) {
            fprintf(stderr, "error: too many stage 3b entries at U+%04x\n", (int)c);
            exit(U_MEMORY_ALLOCATION_ERROR);
        }

        /* roundtrip or fallback mapping */
        extData->stage3[i3]=(uint16_t)i3b;
        extData->stage3b[i3b]=value;
    }
}

static UBool
generateFromUTrie(CnvExtData *extData, UCMTable *table, int32_t mapLength) {
    UCMapping *mappings, *m;
    int32_t *map;
    uint32_t value;
    int32_t subStart, subLimit;

    UChar32 *codePoints;
    UChar32 c, next;

    if(mapLength==0) {
        return TRUE;
    }

    mappings=table->mappings;
    map=table->reverseMap;

    /*
     * iterate over same-initial-code point mappings,
     * enter the initial code point into the trie,
     * and start a recursion on the corresponding mappings section
     * with generateFromUTable()
     */
    m=mappings+map[0];
    codePoints=UCM_GET_CODE_POINTS(table, m);
    next=codePoints[0];
    subLimit=0;
    while(subLimit<mapLength) {
        /* get a new subsection of mappings starting with the same code point */
        subStart=subLimit;
        c=next;
        while(next==c && ++subLimit<mapLength) {
            m=mappings+map[subLimit];
            codePoints=UCM_GET_CODE_POINTS(table, m);
            next=codePoints[0];
        }

        /*
         * compute the value for this code point;
         * if there is a mapping for this code point alone, it is at subStart
         * because the table is sorted lexically
         */
        value=0;
        m=mappings+map[subStart];
        codePoints=UCM_GET_CODE_POINTS(table, m);
        if(m->uLen==1) {
            /* do not include this in generateFromUTable() */
            ++subStart;

            if(subStart<subLimit && mappings[map[subStart]].uLen==1) {
                /* print error for multiple same-input-sequence mappings */
                fprintf(stderr, "error: multiple mappings from same Unicode code points\n");
                ucm_printMapping(table, m, stderr);
                ucm_printMapping(table, mappings+map[subStart], stderr);
                return FALSE;
            }

            value=getFromUBytesValue(extData, table, m);
        }

        if(subStart==subLimit) {
            /* write the result for this one code point */
            addFromUTrieEntry(extData, c, value);
        } else {
            /* write the index to the subsection table */
            addFromUTrieEntry(extData, c, (uint32_t)utm_countItems(extData->fromUTableValues));

            /* recurse, starting from 16-bit-unit index 2, the first 16-bit unit after c */
            if(!generateFromUTable(extData, table, subStart, subLimit, 2, value)) {
                return FALSE;
            }
        }
    }
    return TRUE;
}

/*
 * Generate the fromU data structures from the input table.
 * The input table must be sorted, and all precision flags must be 0..3.
 * This function will modify the table's reverseMap.
 */
static UBool
makeFromUTable(CnvExtData *extData, UCMTable *table) {
    uint16_t *stage1;
    int32_t i, stage1Top, fromUCount;

    fromUCount=prepareFromUMappings(table);

    extData->fromUTableUChars=utm_open("cnv extension fromUTableUChars", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 2);
    extData->fromUTableValues=utm_open("cnv extension fromUTableValues", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 4);
    extData->fromUBytes=utm_open("cnv extension fromUBytes", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 1);

    /* allocate all-unassigned stage blocks */
    extData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED;
    extData->stage3Top=MBCS_STAGE_3_FIRST_ASSIGNED;

    /*
     * stage 3b stores only unique values, and in
     * index 0: 0 for "no mapping"
     * index 1: "no mapping" with preference for <subchar1> rather than <subchar>
     */
    extData->stage3b[1]=UCNV_EXT_FROM_U_SUBCHAR1;
    extData->stage3bTop=2;

    /* allocate the first entry in the fromUTable because index 0 means "no result" */
    utm_alloc(extData->fromUTableUChars);
    utm_alloc(extData->fromUTableValues);

    if(!generateFromUTrie(extData, table, fromUCount)) {
        return FALSE;
    }

    /*
     * offset the stage 1 trie entries by stage1Top because they will
     * be stored in a single array
     */
    stage1=extData->stage1;
    stage1Top=extData->stage1Top;
    for(i=0; i<stage1Top; ++i) {
        stage1[i]=(uint16_t)(stage1[i]+stage1Top);
    }

    return TRUE;
}

/* -------------------------------------------------------------------------- */

static UBool
CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) {
    CnvExtData *extData;

    if(table->unicodeMask&UCNV_HAS_SURROGATES) {
        fprintf(stderr, "error: contains mappings for surrogate code points\n");
        return FALSE;
    }

    staticData->conversionType=UCNV_MBCS;

    extData=(CnvExtData *)cnvData;

    /*
     * assume that the table is sorted
     *
     * call the functions in this order because
     * makeToUTable() modifies the original reverseMap,
     * makeFromUTable() writes a whole new mapping into reverseMap
     */
    return
        makeToUTable(extData, table) &&
        makeFromUTable(extData, table);
}