summaryrefslogtreecommitdiff
path: root/Build/source/libs/icu/icu-4.6/tools/makeconv/genmbcs.c
blob: 840438339b8f091822195ed2031fed85c6965442 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
/*
*******************************************************************************
*
*   Copyright (C) 2000-2010, International Business Machines
*   Corporation and others.  All Rights Reserved.
*
*******************************************************************************
*   file name:  genmbcs.c
*   encoding:   US-ASCII
*   tab size:   8 (not used)
*   indentation:4
*
*   created on: 2000jul06
*   created by: Markus W. Scherer
*/

#include <stdio.h>
#include "unicode/utypes.h"
#include "cstring.h"
#include "cmemory.h"
#include "unewdata.h"
#include "ucnv_cnv.h"
#include "ucnvmbcs.h"
#include "ucm.h"
#include "makeconv.h"
#include "genmbcs.h"

/*
 * TODO: Split this file into toUnicode, SBCSFromUnicode and MBCSFromUnicode files.
 * Reduce tests for maxCharLength.
 */

struct MBCSData {
    NewConverter newConverter;

    UCMFile *ucm;

    /* toUnicode (state table in ucm->states) */
    _MBCSToUFallback toUFallbacks[MBCS_MAX_FALLBACK_COUNT];
    int32_t countToUFallbacks;
    uint16_t *unicodeCodeUnits;

    /* fromUnicode */
    uint16_t stage1[MBCS_STAGE_1_SIZE];
    uint16_t stage2Single[MBCS_STAGE_2_SIZE]; /* stage 2 for single-byte codepages */
    uint32_t stage2[MBCS_STAGE_2_SIZE]; /* stage 2 for MBCS */
    uint8_t *fromUBytes;
    uint32_t stage2Top, stage3Top;

    /* fromUTF8 */
    uint16_t stageUTF8[0x10000>>MBCS_UTF8_STAGE_SHIFT];  /* allow for utf8Max=0xffff */

    /*
     * Maximum UTF-8-friendly code point.
     * 0 if !utf8Friendly, otherwise 0x01ff..0xffff in steps of 0x100.
     * If utf8Friendly, utf8Max is normally either MBCS_UTF8_MAX or 0xffff.
     */
    uint16_t utf8Max;

    UBool utf8Friendly;
    UBool omitFromU;
};

/* prototypes */
static void
MBCSClose(NewConverter *cnvData);

static UBool
MBCSStartMappings(MBCSData *mbcsData);

static UBool
MBCSAddToUnicode(MBCSData *mbcsData,
                 const uint8_t *bytes, int32_t length,
                 UChar32 c,
                 int8_t flag);

static UBool
MBCSIsValid(NewConverter *cnvData,
            const uint8_t *bytes, int32_t length);

static UBool
MBCSSingleAddFromUnicode(MBCSData *mbcsData,
                         const uint8_t *bytes, int32_t length,
                         UChar32 c,
                         int8_t flag);

static UBool
MBCSAddFromUnicode(MBCSData *mbcsData,
                   const uint8_t *bytes, int32_t length,
                   UChar32 c,
                   int8_t flag);

static void
MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData);

static UBool
MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData);

static uint32_t
MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
          UNewDataMemory *pData, int32_t tableType);

/* helper ------------------------------------------------------------------- */

static U_INLINE char
hexDigit(uint8_t digit) {
    return digit<=9 ? (char)('0'+digit) : (char)('a'-10+digit);
}

static U_INLINE char *
printBytes(char *buffer, const uint8_t *bytes, int32_t length) {
    char *s=buffer;
    while(length>0) {
        *s++=hexDigit((uint8_t)(*bytes>>4));
        *s++=hexDigit((uint8_t)(*bytes&0xf));
        ++bytes;
        --length;
    }

    *s=0;
    return buffer;
}

/* implementation ----------------------------------------------------------- */

static MBCSData gDummy;

U_CFUNC const MBCSData *
MBCSGetDummy() {
    uprv_memset(&gDummy, 0, sizeof(MBCSData));

    /*
     * Set "pessimistic" values which may sometimes move too many
     * mappings to the extension table (but never too few).
     * These values cause MBCSOkForBaseFromUnicode() to return FALSE for the
     * largest set of mappings.
     * Assume maxCharLength>1.
     */
    gDummy.utf8Friendly=TRUE;
    if(SMALL) {
        gDummy.utf8Max=0xffff;
        gDummy.omitFromU=TRUE;
    } else {
        gDummy.utf8Max=MBCS_UTF8_MAX;
    }
    return &gDummy;
}

static void
MBCSInit(MBCSData *mbcsData, UCMFile *ucm) {
    uprv_memset(mbcsData, 0, sizeof(MBCSData));

    mbcsData->ucm=ucm; /* aliased, not owned */

    mbcsData->newConverter.close=MBCSClose;
    mbcsData->newConverter.isValid=MBCSIsValid;
    mbcsData->newConverter.addTable=MBCSAddTable;
    mbcsData->newConverter.write=MBCSWrite;
}

NewConverter *
MBCSOpen(UCMFile *ucm) {
    MBCSData *mbcsData=(MBCSData *)uprv_malloc(sizeof(MBCSData));
    if(mbcsData==NULL) {
        printf("out of memory\n");
        exit(U_MEMORY_ALLOCATION_ERROR);
    }

    MBCSInit(mbcsData, ucm);
    return &mbcsData->newConverter;
}

static void
MBCSDestruct(MBCSData *mbcsData) {
    uprv_free(mbcsData->unicodeCodeUnits);
    uprv_free(mbcsData->fromUBytes);
}

static void
MBCSClose(NewConverter *cnvData) {
    MBCSData *mbcsData=(MBCSData *)cnvData;
    if(mbcsData!=NULL) {
        MBCSDestruct(mbcsData);
        uprv_free(mbcsData);
    }
}

static UBool
MBCSStartMappings(MBCSData *mbcsData) {
    int32_t i, sum, maxCharLength,
            stage2NullLength, stage2AllocLength,
            stage3NullLength, stage3AllocLength;

    /* toUnicode */

    /* allocate the code unit array and prefill it with "unassigned" values */
    sum=mbcsData->ucm->states.countToUCodeUnits;
    if(VERBOSE) {
        printf("the total number of offsets is 0x%lx=%ld\n", (long)sum, (long)sum);
    }

    if(sum>0) {
        mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t));
        if(mbcsData->unicodeCodeUnits==NULL) {
            fprintf(stderr, "error: out of memory allocating %ld 16-bit code units\n",
                (long)sum);
            return FALSE;
        }
        for(i=0; i<sum; ++i) {
            mbcsData->unicodeCodeUnits[i]=0xfffe;
        }
    }

    /* fromUnicode */
    maxCharLength=mbcsData->ucm->states.maxCharLength;

    /* allocate the codepage mappings and preset the first 16 characters to 0 */
    if(maxCharLength==1) {
        /* allocate 64k 16-bit results for single-byte codepages */
        sum=0x20000;
    } else {
        /* allocate 1M * maxCharLength bytes for at most 1M mappings */
        sum=0x100000*maxCharLength;
    }
    mbcsData->fromUBytes=(uint8_t *)uprv_malloc(sum);
    if(mbcsData->fromUBytes==NULL) {
        fprintf(stderr, "error: out of memory allocating %ld B for target mappings\n", (long)sum);
        return FALSE;
    }
    uprv_memset(mbcsData->fromUBytes, 0, sum);

    /*
     * UTF-8-friendly fromUnicode tries: allocate multiple blocks at a time.
     * See ucnvmbcs.h for details.
     *
     * There is code, for example in ucnv_MBCSGetUnicodeSetForUnicode(), which
     * assumes that the initial stage 2/3 blocks are the all-unassigned ones.
     * Therefore, we refine the data structure while maintaining this placement
     * even though it would be convenient to allocate the ASCII block at the
     * beginning of stage 3, for example.
     *
     * UTF-8-friendly fromUnicode tries work from sorted tables and are built
     * pre-compacted, overlapping adjacent stage 2/3 blocks.
     * This is necessary because the block allocation and compaction changes
     * at SBCS_UTF8_MAX or MBCS_UTF8_MAX, and for MBCS tables the additional
     * stage table uses direct indexes into stage 3, without a multiplier and
     * thus with a smaller reach.
     *
     * Non-UTF-8-friendly fromUnicode tries work from unsorted tables
     * (because implicit precision is used), and are compacted
     * in post-processing.
     *
     * Preallocation for UTF-8-friendly fromUnicode tries:
     *
     * Stage 3:
     * 64-entry all-unassigned first block followed by ASCII (128 entries).
     *
     * Stage 2:
     * 64-entry all-unassigned first block followed by preallocated
     * 64-block for ASCII.
     */

    /* Preallocate ASCII as a linear 128-entry stage 3 block. */
    stage2NullLength=MBCS_STAGE_2_BLOCK_SIZE;
    stage2AllocLength=MBCS_STAGE_2_BLOCK_SIZE;

    stage3NullLength=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
    stage3AllocLength=128; /* ASCII U+0000..U+007f */

    /* Initialize stage 1 for the preallocated blocks. */
    sum=stage2NullLength;
    for(i=0; i<(stage2AllocLength>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT); ++i) {
        mbcsData->stage1[i]=sum;
        sum+=MBCS_STAGE_2_BLOCK_SIZE;
    }
    mbcsData->stage2Top=stage2NullLength+stage2AllocLength; /* ==sum */

    /*
     * Stage 2 indexes count 16-blocks in stage 3 as follows:
     * SBCS: directly, indexes increment by 16
     * MBCS: indexes need to be multiplied by 16*maxCharLength, indexes increment by 1
     * MBCS UTF-8: directly, indexes increment by 16
     */
    if(maxCharLength==1) {
        sum=stage3NullLength;
        for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) {
            mbcsData->stage2Single[mbcsData->stage1[0]+i]=sum;
            sum+=MBCS_STAGE_3_BLOCK_SIZE;
        }
    } else {
        sum=stage3NullLength/MBCS_STAGE_3_GRANULARITY;
        for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) {
            mbcsData->stage2[mbcsData->stage1[0]+i]=sum;
            sum+=MBCS_STAGE_3_BLOCK_SIZE/MBCS_STAGE_3_GRANULARITY;
        }
    }

    sum=stage3NullLength;
    for(i=0; i<(stage3AllocLength/MBCS_UTF8_STAGE_3_BLOCK_SIZE); ++i) {
        mbcsData->stageUTF8[i]=sum;
        sum+=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
    }

    /*
     * Allocate a 64-entry all-unassigned first stage 3 block,
     * for UTF-8-friendly lookup with a trail byte,
     * plus 128 entries for ASCII.
     */
    mbcsData->stage3Top=(stage3NullLength+stage3AllocLength)*maxCharLength; /* ==sum*maxCharLength */

    return TRUE;
}

/* return TRUE for success */
static UBool
setFallback(MBCSData *mbcsData, uint32_t offset, UChar32 c) {
    int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset);
    if(i>=0) {
        /* if there is already a fallback for this offset, then overwrite it */
        mbcsData->toUFallbacks[i].codePoint=c;
        return TRUE;
    } else {
        /* if there is no fallback for this offset, then add one */
        i=mbcsData->countToUFallbacks;
        if(i>=MBCS_MAX_FALLBACK_COUNT) {
            fprintf(stderr, "error: too many toUnicode fallbacks, currently at: U+%x\n", (int)c);
            return FALSE;
        } else {
            mbcsData->toUFallbacks[i].offset=offset;
            mbcsData->toUFallbacks[i].codePoint=c;
            mbcsData->countToUFallbacks=i+1;
            return TRUE;
        }
    }
}

/* remove fallback if there is one with this offset; return the code point if there was such a fallback, otherwise -1 */
static int32_t
removeFallback(MBCSData *mbcsData, uint32_t offset) {
    int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset);
    if(i>=0) {
        _MBCSToUFallback *toUFallbacks;
        int32_t limit, old;

        toUFallbacks=mbcsData->toUFallbacks;
        limit=mbcsData->countToUFallbacks;
        old=(int32_t)toUFallbacks[i].codePoint;

        /* copy the last fallback entry here to keep the list contiguous */
        toUFallbacks[i].offset=toUFallbacks[limit-1].offset;
        toUFallbacks[i].codePoint=toUFallbacks[limit-1].codePoint;
        mbcsData->countToUFallbacks=limit-1;
        return old;
    } else {
        return -1;
    }
}

/*
 * isFallback is almost a boolean:
 * 1 (TRUE)  this is a fallback mapping
 * 0 (FALSE) this is a precise mapping
 * -1        the precision of this mapping is not specified
 */
static UBool
MBCSAddToUnicode(MBCSData *mbcsData,
                 const uint8_t *bytes, int32_t length,
                 UChar32 c,
                 int8_t flag) {
    char buffer[10];
    uint32_t offset=0;
    int32_t i=0, entry, old;
    uint8_t state=0;

    if(mbcsData->ucm->states.countStates==0) {
        fprintf(stderr, "error: there is no state information!\n");
        return FALSE;
    }

    /* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */
    if(length==2 && mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO) {
        state=1;
    }

    /*
     * Walk down the state table like in conversion,
     * much like getNextUChar().
     * We assume that c<=0x10ffff.
     */
    for(i=0;;) {
        entry=mbcsData->ucm->states.stateTable[state][bytes[i++]];
        if(MBCS_ENTRY_IS_TRANSITION(entry)) {
            if(i==length) {
                fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%s (U+%x)\n",
                    (short)state, printBytes(buffer, bytes, length), (int)c);
                return FALSE;
            }
            state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
            offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
        } else {
            if(i<length) {
                fprintf(stderr, "error: byte sequence too long by %d bytes, final state %hu: 0x%s (U+%x)\n",
                    (int)(length-i), state, printBytes(buffer, bytes, length), (int)c);
                return FALSE;
            }
            switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
            case MBCS_STATE_ILLEGAL:
                fprintf(stderr, "error: byte sequence ends in illegal state at U+%04x<->0x%s\n",
                    (int)c, printBytes(buffer, bytes, length));
                return FALSE;
            case MBCS_STATE_CHANGE_ONLY:
                fprintf(stderr, "error: byte sequence ends in state-change-only at U+%04x<->0x%s\n",
                    (int)c, printBytes(buffer, bytes, length));
                return FALSE;
            case MBCS_STATE_UNASSIGNED:
                fprintf(stderr, "error: byte sequence ends in unassigned state at U+%04x<->0x%s\n",
                    (int)c, printBytes(buffer, bytes, length));
                return FALSE;
            case MBCS_STATE_FALLBACK_DIRECT_16:
            case MBCS_STATE_VALID_DIRECT_16:
            case MBCS_STATE_FALLBACK_DIRECT_20:
            case MBCS_STATE_VALID_DIRECT_20:
                if(MBCS_ENTRY_SET_STATE(entry, 0)!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, 0xfffe)) {
                    /* the "direct" action's value is not "valid-direct-16-unassigned" any more */
                    if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_DIRECT_16 || MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_FALLBACK_DIRECT_16) {
                        old=MBCS_ENTRY_FINAL_VALUE(entry);
                    } else {
                        old=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
                    }
                    if(flag>=0) {
                        fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
                            (int)c, printBytes(buffer, bytes, length), (int)old);
                        return FALSE;
                    } else if(VERBOSE) {
                        fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
                            (int)c, printBytes(buffer, bytes, length), (int)old);
                    }
                    /*
                     * Continue after the above warning
                     * if the precision of the mapping is unspecified.
                     */
                }
                /* reassign the correct action code */
                entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, (MBCS_STATE_VALID_DIRECT_16+(flag==3 ? 2 : 0)+(c>=0x10000 ? 1 : 0)));

                /* put the code point into bits 22..7 for BMP, c-0x10000 into 26..7 for others */
                if(c<=0xffff) {
                    entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c);
                } else {
                    entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c-0x10000);
                }
                mbcsData->ucm->states.stateTable[state][bytes[i-1]]=entry;
                break;
            case MBCS_STATE_VALID_16:
                /* bits 26..16 are not used, 0 */
                /* bits 15..7 contain the final offset delta to one 16-bit code unit */
                offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
                /* check that this byte sequence is still unassigned */
                if((old=mbcsData->unicodeCodeUnits[offset])!=0xfffe || (old=removeFallback(mbcsData, offset))!=-1) {
                    if(flag>=0) {
                        fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
                            (int)c, printBytes(buffer, bytes, length), (int)old);
                        return FALSE;
                    } else if(VERBOSE) {
                        fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
                            (int)c, printBytes(buffer, bytes, length), (int)old);
                    }
                }
                if(c>=0x10000) {
                    fprintf(stderr, "error: code point does not fit into valid-16-bit state at U+%04x<->0x%s\n",
                        (int)c, printBytes(buffer, bytes, length));
                    return FALSE;
                }
                if(flag>0) {
                    /* assign only if there is no precise mapping */
                    if(mbcsData->unicodeCodeUnits[offset]==0xfffe) {
                        return setFallback(mbcsData, offset, c);
                    }
                } else {
                    mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
                }
                break;
            case MBCS_STATE_VALID_16_PAIR:
                /* bits 26..16 are not used, 0 */
                /* bits 15..7 contain the final offset delta to two 16-bit code units */
                offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
                /* check that this byte sequence is still unassigned */
                old=mbcsData->unicodeCodeUnits[offset];
                if(old<0xfffe) {
                    int32_t real;
                    if(old<0xd800) {
                        real=old;
                    } else if(old<=0xdfff) {
                        real=0x10000+((old&0x3ff)<<10)+((mbcsData->unicodeCodeUnits[offset+1])&0x3ff);
                    } else /* old<=0xe001 */ {
                        real=mbcsData->unicodeCodeUnits[offset+1];
                    }
                    if(flag>=0) {
                        fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
                            (int)c, printBytes(buffer, bytes, length), (int)real);
                        return FALSE;
                    } else if(VERBOSE) {
                        fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
                            (int)c, printBytes(buffer, bytes, length), (int)real);
                    }
                }
                if(flag>0) {
                    /* assign only if there is no precise mapping */
                    if(old<=0xdbff || old==0xe000) {
                        /* do nothing */
                    } else if(c<=0xffff) {
                        /* set a BMP fallback code point as a pair with 0xe001 */
                        mbcsData->unicodeCodeUnits[offset++]=0xe001;
                        mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
                    } else {
                        /* set a fallback surrogate pair with two second surrogates */
                        mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xdbc0+(c>>10));
                        mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
                    }
                } else {
                    if(c<0xd800) {
                        /* set a BMP code point */
                        mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
                    } else if(c<=0xffff) {
                        /* set a BMP code point above 0xd800 as a pair with 0xe000 */
                        mbcsData->unicodeCodeUnits[offset++]=0xe000;
                        mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
                    } else {
                        /* set a surrogate pair */
                        mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xd7c0+(c>>10));
                        mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
                    }
                }
                break;
            default:
                /* reserved, must never occur */
                fprintf(stderr, "internal error: byte sequence reached reserved action code, entry 0x%02x: 0x%s (U+%x)\n",
                    (int)entry, printBytes(buffer, bytes, length), (int)c);
                return FALSE;
            }

            return TRUE;
        }
    }
}

/* is this byte sequence valid? (this is almost the same as MBCSAddToUnicode()) */
static UBool
MBCSIsValid(NewConverter *cnvData,
            const uint8_t *bytes, int32_t length) {
    MBCSData *mbcsData=(MBCSData *)cnvData;

    return (UBool)(1==ucm_countChars(&mbcsData->ucm->states, bytes, length));
}

static UBool
MBCSSingleAddFromUnicode(MBCSData *mbcsData,
                         const uint8_t *bytes, int32_t length,
                         UChar32 c,
                         int8_t flag) {
    uint16_t *stage3, *p;
    uint32_t idx;
    uint16_t old;
    uint8_t b;

    uint32_t blockSize, newTop, i, nextOffset, newBlock, min;

    /* ignore |2 SUB mappings */
    if(flag==2) {
        return TRUE;
    }

    /*
     * Walk down the triple-stage compact array ("trie") and
     * allocate parts as necessary.
     * Note that the first stage 2 and 3 blocks are reserved for all-unassigned mappings.
     * We assume that length<=maxCharLength and that c<=0x10ffff.
     */
    stage3=(uint16_t *)mbcsData->fromUBytes;
    b=*bytes;

    /* inspect stage 1 */
    idx=c>>MBCS_STAGE_1_SHIFT;
    if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) {
        nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1);
    } else {
        nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK;
    }
    if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
        /* allocate another block in stage 2 */
        newBlock=mbcsData->stage2Top;
        if(mbcsData->utf8Friendly) {
            min=newBlock-nextOffset; /* minimum block start with overlap */
            while(min<newBlock && mbcsData->stage2Single[newBlock-1]==0) {
                --newBlock;
            }
        }
        newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE;

        if(newTop>MBCS_MAX_STAGE_2_TOP) {
            fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%02x\n", (int)c, b);
            return FALSE;
        }

        /*
         * each stage 2 block contains 64 16-bit words:
         * 6 code point bits 9..4 with 1 stage 3 index
         */
        mbcsData->stage1[idx]=(uint16_t)newBlock;
        mbcsData->stage2Top=newTop;
    }

    /* inspect stage 2 */
    idx=mbcsData->stage1[idx]+nextOffset;
    if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) {
        /* allocate 64-entry blocks for UTF-8-friendly lookup */
        blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
        nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK;
    } else {
        blockSize=MBCS_STAGE_3_BLOCK_SIZE;
        nextOffset=c&MBCS_STAGE_3_BLOCK_MASK;
    }
    if(mbcsData->stage2Single[idx]==0) {
        /* allocate another block in stage 3 */
        newBlock=mbcsData->stage3Top;
        if(mbcsData->utf8Friendly) {
            min=newBlock-nextOffset; /* minimum block start with overlap */
            while(min<newBlock && stage3[newBlock-1]==0) {
                --newBlock;
            }
        }
        newTop=newBlock+blockSize;

        if(newTop>MBCS_STAGE_3_SBCS_SIZE) {
            fprintf(stderr, "error: too many code points at U+%04x<->0x%02x\n", (int)c, b);
            return FALSE;
        }
        /* each block has 16 uint16_t entries */
        i=idx;
        while(newBlock<newTop) {
            mbcsData->stage2Single[i++]=(uint16_t)newBlock;
            newBlock+=MBCS_STAGE_3_BLOCK_SIZE;
        }
        mbcsData->stage3Top=newTop; /* ==newBlock */
    }

    /* write the codepage entry into stage 3 and get the previous entry */
    p=stage3+mbcsData->stage2Single[idx]+nextOffset;
    old=*p;
    if(flag<=0) {
        *p=(uint16_t)(0xf00|b);
    } else if(IS_PRIVATE_USE(c)) {
        *p=(uint16_t)(0xc00|b);
    } else {
        *p=(uint16_t)(0x800|b);
    }

    /* check that this Unicode code point was still unassigned */
    if(old>=0x100) {
        if(flag>=0) {
            fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n",
                (int)c, b, old&0xff);
            return FALSE;
        } else if(VERBOSE) {
            fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n",
                (int)c, b, old&0xff);
        }
        /* continue after the above warning if the precision of the mapping is unspecified */
    }

    return TRUE;
}

static UBool
MBCSAddFromUnicode(MBCSData *mbcsData,
                   const uint8_t *bytes, int32_t length,
                   UChar32 c,
                   int8_t flag) {
    char buffer[10];
    const uint8_t *pb;
    uint8_t *stage3, *p;
    uint32_t idx, b, old, stage3Index;
    int32_t maxCharLength;

    uint32_t blockSize, newTop, i, nextOffset, newBlock, min, overlap, maxOverlap;

    maxCharLength=mbcsData->ucm->states.maxCharLength;

    if( mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO &&
        (!IGNORE_SISO_CHECK && (*bytes==0xe || *bytes==0xf))
    ) {
        fprintf(stderr, "error: illegal mapping to SI or SO for SI/SO codepage: U+%04x<->0x%s\n",
            (int)c, printBytes(buffer, bytes, length));
        return FALSE;
    }

    if(flag==1 && length==1 && *bytes==0) {
        fprintf(stderr, "error: unable to encode a |1 fallback from U+%04x to 0x%02x\n",
            (int)c, *bytes);
        return FALSE;
    }

    /*
     * Walk down the triple-stage compact array ("trie") and
     * allocate parts as necessary.
     * Note that the first stage 2 and 3 blocks are reserved for
     * all-unassigned mappings.
     * We assume that length<=maxCharLength and that c<=0x10ffff.
     */
    stage3=mbcsData->fromUBytes;

    /* inspect stage 1 */
    idx=c>>MBCS_STAGE_1_SHIFT;
    if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
        nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1);
    } else {
        nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK;
    }
    if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
        /* allocate another block in stage 2 */
        newBlock=mbcsData->stage2Top;
        if(mbcsData->utf8Friendly) {
            min=newBlock-nextOffset; /* minimum block start with overlap */
            while(min<newBlock && mbcsData->stage2[newBlock-1]==0) {
                --newBlock;
            }
        }
        newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE;

        if(newTop>MBCS_MAX_STAGE_2_TOP) {
            fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%s\n",
                (int)c, printBytes(buffer, bytes, length));
            return FALSE;
        }

        /*
         * each stage 2 block contains 64 32-bit words:
         * 6 code point bits 9..4 with value with bits 31..16 "assigned" flags and bits 15..0 stage 3 index
         */
        i=idx;
        while(newBlock<newTop) {
            mbcsData->stage1[i++]=(uint16_t)newBlock;
            newBlock+=MBCS_STAGE_2_BLOCK_SIZE;
        }
        mbcsData->stage2Top=newTop; /* ==newBlock */
    }

    /* inspect stage 2 */
    idx=mbcsData->stage1[idx]+nextOffset;
    if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
        /* allocate 64-entry blocks for UTF-8-friendly lookup */
        blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE*maxCharLength;
        nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK;
    } else {
        blockSize=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength;
        nextOffset=c&MBCS_STAGE_3_BLOCK_MASK;
    }
    if(mbcsData->stage2[idx]==0) {
        /* allocate another block in stage 3 */
        newBlock=mbcsData->stage3Top;
        if(mbcsData->utf8Friendly && nextOffset>=MBCS_STAGE_3_GRANULARITY) {
            /*
             * Overlap stage 3 blocks only in multiples of 16-entry blocks
             * because of the indexing granularity in stage 2.
             */
            maxOverlap=(nextOffset&~(MBCS_STAGE_3_GRANULARITY-1))*maxCharLength;
            for(overlap=0;
                overlap<maxOverlap && stage3[newBlock-overlap-1]==0;
                ++overlap) {}

            overlap=(overlap/MBCS_STAGE_3_GRANULARITY)/maxCharLength;
            overlap=(overlap*MBCS_STAGE_3_GRANULARITY)*maxCharLength;

            newBlock-=overlap;
        }
        newTop=newBlock+blockSize;

        if(newTop>MBCS_STAGE_3_MBCS_SIZE*(uint32_t)maxCharLength) {
            fprintf(stderr, "error: too many code points at U+%04x<->0x%s\n",
                (int)c, printBytes(buffer, bytes, length));
            return FALSE;
        }
        /* each block has 16*maxCharLength bytes */
        i=idx;
        while(newBlock<newTop) {
            mbcsData->stage2[i++]=(newBlock/MBCS_STAGE_3_GRANULARITY)/maxCharLength;
            newBlock+=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength;
        }
        mbcsData->stage3Top=newTop; /* ==newBlock */
    }

    stage3Index=MBCS_STAGE_3_GRANULARITY*(uint32_t)(uint16_t)mbcsData->stage2[idx];

    /* Build an alternate, UTF-8-friendly stage table as well. */
    if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
        /* Overflow for uint16_t entries in stageUTF8? */
        if(stage3Index>0xffff) {
            /*
             * This can occur only if the mapping table is nearly perfectly filled and if
             * utf8Max==0xffff.
             * (There is no known charset like this. GB 18030 does not map
             * surrogate code points and LMBCS does not map 256 PUA code points.)
             *
             * Otherwise, stage3Index<=MBCS_UTF8_LIMIT<0xffff
             * (stage3Index can at most reach exactly MBCS_UTF8_LIMIT)
             * because we have a sorted table and there are at most MBCS_UTF8_LIMIT
             * mappings with 0<=c<MBCS_UTF8_LIMIT, and there is only also
             * the initial all-unassigned block in stage3.
             *
             * Solution for the overflow: Reduce utf8Max to the next lower value, 0xfeff.
             *
             * (See svn revision 20866 of the markus/ucnvutf8 feature branch for
             * code that causes MBCSAddTable() to rebuild the table not utf8Friendly
             * in case of overflow. That code was not tested.)
             */
            mbcsData->utf8Max=0xfeff;
        } else {
            /*
             * The stage 3 block has been assigned for the regular trie.
             * Just copy its index into stageUTF8[], without the granularity.
             */
            mbcsData->stageUTF8[c>>MBCS_UTF8_STAGE_SHIFT]=(uint16_t)stage3Index;
        }
    }

    /* write the codepage bytes into stage 3 and get the previous bytes */

    /* assemble the bytes into a single integer */
    pb=bytes;
    b=0;
    switch(length) {
    case 4:
        b=*pb++;
    case 3:
        b=(b<<8)|*pb++;
    case 2:
        b=(b<<8)|*pb++;
    case 1:
    default:
        b=(b<<8)|*pb++;
        break;
    }

    old=0;
    p=stage3+(stage3Index+nextOffset)*maxCharLength;
    switch(maxCharLength) {
    case 2:
        old=*(uint16_t *)p;
        *(uint16_t *)p=(uint16_t)b;
        break;
    case 3:
        old=(uint32_t)*p<<16;
        *p++=(uint8_t)(b>>16);
        old|=(uint32_t)*p<<8;
        *p++=(uint8_t)(b>>8);
        old|=*p;
        *p=(uint8_t)b;
        break;
    case 4:
        old=*(uint32_t *)p;
        *(uint32_t *)p=b;
        break;
    default:
        /* will never occur */
        break;
    }

    /* check that this Unicode code point was still unassigned */
    if((mbcsData->stage2[idx+(nextOffset>>MBCS_STAGE_2_SHIFT)]&(1UL<<(16+(c&0xf))))!=0 || old!=0) {
        if(flag>=0) {
            fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n",
                (int)c, printBytes(buffer, bytes, length), (int)old);
            return FALSE;
        } else if(VERBOSE) {
            fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n",
                (int)c, printBytes(buffer, bytes, length), (int)old);
        }
        /* continue after the above warning if the precision of the mapping is
           unspecified */
    }
    if(flag<=0) {
        /* set the roundtrip flag */
        mbcsData->stage2[idx+(nextOffset>>4)]|=(1UL<<(16+(c&0xf)));
    }

    return TRUE;
}

U_CFUNC UBool
MBCSOkForBaseFromUnicode(const MBCSData *mbcsData,
                         const uint8_t *bytes, int32_t length,
                         UChar32 c, int8_t flag) {
    /*
     * A 1:1 mapping does not fit into the MBCS base table's fromUnicode table under
     * the following conditions:
     *
     * - a |2 SUB mapping for <subchar1> (no base table data structure for them)
     * - a |1 fallback to 0x00 (result value 0, indistinguishable from unmappable entry)
     * - a multi-byte mapping with leading 0x00 bytes (no explicit length field)
     *
     * Some of these tests are redundant with ucm_mappingType().
     */
    if( (flag==2 && length==1) ||
        (flag==1 && bytes[0]==0) || /* testing length==1 would be redundant with the next test */
        (flag<=1 && length>1 && bytes[0]==0)
    ) {
        return FALSE;
    }

    /*
     * Additional restrictions for UTF-8-friendly fromUnicode tables,
     * for code points up to the maximum optimized one:
     *
     * - any mapping to 0x00 (result value 0, indistinguishable from unmappable entry)
     * - any |1 fallback (no roundtrip flags in the optimized table)
     */
    if(mbcsData->utf8Friendly && flag<=1 && c<=mbcsData->utf8Max && (bytes[0]==0 || flag==1)) {
        return FALSE;
    }

    /*
     * If we omit the fromUnicode data, we can only store roundtrips there
     * because only they are recoverable from the toUnicode data.
     * Fallbacks must go into the extension table.
     */
    if(mbcsData->omitFromU && flag!=0) {
        return FALSE;
    }

    /* All other mappings do fit into the base table. */
    return TRUE;
}

/* we can assume that the table only contains 1:1 mappings with <=4 bytes each */
static UBool
MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) {
    MBCSData *mbcsData;
    UCMapping *m;
    UChar32 c;
    int32_t i, maxCharLength;
    int8_t f;
    UBool isOK, utf8Friendly;

    staticData->unicodeMask=table->unicodeMask;
    if(staticData->unicodeMask==3) {
        fprintf(stderr, "error: contains mappings for both supplementary and surrogate code points\n");
        return FALSE;
    }

    staticData->conversionType=UCNV_MBCS;

    mbcsData=(MBCSData *)cnvData;
    maxCharLength=mbcsData->ucm->states.maxCharLength;

    /*
     * Generation of UTF-8-friendly data requires
     * a sorted table, which makeconv generates when explicit precision
     * indicators are used.
     */
    mbcsData->utf8Friendly=utf8Friendly=(UBool)((table->flagsType&UCM_FLAGS_EXPLICIT)!=0);
    if(utf8Friendly) {
        mbcsData->utf8Max=MBCS_UTF8_MAX;
        if(SMALL && maxCharLength>1) {
            mbcsData->omitFromU=TRUE;
        }
    } else {
        mbcsData->utf8Max=0;
        if(SMALL && maxCharLength>1) {
            fprintf(stderr,
                "makeconv warning: --small not available for .ucm files without |0 etc.\n");
        }
    }

    if(!MBCSStartMappings(mbcsData)) {
        return FALSE;
    }

    staticData->hasFromUnicodeFallback=FALSE;
    staticData->hasToUnicodeFallback=FALSE;

    isOK=TRUE;

    m=table->mappings;
    for(i=0; i<table->mappingsLength; ++m, ++i) {
        c=m->u;
        f=m->f;

        /*
         * Small optimization for --small .cnv files:
         *
         * If there are fromUnicode mappings above MBCS_UTF8_MAX,
         * then the file size will be smaller if we make utf8Max larger
         * because the size increase in stageUTF8 will be more than balanced by
         * how much less of stage2 needs to be stored.
         *
         * There is no point in doing this incrementally because stageUTF8
         * uses so much less space per block than stage2,
         * so we immediately increase utf8Max to 0xffff.
         *
         * Do not increase utf8Max if it is already at 0xfeff because MBCSAddFromUnicode()
         * sets it to that value when stageUTF8 overflows.
         */
        if( mbcsData->omitFromU && f<=1 &&
            mbcsData->utf8Max<c && c<=0xffff &&
            mbcsData->utf8Max<0xfeff
        ) {
            mbcsData->utf8Max=0xffff;
        }

        switch(f) {
        case -1:
            /* there was no precision/fallback indicator */
            /* fall through to set the mappings */
        case 0:
            /* set roundtrip mappings */
            isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f);

            if(maxCharLength==1) {
                isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
            } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) {
                isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
            } else {
                m->f|=MBCS_FROM_U_EXT_FLAG;
                m->moveFlag=UCM_MOVE_TO_EXT;
            }
            break;
        case 1:
            /* set only a fallback mapping from Unicode to codepage */
            if(maxCharLength==1) {
                staticData->hasFromUnicodeFallback=TRUE;
                isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
            } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) {
                staticData->hasFromUnicodeFallback=TRUE;
                isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
            } else {
                m->f|=MBCS_FROM_U_EXT_FLAG;
                m->moveFlag=UCM_MOVE_TO_EXT;
            }
            break;
        case 2:
            /* ignore |2 SUB mappings, except to move <subchar1> mappings to the extension table */
            if(maxCharLength>1 && m->bLen==1) {
                m->f|=MBCS_FROM_U_EXT_FLAG;
                m->moveFlag=UCM_MOVE_TO_EXT;
            }
            break;
        case 3:
            /* set only a fallback mapping from codepage to Unicode */
            staticData->hasToUnicodeFallback=TRUE;
            isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
            break;
        default:
            /* will not occur because the parser checked it already */
            fprintf(stderr, "error: illegal fallback indicator %d\n", f);
            return FALSE;
        }
    }

    MBCSPostprocess(mbcsData, staticData);

    return isOK;
}

static UBool
transformEUC(MBCSData *mbcsData) {
    uint8_t *p8;
    uint32_t i, value, oldLength, old3Top, new3Top;
    uint8_t b;

    oldLength=mbcsData->ucm->states.maxCharLength;
    if(oldLength<3) {
        return FALSE;
    }

    old3Top=mbcsData->stage3Top;

    /* careful: 2-byte and 4-byte codes are stored in platform endianness! */

    /* test if all first bytes are in {0, 0x8e, 0x8f} */
    p8=mbcsData->fromUBytes;

#if !U_IS_BIG_ENDIAN
    if(oldLength==4) {
        p8+=3;
    }
#endif

    for(i=0; i<old3Top; i+=oldLength) {
        b=p8[i];
        if(b!=0 && b!=0x8e && b!=0x8f) {
            /* some first byte does not fit the EUC pattern, nothing to be done */
            return FALSE;
        }
    }
    /* restore p if it was modified above */
    p8=mbcsData->fromUBytes;

    /* modify outputType and adjust stage3Top */
    mbcsData->ucm->states.outputType=(int8_t)(MBCS_OUTPUT_3_EUC+oldLength-3);
    mbcsData->stage3Top=new3Top=(old3Top*(oldLength-1))/oldLength;

    /*
     * EUC-encode all byte sequences;
     * see "CJKV Information Processing" (1st ed. 1999) from Ken Lunde, O'Reilly,
     * p. 161 in chapter 4 "Encoding Methods"
     *
     * This also must reverse the byte order if the platform is little-endian!
     */
    if(oldLength==3) {
        uint16_t *q=(uint16_t *)p8;
        for(i=0; i<old3Top; i+=oldLength) {
            b=*p8;
            if(b==0) {
                /* short sequences are stored directly */
                /* code set 0 or 1 */
                (*q++)=(uint16_t)((p8[1]<<8)|p8[2]);
            } else if(b==0x8e) {
                /* code set 2 */
                (*q++)=(uint16_t)(((p8[1]&0x7f)<<8)|p8[2]);
            } else /* b==0x8f */ {
                /* code set 3 */
                (*q++)=(uint16_t)((p8[1]<<8)|(p8[2]&0x7f));
            }
            p8+=3;
        }
    } else /* oldLength==4 */ {
        uint8_t *q=p8;
        uint32_t *p32=(uint32_t *)p8;
        for(i=0; i<old3Top; i+=4) {
            value=(*p32++);
            if(value<=0xffffff) {
                /* short sequences are stored directly */
                /* code set 0 or 1 */
                (*q++)=(uint8_t)(value>>16);
                (*q++)=(uint8_t)(value>>8);
                (*q++)=(uint8_t)value;
            } else if(value<=0x8effffff) {
                /* code set 2 */
                (*q++)=(uint8_t)((value>>16)&0x7f);
                (*q++)=(uint8_t)(value>>8);
                (*q++)=(uint8_t)value;
            } else /* first byte is 0x8f */ {
                /* code set 3 */
                (*q++)=(uint8_t)(value>>16);
                (*q++)=(uint8_t)((value>>8)&0x7f);
                (*q++)=(uint8_t)value;
            }
        }
    }

    return TRUE;
}

/*
 * Compact stage 2 for SBCS by overlapping adjacent stage 2 blocks as far
 * as possible. Overlapping is done on unassigned head and tail
 * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
 * Stage 1 indexes need to be adjusted accordingly.
 * This function is very similar to genprops/store.c/compactStage().
 */
static void
singleCompactStage2(MBCSData *mbcsData) {
    /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
    uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
    uint16_t i, start, prevEnd, newStart;

    /* enter the all-unassigned first stage 2 block into the map */
    map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;

    /* begin with the first block after the all-unassigned one */
    start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
    while(start<mbcsData->stage2Top) {
        prevEnd=(uint16_t)(newStart-1);

        /* find the size of the overlap */
        for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2Single[start+i]==0 && mbcsData->stage2Single[prevEnd-i]==0; ++i) {}

        if(i>0) {
            map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);

            /* move the non-overlapping indexes to their new positions */
            start+=i;
            for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
                mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
            }
        } else if(newStart<start) {
            /* move the indexes to their new positions */
            map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
            for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
                mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
            }
        } else /* no overlap && newStart==start */ {
            map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
            start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
        }
    }

    /* adjust stage2Top */
    if(VERBOSE && newStart<mbcsData->stage2Top) {
        printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
                (unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
                (long)(mbcsData->stage2Top-newStart)*2);
    }
    mbcsData->stage2Top=newStart;

    /* now adjust stage 1 */
    for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
        mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
    }
}

/* Compact stage 3 for SBCS - same algorithm as above. */
static void
singleCompactStage3(MBCSData *mbcsData) {
    uint16_t *stage3=(uint16_t *)mbcsData->fromUBytes;

    /* this array maps the ordinal number of a stage 3 block to its new stage 2 index */
    uint16_t map[0x1000];
    uint16_t i, start, prevEnd, newStart;

    /* enter the all-unassigned first stage 3 block into the map */
    map[0]=0;

    /* begin with the first block after the all-unassigned one */
    start=newStart=16;
    while(start<mbcsData->stage3Top) {
        prevEnd=(uint16_t)(newStart-1);

        /* find the size of the overlap */
        for(i=0; i<16 && stage3[start+i]==0 && stage3[prevEnd-i]==0; ++i) {}

        if(i>0) {
            map[start>>4]=(uint16_t)(newStart-i);

            /* move the non-overlapping indexes to their new positions */
            start+=i;
            for(i=(uint16_t)(16-i); i>0; --i) {
                stage3[newStart++]=stage3[start++];
            }
        } else if(newStart<start) {
            /* move the indexes to their new positions */
            map[start>>4]=newStart;
            for(i=16; i>0; --i) {
                stage3[newStart++]=stage3[start++];
            }
        } else /* no overlap && newStart==start */ {
            map[start>>4]=start;
            start=newStart+=16;
        }
    }

    /* adjust stage3Top */
    if(VERBOSE && newStart<mbcsData->stage3Top) {
        printf("compacting stage 3 from stage3Top=0x%lx to 0x%lx, saving %ld bytes\n",
                (unsigned long)mbcsData->stage3Top, (unsigned long)newStart,
                (long)(mbcsData->stage3Top-newStart)*2);
    }
    mbcsData->stage3Top=newStart;

    /* now adjust stage 2 */
    for(i=0; i<mbcsData->stage2Top; ++i) {
        mbcsData->stage2Single[i]=map[mbcsData->stage2Single[i]>>4];
    }
}

/*
 * Compact stage 2 by overlapping adjacent stage 2 blocks as far
 * as possible. Overlapping is done on unassigned head and tail
 * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
 * Stage 1 indexes need to be adjusted accordingly.
 * This function is very similar to genprops/store.c/compactStage().
 */
static void
compactStage2(MBCSData *mbcsData) {
    /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
    uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
    uint16_t i, start, prevEnd, newStart;

    /* enter the all-unassigned first stage 2 block into the map */
    map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;

    /* begin with the first block after the all-unassigned one */
    start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
    while(start<mbcsData->stage2Top) {
        prevEnd=(uint16_t)(newStart-1);

        /* find the size of the overlap */
        for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2[start+i]==0 && mbcsData->stage2[prevEnd-i]==0; ++i) {}

        if(i>0) {
            map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);

            /* move the non-overlapping indexes to their new positions */
            start+=i;
            for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
                mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
            }
        } else if(newStart<start) {
            /* move the indexes to their new positions */
            map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
            for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
                mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
            }
        } else /* no overlap && newStart==start */ {
            map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
            start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
        }
    }

    /* adjust stage2Top */
    if(VERBOSE && newStart<mbcsData->stage2Top) {
        printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
                (unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
                (long)(mbcsData->stage2Top-newStart)*4);
    }
    mbcsData->stage2Top=newStart;

    /* now adjust stage 1 */
    for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
        mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
    }
}

static void
MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData) {
    UCMStates *states;
    int32_t maxCharLength, stage3Width;

    states=&mbcsData->ucm->states;
    stage3Width=maxCharLength=states->maxCharLength;

    ucm_optimizeStates(states,
                       &mbcsData->unicodeCodeUnits,
                       mbcsData->toUFallbacks, mbcsData->countToUFallbacks,
                       VERBOSE);

    /* try to compact the fromUnicode tables */
    if(transformEUC(mbcsData)) {
        --stage3Width;
    }

    /*
     * UTF-8-friendly tries are built precompacted, to cope with variable
     * stage 3 allocation block sizes.
     *
     * Tables without precision indicators cannot be built that way,
     * because if a block was overlapped with a previous one, then a smaller
     * code point for the same block would not fit.
     * Therefore, such tables are not marked UTF-8-friendly and must be
     * compacted after all mappings are entered.
     */
    if(!mbcsData->utf8Friendly) {
        if(maxCharLength==1) {
            singleCompactStage3(mbcsData);
            singleCompactStage2(mbcsData);
        } else {
            compactStage2(mbcsData);
        }
    }

    if(VERBOSE) {
        /*uint32_t c, i1, i2, i2Limit, i3;*/

        printf("fromUnicode number of uint%s_t in stage 2: 0x%lx=%lu\n",
               maxCharLength==1 ? "16" : "32",
               (unsigned long)mbcsData->stage2Top,
               (unsigned long)mbcsData->stage2Top);
        printf("fromUnicode number of %d-byte stage 3 mapping entries: 0x%lx=%lu\n",
               (int)stage3Width,
               (unsigned long)mbcsData->stage3Top/stage3Width,
               (unsigned long)mbcsData->stage3Top/stage3Width);
#if 0
        c=0;
        for(i1=0; i1<MBCS_STAGE_1_SIZE; ++i1) {
            i2=mbcsData->stage1[i1];
            if(i2==0) {
                c+=MBCS_STAGE_2_BLOCK_SIZE*MBCS_STAGE_3_BLOCK_SIZE;
                continue;
            }
            for(i2Limit=i2+MBCS_STAGE_2_BLOCK_SIZE; i2<i2Limit; ++i2) {
                if(maxCharLength==1) {
                    i3=mbcsData->stage2Single[i2];
                } else {
                    i3=(uint16_t)mbcsData->stage2[i2];
                }
                if(i3==0) {
                    c+=MBCS_STAGE_3_BLOCK_SIZE;
                    continue;
                }
                printf("U+%04lx i1=0x%02lx i2=0x%04lx i3=0x%04lx\n",
                       (unsigned long)c,
                       (unsigned long)i1,
                       (unsigned long)i2,
                       (unsigned long)i3);
                c+=MBCS_STAGE_3_BLOCK_SIZE;
            }
        }
#endif
    }
}

static uint32_t
MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
          UNewDataMemory *pData, int32_t tableType) {
    MBCSData *mbcsData=(MBCSData *)cnvData;
    uint32_t stage2Start, stage2Length;
    uint32_t top, stageUTF8Length=0;
    int32_t i, stage1Top;
    uint32_t headerLength;

    _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 };

    stage2Length=mbcsData->stage2Top;
    if(mbcsData->omitFromU) {
        /* find how much of stage2 can be omitted */
        int32_t utf8Limit=(int32_t)mbcsData->utf8Max+1;
        uint32_t st2=0; /*initialized it to avoid compiler warnings */

        i=utf8Limit>>MBCS_STAGE_1_SHIFT;
        if((utf8Limit&((1<<MBCS_STAGE_1_SHIFT)-1))!=0 && (st2=mbcsData->stage1[i])!=0) {
            /* utf8Limit is in the middle of an existing stage 2 block */
            stage2Start=st2+((utf8Limit>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK);
        } else {
            /* find the last stage2 block with mappings before utf8Limit */
            while(i>0 && (st2=mbcsData->stage1[--i])==0) {}
            /* stage2 up to the end of this block corresponds to stageUTF8 */
            stage2Start=st2+MBCS_STAGE_2_BLOCK_SIZE;
        }
        header.options|=MBCS_OPT_NO_FROM_U;
        header.fullStage2Length=stage2Length;
        stage2Length-=stage2Start;
        if(VERBOSE) {
            printf("+ omitting %lu out of %lu stage2 entries and %lu fromUBytes\n",
                    (unsigned long)stage2Start,
                    (unsigned long)mbcsData->stage2Top,
                    (unsigned long)mbcsData->stage3Top);
            printf("+ total size savings: %lu bytes\n", (unsigned long)stage2Start*4+mbcsData->stage3Top);
        }
    } else {
        stage2Start=0;
    }

    if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
        stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */
    } else {
        stage1Top=0x40; /* 0x40==64 */
    }

    /* adjust stage 1 entries to include the size of stage 1 in the offsets to stage 2 */
    if(mbcsData->ucm->states.maxCharLength==1) {
        for(i=0; i<stage1Top; ++i) {
            mbcsData->stage1[i]+=(uint16_t)stage1Top;
        }

        /* stage2Top/Length have counted 16-bit results, now we need to count bytes */
        /* also round up to a multiple of 4 bytes */
        stage2Length=(stage2Length*2+1)&~1;

        /* stage3Top has counted 16-bit results, now we need to count bytes */
        mbcsData->stage3Top*=2;

        if(mbcsData->utf8Friendly) {
            header.version[2]=(uint8_t)(SBCS_UTF8_MAX>>8); /* store 0x1f for max==0x1fff */
        }
    } else {
        for(i=0; i<stage1Top; ++i) {
            mbcsData->stage1[i]+=(uint16_t)stage1Top/2; /* stage 2 contains 32-bit entries, stage 1 16-bit entries */
        }

        /* stage2Top/Length have counted 32-bit results, now we need to count bytes */
        stage2Length*=4;
        /* leave stage2Start counting 32-bit units */

        if(mbcsData->utf8Friendly) {
            stageUTF8Length=(mbcsData->utf8Max+1)>>MBCS_UTF8_STAGE_SHIFT;
            header.version[2]=(uint8_t)(mbcsData->utf8Max>>8); /* store 0xd7 for max==0xd7ff */
        }

        /* stage3Top has already counted bytes */
    }

    /* round up stage3Top so that the sizes of all data blocks are multiples of 4 */
    mbcsData->stage3Top=(mbcsData->stage3Top+3)&~3;

    /* fill the header */
    if(header.options&MBCS_OPT_INCOMPATIBLE_MASK) {
        header.version[0]=5;
        if(header.options&MBCS_OPT_NO_FROM_U) {
            headerLength=10;  /* include fullStage2Length */
        } else {
            headerLength=MBCS_HEADER_V5_MIN_LENGTH;  /* 9 */
        }
    } else {
        header.version[0]=4;
        headerLength=MBCS_HEADER_V4_LENGTH;  /* 8 */
    }
    header.version[1]=3;
    /* header.version[2] set above for utf8Friendly data */

    header.options|=(uint32_t)headerLength;

    header.countStates=mbcsData->ucm->states.countStates;
    header.countToUFallbacks=mbcsData->countToUFallbacks;

    header.offsetToUCodeUnits=
        headerLength*4+
        mbcsData->ucm->states.countStates*1024+
        mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback);
    header.offsetFromUTable=
        header.offsetToUCodeUnits+
        mbcsData->ucm->states.countToUCodeUnits*2;
    header.offsetFromUBytes=
        header.offsetFromUTable+
        stage1Top*2+
        stage2Length;
    header.fromUBytesLength=mbcsData->stage3Top;

    top=header.offsetFromUBytes+stageUTF8Length*2;
    if(!(header.options&MBCS_OPT_NO_FROM_U)) {
        top+=header.fromUBytesLength;
    }

    header.flags=(uint8_t)(mbcsData->ucm->states.outputType);

    if(tableType&TABLE_EXT) {
        if(top>0xffffff) {
            fprintf(stderr, "error: offset 0x%lx to extension table exceeds 0xffffff\n", (long)top);
            return 0;
        }

        header.flags|=top<<8;
    }

    /* write the MBCS data */
    udata_writeBlock(pData, &header, headerLength*4);
    udata_writeBlock(pData, mbcsData->ucm->states.stateTable, header.countStates*1024);
    udata_writeBlock(pData, mbcsData->toUFallbacks, mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback));
    udata_writeBlock(pData, mbcsData->unicodeCodeUnits, mbcsData->ucm->states.countToUCodeUnits*2);
    udata_writeBlock(pData, mbcsData->stage1, stage1Top*2);
    if(mbcsData->ucm->states.maxCharLength==1) {
        udata_writeBlock(pData, mbcsData->stage2Single+stage2Start, stage2Length);
    } else {
        udata_writeBlock(pData, mbcsData->stage2+stage2Start, stage2Length);
    }
    if(!(header.options&MBCS_OPT_NO_FROM_U)) {
        udata_writeBlock(pData, mbcsData->fromUBytes, mbcsData->stage3Top);
    }

    if(stageUTF8Length>0) {
        udata_writeBlock(pData, mbcsData->stageUTF8, stageUTF8Length*2);
    }

    /* return the number of bytes that should have been written */
    return top;
}