summaryrefslogtreecommitdiff
path: root/Build/source/libs/icu/icu-src/source/test/intltest/numbertest_decimalquantity.cpp
blob: 87cd7707b55b8a82213742994ad7fc6108d9858e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
// © 2017 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html

#include "unicode/utypes.h"

#if !UCONFIG_NO_FORMATTING

#include "number_decimalquantity.h"
#include "number_decnum.h"
#include "math.h"
#include <cmath>
#include "number_utils.h"
#include "numbertest.h"

void DecimalQuantityTest::runIndexedTest(int32_t index, UBool exec, const char *&name, char *) {
    if (exec) {
        logln("TestSuite DecimalQuantityTest: ");
    }
    TESTCASE_AUTO_BEGIN;
        TESTCASE_AUTO(testDecimalQuantityBehaviorStandalone);
        TESTCASE_AUTO(testSwitchStorage);
        TESTCASE_AUTO(testCopyMove);
        TESTCASE_AUTO(testAppend);
        if (!quick) {
            // Slow test: run in exhaustive mode only
            TESTCASE_AUTO(testConvertToAccurateDouble);
        }
        TESTCASE_AUTO(testUseApproximateDoubleWhenAble);
        TESTCASE_AUTO(testHardDoubleConversion);
        TESTCASE_AUTO(testFitsInLong);
        TESTCASE_AUTO(testToDouble);
        TESTCASE_AUTO(testMaxDigits);
        TESTCASE_AUTO(testNickelRounding);
        TESTCASE_AUTO(testScientificAndCompactSuppressedExponent);
        TESTCASE_AUTO(testSuppressedExponentUnchangedByInitialScaling);
        TESTCASE_AUTO(testDecimalQuantityParseFormatRoundTrip);
    TESTCASE_AUTO_END;
}

void DecimalQuantityTest::assertDoubleEquals(UnicodeString message, double a, double b) {
    if (a == b) {
        return;
    }

    double diff = a - b;
    diff = diff < 0 ? -diff : diff;
    double bound = a < 0 ? -a * 1e-6 : a * 1e-6;
    if (diff > bound) {
        errln(message + u": " + DoubleToUnicodeString(a) + u" vs " + DoubleToUnicodeString(b) + u" differ by " + DoubleToUnicodeString(diff));
    }
}

void DecimalQuantityTest::assertHealth(const DecimalQuantity &fq) {
    const char16_t* health = fq.checkHealth();
    if (health != nullptr) {
        errln(UnicodeString(u"HEALTH FAILURE: ") + UnicodeString(health) + u": " + fq.toString());
    }
}

void
DecimalQuantityTest::assertToStringAndHealth(const DecimalQuantity &fq, const UnicodeString &expected) {
    UnicodeString actual = fq.toString();
    assertEquals("DecimalQuantity toString failed", expected, actual);
    assertHealth(fq);
}

void DecimalQuantityTest::checkDoubleBehavior(double d, bool explicitRequired) {
    DecimalQuantity fq;
    fq.setToDouble(d);
    if (explicitRequired) {
        assertTrue("Should be using approximate double", !fq.isExplicitExactDouble());
    }
    UnicodeString baseStr = fq.toString();
    fq.roundToInfinity();
    UnicodeString newStr = fq.toString();
    if (explicitRequired) {
        assertTrue("Should not be using approximate double", fq.isExplicitExactDouble());
    }
    assertDoubleEquals(
        UnicodeString(u"After conversion to exact BCD (double): ") + baseStr + u" vs " + newStr,
        d, fq.toDouble());
}

void DecimalQuantityTest::testDecimalQuantityBehaviorStandalone() {
    UErrorCode status = U_ZERO_ERROR;
    DecimalQuantity fq;
    assertToStringAndHealth(fq, u"<DecimalQuantity 0:0 long 0E0>");
    fq.setToInt(51423);
    assertToStringAndHealth(fq, u"<DecimalQuantity 0:0 long 51423E0>");
    fq.adjustMagnitude(-3);
    assertToStringAndHealth(fq, u"<DecimalQuantity 0:0 long 51423E-3>");

    fq.setToLong(90909090909000L);
    assertToStringAndHealth(fq, u"<DecimalQuantity 0:0 long 90909090909E3>");
    fq.setMinInteger(2);
    fq.applyMaxInteger(5);
    assertToStringAndHealth(fq, u"<DecimalQuantity 2:0 long 9E3>");
    fq.setMinFraction(3);
    assertToStringAndHealth(fq, u"<DecimalQuantity 2:-3 long 9E3>");

    fq.setToDouble(987.654321);
    assertToStringAndHealth(fq, u"<DecimalQuantity 2:-3 long 987654321E-6>");
    fq.roundToInfinity();
    assertToStringAndHealth(fq, u"<DecimalQuantity 2:-3 long 987654321E-6>");
    fq.roundToIncrement(4, -3, RoundingMode::UNUM_ROUND_HALFEVEN, status);
    assertSuccess("Rounding to increment", status);
    assertToStringAndHealth(fq, u"<DecimalQuantity 2:-3 long 987656E-3>");
    fq.roundToNickel(-3, RoundingMode::UNUM_ROUND_HALFEVEN, status);
    assertSuccess("Rounding to nickel", status);
    assertToStringAndHealth(fq, u"<DecimalQuantity 2:-3 long 987655E-3>");
    fq.roundToMagnitude(-2, RoundingMode::UNUM_ROUND_HALFEVEN, status);
    assertSuccess("Rounding to magnitude", status);
    assertToStringAndHealth(fq, u"<DecimalQuantity 2:-3 long 98766E-2>");
}

void DecimalQuantityTest::testSwitchStorage() {
    UErrorCode status = U_ZERO_ERROR;
    DecimalQuantity fq;

    fq.setToLong(1234123412341234L);
    assertFalse("Should not be using byte array", fq.isUsingBytes());
    assertEquals("Failed on initialize", u"1.234123412341234E+15", fq.toScientificString());
    assertHealth(fq);
    // Long -> Bytes
    fq.appendDigit(5, 0, true);
    assertTrue("Should be using byte array", fq.isUsingBytes());
    assertEquals("Failed on multiply", u"1.2341234123412345E+16", fq.toScientificString());
    assertHealth(fq);
    // Bytes -> Long
    fq.roundToMagnitude(5, RoundingMode::UNUM_ROUND_HALFEVEN, status);
    assertSuccess("Rounding to magnitude", status);
    assertFalse("Should not be using byte array", fq.isUsingBytes());
    assertEquals("Failed on round", u"1.23412341234E+16", fq.toScientificString());
    assertHealth(fq);
    // Bytes with popFromLeft
    fq.setToDecNumber({"999999999999999999"}, status);
    assertToStringAndHealth(fq, u"<DecimalQuantity 0:0 bytes 999999999999999999E0>");
    fq.applyMaxInteger(17);
    assertToStringAndHealth(fq, u"<DecimalQuantity 0:0 bytes 99999999999999999E0>");
    fq.applyMaxInteger(16);
    assertToStringAndHealth(fq, u"<DecimalQuantity 0:0 long 9999999999999999E0>");
    fq.applyMaxInteger(15);
    assertToStringAndHealth(fq, u"<DecimalQuantity 0:0 long 999999999999999E0>");
}

void DecimalQuantityTest::testCopyMove() {
    // Small numbers (fits in BCD long)
    {
        DecimalQuantity a;
        a.setToLong(1234123412341234L);
        DecimalQuantity b = a; // copy constructor
        assertToStringAndHealth(a, u"<DecimalQuantity 0:0 long 1234123412341234E0>");
        assertToStringAndHealth(b, u"<DecimalQuantity 0:0 long 1234123412341234E0>");
        DecimalQuantity c(std::move(a)); // move constructor
        assertToStringAndHealth(c, u"<DecimalQuantity 0:0 long 1234123412341234E0>");
        c.setToLong(54321L);
        assertToStringAndHealth(c, u"<DecimalQuantity 0:0 long 54321E0>");
        c = b; // copy assignment
        assertToStringAndHealth(b, u"<DecimalQuantity 0:0 long 1234123412341234E0>");
        assertToStringAndHealth(c, u"<DecimalQuantity 0:0 long 1234123412341234E0>");
        b.setToLong(45678);
        c.setToLong(56789);
        c = std::move(b); // move assignment
        assertToStringAndHealth(c, u"<DecimalQuantity 0:0 long 45678E0>");
        a = std::move(c); // move assignment to a defunct object
        assertToStringAndHealth(a, u"<DecimalQuantity 0:0 long 45678E0>");
    }

    // Large numbers (requires byte allocation)
    {
        IcuTestErrorCode status(*this, "testCopyMove");
        DecimalQuantity a;
        a.setToDecNumber({"1234567890123456789", -1}, status);
        DecimalQuantity b = a; // copy constructor
        assertToStringAndHealth(a, u"<DecimalQuantity 0:0 bytes 1234567890123456789E0>");
        assertToStringAndHealth(b, u"<DecimalQuantity 0:0 bytes 1234567890123456789E0>");
        DecimalQuantity c(std::move(a)); // move constructor
        assertToStringAndHealth(c, u"<DecimalQuantity 0:0 bytes 1234567890123456789E0>");
        c.setToDecNumber({"9876543210987654321", -1}, status);
        assertToStringAndHealth(c, u"<DecimalQuantity 0:0 bytes 9876543210987654321E0>");
        c = b; // copy assignment
        assertToStringAndHealth(b, u"<DecimalQuantity 0:0 bytes 1234567890123456789E0>");
        assertToStringAndHealth(c, u"<DecimalQuantity 0:0 bytes 1234567890123456789E0>");
        b.setToDecNumber({"876543210987654321", -1}, status);
        c.setToDecNumber({"987654321098765432", -1}, status);
        c = std::move(b); // move assignment
        assertToStringAndHealth(c, u"<DecimalQuantity 0:0 bytes 876543210987654321E0>");
        a = std::move(c); // move assignment to a defunct object
        assertToStringAndHealth(a, u"<DecimalQuantity 0:0 bytes 876543210987654321E0>");
    }
}

void DecimalQuantityTest::testAppend() {
    DecimalQuantity fq;
    fq.appendDigit(1, 0, true);
    assertEquals("Failed on append", u"1E+0", fq.toScientificString());
    assertHealth(fq);
    fq.appendDigit(2, 0, true);
    assertEquals("Failed on append", u"1.2E+1", fq.toScientificString());
    assertHealth(fq);
    fq.appendDigit(3, 1, true);
    assertEquals("Failed on append", u"1.203E+3", fq.toScientificString());
    assertHealth(fq);
    fq.appendDigit(0, 1, true);
    assertEquals("Failed on append", u"1.203E+5", fq.toScientificString());
    assertHealth(fq);
    fq.appendDigit(4, 0, true);
    assertEquals("Failed on append", u"1.203004E+6", fq.toScientificString());
    assertHealth(fq);
    fq.appendDigit(0, 0, true);
    assertEquals("Failed on append", u"1.203004E+7", fq.toScientificString());
    assertHealth(fq);
    fq.appendDigit(5, 0, false);
    assertEquals("Failed on append", u"1.20300405E+7", fq.toScientificString());
    assertHealth(fq);
    fq.appendDigit(6, 0, false);
    assertEquals("Failed on append", u"1.203004056E+7", fq.toScientificString());
    assertHealth(fq);
    fq.appendDigit(7, 3, false);
    assertEquals("Failed on append", u"1.2030040560007E+7", fq.toScientificString());
    assertHealth(fq);
    UnicodeString baseExpected(u"1.2030040560007");
    for (int i = 0; i < 10; i++) {
        fq.appendDigit(8, 0, false);
        baseExpected.append(u'8');
        UnicodeString expected(baseExpected);
        expected.append(u"E+7");
        assertEquals("Failed on append", expected, fq.toScientificString());
        assertHealth(fq);
    }
    fq.appendDigit(9, 2, false);
    baseExpected.append(u"009");
    UnicodeString expected(baseExpected);
    expected.append(u"E+7");
    assertEquals("Failed on append", expected, fq.toScientificString());
    assertHealth(fq);
}

void DecimalQuantityTest::testConvertToAccurateDouble() {
    // based on https://github.com/google/double-conversion/issues/28
    static double hardDoubles[] = {
            1651087494906221570.0,
            2.207817077636718750000000000000,
            1.818351745605468750000000000000,
            3.941719055175781250000000000000,
            3.738609313964843750000000000000,
            3.967735290527343750000000000000,
            1.328025817871093750000000000000,
            3.920967102050781250000000000000,
            1.015235900878906250000000000000,
            1.335227966308593750000000000000,
            1.344520568847656250000000000000,
            2.879127502441406250000000000000,
            3.695838928222656250000000000000,
            1.845344543457031250000000000000,
            3.793952941894531250000000000000,
            3.211402893066406250000000000000,
            2.565971374511718750000000000000,
            0.965156555175781250000000000000,
            2.700004577636718750000000000000,
            0.767097473144531250000000000000,
            1.780448913574218750000000000000,
            2.624839782714843750000000000000,
            1.305290222167968750000000000000,
            3.834922790527343750000000000000,};

    static double exactDoubles[] = {
            51423,
            51423e10,
            -5074790912492772E-327,
            83602530019752571E-327,
            4.503599627370496E15,
            6.789512076111555E15,
            9.007199254740991E15,
            9.007199254740992E15};

    for (double d : hardDoubles) {
        checkDoubleBehavior(d, true);
    }

    for (double d : exactDoubles) {
        checkDoubleBehavior(d, false);
    }

    assertDoubleEquals(u"NaN check failed", NAN, DecimalQuantity().setToDouble(NAN).toDouble());
    assertDoubleEquals(
            u"Inf check failed", INFINITY, DecimalQuantity().setToDouble(INFINITY).toDouble());
    assertDoubleEquals(
            u"-Inf check failed", -INFINITY, DecimalQuantity().setToDouble(-INFINITY).toDouble());

    // Generate random doubles
    for (int32_t i = 0; i < 10000; i++) {
        uint8_t bytes[8];
        for (int32_t j = 0; j < 8; j++) {
            bytes[j] = static_cast<uint8_t>(rand() % 256);
        }
        double d;
        uprv_memcpy(&d, bytes, 8);
        if (std::isnan(d) || !std::isfinite(d)) { continue; }
        checkDoubleBehavior(d, false);
    }
}

void DecimalQuantityTest::testUseApproximateDoubleWhenAble() {
    static const struct TestCase {
        double d;
        int32_t maxFrac;
        RoundingMode roundingMode;
        bool usesExact;
    } cases[] = {{1.2345678, 1, RoundingMode::UNUM_ROUND_HALFEVEN, false},
                 {1.2345678, 7, RoundingMode::UNUM_ROUND_HALFEVEN, false},
                 {1.2345678, 12, RoundingMode::UNUM_ROUND_HALFEVEN, false},
                 {1.2345678, 13, RoundingMode::UNUM_ROUND_HALFEVEN, true},
                 {1.235, 1, RoundingMode::UNUM_ROUND_HALFEVEN, false},
                 {1.235, 2, RoundingMode::UNUM_ROUND_HALFEVEN, true},
                 {1.235, 3, RoundingMode::UNUM_ROUND_HALFEVEN, false},
                 {1.000000000000001, 0, RoundingMode::UNUM_ROUND_HALFEVEN, false},
                 {1.000000000000001, 0, RoundingMode::UNUM_ROUND_CEILING, true},
                 {1.235, 1, RoundingMode::UNUM_ROUND_CEILING, false},
                 {1.235, 2, RoundingMode::UNUM_ROUND_CEILING, false},
                 {1.235, 3, RoundingMode::UNUM_ROUND_CEILING, true}};

    UErrorCode status = U_ZERO_ERROR;
    for (const TestCase& cas : cases) {
        DecimalQuantity fq;
        fq.setToDouble(cas.d);
        assertTrue("Should be using approximate double", !fq.isExplicitExactDouble());
        fq.roundToMagnitude(-cas.maxFrac, cas.roundingMode, status);
        assertSuccess("Rounding to magnitude", status);
        if (cas.usesExact != fq.isExplicitExactDouble()) {
            errln(UnicodeString(u"Using approximate double after rounding: ") + fq.toString());
        }
    }
}

void DecimalQuantityTest::testHardDoubleConversion() {
    static const struct TestCase {
        double input;
        const char16_t* expectedOutput;
    } cases[] = {
            { 512.0000000000017, u"512.0000000000017" },
            { 4095.9999999999977, u"4095.9999999999977" },
            { 4095.999999999998, u"4095.999999999998" },
            { 4095.9999999999986, u"4095.9999999999986" },
            { 4095.999999999999, u"4095.999999999999" },
            { 4095.9999999999995, u"4095.9999999999995" },
            { 4096.000000000001, u"4096.000000000001" },
            { 4096.000000000002, u"4096.000000000002" },
            { 4096.000000000003, u"4096.000000000003" },
            { 4096.000000000004, u"4096.000000000004" },
            { 4096.000000000005, u"4096.000000000005" },
            { 4096.0000000000055, u"4096.0000000000055" },
            { 4096.000000000006, u"4096.000000000006" },
            { 4096.000000000007, u"4096.000000000007" } };

    for (auto& cas : cases) {
        DecimalQuantity q;
        q.setToDouble(cas.input);
        q.roundToInfinity();
        UnicodeString actualOutput = q.toPlainString();
        assertEquals("", cas.expectedOutput, actualOutput);
    }
}

void DecimalQuantityTest::testFitsInLong() {
    IcuTestErrorCode status(*this, "testFitsInLong");
    DecimalQuantity quantity;
    quantity.setToInt(0);
    assertTrue("Zero should fit", quantity.fitsInLong());
    quantity.setToInt(42);
    assertTrue("Small int should fit", quantity.fitsInLong());
    quantity.setToDouble(0.1);
    assertFalse("Fraction should not fit", quantity.fitsInLong());
    quantity.setToDouble(42.1);
    assertFalse("Fraction should not fit", quantity.fitsInLong());
    quantity.setToLong(1000000);
    assertTrue("Large low-precision int should fit", quantity.fitsInLong());
    quantity.setToLong(1000000000000000000L);
    assertTrue("10^19 should fit", quantity.fitsInLong());
    quantity.setToLong(1234567890123456789L);
    assertTrue("A number between 10^19 and max long should fit", quantity.fitsInLong());
    quantity.setToLong(1234567890000000000L);
    assertTrue("A number with trailing zeros less than max long should fit", quantity.fitsInLong());
    quantity.setToLong(9223372026854775808L);
    assertTrue("A number less than max long but with similar digits should fit",
            quantity.fitsInLong());
    quantity.setToLong(9223372036854775806L);
    assertTrue("One less than max long should fit", quantity.fitsInLong());
    quantity.setToLong(9223372036854775807L);
    assertTrue("Max long should fit", quantity.fitsInLong());
    assertEquals("Max long should equal toLong", 9223372036854775807L, quantity.toLong(false));
    quantity.setToDecNumber("9223372036854775808", status);
    assertFalse("One greater than max long should not fit", quantity.fitsInLong());
    assertEquals("toLong(true) should truncate", 223372036854775808L, quantity.toLong(true));
    quantity.setToDecNumber("9223372046854775806", status);
    assertFalse("A number between max long and 10^20 should not fit", quantity.fitsInLong());
    quantity.setToDecNumber("9223372046800000000", status);
    assertFalse("A large 10^19 number with trailing zeros should not fit", quantity.fitsInLong());
    quantity.setToDecNumber("10000000000000000000", status);
    assertFalse("10^20 should not fit", quantity.fitsInLong());
}

void DecimalQuantityTest::testToDouble() {
    IcuTestErrorCode status(*this, "testToDouble");
    static const struct TestCase {
        const char* input; // char* for the decNumber constructor
        double expected;
    } cases[] = {
            { "0", 0.0 },
            { "514.23", 514.23 },
            { "-3.142E-271", -3.142e-271 } };

    for (auto& cas : cases) {
        status.setScope(cas.input);
        DecimalQuantity q;
        q.setToDecNumber({cas.input, -1}, status);
        double actual = q.toDouble();
        assertEquals("Doubles should exactly equal", cas.expected, actual);
    }
}

void DecimalQuantityTest::testMaxDigits() {
    IcuTestErrorCode status(*this, "testMaxDigits");
    DecimalQuantity dq;
    dq.setToDouble(876.543);
    dq.roundToInfinity();
    dq.setMinInteger(0);
    dq.applyMaxInteger(2);
    dq.setMinFraction(0);
    dq.roundToMagnitude(-2, UNUM_ROUND_FLOOR, status);
    assertEquals("Should trim, toPlainString", "76.54", dq.toPlainString());
    assertEquals("Should trim, toScientificString", "7.654E+1", dq.toScientificString());
    assertEquals("Should trim, toLong", 76LL, dq.toLong(true));
    assertEquals("Should trim, toFractionLong", (int64_t) 54, (int64_t) dq.toFractionLong(false));
    assertEquals("Should trim, toDouble", 76.54, dq.toDouble());
    // To test DecNum output, check the round-trip.
    DecNum dn;
    dq.toDecNum(dn, status);
    DecimalQuantity copy;
    copy.setToDecNum(dn, status);
    assertEquals("Should trim, toDecNum", "76.54", copy.toPlainString());
}

void DecimalQuantityTest::testNickelRounding() {
    IcuTestErrorCode status(*this, "testNickelRounding");
    struct TestCase {
        double input;
        int32_t magnitude;
        UNumberFormatRoundingMode roundingMode;
        const char16_t* expected;
    } cases[] = {
        {1.000, -2, UNUM_ROUND_HALFEVEN, u"1"},
        {1.001, -2, UNUM_ROUND_HALFEVEN, u"1"},
        {1.010, -2, UNUM_ROUND_HALFEVEN, u"1"},
        {1.020, -2, UNUM_ROUND_HALFEVEN, u"1"},
        {1.024, -2, UNUM_ROUND_HALFEVEN, u"1"},
        {1.025, -2, UNUM_ROUND_HALFEVEN, u"1"},
        {1.025, -2, UNUM_ROUND_HALFDOWN, u"1"},
        {1.025, -2, UNUM_ROUND_HALF_ODD, u"1.05"},
        {1.025, -2, UNUM_ROUND_HALF_CEILING, u"1.05"},
        {1.025, -2, UNUM_ROUND_HALF_FLOOR, u"1"},
        {1.025, -2, UNUM_ROUND_HALFUP,   u"1.05"},
        {1.026, -2, UNUM_ROUND_HALFEVEN, u"1.05"},
        {1.030, -2, UNUM_ROUND_HALFEVEN, u"1.05"},
        {1.040, -2, UNUM_ROUND_HALFEVEN, u"1.05"},
        {1.050, -2, UNUM_ROUND_HALFEVEN, u"1.05"},
        {1.060, -2, UNUM_ROUND_HALFEVEN, u"1.05"},
        {1.070, -2, UNUM_ROUND_HALFEVEN, u"1.05"},
        {1.074, -2, UNUM_ROUND_HALFEVEN, u"1.05"},
        {1.075, -2, UNUM_ROUND_HALFDOWN, u"1.05"},
        {1.075, -2, UNUM_ROUND_HALF_ODD, u"1.05"},
        {1.075, -2, UNUM_ROUND_HALF_CEILING, u"1.1"},
        {1.075, -2, UNUM_ROUND_HALF_FLOOR, u"1.05"},
        {1.075, -2, UNUM_ROUND_HALFUP,   u"1.1"},
        {1.075, -2, UNUM_ROUND_HALFEVEN, u"1.1"},
        {1.076, -2, UNUM_ROUND_HALFEVEN, u"1.1"},
        {1.080, -2, UNUM_ROUND_HALFEVEN, u"1.1"},
        {1.090, -2, UNUM_ROUND_HALFEVEN, u"1.1"},
        {1.099, -2, UNUM_ROUND_HALFEVEN, u"1.1"},
        {1.999, -2, UNUM_ROUND_HALFEVEN, u"2"},
        {2.25, -1, UNUM_ROUND_HALFEVEN, u"2"},
        {2.25, -1, UNUM_ROUND_HALFUP,   u"2.5"},
        {2.75, -1, UNUM_ROUND_HALFDOWN, u"2.5"},
        {2.75, -1, UNUM_ROUND_HALF_ODD, u"2.5"},
        {2.75, -1, UNUM_ROUND_HALF_CEILING, u"3"},
        {2.75, -1, UNUM_ROUND_HALF_FLOOR, u"2.5"},
        {2.75, -1, UNUM_ROUND_HALFEVEN, u"3"},
        {3.00, -1, UNUM_ROUND_CEILING, u"3"},
        {3.25, -1, UNUM_ROUND_CEILING, u"3.5"},
        {3.50, -1, UNUM_ROUND_CEILING, u"3.5"},
        {3.75, -1, UNUM_ROUND_CEILING, u"4"},
        {4.00, -1, UNUM_ROUND_FLOOR, u"4"},
        {4.25, -1, UNUM_ROUND_FLOOR, u"4"},
        {4.50, -1, UNUM_ROUND_FLOOR, u"4.5"},
        {4.75, -1, UNUM_ROUND_FLOOR, u"4.5"},
        {5.00, -1, UNUM_ROUND_UP, u"5"},
        {5.25, -1, UNUM_ROUND_UP, u"5.5"},
        {5.50, -1, UNUM_ROUND_UP, u"5.5"},
        {5.75, -1, UNUM_ROUND_UP, u"6"},
        {6.00, -1, UNUM_ROUND_DOWN, u"6"},
        {6.25, -1, UNUM_ROUND_DOWN, u"6"},
        {6.50, -1, UNUM_ROUND_DOWN, u"6.5"},
        {6.75, -1, UNUM_ROUND_DOWN, u"6.5"},
        {7.00, -1, UNUM_ROUND_UNNECESSARY, u"7"},
        {7.50, -1, UNUM_ROUND_UNNECESSARY, u"7.5"},
    };
    for (const auto& cas : cases) {
        UnicodeString message = DoubleToUnicodeString(cas.input) + u" @ " + Int64ToUnicodeString(cas.magnitude) + u" / " + Int64ToUnicodeString(cas.roundingMode);
        status.setScope(message);
        DecimalQuantity dq;
        dq.setToDouble(cas.input);
        dq.roundToNickel(cas.magnitude, cas.roundingMode, status);
        status.errIfFailureAndReset();
        UnicodeString actual = dq.toPlainString();
        assertEquals(message, cas.expected, actual);
    }
    status.setScope("");
    DecimalQuantity dq;
    dq.setToDouble(7.1);
    dq.roundToNickel(-1, UNUM_ROUND_UNNECESSARY, status);
    status.expectErrorAndReset(U_FORMAT_INEXACT_ERROR);
}

void DecimalQuantityTest::testScientificAndCompactSuppressedExponent() {
    IcuTestErrorCode status(*this, "testScientificAndCompactSuppressedExponent");
    Locale ulocale("fr-FR");

    struct TestCase {
        UnicodeString skeleton;
        double input;
        const char16_t* expectedString;
        int64_t expectedLong;
        double expectedDouble;
        const char16_t* expectedPlainString;
        int32_t expectedSuppressedScientificExponent;
        int32_t expectedSuppressedCompactExponent;
    } cases[] = {
        // unlocalized formatter skeleton, input, string output, long output,
        // double output, BigDecimal output, plain string,
        // suppressed scientific exponent, suppressed compact exponent
        {u"",              123456789, u"123 456 789",  123456789L, 123456789.0, u"123456789", 0, 0},
        {u"compact-long",  123456789, u"123 millions", 123000000L, 123000000.0, u"123000000", 6, 6},
        {u"compact-short", 123456789, u"123 M",        123000000L, 123000000.0, u"123000000", 6, 6},
        {u"scientific",    123456789, u"1,234568E8",   123456800L, 123456800.0, u"123456800", 8, 8},

        {u"",              1234567, u"1 234 567",   1234567L, 1234567.0, u"1234567", 0, 0},
        {u"compact-long",  1234567, u"1,2 million", 1200000L, 1200000.0, u"1200000", 6, 6},
        {u"compact-short", 1234567, u"1,2 M",       1200000L, 1200000.0, u"1200000", 6, 6},
        {u"scientific",    1234567, u"1,234567E6",  1234567L, 1234567.0, u"1234567", 6, 6},

        {u"",              123456, u"123 456",   123456L, 123456.0, u"123456", 0, 0},
        {u"compact-long",  123456, u"123 mille", 123000L, 123000.0, u"123000", 3, 3},
        {u"compact-short", 123456, u"123 k",     123000L, 123000.0, u"123000", 3, 3},
        {u"scientific",    123456, u"1,23456E5", 123456L, 123456.0, u"123456", 5, 5},

        {u"",              123, u"123",    123L, 123.0, u"123", 0, 0},
        {u"compact-long",  123, u"123",    123L, 123.0, u"123", 0, 0},
        {u"compact-short", 123, u"123",    123L, 123.0, u"123", 0, 0},
        {u"scientific",    123, u"1,23E2", 123L, 123.0, u"123", 2, 2},

        {u"",              1.2, u"1,2",   1L, 1.2, u"1.2", 0, 0},
        {u"compact-long",  1.2, u"1,2",   1L, 1.2, u"1.2", 0, 0},
        {u"compact-short", 1.2, u"1,2",   1L, 1.2, u"1.2", 0, 0},
        {u"scientific",    1.2, u"1,2E0", 1L, 1.2, u"1.2", 0, 0},

        {u"",              0.12, u"0,12",   0L, 0.12, u"0.12",  0,  0},
        {u"compact-long",  0.12, u"0,12",   0L, 0.12, u"0.12",  0,  0},
        {u"compact-short", 0.12, u"0,12",   0L, 0.12, u"0.12",  0,  0},
        {u"scientific",    0.12, u"1,2E-1", 0L, 0.12, u"0.12", -1, -1},

        {u"",              0.012, u"0,012",   0L, 0.012, u"0.012",  0,  0},
        {u"compact-long",  0.012, u"0,012",   0L, 0.012, u"0.012",  0,  0},
        {u"compact-short", 0.012, u"0,012",   0L, 0.012, u"0.012",  0,  0},
        {u"scientific",    0.012, u"1,2E-2",  0L, 0.012, u"0.012", -2, -2},

        {u"",              999.9, u"999,9",     999L,  999.9,  u"999.9", 0, 0},
        {u"compact-long",  999.9, u"mille",     1000L, 1000.0, u"1000",  3, 3},
        {u"compact-short", 999.9, u"1 k",       1000L, 1000.0, u"1000",  3, 3},
        {u"scientific",    999.9, u"9,999E2",   999L,  999.9,  u"999.9", 2, 2},

        {u"",              1000.0, u"1 000",     1000L, 1000.0, u"1000", 0, 0},
        {u"compact-long",  1000.0, u"mille",     1000L, 1000.0, u"1000", 3, 3},
        {u"compact-short", 1000.0, u"1 k",       1000L, 1000.0, u"1000", 3, 3},
        {u"scientific",    1000.0, u"1E3",       1000L, 1000.0, u"1000", 3, 3},
    };
    for (const auto& cas : cases) {
        // test the helper methods used to compute plural operand values

        LocalizedNumberFormatter formatter =
            NumberFormatter::forSkeleton(cas.skeleton, status)
              .locale(ulocale);
        FormattedNumber fn = formatter.formatDouble(cas.input, status);
        DecimalQuantity dq;
        fn.getDecimalQuantity(dq, status);
        UnicodeString actualString = fn.toString(status);
        int64_t actualLong = dq.toLong();
        double actualDouble = dq.toDouble();
        UnicodeString actualPlainString = dq.toPlainString();
        int32_t actualSuppressedScientificExponent = dq.getExponent();
        int32_t actualSuppressedCompactExponent = dq.getExponent();

        assertEquals(
                u"formatted number " + cas.skeleton + u" toString: " + cas.input,
                cas.expectedString,
                actualString);
        assertEquals(
                u"formatted number " + cas.skeleton + u" toLong: " + cas.input,
                cas.expectedLong,
                actualLong);
        assertDoubleEquals(
                u"formatted number " + cas.skeleton + u" toDouble: " + cas.input,
                cas.expectedDouble,
                actualDouble);
        assertEquals(
                u"formatted number " + cas.skeleton + u" toPlainString: " + cas.input,
                cas.expectedPlainString,
                actualPlainString);
        assertEquals(
                u"formatted number " + cas.skeleton + u" suppressed scientific exponent: " + cas.input,
                cas.expectedSuppressedScientificExponent,
                actualSuppressedScientificExponent);
        assertEquals(
                u"formatted number " + cas.skeleton + u" suppressed compact exponent: " + cas.input,
                cas.expectedSuppressedCompactExponent,
                actualSuppressedCompactExponent);

        // test the actual computed values of the plural operands

        double expectedNOperand = cas.expectedDouble;
        double expectedIOperand = static_cast<double>(cas.expectedLong);
        double expectedEOperand = cas.expectedSuppressedScientificExponent;
        double expectedCOperand = cas.expectedSuppressedCompactExponent;
        double actualNOperand = dq.getPluralOperand(PLURAL_OPERAND_N);
        double actualIOperand = dq.getPluralOperand(PLURAL_OPERAND_I);
        double actualEOperand = dq.getPluralOperand(PLURAL_OPERAND_E);
        double actualCOperand = dq.getPluralOperand(PLURAL_OPERAND_C);

        assertDoubleEquals(
                u"formatted number " + cas.skeleton + u" n operand: " + cas.input,
                expectedNOperand,
                actualNOperand);
        assertDoubleEquals(
                u"formatted number " + cas.skeleton + u" i operand: " + cas.input,
                expectedIOperand,
                actualIOperand);
        assertDoubleEquals(
                u"formatted number " + cas.skeleton + " e operand: " + cas.input,
                expectedEOperand,
                actualEOperand);
        assertDoubleEquals(
                u"formatted number " + cas.skeleton + " c operand: " + cas.input,
                expectedCOperand,
                actualCOperand);
    }
}

void DecimalQuantityTest::testSuppressedExponentUnchangedByInitialScaling() {
    IcuTestErrorCode status(*this, "testSuppressedExponentUnchangedByInitialScaling");
    Locale ulocale("fr-FR");
    LocalizedNumberFormatter withLocale = NumberFormatter::withLocale(ulocale);
    LocalizedNumberFormatter compactLong =
        withLocale.notation(Notation::compactLong());
    LocalizedNumberFormatter compactScaled =
        compactLong.scale(Scale::powerOfTen(3));
    
    struct TestCase {
        int32_t input;
        UnicodeString expectedString;
        double expectedNOperand;
        double expectedIOperand;
        double expectedEOperand;
        double expectedCOperand;
    } cases[] = {
        // input, compact long string output,
        // compact n operand, compact i operand, compact e operand,
        // compact c operand
        {123456789, "123 millions", 123000000.0, 123000000.0, 6.0, 6.0},
        {1234567,   "1,2 million",  1200000.0,   1200000.0,   6.0, 6.0},
        {123456,    "123 mille",    123000.0,    123000.0,    3.0, 3.0},
        {123,       "123",          123.0,       123.0,       0.0, 0.0},
    };

    for (const auto& cas : cases) {
        FormattedNumber fnCompactScaled = compactScaled.formatInt(cas.input, status);
        DecimalQuantity dqCompactScaled;
        fnCompactScaled.getDecimalQuantity(dqCompactScaled, status);
        double compactScaledCOperand = dqCompactScaled.getPluralOperand(PLURAL_OPERAND_C);

        FormattedNumber fnCompact = compactLong.formatInt(cas.input, status);
        DecimalQuantity dqCompact;
        fnCompact.getDecimalQuantity(dqCompact, status);
        UnicodeString actualString = fnCompact.toString(status);
        double compactNOperand = dqCompact.getPluralOperand(PLURAL_OPERAND_N);
        double compactIOperand = dqCompact.getPluralOperand(PLURAL_OPERAND_I);
        double compactEOperand = dqCompact.getPluralOperand(PLURAL_OPERAND_E);
        double compactCOperand = dqCompact.getPluralOperand(PLURAL_OPERAND_C);
        assertEquals(
                u"formatted number " + Int64ToUnicodeString(cas.input) + " compactLong toString: ",
                cas.expectedString,
                actualString);
        assertDoubleEquals(
                u"compact decimal " + DoubleToUnicodeString(cas.input) + ", n operand vs. expected",
                cas.expectedNOperand,
                compactNOperand);
        assertDoubleEquals(
                u"compact decimal " + DoubleToUnicodeString(cas.input) + ", i operand vs. expected",
                cas.expectedIOperand,
                compactIOperand);
        assertDoubleEquals(
                u"compact decimal " + DoubleToUnicodeString(cas.input) + ", e operand vs. expected",
                cas.expectedEOperand,
                compactEOperand);
        assertDoubleEquals(
                u"compact decimal " + DoubleToUnicodeString(cas.input) + ", c operand vs. expected",
                cas.expectedCOperand,
                compactCOperand);

        // By scaling by 10^3 in a locale that has words / compact notation
        // based on powers of 10^3, we guarantee that the suppressed
        // exponent will differ by 3.
        assertDoubleEquals(
                u"decimal " + DoubleToUnicodeString(cas.input) + ", c operand for compact vs. compact scaled",
                compactCOperand + 3,
                compactScaledCOperand);
    }
}


void DecimalQuantityTest::testDecimalQuantityParseFormatRoundTrip() {
    IcuTestErrorCode status(*this, "testDecimalQuantityParseFormatRoundTrip");
    
    struct TestCase {
        UnicodeString numberString;
    } cases[] = {
        // number string
        { u"0" },
        { u"1" },
        { u"1.0" },
        { u"1.00" },
        { u"1.1" },
        { u"1.10" },
        { u"-1.10" },
        { u"0.0" },
        { u"1c5" },
        { u"1.0c5" },
        { u"1.1c5" },
        { u"1.10c5" },
        { u"0.00" },
        { u"0.1" },
        { u"1c-1" },
        { u"1.0c-1" }
    };

    for (const auto& cas : cases) {
        UnicodeString numberString = cas.numberString;

        DecimalQuantity dq = DecimalQuantity::fromExponentString(numberString, status);
        UnicodeString roundTrip = dq.toExponentString();

        assertEquals("DecimalQuantity format(parse(s)) should equal original s", numberString, roundTrip);
    }

    DecimalQuantity dq = DecimalQuantity::fromExponentString(u"1c0", status);
    assertEquals("Zero ignored for visible exponent",
                u"1",
                dq.toExponentString());

    dq.clear();
    dq = DecimalQuantity::fromExponentString(u"1.0c0", status);
    assertEquals("Zero ignored for visible exponent",
                u"1.0",
                dq.toExponentString());

}

#endif /* #if !UCONFIG_NO_FORMATTING */