summaryrefslogtreecommitdiff
path: root/Build/source/libs/icu/icu-4.6/i18n/rbt_pars.cpp
blob: 483c05476bce5a46336db1f41f41e57aae917aec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
/*
 **********************************************************************
 *   Copyright (C) 1999-2008, International Business Machines
 *   Corporation and others.  All Rights Reserved.
 **********************************************************************
 *   Date        Name        Description
 *   11/17/99    aliu        Creation.
 **********************************************************************
 */

#include "unicode/utypes.h"

#if !UCONFIG_NO_TRANSLITERATION

#include "unicode/uobject.h"
#include "unicode/parseerr.h"
#include "unicode/parsepos.h"
#include "unicode/putil.h"
#include "unicode/uchar.h"
#include "unicode/ustring.h"
#include "unicode/uniset.h"
#include "cstring.h"
#include "funcrepl.h"
#include "hash.h"
#include "quant.h"
#include "rbt.h"
#include "rbt_data.h"
#include "rbt_pars.h"
#include "rbt_rule.h"
#include "strmatch.h"
#include "strrepl.h"
#include "unicode/symtable.h"
#include "tridpars.h"
#include "uvector.h"
#include "hash.h"
#include "util.h"
#include "cmemory.h"
#include "uprops.h"
#include "putilimp.h"

// Operators
#define VARIABLE_DEF_OP ((UChar)0x003D) /*=*/
#define FORWARD_RULE_OP ((UChar)0x003E) /*>*/
#define REVERSE_RULE_OP ((UChar)0x003C) /*<*/
#define FWDREV_RULE_OP  ((UChar)0x007E) /*~*/ // internal rep of <> op

// Other special characters
#define QUOTE             ((UChar)0x0027) /*'*/
#define ESCAPE            ((UChar)0x005C) /*\*/
#define END_OF_RULE       ((UChar)0x003B) /*;*/
#define RULE_COMMENT_CHAR ((UChar)0x0023) /*#*/

#define SEGMENT_OPEN       ((UChar)0x0028) /*(*/
#define SEGMENT_CLOSE      ((UChar)0x0029) /*)*/
#define CONTEXT_ANTE       ((UChar)0x007B) /*{*/
#define CONTEXT_POST       ((UChar)0x007D) /*}*/
#define CURSOR_POS         ((UChar)0x007C) /*|*/
#define CURSOR_OFFSET      ((UChar)0x0040) /*@*/
#define ANCHOR_START       ((UChar)0x005E) /*^*/
#define KLEENE_STAR        ((UChar)0x002A) /***/
#define ONE_OR_MORE        ((UChar)0x002B) /*+*/
#define ZERO_OR_ONE        ((UChar)0x003F) /*?*/

#define DOT                ((UChar)46)     /*.*/

static const UChar DOT_SET[] = { // "[^[:Zp:][:Zl:]\r\n$]";
    91, 94, 91, 58, 90, 112, 58, 93, 91, 58, 90,
    108, 58, 93, 92, 114, 92, 110, 36, 93, 0
};

// A function is denoted &Source-Target/Variant(text)
#define FUNCTION           ((UChar)38)     /*&*/

// Aliases for some of the syntax characters. These are provided so
// transliteration rules can be expressed in XML without clashing with
// XML syntax characters '<', '>', and '&'.
#define ALT_REVERSE_RULE_OP ((UChar)0x2190) // Left Arrow
#define ALT_FORWARD_RULE_OP ((UChar)0x2192) // Right Arrow
#define ALT_FWDREV_RULE_OP  ((UChar)0x2194) // Left Right Arrow
#define ALT_FUNCTION        ((UChar)0x2206) // Increment (~Greek Capital Delta)

// Special characters disallowed at the top level
static const UChar ILLEGAL_TOP[] = {41,0}; // ")"

// Special characters disallowed within a segment
static const UChar ILLEGAL_SEG[] = {123,125,124,64,0}; // "{}|@"

// Special characters disallowed within a function argument
static const UChar ILLEGAL_FUNC[] = {94,40,46,42,43,63,123,125,124,64,0}; // "^(.*+?{}|@"

// By definition, the ANCHOR_END special character is a
// trailing SymbolTable.SYMBOL_REF character.
// private static final char ANCHOR_END       = '$';

static const UChar gOPERATORS[] = { // "=><"
    VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP,
    ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP,
    0
};

static const UChar HALF_ENDERS[] = { // "=><;"
    VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP,
    ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP,
    END_OF_RULE,
    0
};

// These are also used in Transliterator::toRules()
static const int32_t ID_TOKEN_LEN = 2;
static const UChar   ID_TOKEN[]   = { 0x3A, 0x3A }; // ':', ':'

/*
commented out until we do real ::BEGIN/::END functionality
static const int32_t BEGIN_TOKEN_LEN = 5;
static const UChar BEGIN_TOKEN[] = { 0x42, 0x45, 0x47, 0x49, 0x4e }; // 'BEGIN'

static const int32_t END_TOKEN_LEN = 3;
static const UChar END_TOKEN[] = { 0x45, 0x4e, 0x44 }; // 'END'
*/

U_NAMESPACE_BEGIN

//----------------------------------------------------------------------
// BEGIN ParseData
//----------------------------------------------------------------------

/**
 * This class implements the SymbolTable interface.  It is used
 * during parsing to give UnicodeSet access to variables that
 * have been defined so far.  Note that it uses variablesVector,
 * _not_ data.setVariables.
 */
class ParseData : public UMemory, public SymbolTable {
public:
    const TransliterationRuleData* data; // alias

    const UVector* variablesVector; // alias

    const Hashtable* variableNames; // alias

    ParseData(const TransliterationRuleData* data = 0,
              const UVector* variablesVector = 0,
              const Hashtable* variableNames = 0);

    virtual const UnicodeString* lookup(const UnicodeString& s) const;

    virtual const UnicodeFunctor* lookupMatcher(UChar32 ch) const;

    virtual UnicodeString parseReference(const UnicodeString& text,
                                         ParsePosition& pos, int32_t limit) const;
    /**
     * Return true if the given character is a matcher standin or a plain
     * character (non standin).
     */
    UBool isMatcher(UChar32 ch);

    /**
     * Return true if the given character is a replacer standin or a plain
     * character (non standin).
     */
    UBool isReplacer(UChar32 ch);

private:
    ParseData(const ParseData &other); // forbid copying of this class
    ParseData &operator=(const ParseData &other); // forbid copying of this class
};

ParseData::ParseData(const TransliterationRuleData* d,
                     const UVector* sets,
                     const Hashtable* vNames) :
    data(d), variablesVector(sets), variableNames(vNames) {}

/**
 * Implement SymbolTable API.
 */
const UnicodeString* ParseData::lookup(const UnicodeString& name) const {
    return (const UnicodeString*) variableNames->get(name);
}

/**
 * Implement SymbolTable API.
 */
const UnicodeFunctor* ParseData::lookupMatcher(UChar32 ch) const {
    // Note that we cannot use data.lookupSet() because the
    // set array has not been constructed yet.
    const UnicodeFunctor* set = NULL;
    int32_t i = ch - data->variablesBase;
    if (i >= 0 && i < variablesVector->size()) {
        int32_t i = ch - data->variablesBase;
        set = (i < variablesVector->size()) ?
            (UnicodeFunctor*) variablesVector->elementAt(i) : 0;
    }
    return set;
}

/**
 * Implement SymbolTable API.  Parse out a symbol reference
 * name.
 */
UnicodeString ParseData::parseReference(const UnicodeString& text,
                                        ParsePosition& pos, int32_t limit) const {
    int32_t start = pos.getIndex();
    int32_t i = start;
    UnicodeString result;
    while (i < limit) {
        UChar c = text.charAt(i);
        if ((i==start && !u_isIDStart(c)) || !u_isIDPart(c)) {
            break;
        }
        ++i;
    }
    if (i == start) { // No valid name chars
        return result; // Indicate failure with empty string
    }
    pos.setIndex(i);
    text.extractBetween(start, i, result);
    return result;
}

UBool ParseData::isMatcher(UChar32 ch) {
    // Note that we cannot use data.lookup() because the
    // set array has not been constructed yet.
    int32_t i = ch - data->variablesBase;
    if (i >= 0 && i < variablesVector->size()) {
        UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i);
        return f != NULL && f->toMatcher() != NULL;
    }
    return TRUE;
}

/**
 * Return true if the given character is a replacer standin or a plain
 * character (non standin).
 */
UBool ParseData::isReplacer(UChar32 ch) {
    // Note that we cannot use data.lookup() because the
    // set array has not been constructed yet.
    int i = ch - data->variablesBase;
    if (i >= 0 && i < variablesVector->size()) {
        UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i);
        return f != NULL && f->toReplacer() != NULL;
    }
    return TRUE;
}

//----------------------------------------------------------------------
// BEGIN RuleHalf
//----------------------------------------------------------------------

/**
 * A class representing one side of a rule.  This class knows how to
 * parse half of a rule.  It is tightly coupled to the method
 * RuleBasedTransliterator.Parser.parseRule().
 */
class RuleHalf : public UMemory {

public:

    UnicodeString text;

    int32_t cursor; // position of cursor in text
    int32_t ante;   // position of ante context marker '{' in text
    int32_t post;   // position of post context marker '}' in text

    // Record the offset to the cursor either to the left or to the
    // right of the key.  This is indicated by characters on the output
    // side that allow the cursor to be positioned arbitrarily within
    // the matching text.  For example, abc{def} > | @@@ xyz; changes
    // def to xyz and moves the cursor to before abc.  Offset characters
    // must be at the start or end, and they cannot move the cursor past
    // the ante- or postcontext text.  Placeholders are only valid in
    // output text.  The length of the ante and post context is
    // determined at runtime, because of supplementals and quantifiers.
    int32_t cursorOffset; // only nonzero on output side

    // Position of first CURSOR_OFFSET on _right_.  This will be -1
    // for |@, -2 for |@@, etc., and 1 for @|, 2 for @@|, etc.
    int32_t cursorOffsetPos;

    UBool anchorStart;
    UBool anchorEnd;

    /**
     * The segment number from 1..n of the next '(' we see
     * during parsing; 1-based.
     */
    int32_t nextSegmentNumber;

    TransliteratorParser& parser;

    //--------------------------------------------------
    // Methods

    RuleHalf(TransliteratorParser& parser);
    ~RuleHalf();

    int32_t parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status);

    int32_t parseSection(const UnicodeString& rule, int32_t pos, int32_t limit,
                         UnicodeString& buf,
                         const UnicodeString& illegal,
                         UBool isSegment,
                         UErrorCode& status);

    /**
     * Remove context.
     */
    void removeContext();

    /**
     * Return true if this half looks like valid output, that is, does not
     * contain quantifiers or other special input-only elements.
     */
    UBool isValidOutput(TransliteratorParser& parser);

    /**
     * Return true if this half looks like valid input, that is, does not
     * contain functions or other special output-only elements.
     */
    UBool isValidInput(TransliteratorParser& parser);

    int syntaxError(UErrorCode code,
                    const UnicodeString& rule,
                    int32_t start,
                    UErrorCode& status) {
        return parser.syntaxError(code, rule, start, status);
    }

private:
    // Disallowed methods; no impl.
    RuleHalf(const RuleHalf&);
    RuleHalf& operator=(const RuleHalf&);
};

RuleHalf::RuleHalf(TransliteratorParser& p) :
    parser(p)
{
    cursor = -1;
    ante = -1;
    post = -1;
    cursorOffset = 0;
    cursorOffsetPos = 0;
    anchorStart = anchorEnd = FALSE;
    nextSegmentNumber = 1;
}

RuleHalf::~RuleHalf() {
}

/**
 * Parse one side of a rule, stopping at either the limit,
 * the END_OF_RULE character, or an operator.
 * @return the index after the terminating character, or
 * if limit was reached, limit
 */
int32_t RuleHalf::parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) {
    int32_t start = pos;
    text.truncate(0);
    pos = parseSection(rule, pos, limit, text, ILLEGAL_TOP, FALSE, status);

    if (cursorOffset > 0 && cursor != cursorOffsetPos) {
        return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
    }
    
    return pos;
}
 
/**
 * Parse a section of one side of a rule, stopping at either
 * the limit, the END_OF_RULE character, an operator, or a
 * segment close character.  This method parses both a
 * top-level rule half and a segment within such a rule half.
 * It calls itself recursively to parse segments and nested
 * segments.
 * @param buf buffer into which to accumulate the rule pattern
 * characters, either literal characters from the rule or
 * standins for UnicodeMatcher objects including segments.
 * @param illegal the set of special characters that is illegal during
 * this parse.
 * @param isSegment if true, then we've already seen a '(' and
 * pos on entry points right after it.  Accumulate everything
 * up to the closing ')', put it in a segment matcher object,
 * generate a standin for it, and add the standin to buf.  As
 * a side effect, update the segments vector with a reference
 * to the segment matcher.  This works recursively for nested
 * segments.  If isSegment is false, just accumulate
 * characters into buf.
 * @return the index after the terminating character, or
 * if limit was reached, limit
 */
int32_t RuleHalf::parseSection(const UnicodeString& rule, int32_t pos, int32_t limit,
                               UnicodeString& buf,
                               const UnicodeString& illegal,
                               UBool isSegment, UErrorCode& status) {
    int32_t start = pos;
    ParsePosition pp;
    UnicodeString scratch;
    UBool done = FALSE;
    int32_t quoteStart = -1; // Most recent 'single quoted string'
    int32_t quoteLimit = -1;
    int32_t varStart = -1; // Most recent $variableReference
    int32_t varLimit = -1;
    int32_t bufStart = buf.length();
    
    while (pos < limit && !done) {
        // Since all syntax characters are in the BMP, fetching
        // 16-bit code units suffices here.
        UChar c = rule.charAt(pos++);
        if (uprv_isRuleWhiteSpace(c)) {
            // Ignore whitespace.  Note that this is not Unicode
            // spaces, but Java spaces -- a subset, representing
            // whitespace likely to be seen in code.
            continue;
        }
        if (u_strchr(HALF_ENDERS, c) != NULL) {
            if (isSegment) {
                // Unclosed segment
                return syntaxError(U_UNCLOSED_SEGMENT, rule, start, status);
            }
            break;
        }
        if (anchorEnd) {
            // Text after a presumed end anchor is a syntax err
            return syntaxError(U_MALFORMED_VARIABLE_REFERENCE, rule, start, status);
        }
        if (UnicodeSet::resemblesPattern(rule, pos-1)) {
            pp.setIndex(pos-1); // Backup to opening '['
            buf.append(parser.parseSet(rule, pp, status));
            if (U_FAILURE(status)) {
                return syntaxError(U_MALFORMED_SET, rule, start, status);
            }
            pos = pp.getIndex();                    
            continue;
        }
        // Handle escapes
        if (c == ESCAPE) {
            if (pos == limit) {
                return syntaxError(U_TRAILING_BACKSLASH, rule, start, status);
            }
            UChar32 escaped = rule.unescapeAt(pos); // pos is already past '\\'
            if (escaped == (UChar32) -1) {
                return syntaxError(U_MALFORMED_UNICODE_ESCAPE, rule, start, status);
            }
            if (!parser.checkVariableRange(escaped)) {
                return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status);
            }
            buf.append(escaped);
            continue;
        }
        // Handle quoted matter
        if (c == QUOTE) {
            int32_t iq = rule.indexOf(QUOTE, pos);
            if (iq == pos) {
                buf.append(c); // Parse [''] outside quotes as [']
                ++pos;
            } else {
                /* This loop picks up a run of quoted text of the
                 * form 'aaaa' each time through.  If this run
                 * hasn't really ended ('aaaa''bbbb') then it keeps
                 * looping, each time adding on a new run.  When it
                 * reaches the final quote it breaks.
                 */
                quoteStart = buf.length();
                for (;;) {
                    if (iq < 0) {
                        return syntaxError(U_UNTERMINATED_QUOTE, rule, start, status);
                    }
                    scratch.truncate(0);
                    rule.extractBetween(pos, iq, scratch);
                    buf.append(scratch);
                    pos = iq+1;
                    if (pos < limit && rule.charAt(pos) == QUOTE) {
                        // Parse [''] inside quotes as [']
                        iq = rule.indexOf(QUOTE, pos+1);
                        // Continue looping
                    } else {
                        break;
                    }
                }
                quoteLimit = buf.length();

                for (iq=quoteStart; iq<quoteLimit; ++iq) {
                    if (!parser.checkVariableRange(buf.charAt(iq))) {
                        return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status);
                    }
                }
            }
            continue;
        }

        if (!parser.checkVariableRange(c)) {
            return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status);
        }

        if (illegal.indexOf(c) >= 0) {
            syntaxError(U_ILLEGAL_CHARACTER, rule, start, status);
        }

        switch (c) {
                    
        //------------------------------------------------------
        // Elements allowed within and out of segments
        //------------------------------------------------------
        case ANCHOR_START:
            if (buf.length() == 0 && !anchorStart) {
                anchorStart = TRUE;
            } else {
              return syntaxError(U_MISPLACED_ANCHOR_START,
                                 rule, start, status);
            }
          break;
        case SEGMENT_OPEN:
            {
                // bufSegStart is the offset in buf to the first
                // character of the segment we are parsing.
                int32_t bufSegStart = buf.length();
                
                // Record segment number now, since nextSegmentNumber
                // will be incremented during the call to parseSection
                // if there are nested segments.
                int32_t segmentNumber = nextSegmentNumber++; // 1-based
                
                // Parse the segment
                pos = parseSection(rule, pos, limit, buf, ILLEGAL_SEG, TRUE, status);
                
                // After parsing a segment, the relevant characters are
                // in buf, starting at offset bufSegStart.  Extract them
                // into a string matcher, and replace them with a
                // standin for that matcher.
                StringMatcher* m =
                    new StringMatcher(buf, bufSegStart, buf.length(),
                                      segmentNumber, *parser.curData);
                if (m == NULL) {
                    return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
                }
                
                // Record and associate object and segment number
                parser.setSegmentObject(segmentNumber, m, status);
                buf.truncate(bufSegStart);
                buf.append(parser.getSegmentStandin(segmentNumber, status));
            }
            break;
        case FUNCTION:
        case ALT_FUNCTION:
            {
                int32_t iref = pos;
                TransliteratorIDParser::SingleID* single =
                    TransliteratorIDParser::parseFilterID(rule, iref);
                // The next character MUST be a segment open
                if (single == NULL ||
                    !ICU_Utility::parseChar(rule, iref, SEGMENT_OPEN)) {
                    return syntaxError(U_INVALID_FUNCTION, rule, start, status);
                }
                
                Transliterator *t = single->createInstance();
                delete single;
                if (t == NULL) {
                    return syntaxError(U_INVALID_FUNCTION, rule, start, status);
                }
                
                // bufSegStart is the offset in buf to the first
                // character of the segment we are parsing.
                int32_t bufSegStart = buf.length();
                
                // Parse the segment
                pos = parseSection(rule, iref, limit, buf, ILLEGAL_FUNC, TRUE, status);
                
                // After parsing a segment, the relevant characters are
                // in buf, starting at offset bufSegStart.
                UnicodeString output;
                buf.extractBetween(bufSegStart, buf.length(), output);
                FunctionReplacer *r =
                    new FunctionReplacer(t, new StringReplacer(output, parser.curData));
                if (r == NULL) {
                    return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
                }
                
                // Replace the buffer contents with a stand-in
                buf.truncate(bufSegStart);
                buf.append(parser.generateStandInFor(r, status));
            }
            break;
        case SymbolTable::SYMBOL_REF:
            // Handle variable references and segment references "$1" .. "$9"
            {
                // A variable reference must be followed immediately
                // by a Unicode identifier start and zero or more
                // Unicode identifier part characters, or by a digit
                // 1..9 if it is a segment reference.
                if (pos == limit) {
                    // A variable ref character at the end acts as
                    // an anchor to the context limit, as in perl.
                    anchorEnd = TRUE;
                    break;
                }
                // Parse "$1" "$2" .. "$9" .. (no upper limit)
                c = rule.charAt(pos);
                int32_t r = u_digit(c, 10);
                if (r >= 1 && r <= 9) {
                    r = ICU_Utility::parseNumber(rule, pos, 10);
                    if (r < 0) {
                        return syntaxError(U_UNDEFINED_SEGMENT_REFERENCE,
                                           rule, start, status);
                    }
                    buf.append(parser.getSegmentStandin(r, status));
                } else {
                    pp.setIndex(pos);
                    UnicodeString name = parser.parseData->
                                    parseReference(rule, pp, limit);
                    if (name.length() == 0) {
                        // This means the '$' was not followed by a
                        // valid name.  Try to interpret it as an
                        // end anchor then.  If this also doesn't work
                        // (if we see a following character) then signal
                        // an error.
                        anchorEnd = TRUE;
                        break;
                    }
                    pos = pp.getIndex();
                    // If this is a variable definition statement,
                    // then the LHS variable will be undefined.  In
                    // that case appendVariableDef() will append the
                    // special placeholder char variableLimit-1.
                    varStart = buf.length();
                    parser.appendVariableDef(name, buf, status);
                    varLimit = buf.length();
                }
            }
            break;
        case DOT:
            buf.append(parser.getDotStandIn(status));
            break;
        case KLEENE_STAR:
        case ONE_OR_MORE:
        case ZERO_OR_ONE:
            // Quantifiers.  We handle single characters, quoted strings,
            // variable references, and segments.
            //  a+      matches  aaa
            //  'foo'+  matches  foofoofoo
            //  $v+     matches  xyxyxy if $v == xy
            //  (seg)+  matches  segsegseg
            {
                if (isSegment && buf.length() == bufStart) {
                    // The */+ immediately follows '('
                    return syntaxError(U_MISPLACED_QUANTIFIER, rule, start, status);
                }

                int32_t qstart, qlimit;
                // The */+ follows an isolated character or quote
                // or variable reference
                if (buf.length() == quoteLimit) {
                    // The */+ follows a 'quoted string'
                    qstart = quoteStart;
                    qlimit = quoteLimit;
                } else if (buf.length() == varLimit) {
                    // The */+ follows a $variableReference
                    qstart = varStart;
                    qlimit = varLimit;
                } else {
                    // The */+ follows a single character, possibly
                    // a segment standin
                    qstart = buf.length() - 1;
                    qlimit = qstart + 1;
                }

                UnicodeFunctor *m =
                    new StringMatcher(buf, qstart, qlimit, 0, *parser.curData);
                if (m == NULL) {
                    return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
                }
                int32_t min = 0;
                int32_t max = Quantifier::MAX;
                switch (c) {
                case ONE_OR_MORE:
                    min = 1;
                    break;
                case ZERO_OR_ONE:
                    min = 0;
                    max = 1;
                    break;
                // case KLEENE_STAR:
                //    do nothing -- min, max already set
                }
                m = new Quantifier(m, min, max);
                if (m == NULL) {
                    return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
                }
                buf.truncate(qstart);
                buf.append(parser.generateStandInFor(m, status));
            }
            break;

        //------------------------------------------------------
        // Elements allowed ONLY WITHIN segments
        //------------------------------------------------------
        case SEGMENT_CLOSE:
            // assert(isSegment);
            // We're done parsing a segment.
            done = TRUE;
            break;

        //------------------------------------------------------
        // Elements allowed ONLY OUTSIDE segments
        //------------------------------------------------------
        case CONTEXT_ANTE:
            if (ante >= 0) {
                return syntaxError(U_MULTIPLE_ANTE_CONTEXTS, rule, start, status);
            }
            ante = buf.length();
            break;
        case CONTEXT_POST:
            if (post >= 0) {
                return syntaxError(U_MULTIPLE_POST_CONTEXTS, rule, start, status);
            }
            post = buf.length();
            break;
        case CURSOR_POS:
            if (cursor >= 0) {
                return syntaxError(U_MULTIPLE_CURSORS, rule, start, status);
            }
            cursor = buf.length();
            break;
        case CURSOR_OFFSET:
            if (cursorOffset < 0) {
                if (buf.length() > 0) {
                    return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
                }
                --cursorOffset;
            } else if (cursorOffset > 0) {
                if (buf.length() != cursorOffsetPos || cursor >= 0) {
                    return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
                }
                ++cursorOffset;
            } else {
                if (cursor == 0 && buf.length() == 0) {
                    cursorOffset = -1;
                } else if (cursor < 0) {
                    cursorOffsetPos = buf.length();
                    cursorOffset = 1;
                } else {
                    return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
                }
            }
            break;


        //------------------------------------------------------
        // Non-special characters
        //------------------------------------------------------
        default:
            // Disallow unquoted characters other than [0-9A-Za-z]
            // in the printable ASCII range.  These characters are
            // reserved for possible future use.
            if (c >= 0x0021 && c <= 0x007E &&
                !((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) ||
                  (c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) ||
                  (c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) {
                return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status);
            }
            buf.append(c);
            break;
        }
    }

    return pos;
}

/**
 * Remove context.
 */
void RuleHalf::removeContext() {
    //text = text.substring(ante < 0 ? 0 : ante,
    //                      post < 0 ? text.length() : post);
    if (post >= 0) {
        text.remove(post);
    }
    if (ante >= 0) {
        text.removeBetween(0, ante);
    }
    ante = post = -1;
    anchorStart = anchorEnd = FALSE;
}

/**
 * Return true if this half looks like valid output, that is, does not
 * contain quantifiers or other special input-only elements.
 */
UBool RuleHalf::isValidOutput(TransliteratorParser& transParser) {
    for (int32_t i=0; i<text.length(); ) {
        UChar32 c = text.char32At(i);
        i += UTF_CHAR_LENGTH(c);
        if (!transParser.parseData->isReplacer(c)) {
            return FALSE;
        }
    }
    return TRUE;
}

/**
 * Return true if this half looks like valid input, that is, does not
 * contain functions or other special output-only elements.
 */
UBool RuleHalf::isValidInput(TransliteratorParser& transParser) {
    for (int32_t i=0; i<text.length(); ) {
        UChar32 c = text.char32At(i);
        i += UTF_CHAR_LENGTH(c);
        if (!transParser.parseData->isMatcher(c)) {
            return FALSE;
        }
    }
    return TRUE;
}

//----------------------------------------------------------------------
// PUBLIC API
//----------------------------------------------------------------------

/**
 * Constructor.
 */
TransliteratorParser::TransliteratorParser(UErrorCode &statusReturn) :
dataVector(statusReturn),
idBlockVector(statusReturn),
variablesVector(statusReturn),
segmentObjects(statusReturn)
{
    idBlockVector.setDeleter(uhash_deleteUnicodeString);
    curData = NULL;
    compoundFilter = NULL;
    parseData = NULL;
    variableNames.setValueDeleter(uhash_deleteUnicodeString);
}

/**
 * Destructor.
 */
TransliteratorParser::~TransliteratorParser() {
    while (!dataVector.isEmpty())
        delete (TransliterationRuleData*)(dataVector.orphanElementAt(0));
    delete compoundFilter;
    delete parseData;
    while (!variablesVector.isEmpty())
        delete (UnicodeFunctor*)variablesVector.orphanElementAt(0);
}

void
TransliteratorParser::parse(const UnicodeString& rules,
                            UTransDirection transDirection,
                            UParseError& pe,
                            UErrorCode& ec) {
    if (U_SUCCESS(ec)) {
        parseRules(rules, transDirection, ec);
        pe = parseError;
    }
}

/**
 * Return the compound filter parsed by parse().  Caller owns result.
 */ 
UnicodeSet* TransliteratorParser::orphanCompoundFilter() {
    UnicodeSet* f = compoundFilter;
    compoundFilter = NULL;
    return f;
}

//----------------------------------------------------------------------
// Private implementation
//----------------------------------------------------------------------

/**
 * Parse the given string as a sequence of rules, separated by newline
 * characters ('\n'), and cause this object to implement those rules.  Any
 * previous rules are discarded.  Typically this method is called exactly
 * once, during construction.
 * @exception IllegalArgumentException if there is a syntax error in the
 * rules
 */
void TransliteratorParser::parseRules(const UnicodeString& rule,
                                      UTransDirection theDirection,
                                      UErrorCode& status)
{
    // Clear error struct
    uprv_memset(&parseError, 0, sizeof(parseError));
    parseError.line = parseError.offset = -1;

    UBool parsingIDs = TRUE;
    int32_t ruleCount = 0;
    
    while (!dataVector.isEmpty()) {
        delete (TransliterationRuleData*)(dataVector.orphanElementAt(0));
    }
    if (U_FAILURE(status)) {
        return;
    }

    idBlockVector.removeAllElements();
    curData = NULL;
    direction = theDirection;
    ruleCount = 0;

    delete compoundFilter;
    compoundFilter = NULL;

    while (!variablesVector.isEmpty()) {
        delete (UnicodeFunctor*)variablesVector.orphanElementAt(0);
    }
    variableNames.removeAll();
    parseData = new ParseData(0, &variablesVector, &variableNames);
    if (parseData == NULL) {
        status = U_MEMORY_ALLOCATION_ERROR;
        return;
    }

    dotStandIn = (UChar) -1;

    UnicodeString *tempstr = NULL; // used for memory allocation error checking
    UnicodeString str; // scratch
    UnicodeString idBlockResult;
    int32_t pos = 0;
    int32_t limit = rule.length();

    // The compound filter offset is an index into idBlockResult.
    // If it is 0, then the compound filter occurred at the start,
    // and it is the offset to the _start_ of the compound filter
    // pattern.  Otherwise it is the offset to the _limit_ of the
    // compound filter pattern within idBlockResult.
    compoundFilter = NULL;
    int32_t compoundFilterOffset = -1;

    while (pos < limit && U_SUCCESS(status)) {
        UChar c = rule.charAt(pos++);
        if (uprv_isRuleWhiteSpace(c)) {
            // Ignore leading whitespace.
            continue;
        }
        // Skip lines starting with the comment character
        if (c == RULE_COMMENT_CHAR) {
            pos = rule.indexOf((UChar)0x000A /*\n*/, pos) + 1;
            if (pos == 0) {
                break; // No "\n" found; rest of rule is a commnet
            }
            continue; // Either fall out or restart with next line
        }

        // skip empty rules
        if (c == END_OF_RULE)
            continue;

        // keep track of how many rules we've seen
        ++ruleCount;
        
        // We've found the start of a rule or ID.  c is its first
        // character, and pos points past c.
        --pos;
        // Look for an ID token.  Must have at least ID_TOKEN_LEN + 1
        // chars left.
        if ((pos + ID_TOKEN_LEN + 1) <= limit &&
                rule.compare(pos, ID_TOKEN_LEN, ID_TOKEN) == 0) {
            pos += ID_TOKEN_LEN;
            c = rule.charAt(pos);
            while (uprv_isRuleWhiteSpace(c) && pos < limit) {
                ++pos;
                c = rule.charAt(pos);
            }

            int32_t p = pos;
            
            if (!parsingIDs) {
                if (curData != NULL) {
                    if (direction == UTRANS_FORWARD)
                        dataVector.addElement(curData, status);
                    else
                        dataVector.insertElementAt(curData, 0, status);
                    curData = NULL;
                }
                parsingIDs = TRUE;
            }

            TransliteratorIDParser::SingleID* id =
                TransliteratorIDParser::parseSingleID(rule, p, direction, status);
            if (p != pos && ICU_Utility::parseChar(rule, p, END_OF_RULE)) {
                // Successful ::ID parse.

                if (direction == UTRANS_FORWARD) {
                    idBlockResult.append(id->canonID).append(END_OF_RULE);
                } else {
                    idBlockResult.insert(0, END_OF_RULE);
                    idBlockResult.insert(0, id->canonID);
                }

            } else {
                // Couldn't parse an ID.  Try to parse a global filter
                int32_t withParens = -1;
                UnicodeSet* f = TransliteratorIDParser::parseGlobalFilter(rule, p, direction, withParens, NULL);
                if (f != NULL) {
                    if (ICU_Utility::parseChar(rule, p, END_OF_RULE)
                        && (direction == UTRANS_FORWARD) == (withParens == 0))
                    {
                        if (compoundFilter != NULL) {
                            // Multiple compound filters
                            syntaxError(U_MULTIPLE_COMPOUND_FILTERS, rule, pos, status);
                            delete f;
                        } else {
                            compoundFilter = f;
                            compoundFilterOffset = ruleCount;
                        }
                    } else {
                        delete f;
                    }
                } else {
                    // Invalid ::id
                    // Can be parsed as neither an ID nor a global filter
                    syntaxError(U_INVALID_ID, rule, pos, status);
                }
            }
            delete id;
            pos = p;
        } else {
            if (parsingIDs) {
                tempstr = new UnicodeString(idBlockResult);
                // NULL pointer check
                if (tempstr == NULL) {
                    status = U_MEMORY_ALLOCATION_ERROR;
                    return;
                }
                if (direction == UTRANS_FORWARD)
                    idBlockVector.addElement(tempstr, status);
                else
                    idBlockVector.insertElementAt(tempstr, 0, status);
                idBlockResult.remove();
                parsingIDs = FALSE;
                curData = new TransliterationRuleData(status);
                // NULL pointer check
                if (curData == NULL) {
                    status = U_MEMORY_ALLOCATION_ERROR;
                    return;
                }
                parseData->data = curData;

                // By default, rules use part of the private use area
                // E000..F8FF for variables and other stand-ins.  Currently
                // the range F000..F8FF is typically sufficient.  The 'use
                // variable range' pragma allows rule sets to modify this.
                setVariableRange(0xF000, 0xF8FF, status);
            }

            if (resemblesPragma(rule, pos, limit)) {
                int32_t ppp = parsePragma(rule, pos, limit, status);
                if (ppp < 0) {
                    syntaxError(U_MALFORMED_PRAGMA, rule, pos, status);
                }
                pos = ppp;
            // Parse a rule
            } else {
                pos = parseRule(rule, pos, limit, status);
            }
        }
    }

    if (parsingIDs && idBlockResult.length() > 0) {
        tempstr = new UnicodeString(idBlockResult);
        // NULL pointer check
        if (tempstr == NULL) {
            status = U_MEMORY_ALLOCATION_ERROR;
            return;
        }
        if (direction == UTRANS_FORWARD)
            idBlockVector.addElement(tempstr, status);
        else
            idBlockVector.insertElementAt(tempstr, 0, status);
    }
    else if (!parsingIDs && curData != NULL) {
        if (direction == UTRANS_FORWARD)
            dataVector.addElement(curData, status);
        else
            dataVector.insertElementAt(curData, 0, status);
    }
    
    if (U_SUCCESS(status)) {
        // Convert the set vector to an array
        int32_t i, dataVectorSize = dataVector.size();
        for (i = 0; i < dataVectorSize; i++) {
            TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i);
            data->variablesLength = variablesVector.size();
            if (data->variablesLength == 0) {
                data->variables = 0;
            } else {
                data->variables = (UnicodeFunctor**)uprv_malloc(data->variablesLength * sizeof(UnicodeFunctor*));
                // NULL pointer check
                if (data->variables == NULL) {
                    status = U_MEMORY_ALLOCATION_ERROR;
                    return;
                }
                data->variablesAreOwned = (i == 0);
            }

            for (int32_t j = 0; j < data->variablesLength; j++) {
                data->variables[j] =
                    ((UnicodeSet*)variablesVector.elementAt(j));
            }
            
            data->variableNames.removeAll();
            int32_t pos = -1;
            const UHashElement* he = variableNames.nextElement(pos);
            while (he != NULL) {
                UnicodeString* tempus = (UnicodeString*)(((UnicodeString*)(he->value.pointer))->clone());
                if (tempus == NULL) {
                    status = U_MEMORY_ALLOCATION_ERROR;
                    return;
                }
                data->variableNames.put(*((UnicodeString*)(he->key.pointer)),
                    tempus, status);
                he = variableNames.nextElement(pos);
            }
        }
        variablesVector.removeAllElements();   // keeps them from getting deleted when we succeed

        // Index the rules
        if (compoundFilter != NULL) {
            if ((direction == UTRANS_FORWARD && compoundFilterOffset != 1) ||
                (direction == UTRANS_REVERSE && compoundFilterOffset != ruleCount)) {
                status = U_MISPLACED_COMPOUND_FILTER;
            }
        }        

        for (i = 0; i < dataVectorSize; i++) {
            TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i);
            data->ruleSet.freeze(parseError, status);
        }
        if (idBlockVector.size() == 1 && ((UnicodeString*)idBlockVector.elementAt(0))->isEmpty()) {
            idBlockVector.removeElementAt(0);
        }
    }
}

/**
 * Set the variable range to [start, end] (inclusive).
 */
void TransliteratorParser::setVariableRange(int32_t start, int32_t end, UErrorCode& status) {
    if (start > end || start < 0 || end > 0xFFFF) {
        status = U_MALFORMED_PRAGMA;
        return;
    }
    
    curData->variablesBase = (UChar) start;
    if (dataVector.size() == 0) {
        variableNext = (UChar) start;
        variableLimit = (UChar) (end + 1);
    }
}

/**
 * Assert that the given character is NOT within the variable range.
 * If it is, return FALSE.  This is neccesary to ensure that the
 * variable range does not overlap characters used in a rule.
 */
UBool TransliteratorParser::checkVariableRange(UChar32 ch) const {
    return !(ch >= curData->variablesBase && ch < variableLimit);
}

/**
 * Set the maximum backup to 'backup', in response to a pragma
 * statement.
 */
void TransliteratorParser::pragmaMaximumBackup(int32_t /*backup*/) {
    //TODO Finish
}

/**
 * Begin normalizing all rules using the given mode, in response
 * to a pragma statement.
 */
void TransliteratorParser::pragmaNormalizeRules(UNormalizationMode /*mode*/) {
    //TODO Finish
}

static const UChar PRAGMA_USE[] = {0x75,0x73,0x65,0x20,0}; // "use "

static const UChar PRAGMA_VARIABLE_RANGE[] = {0x7E,0x76,0x61,0x72,0x69,0x61,0x62,0x6C,0x65,0x20,0x72,0x61,0x6E,0x67,0x65,0x20,0x23,0x20,0x23,0x7E,0x3B,0}; // "~variable range # #~;"

static const UChar PRAGMA_MAXIMUM_BACKUP[] = {0x7E,0x6D,0x61,0x78,0x69,0x6D,0x75,0x6D,0x20,0x62,0x61,0x63,0x6B,0x75,0x70,0x20,0x23,0x7E,0x3B,0}; // "~maximum backup #~;"

static const UChar PRAGMA_NFD_RULES[] = {0x7E,0x6E,0x66,0x64,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfd rules~;"

static const UChar PRAGMA_NFC_RULES[] = {0x7E,0x6E,0x66,0x63,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfc rules~;"

/**
 * Return true if the given rule looks like a pragma.
 * @param pos offset to the first non-whitespace character
 * of the rule.
 * @param limit pointer past the last character of the rule.
 */
UBool TransliteratorParser::resemblesPragma(const UnicodeString& rule, int32_t pos, int32_t limit) {
    // Must start with /use\s/i
    return ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_USE, NULL) >= 0;
}

/**
 * Parse a pragma.  This method assumes resemblesPragma() has
 * already returned true.
 * @param pos offset to the first non-whitespace character
 * of the rule.
 * @param limit pointer past the last character of the rule.
 * @return the position index after the final ';' of the pragma,
 * or -1 on failure.
 */
int32_t TransliteratorParser::parsePragma(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) {
    int32_t array[2];
    
    // resemblesPragma() has already returned true, so we
    // know that pos points to /use\s/i; we can skip 4 characters
    // immediately
    pos += 4;
    
    // Here are the pragmas we recognize:
    // use variable range 0xE000 0xEFFF;
    // use maximum backup 16;
    // use nfd rules;
    // use nfc rules;
    int p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_VARIABLE_RANGE, array);
    if (p >= 0) {
        setVariableRange(array[0], array[1], status);
        return p;
    }
    
    p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_MAXIMUM_BACKUP, array);
    if (p >= 0) {
        pragmaMaximumBackup(array[0]);
        return p;
    }
    
    p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_NFD_RULES, NULL);
    if (p >= 0) {
        pragmaNormalizeRules(UNORM_NFD);
        return p;
    }
    
    p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_NFC_RULES, NULL);
    if (p >= 0) {
        pragmaNormalizeRules(UNORM_NFC);
        return p;
    }
    
    // Syntax error: unable to parse pragma
    return -1;
}

/**
 * MAIN PARSER.  Parse the next rule in the given rule string, starting
 * at pos.  Return the index after the last character parsed.  Do not
 * parse characters at or after limit.
 *
 * Important:  The character at pos must be a non-whitespace character
 * that is not the comment character.
 *
 * This method handles quoting, escaping, and whitespace removal.  It
 * parses the end-of-rule character.  It recognizes context and cursor
 * indicators.  Once it does a lexical breakdown of the rule at pos, it
 * creates a rule object and adds it to our rule list.
 */
int32_t TransliteratorParser::parseRule(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) {
    // Locate the left side, operator, and right side
    int32_t start = pos;
    UChar op = 0;
    int32_t i;

    // Set up segments data
    segmentStandins.truncate(0);
    segmentObjects.removeAllElements();

    // Use pointers to automatics to make swapping possible.
    RuleHalf _left(*this), _right(*this);
    RuleHalf* left = &_left;
    RuleHalf* right = &_right;

    undefinedVariableName.remove();
    pos = left->parse(rule, pos, limit, status);
    if (U_FAILURE(status)) {
        return start;
    }

    if (pos == limit || u_strchr(gOPERATORS, (op = rule.charAt(--pos))) == NULL) {
        return syntaxError(U_MISSING_OPERATOR, rule, start, status);
    }
    ++pos;

    // Found an operator char.  Check for forward-reverse operator.
    if (op == REVERSE_RULE_OP &&
        (pos < limit && rule.charAt(pos) == FORWARD_RULE_OP)) {
        ++pos;
        op = FWDREV_RULE_OP;
    }

    // Translate alternate op characters.
    switch (op) {
    case ALT_FORWARD_RULE_OP:
        op = FORWARD_RULE_OP;
        break;
    case ALT_REVERSE_RULE_OP:
        op = REVERSE_RULE_OP;
        break;
    case ALT_FWDREV_RULE_OP:
        op = FWDREV_RULE_OP;
        break;
    }

    pos = right->parse(rule, pos, limit, status);
    if (U_FAILURE(status)) {
        return start;
    }

    if (pos < limit) {
        if (rule.charAt(--pos) == END_OF_RULE) {
            ++pos;
        } else {
            // RuleHalf parser must have terminated at an operator
            return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status);
        }
    }

    if (op == VARIABLE_DEF_OP) {
        // LHS is the name.  RHS is a single character, either a literal
        // or a set (already parsed).  If RHS is longer than one
        // character, it is either a multi-character string, or multiple
        // sets, or a mixture of chars and sets -- syntax error.

        // We expect to see a single undefined variable (the one being
        // defined).
        if (undefinedVariableName.length() == 0) {
            // "Missing '$' or duplicate definition"
            return syntaxError(U_BAD_VARIABLE_DEFINITION, rule, start, status);
        }
        if (left->text.length() != 1 || left->text.charAt(0) != variableLimit) {
            // "Malformed LHS"
            return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status);
        }
        if (left->anchorStart || left->anchorEnd ||
            right->anchorStart || right->anchorEnd) {
            return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status);
        } 
        // We allow anything on the right, including an empty string.
        UnicodeString* value = new UnicodeString(right->text);
        // NULL pointer check
        if (value == NULL) {
            return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
        }
        variableNames.put(undefinedVariableName, value, status);
        ++variableLimit;
        return pos;
    }

    // If this is not a variable definition rule, we shouldn't have
    // any undefined variable names.
    if (undefinedVariableName.length() != 0) {
        return syntaxError(// "Undefined variable $" + undefinedVariableName,
                    U_UNDEFINED_VARIABLE,
                    rule, start, status);
    }

    // Verify segments
    if (segmentStandins.length() > segmentObjects.size()) {
        syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, rule, start, status);
    }
    for (i=0; i<segmentStandins.length(); ++i) {
        if (segmentStandins.charAt(i) == 0) {
            syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen
        }
    }
    for (i=0; i<segmentObjects.size(); ++i) {
        if (segmentObjects.elementAt(i) == NULL) {
            syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen
        }
    }
    
    // If the direction we want doesn't match the rule
    // direction, do nothing.
    if (op != FWDREV_RULE_OP &&
        ((direction == UTRANS_FORWARD) != (op == FORWARD_RULE_OP))) {
        return pos;
    }

    // Transform the rule into a forward rule by swapping the
    // sides if necessary.
    if (direction == UTRANS_REVERSE) {
        left = &_right;
        right = &_left;
    }

    // Remove non-applicable elements in forward-reverse
    // rules.  Bidirectional rules ignore elements that do not
    // apply.
    if (op == FWDREV_RULE_OP) {
        right->removeContext();
        left->cursor = -1;
        left->cursorOffset = 0;
    }

    // Normalize context
    if (left->ante < 0) {
        left->ante = 0;
    }
    if (left->post < 0) {
        left->post = left->text.length();
    }

    // Context is only allowed on the input side.  Cursors are only
    // allowed on the output side.  Segment delimiters can only appear
    // on the left, and references on the right.  Cursor offset
    // cannot appear without an explicit cursor.  Cursor offset
    // cannot place the cursor outside the limits of the context.
    // Anchors are only allowed on the input side.
    if (right->ante >= 0 || right->post >= 0 || left->cursor >= 0 ||
        (right->cursorOffset != 0 && right->cursor < 0) ||
        // - The following two checks were used to ensure that the
        // - the cursor offset stayed within the ante- or postcontext.
        // - However, with the addition of quantifiers, we have to
        // - allow arbitrary cursor offsets and do runtime checking.
        //(right->cursorOffset > (left->text.length() - left->post)) ||
        //(-right->cursorOffset > left->ante) ||
        right->anchorStart || right->anchorEnd ||
        !left->isValidInput(*this) || !right->isValidOutput(*this) ||
        left->ante > left->post) {

        return syntaxError(U_MALFORMED_RULE, rule, start, status);
    }

    // Flatten segment objects vector to an array
    UnicodeFunctor** segmentsArray = NULL;
    if (segmentObjects.size() > 0) {
        segmentsArray = (UnicodeFunctor **)uprv_malloc(segmentObjects.size() * sizeof(UnicodeFunctor *));
        // Null pointer check
        if (segmentsArray == NULL) {
            return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
        }
        segmentObjects.toArray((void**) segmentsArray);
    }
    TransliterationRule* temptr = new TransliterationRule(
            left->text, left->ante, left->post,
            right->text, right->cursor, right->cursorOffset,
            segmentsArray,
            segmentObjects.size(),
            left->anchorStart, left->anchorEnd,
            curData,
            status);
    //Null pointer check
    if (temptr == NULL) {
        uprv_free(segmentsArray);
        return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
    }

    curData->ruleSet.addRule(temptr, status);

    return pos;
}

/**
 * Called by main parser upon syntax error.  Search the rule string
 * for the probable end of the rule.  Of course, if the error is that
 * the end of rule marker is missing, then the rule end will not be found.
 * In any case the rule start will be correctly reported.
 * @param msg error description
 * @param rule pattern string
 * @param start position of first character of current rule
 */
int32_t TransliteratorParser::syntaxError(UErrorCode parseErrorCode,
                                          const UnicodeString& rule,
                                          int32_t pos,
                                          UErrorCode& status)
{
    parseError.offset = pos;
    parseError.line = 0 ; /* we are not using line numbers */
    
    // for pre-context
    const int32_t LEN = U_PARSE_CONTEXT_LEN - 1;
    int32_t start = uprv_max(pos - LEN, 0);
    int32_t stop  = pos;
    
    rule.extract(start,stop-start,parseError.preContext);
    //null terminate the buffer
    parseError.preContext[stop-start] = 0;
    
    //for post-context
    start = pos;
    stop  = uprv_min(pos + LEN, rule.length());
    
    rule.extract(start,stop-start,parseError.postContext);
    //null terminate the buffer
    parseError.postContext[stop-start]= 0;

    status = (UErrorCode)parseErrorCode;
    return pos;

}

/**
 * Parse a UnicodeSet out, store it, and return the stand-in character
 * used to represent it.
 */
UChar TransliteratorParser::parseSet(const UnicodeString& rule,
                                          ParsePosition& pos,
                                          UErrorCode& status) {
    UnicodeSet* set = new UnicodeSet(rule, pos, USET_IGNORE_SPACE, parseData, status);
    // Null pointer check
    if (set == NULL) {
        status = U_MEMORY_ALLOCATION_ERROR;
        return (UChar)0x0000; // Return empty character with error.
    }
    set->compact();
    return generateStandInFor(set, status);
}

/**
 * Generate and return a stand-in for a new UnicodeFunctor.  Store
 * the matcher (adopt it).
 */
UChar TransliteratorParser::generateStandInFor(UnicodeFunctor* adopted, UErrorCode& status) {
    // assert(obj != null);
    
    // Look up previous stand-in, if any.  This is a short list
    // (typical n is 0, 1, or 2); linear search is optimal.
    for (int32_t i=0; i<variablesVector.size(); ++i) {
        if (variablesVector.elementAt(i) == adopted) { // [sic] pointer comparison
            return (UChar) (curData->variablesBase + i);
        }
    }
    
    if (variableNext >= variableLimit) {
        delete adopted;
        status = U_VARIABLE_RANGE_EXHAUSTED;
        return 0;
    }
    variablesVector.addElement(adopted, status);
    return variableNext++;
}

/**
 * Return the standin for segment seg (1-based).
 */
UChar TransliteratorParser::getSegmentStandin(int32_t seg, UErrorCode& status) {
    // Special character used to indicate an empty spot
    UChar empty = curData->variablesBase - 1;
    while (segmentStandins.length() < seg) {
        segmentStandins.append(empty);
    }
    UChar c = segmentStandins.charAt(seg-1);
    if (c == empty) {
        if (variableNext >= variableLimit) {
            status = U_VARIABLE_RANGE_EXHAUSTED;
            return 0;
        }
        c = variableNext++;
        // Set a placeholder in the master variables vector that will be
        // filled in later by setSegmentObject().  We know that we will get
        // called first because setSegmentObject() will call us.
        variablesVector.addElement((void*) NULL, status);
        segmentStandins.setCharAt(seg-1, c);
    }
    return c;
}

/**
 * Set the object for segment seg (1-based).
 */
void TransliteratorParser::setSegmentObject(int32_t seg, StringMatcher* adopted, UErrorCode& status) {
    // Since we call parseSection() recursively, nested
    // segments will result in segment i+1 getting parsed
    // and stored before segment i; be careful with the
    // vector handling here.
    if (segmentObjects.size() < seg) {
        segmentObjects.setSize(seg, status);
    }
    int32_t index = getSegmentStandin(seg, status) - curData->variablesBase;
    if (segmentObjects.elementAt(seg-1) != NULL ||
        variablesVector.elementAt(index) != NULL) {
        // should never happen
        status = U_INTERNAL_TRANSLITERATOR_ERROR;
        return;
    }
    segmentObjects.setElementAt(adopted, seg-1);
    variablesVector.setElementAt(adopted, index);
}

/**
 * Return the stand-in for the dot set.  It is allocated the first
 * time and reused thereafter.
 */
UChar TransliteratorParser::getDotStandIn(UErrorCode& status) {
    if (dotStandIn == (UChar) -1) {
        UnicodeSet* tempus = new UnicodeSet(DOT_SET, status);
        // Null pointer check.
        if (tempus == NULL) {
            status = U_MEMORY_ALLOCATION_ERROR;
            return (UChar)0x0000;
        }
        dotStandIn = generateStandInFor(tempus, status);
    }
    return dotStandIn;
}

/**
 * Append the value of the given variable name to the given
 * UnicodeString.
 */
void TransliteratorParser::appendVariableDef(const UnicodeString& name,
                                                  UnicodeString& buf,
                                                  UErrorCode& status) {
    const UnicodeString* s = (const UnicodeString*) variableNames.get(name);
    if (s == NULL) {
        // We allow one undefined variable so that variable definition
        // statements work.  For the first undefined variable we return
        // the special placeholder variableLimit-1, and save the variable
        // name.
        if (undefinedVariableName.length() == 0) {
            undefinedVariableName = name;
            if (variableNext >= variableLimit) {
                // throw new RuntimeException("Private use variables exhausted");
                status = U_ILLEGAL_ARGUMENT_ERROR;
                return;
            }
            buf.append((UChar) --variableLimit);
        } else {
            //throw new IllegalArgumentException("Undefined variable $"
            //                                   + name);
            status = U_ILLEGAL_ARGUMENT_ERROR;
            return;
        }
    } else {
        buf.append(*s);
    }
}

/**
 * Glue method to get around access restrictions in C++.
 */
/*Transliterator* TransliteratorParser::createBasicInstance(const UnicodeString& id, const UnicodeString* canonID) {
    return Transliterator::createBasicInstance(id, canonID);
}*/

U_NAMESPACE_END

U_CAPI int32_t
utrans_stripRules(const UChar *source, int32_t sourceLen, UChar *target, UErrorCode *status) {
    U_NAMESPACE_USE

    //const UChar *sourceStart = source;
    const UChar *targetStart = target;
    const UChar *sourceLimit = source+sourceLen;
    UChar *targetLimit = target+sourceLen;
    UChar32 c = 0;
    UBool quoted = FALSE;
    int32_t index;

    uprv_memset(target, 0, sourceLen*U_SIZEOF_UCHAR);

    /* read the rules into the buffer */
    while (source < sourceLimit)
    {
        index=0;
        U16_NEXT_UNSAFE(source, index, c);
        source+=index;
        if(c == QUOTE) {
            quoted = (UBool)!quoted;
        }
        else if (!quoted) {
            if (c == RULE_COMMENT_CHAR) {
                /* skip comments and all preceding spaces */
                while (targetStart < target && *(target - 1) == 0x0020) {
                    target--;
                }
                do {
                    c = *(source++);
                }
                while (c != CR && c != LF);
            }
            else if (c == ESCAPE) {
                UChar32   c2 = *source;
                if (c2 == CR || c2 == LF) {
                    /* A backslash at the end of a line. */
                    /* Since we're stripping lines, ignore the backslash. */
                    source++;
                    continue;
                }
                if (c2 == 0x0075 && source+5 < sourceLimit) { /* \u seen. \U isn't unescaped. */
                    int32_t escapeOffset = 0;
                    UnicodeString escapedStr(source, 5);
                    c2 = escapedStr.unescapeAt(escapeOffset);

                    if (c2 == (UChar32)0xFFFFFFFF || escapeOffset == 0)
                    {
                        *status = U_PARSE_ERROR;
                        return 0;
                    }
                    if (!uprv_isRuleWhiteSpace(c2) && !u_iscntrl(c2) && !u_ispunct(c2)) {
                        /* It was escaped for a reason. Write what it was suppose to be. */
                        source+=5;
                        c = c2;
                    }
                }
                else if (c2 == QUOTE) {
                    /* \' seen. Make sure we don't do anything when we see it again. */
                    quoted = (UBool)!quoted;
                }
            }
        }
        if (c == CR || c == LF)
        {
            /* ignore spaces carriage returns, and all leading spaces on the next line.
            * and line feed unless in the form \uXXXX
            */
            quoted = FALSE;
            while (source < sourceLimit) {
                c = *(source);
                if (c != CR && c != LF && c != 0x0020) {
                    break;
                }
                source++;
            }
            continue;
        }

        /* Append UChar * after dissembling if c > 0xffff*/
        index=0;
        U16_APPEND_UNSAFE(target, index, c);
        target+=index;
    }
    if (target < targetLimit) {
        *target = 0;
    }
    return (int32_t)(target-targetStart);
}

#endif /* #if !UCONFIG_NO_TRANSLITERATION */