summaryrefslogtreecommitdiff
path: root/Build/source/libs/icu/icu-4.6/common/unames.c
blob: e02c6a8efd5c463550105e1c553d0b9e3454ee86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
/*
******************************************************************************
*
*   Copyright (C) 1999-2009, International Business Machines
*   Corporation and others.  All Rights Reserved.
*
******************************************************************************
*   file name:  unames.c
*   encoding:   US-ASCII
*   tab size:   8 (not used)
*   indentation:4
*
*   created on: 1999oct04
*   created by: Markus W. Scherer
*/

#include "unicode/utypes.h"
#include "unicode/putil.h"
#include "unicode/uchar.h"
#include "unicode/udata.h"
#include "ustr_imp.h"
#include "umutex.h"
#include "cmemory.h"
#include "cstring.h"
#include "ucln_cmn.h"
#include "udataswp.h"
#include "uprops.h"

/* prototypes ------------------------------------------------------------- */

#define LENGTHOF(array) (sizeof(array)/sizeof((array)[0]))

static const char DATA_NAME[] = "unames";
static const char DATA_TYPE[] = "icu";

#define GROUP_SHIFT 5
#define LINES_PER_GROUP (1UL<<GROUP_SHIFT)
#define GROUP_MASK (LINES_PER_GROUP-1)

/*
 * This struct was replaced by explicitly accessing equivalent
 * fields from triples of uint16_t.
 * The Group struct was padded to 8 bytes on compilers for early ARM CPUs,
 * which broke the assumption that sizeof(Group)==6 and that the ++ operator
 * would advance by 6 bytes (3 uint16_t).
 *
 * We can't just change the data structure because it's loaded from a data file,
 * and we don't want to make it less compact, so we changed the access code.
 *
 * For details see ICU tickets 6331 and 6008.
typedef struct {
    uint16_t groupMSB,
             offsetHigh, offsetLow; / * avoid padding * /
} Group;
 */
enum {
    GROUP_MSB,
    GROUP_OFFSET_HIGH,
    GROUP_OFFSET_LOW,
    GROUP_LENGTH
};

/*
 * Get the 32-bit group offset.
 * @param group (const uint16_t *) pointer to a Group triple of uint16_t
 * @return group offset (int32_t)
 */
#define GET_GROUP_OFFSET(group) ((int32_t)(group)[GROUP_OFFSET_HIGH]<<16|(group)[GROUP_OFFSET_LOW])

#define NEXT_GROUP(group) ((group)+GROUP_LENGTH)
#define PREV_GROUP(group) ((group)-GROUP_LENGTH)

typedef struct {
    uint32_t start, end;
    uint8_t type, variant;
    uint16_t size;
} AlgorithmicRange;

typedef struct {
    uint32_t tokenStringOffset, groupsOffset, groupStringOffset, algNamesOffset;
} UCharNames;

/*
 * Get the groups table from a UCharNames struct.
 * The groups table consists of one uint16_t groupCount followed by
 * groupCount groups. Each group is a triple of uint16_t, see GROUP_LENGTH
 * and the comment for the old struct Group above.
 *
 * @param names (const UCharNames *) pointer to the UCharNames indexes
 * @return (const uint16_t *) pointer to the groups table
 */
#define GET_GROUPS(names) (const uint16_t *)((const char *)names+names->groupsOffset)

typedef struct {
    const char *otherName;
    UChar32 code;
} FindName;

#define DO_FIND_NAME NULL

static UDataMemory *uCharNamesData=NULL;
static UCharNames *uCharNames=NULL;
static UErrorCode gLoadErrorCode=U_ZERO_ERROR;

/*
 * Maximum length of character names (regular & 1.0).
 */
static int32_t gMaxNameLength=0;

/*
 * Set of chars used in character names (regular & 1.0).
 * Chars are platform-dependent (can be EBCDIC).
 */
static uint32_t gNameSet[8]={ 0 };

#define U_NONCHARACTER_CODE_POINT U_CHAR_CATEGORY_COUNT
#define U_LEAD_SURROGATE U_CHAR_CATEGORY_COUNT + 1
#define U_TRAIL_SURROGATE U_CHAR_CATEGORY_COUNT + 2

#define U_CHAR_EXTENDED_CATEGORY_COUNT (U_CHAR_CATEGORY_COUNT + 3)

static const char * const charCatNames[U_CHAR_EXTENDED_CATEGORY_COUNT] = {
    "unassigned",
    "uppercase letter",
    "lowercase letter",
    "titlecase letter",
    "modifier letter",
    "other letter",
    "non spacing mark",
    "enclosing mark",
    "combining spacing mark",
    "decimal digit number",
    "letter number",
    "other number",
    "space separator",
    "line separator",
    "paragraph separator",
    "control",
    "format",
    "private use area",
    "surrogate",
    "dash punctuation",   
    "start punctuation",
    "end punctuation",
    "connector punctuation",
    "other punctuation",
    "math symbol",
    "currency symbol",
    "modifier symbol",
    "other symbol",
    "initial punctuation",
    "final punctuation",
    "noncharacter",
    "lead surrogate",
    "trail surrogate"
};

/* implementation ----------------------------------------------------------- */

static UBool U_CALLCONV unames_cleanup(void)
{
    if(uCharNamesData) {
        udata_close(uCharNamesData);
        uCharNamesData = NULL;
    }
    if(uCharNames) {
        uCharNames = NULL;
    }
    gMaxNameLength=0;
    return TRUE;
}

static UBool U_CALLCONV
isAcceptable(void *context,
             const char *type, const char *name,
             const UDataInfo *pInfo) {
    return (UBool)(
        pInfo->size>=20 &&
        pInfo->isBigEndian==U_IS_BIG_ENDIAN &&
        pInfo->charsetFamily==U_CHARSET_FAMILY &&
        pInfo->dataFormat[0]==0x75 &&   /* dataFormat="unam" */
        pInfo->dataFormat[1]==0x6e &&
        pInfo->dataFormat[2]==0x61 &&
        pInfo->dataFormat[3]==0x6d &&
        pInfo->formatVersion[0]==1);
}

static UBool
isDataLoaded(UErrorCode *pErrorCode) {
    /* load UCharNames from file if necessary */
    UBool isCached;

    /* do this because double-checked locking is broken */
    UMTX_CHECK(NULL, (uCharNames!=NULL), isCached);

    if(!isCached) {
        UCharNames *names;
        UDataMemory *data;

        /* check error code from previous attempt */
        if(U_FAILURE(gLoadErrorCode)) {
            *pErrorCode=gLoadErrorCode;
            return FALSE;
        }

        /* open the data outside the mutex block */
        data=udata_openChoice(NULL, DATA_TYPE, DATA_NAME, isAcceptable, NULL, pErrorCode);
        if(U_FAILURE(*pErrorCode)) {
            gLoadErrorCode=*pErrorCode;
            return FALSE;
        }

        names=(UCharNames *)udata_getMemory(data);

        /* in the mutex block, set the data for this process */
        {
            umtx_lock(NULL);
            if(uCharNames==NULL) {
                uCharNamesData=data;
                uCharNames=names;
                data=NULL;
                names=NULL;
                ucln_common_registerCleanup(UCLN_COMMON_UNAMES, unames_cleanup);
            }
            umtx_unlock(NULL);
        }

        /* if a different thread set it first, then close the extra data */
        if(data!=NULL) {
            udata_close(data); /* NULL if it was set correctly */
        }
    }
    return TRUE;
}

#define WRITE_CHAR(buffer, bufferLength, bufferPos, c) { \
    if((bufferLength)>0) { \
        *(buffer)++=c; \
        --(bufferLength); \
    } \
    ++(bufferPos); \
}

#define U_ISO_COMMENT U_CHAR_NAME_CHOICE_COUNT

/*
 * Important: expandName() and compareName() are almost the same -
 * apply fixes to both.
 *
 * UnicodeData.txt uses ';' as a field separator, so no
 * field can contain ';' as part of its contents.
 * In unames.dat, it is marked as token[';']==-1 only if the
 * semicolon is used in the data file - which is iff we
 * have Unicode 1.0 names or ISO comments or aliases.
 * So, it will be token[';']==-1 if we store U1.0 names/ISO comments/aliases
 * although we know that it will never be part of a name.
 */
static uint16_t
expandName(UCharNames *names,
           const uint8_t *name, uint16_t nameLength, UCharNameChoice nameChoice,
           char *buffer, uint16_t bufferLength) {
    uint16_t *tokens=(uint16_t *)names+8;
    uint16_t token, tokenCount=*tokens++, bufferPos=0;
    uint8_t *tokenStrings=(uint8_t *)names+names->tokenStringOffset;
    uint8_t c;

    if(nameChoice!=U_UNICODE_CHAR_NAME && nameChoice!=U_EXTENDED_CHAR_NAME) {
        /*
         * skip the modern name if it is not requested _and_
         * if the semicolon byte value is a character, not a token number
         */
        if((uint8_t)';'>=tokenCount || tokens[(uint8_t)';']==(uint16_t)(-1)) {
            int fieldIndex= nameChoice==U_ISO_COMMENT ? 2 : nameChoice;
            do {
                while(nameLength>0) {
                    --nameLength;
                    if(*name++==';') {
                        break;
                    }
                }
            } while(--fieldIndex>0);
        } else {
            /*
             * the semicolon byte value is a token number, therefore
             * only modern names are stored in unames.dat and there is no
             * such requested alternate name here
             */
            nameLength=0;
        }
    }

    /* write each letter directly, and write a token word per token */
    while(nameLength>0) {
        --nameLength;
        c=*name++;

        if(c>=tokenCount) {
            if(c!=';') {
                /* implicit letter */
                WRITE_CHAR(buffer, bufferLength, bufferPos, c);
            } else {
                /* finished */
                break;
            }
        } else {
            token=tokens[c];
            if(token==(uint16_t)(-2)) {
                /* this is a lead byte for a double-byte token */
                token=tokens[c<<8|*name++];
                --nameLength;
            }
            if(token==(uint16_t)(-1)) {
                if(c!=';') {
                    /* explicit letter */
                    WRITE_CHAR(buffer, bufferLength, bufferPos, c);
                } else {
                    /* stop, but skip the semicolon if we are seeking
                       extended names and there was no 2.0 name but there
                       is a 1.0 name. */
                    if(!bufferPos && nameChoice == U_EXTENDED_CHAR_NAME) {
                        if ((uint8_t)';'>=tokenCount || tokens[(uint8_t)';']==(uint16_t)(-1)) {
                            continue;
                        }
                    }
                    /* finished */
                    break;
                }
            } else {
                /* write token word */
                uint8_t *tokenString=tokenStrings+token;
                while((c=*tokenString++)!=0) {
                    WRITE_CHAR(buffer, bufferLength, bufferPos, c);
                }
            }
        }
    }

    /* zero-terminate */
    if(bufferLength>0) {
        *buffer=0;
    }

    return bufferPos;
}

/*
 * compareName() is almost the same as expandName() except that it compares
 * the currently expanded name to an input name.
 * It returns the match/no match result as soon as possible.
 */
static UBool
compareName(UCharNames *names,
            const uint8_t *name, uint16_t nameLength, UCharNameChoice nameChoice,
            const char *otherName) {
    uint16_t *tokens=(uint16_t *)names+8;
    uint16_t token, tokenCount=*tokens++;
    uint8_t *tokenStrings=(uint8_t *)names+names->tokenStringOffset;
    uint8_t c;
    const char *origOtherName = otherName;

    if(nameChoice!=U_UNICODE_CHAR_NAME && nameChoice!=U_EXTENDED_CHAR_NAME) {
        /*
         * skip the modern name if it is not requested _and_
         * if the semicolon byte value is a character, not a token number
         */
        if((uint8_t)';'>=tokenCount || tokens[(uint8_t)';']==(uint16_t)(-1)) {
            int fieldIndex= nameChoice==U_ISO_COMMENT ? 2 : nameChoice;
            do {
                while(nameLength>0) {
                    --nameLength;
                    if(*name++==';') {
                        break;
                    }
                }
            } while(--fieldIndex>0);
        } else {
            /*
             * the semicolon byte value is a token number, therefore
             * only modern names are stored in unames.dat and there is no
             * such requested alternate name here
             */
            nameLength=0;
        }
    }

    /* compare each letter directly, and compare a token word per token */
    while(nameLength>0) {
        --nameLength;
        c=*name++;

        if(c>=tokenCount) {
            if(c!=';') {
                /* implicit letter */
                if((char)c!=*otherName++) {
                    return FALSE;
                }
            } else {
                /* finished */
                break;
            }
        } else {
            token=tokens[c];
            if(token==(uint16_t)(-2)) {
                /* this is a lead byte for a double-byte token */
                token=tokens[c<<8|*name++];
                --nameLength;
            }
            if(token==(uint16_t)(-1)) {
                if(c!=';') {
                    /* explicit letter */
                    if((char)c!=*otherName++) {
                        return FALSE;
                    }
                } else {
                    /* stop, but skip the semicolon if we are seeking
                       extended names and there was no 2.0 name but there
                       is a 1.0 name. */
                    if(otherName == origOtherName && nameChoice == U_EXTENDED_CHAR_NAME) {
                        if ((uint8_t)';'>=tokenCount || tokens[(uint8_t)';']==(uint16_t)(-1)) {
                            continue;
                        }
                    }
                    /* finished */
                    break;
                }
            } else {
                /* write token word */
                uint8_t *tokenString=tokenStrings+token;
                while((c=*tokenString++)!=0) {
                    if((char)c!=*otherName++) {
                        return FALSE;
                    }
                }
            }
        }
    }

    /* complete match? */
    return (UBool)(*otherName==0);
}

static uint8_t getCharCat(UChar32 cp) {
    uint8_t cat;

    if (UTF_IS_UNICODE_NONCHAR(cp)) {
        return U_NONCHARACTER_CODE_POINT;
    }

    if ((cat = u_charType(cp)) == U_SURROGATE) {
        cat = UTF_IS_LEAD(cp) ? U_LEAD_SURROGATE : U_TRAIL_SURROGATE;
    }

    return cat;
}

static const char *getCharCatName(UChar32 cp) {
    uint8_t cat = getCharCat(cp);

    /* Return unknown if the table of names above is not up to
       date. */

    if (cat >= LENGTHOF(charCatNames)) {
        return "unknown";
    } else {
        return charCatNames[cat];
    }
}

static uint16_t getExtName(uint32_t code, char *buffer, uint16_t bufferLength) {
    const char *catname = getCharCatName(code);
    uint16_t length = 0;

    UChar32 cp;
    int ndigits, i;
    
    WRITE_CHAR(buffer, bufferLength, length, '<');
    while (catname[length - 1]) {
        WRITE_CHAR(buffer, bufferLength, length, catname[length - 1]);
    }
    WRITE_CHAR(buffer, bufferLength, length, '-');
    for (cp = code, ndigits = 0; cp; ++ndigits, cp >>= 4)
        ;
    if (ndigits < 4)
        ndigits = 4;
    for (cp = code, i = ndigits; (cp || i > 0) && bufferLength; cp >>= 4, bufferLength--) {
        uint8_t v = (uint8_t)(cp & 0xf);
        buffer[--i] = (v < 10 ? '0' + v : 'A' + v - 10);
    }
    buffer += ndigits;
    length += ndigits;
    WRITE_CHAR(buffer, bufferLength, length, '>');

    return length;
}

/*
 * getGroup() does a binary search for the group that contains the
 * Unicode code point "code".
 * The return value is always a valid Group* that may contain "code"
 * or else is the highest group before "code".
 * If the lowest group is after "code", then that one is returned.
 */
static const uint16_t *
getGroup(UCharNames *names, uint32_t code) {
    const uint16_t *groups=GET_GROUPS(names);
    uint16_t groupMSB=(uint16_t)(code>>GROUP_SHIFT),
             start=0,
             limit=*groups++,
             number;

    /* binary search for the group of names that contains the one for code */
    while(start<limit-1) {
        number=(uint16_t)((start+limit)/2);
        if(groupMSB<groups[number*GROUP_LENGTH+GROUP_MSB]) {
            limit=number;
        } else {
            start=number;
        }
    }

    /* return this regardless of whether it is an exact match */
    return groups+start*GROUP_LENGTH;
}

/*
 * expandGroupLengths() reads a block of compressed lengths of 32 strings and
 * expands them into offsets and lengths for each string.
 * Lengths are stored with a variable-width encoding in consecutive nibbles:
 * If a nibble<0xc, then it is the length itself (0=empty string).
 * If a nibble>=0xc, then it forms a length value with the following nibble.
 * Calculation see below.
 * The offsets and lengths arrays must be at least 33 (one more) long because
 * there is no check here at the end if the last nibble is still used.
 */
static const uint8_t *
expandGroupLengths(const uint8_t *s,
                   uint16_t offsets[LINES_PER_GROUP+1], uint16_t lengths[LINES_PER_GROUP+1]) {
    /* read the lengths of the 32 strings in this group and get each string's offset */
    uint16_t i=0, offset=0, length=0;
    uint8_t lengthByte;

    /* all 32 lengths must be read to get the offset of the first group string */
    while(i<LINES_PER_GROUP) {
        lengthByte=*s++;

        /* read even nibble - MSBs of lengthByte */
        if(length>=12) {
            /* double-nibble length spread across two bytes */
            length=(uint16_t)(((length&0x3)<<4|lengthByte>>4)+12);
            lengthByte&=0xf;
        } else if((lengthByte /* &0xf0 */)>=0xc0) {
            /* double-nibble length spread across this one byte */
            length=(uint16_t)((lengthByte&0x3f)+12);
        } else {
            /* single-nibble length in MSBs */
            length=(uint16_t)(lengthByte>>4);
            lengthByte&=0xf;
        }

        *offsets++=offset;
        *lengths++=length;

        offset+=length;
        ++i;

        /* read odd nibble - LSBs of lengthByte */
        if((lengthByte&0xf0)==0) {
            /* this nibble was not consumed for a double-nibble length above */
            length=lengthByte;
            if(length<12) {
                /* single-nibble length in LSBs */
                *offsets++=offset;
                *lengths++=length;

                offset+=length;
                ++i;
            }
        } else {
            length=0;   /* prevent double-nibble detection in the next iteration */
        }
    }

    /* now, s is at the first group string */
    return s;
}

static uint16_t
expandGroupName(UCharNames *names, const uint16_t *group,
                uint16_t lineNumber, UCharNameChoice nameChoice,
                char *buffer, uint16_t bufferLength) {
    uint16_t offsets[LINES_PER_GROUP+2], lengths[LINES_PER_GROUP+2];
    const uint8_t *s=(uint8_t *)names+names->groupStringOffset+GET_GROUP_OFFSET(group);
    s=expandGroupLengths(s, offsets, lengths);
    return expandName(names, s+offsets[lineNumber], lengths[lineNumber], nameChoice,
                      buffer, bufferLength);
}

static uint16_t
getName(UCharNames *names, uint32_t code, UCharNameChoice nameChoice,
        char *buffer, uint16_t bufferLength) {
    const uint16_t *group=getGroup(names, code);
    if((uint16_t)(code>>GROUP_SHIFT)==group[GROUP_MSB]) {
        return expandGroupName(names, group, (uint16_t)(code&GROUP_MASK), nameChoice,
                               buffer, bufferLength);
    } else {
        /* group not found */
        /* zero-terminate */
        if(bufferLength>0) {
            *buffer=0;
        }
        return 0;
    }
}

/*
 * enumGroupNames() enumerates all the names in a 32-group
 * and either calls the enumerator function or finds a given input name.
 */
static UBool
enumGroupNames(UCharNames *names, const uint16_t *group,
               UChar32 start, UChar32 end,
               UEnumCharNamesFn *fn, void *context,
               UCharNameChoice nameChoice) {
    uint16_t offsets[LINES_PER_GROUP+2], lengths[LINES_PER_GROUP+2];
    const uint8_t *s=(uint8_t *)names+names->groupStringOffset+GET_GROUP_OFFSET(group);

    s=expandGroupLengths(s, offsets, lengths);
    if(fn!=DO_FIND_NAME) {
        char buffer[200];
        uint16_t length;

        while(start<=end) {
            length=expandName(names, s+offsets[start&GROUP_MASK], lengths[start&GROUP_MASK], nameChoice, buffer, sizeof(buffer));
            if (!length && nameChoice == U_EXTENDED_CHAR_NAME) {
                buffer[length = getExtName(start, buffer, sizeof(buffer))] = 0;
            }
            /* here, we assume that the buffer is large enough */
            if(length>0) {
                if(!fn(context, start, nameChoice, buffer, length)) {
                    return FALSE;
                }
            }
            ++start;
        }
    } else {
        const char *otherName=((FindName *)context)->otherName;
        while(start<=end) {
            if(compareName(names, s+offsets[start&GROUP_MASK], lengths[start&GROUP_MASK], nameChoice, otherName)) {
                ((FindName *)context)->code=start;
                return FALSE;
            }
            ++start;
        }
    }
    return TRUE;
}

/*
 * enumExtNames enumerate extended names.
 * It only needs to do it if it is called with a real function and not
 * with the dummy DO_FIND_NAME, because u_charFromName() does a check
 * for extended names by itself.
 */ 
static UBool
enumExtNames(UChar32 start, UChar32 end,
             UEnumCharNamesFn *fn, void *context)
{
    if(fn!=DO_FIND_NAME) {
        char buffer[200];
        uint16_t length;
        
        while(start<=end) {
            buffer[length = getExtName(start, buffer, sizeof(buffer))] = 0;
            /* here, we assume that the buffer is large enough */
            if(length>0) {
                if(!fn(context, start, U_EXTENDED_CHAR_NAME, buffer, length)) {
                    return FALSE;
                }
            }
            ++start;
        }
    }

    return TRUE;
}

static UBool
enumNames(UCharNames *names,
          UChar32 start, UChar32 limit,
          UEnumCharNamesFn *fn, void *context,
          UCharNameChoice nameChoice) {
    uint16_t startGroupMSB, endGroupMSB, groupCount;
    const uint16_t *group, *groupLimit;

    startGroupMSB=(uint16_t)(start>>GROUP_SHIFT);
    endGroupMSB=(uint16_t)((limit-1)>>GROUP_SHIFT);

    /* find the group that contains start, or the highest before it */
    group=getGroup(names, start);

    if(startGroupMSB==endGroupMSB) {
        if(startGroupMSB==group[GROUP_MSB]) {
            /* if start and limit-1 are in the same group, then enumerate only in that one */
            return enumGroupNames(names, group, start, limit-1, fn, context, nameChoice);
        }
    } else {
        const uint16_t *groups=GET_GROUPS(names);
        groupCount=*groups++;
        groupLimit=groups+groupCount*GROUP_LENGTH;

        if(startGroupMSB==group[GROUP_MSB]) {
            /* enumerate characters in the partial start group */
            if((start&GROUP_MASK)!=0) {
                if(!enumGroupNames(names, group,
                                   start, ((UChar32)startGroupMSB<<GROUP_SHIFT)+LINES_PER_GROUP-1,
                                   fn, context, nameChoice)) {
                    return FALSE;
                }
                group=NEXT_GROUP(group); /* continue with the next group */
            }
        } else if(startGroupMSB>group[GROUP_MSB]) {
            /* make sure that we start enumerating with the first group after start */
            const uint16_t *nextGroup=NEXT_GROUP(group);
            if (nextGroup < groupLimit && nextGroup[GROUP_MSB] > startGroupMSB && nameChoice == U_EXTENDED_CHAR_NAME) {
                UChar32 end = nextGroup[GROUP_MSB] << GROUP_SHIFT;
                if (end > limit) {
                    end = limit;
                }
                if (!enumExtNames(start, end - 1, fn, context)) {
                    return FALSE;
                }
            }
            group=nextGroup;
        }

        /* enumerate entire groups between the start- and end-groups */
        while(group<groupLimit && group[GROUP_MSB]<endGroupMSB) {
            const uint16_t *nextGroup;
            start=(UChar32)group[GROUP_MSB]<<GROUP_SHIFT;
            if(!enumGroupNames(names, group, start, start+LINES_PER_GROUP-1, fn, context, nameChoice)) {
                return FALSE;
            }
            nextGroup=NEXT_GROUP(group);
            if (nextGroup < groupLimit && nextGroup[GROUP_MSB] > group[GROUP_MSB] + 1 && nameChoice == U_EXTENDED_CHAR_NAME) {
                UChar32 end = nextGroup[GROUP_MSB] << GROUP_SHIFT;
                if (end > limit) {
                    end = limit;
                }
                if (!enumExtNames((group[GROUP_MSB] + 1) << GROUP_SHIFT, end - 1, fn, context)) {
                    return FALSE;
                }
            }
            group=nextGroup;
        }

        /* enumerate within the end group (group[GROUP_MSB]==endGroupMSB) */
        if(group<groupLimit && group[GROUP_MSB]==endGroupMSB) {
            return enumGroupNames(names, group, (limit-1)&~GROUP_MASK, limit-1, fn, context, nameChoice);
        } else if (nameChoice == U_EXTENDED_CHAR_NAME && group == groupLimit) {
            UChar32 next = (PREV_GROUP(group)[GROUP_MSB] + 1) << GROUP_SHIFT;
            if (next > start) {
                start = next;
            }
        } else {
            return TRUE;
        }
    }

    /* we have not found a group, which means everything is made of
       extended names. */
    if (nameChoice == U_EXTENDED_CHAR_NAME) {
        if (limit > UCHAR_MAX_VALUE + 1) {
            limit = UCHAR_MAX_VALUE + 1;
        }
        return enumExtNames(start, limit - 1, fn, context);
    }
    
    return TRUE;
}

static uint16_t
writeFactorSuffix(const uint16_t *factors, uint16_t count,
                  const char *s, /* suffix elements */
                  uint32_t code,
                  uint16_t indexes[8], /* output fields from here */
                  const char *elementBases[8], const char *elements[8],
                  char *buffer, uint16_t bufferLength) {
    uint16_t i, factor, bufferPos=0;
    char c;

    /* write elements according to the factors */

    /*
     * the factorized elements are determined by modulo arithmetic
     * with the factors of this algorithm
     *
     * note that for fewer operations, count is decremented here
     */
    --count;
    for(i=count; i>0; --i) {
        factor=factors[i];
        indexes[i]=(uint16_t)(code%factor);
        code/=factor;
    }
    /*
     * we don't need to calculate the last modulus because start<=code<=end
     * guarantees here that code<=factors[0]
     */
    indexes[0]=(uint16_t)code;

    /* write each element */
    for(;;) {
        if(elementBases!=NULL) {
            *elementBases++=s;
        }

        /* skip indexes[i] strings */
        factor=indexes[i];
        while(factor>0) {
            while(*s++!=0) {}
            --factor;
        }
        if(elements!=NULL) {
            *elements++=s;
        }

        /* write element */
        while((c=*s++)!=0) {
            WRITE_CHAR(buffer, bufferLength, bufferPos, c);
        }

        /* we do not need to perform the rest of this loop for i==count - break here */
        if(i>=count) {
            break;
        }

        /* skip the rest of the strings for this factors[i] */
        factor=(uint16_t)(factors[i]-indexes[i]-1);
        while(factor>0) {
            while(*s++!=0) {}
            --factor;
        }

        ++i;
    }

    /* zero-terminate */
    if(bufferLength>0) {
        *buffer=0;
    }

    return bufferPos;
}

/*
 * Important:
 * Parts of findAlgName() are almost the same as some of getAlgName().
 * Fixes must be applied to both.
 */
static uint16_t
getAlgName(AlgorithmicRange *range, uint32_t code, UCharNameChoice nameChoice,
        char *buffer, uint16_t bufferLength) {
    uint16_t bufferPos=0;

    /* Only the normative character name can be algorithmic. */
    if(nameChoice!=U_UNICODE_CHAR_NAME && nameChoice!=U_EXTENDED_CHAR_NAME) {
        /* zero-terminate */
        if(bufferLength>0) {
            *buffer=0;
        }
        return 0;
    }

    switch(range->type) {
    case 0: {
        /* name = prefix hex-digits */
        const char *s=(const char *)(range+1);
        char c;

        uint16_t i, count;

        /* copy prefix */
        while((c=*s++)!=0) {
            WRITE_CHAR(buffer, bufferLength, bufferPos, c);
        }

        /* write hexadecimal code point value */
        count=range->variant;

        /* zero-terminate */
        if(count<bufferLength) {
            buffer[count]=0;
        }

        for(i=count; i>0;) {
            if(--i<bufferLength) {
                c=(char)(code&0xf);
                if(c<10) {
                    c+='0';
                } else {
                    c+='A'-10;
                }
                buffer[i]=c;
            }
            code>>=4;
        }

        bufferPos+=count;
        break;
    }
    case 1: {
        /* name = prefix factorized-elements */
        uint16_t indexes[8];
        const uint16_t *factors=(const uint16_t *)(range+1);
        uint16_t count=range->variant;
        const char *s=(const char *)(factors+count);
        char c;

        /* copy prefix */
        while((c=*s++)!=0) {
            WRITE_CHAR(buffer, bufferLength, bufferPos, c);
        }

        bufferPos+=writeFactorSuffix(factors, count,
                                     s, code-range->start, indexes, NULL, NULL, buffer, bufferLength);
        break;
    }
    default:
        /* undefined type */
        /* zero-terminate */
        if(bufferLength>0) {
            *buffer=0;
        }
        break;
    }

    return bufferPos;
}

/*
 * Important: enumAlgNames() and findAlgName() are almost the same.
 * Any fix must be applied to both.
 */
static UBool
enumAlgNames(AlgorithmicRange *range,
             UChar32 start, UChar32 limit,
             UEnumCharNamesFn *fn, void *context,
             UCharNameChoice nameChoice) {
    char buffer[200];
    uint16_t length;

    if(nameChoice!=U_UNICODE_CHAR_NAME && nameChoice!=U_EXTENDED_CHAR_NAME) {
        return TRUE;
    }

    switch(range->type) {
    case 0: {
        char *s, *end;
        char c;

        /* get the full name of the start character */
        length=getAlgName(range, (uint32_t)start, nameChoice, buffer, sizeof(buffer));
        if(length<=0) {
            return TRUE;
        }

        /* call the enumerator function with this first character */
        if(!fn(context, start, nameChoice, buffer, length)) {
            return FALSE;
        }

        /* go to the end of the name; all these names have the same length */
        end=buffer;
        while(*end!=0) {
            ++end;
        }

        /* enumerate the rest of the names */
        while(++start<limit) {
            /* increment the hexadecimal number on a character-basis */
            s=end;
            for (;;) {
                c=*--s;
                if(('0'<=c && c<'9') || ('A'<=c && c<'F')) {
                    *s=(char)(c+1);
                    break;
                } else if(c=='9') {
                    *s='A';
                    break;
                } else if(c=='F') {
                    *s='0';
                }
            }

            if(!fn(context, start, nameChoice, buffer, length)) {
                return FALSE;
            }
        }
        break;
    }
    case 1: {
        uint16_t indexes[8];
        const char *elementBases[8], *elements[8];
        const uint16_t *factors=(const uint16_t *)(range+1);
        uint16_t count=range->variant;
        const char *s=(const char *)(factors+count);
        char *suffix, *t;
        uint16_t prefixLength, i, idx;

        char c;

        /* name = prefix factorized-elements */

        /* copy prefix */
        suffix=buffer;
        prefixLength=0;
        while((c=*s++)!=0) {
            *suffix++=c;
            ++prefixLength;
        }

        /* append the suffix of the start character */
        length=(uint16_t)(prefixLength+writeFactorSuffix(factors, count,
                                              s, (uint32_t)start-range->start,
                                              indexes, elementBases, elements,
                                              suffix, (uint16_t)(sizeof(buffer)-prefixLength)));

        /* call the enumerator function with this first character */
        if(!fn(context, start, nameChoice, buffer, length)) {
            return FALSE;
        }

        /* enumerate the rest of the names */
        while(++start<limit) {
            /* increment the indexes in lexical order bound by the factors */
            i=count;
            for (;;) {
                idx=(uint16_t)(indexes[--i]+1);
                if(idx<factors[i]) {
                    /* skip one index and its element string */
                    indexes[i]=idx;
                    s=elements[i];
                    while(*s++!=0) {
                    }
                    elements[i]=s;
                    break;
                } else {
                    /* reset this index to 0 and its element string to the first one */
                    indexes[i]=0;
                    elements[i]=elementBases[i];
                }
            }

            /* to make matters a little easier, just append all elements to the suffix */
            t=suffix;
            length=prefixLength;
            for(i=0; i<count; ++i) {
                s=elements[i];
                while((c=*s++)!=0) {
                    *t++=c;
                    ++length;
                }
            }
            /* zero-terminate */
            *t=0;

            if(!fn(context, start, nameChoice, buffer, length)) {
                return FALSE;
            }
        }
        break;
    }
    default:
        /* undefined type */
        break;
    }

    return TRUE;
}

/*
 * findAlgName() is almost the same as enumAlgNames() except that it
 * returns the code point for a name if it fits into the range.
 * It returns 0xffff otherwise.
 */
static UChar32
findAlgName(AlgorithmicRange *range, UCharNameChoice nameChoice, const char *otherName) {
    UChar32 code;

    if(nameChoice!=U_UNICODE_CHAR_NAME && nameChoice!=U_EXTENDED_CHAR_NAME) {
        return 0xffff;
    }

    switch(range->type) {
    case 0: {
        /* name = prefix hex-digits */
        const char *s=(const char *)(range+1);
        char c;

        uint16_t i, count;

        /* compare prefix */
        while((c=*s++)!=0) {
            if((char)c!=*otherName++) {
                return 0xffff;
            }
        }

        /* read hexadecimal code point value */
        count=range->variant;
        code=0;
        for(i=0; i<count; ++i) {
            c=*otherName++;
            if('0'<=c && c<='9') {
                code=(code<<4)|(c-'0');
            } else if('A'<=c && c<='F') {
                code=(code<<4)|(c-'A'+10);
            } else {
                return 0xffff;
            }
        }

        /* does it fit into the range? */
        if(*otherName==0 && range->start<=(uint32_t)code && (uint32_t)code<=range->end) {
            return code;
        }
        break;
    }
    case 1: {
        char buffer[64];
        uint16_t indexes[8];
        const char *elementBases[8], *elements[8];
        const uint16_t *factors=(const uint16_t *)(range+1);
        uint16_t count=range->variant;
        const char *s=(const char *)(factors+count), *t;
        UChar32 start, limit;
        uint16_t i, idx;

        char c;

        /* name = prefix factorized-elements */

        /* compare prefix */
        while((c=*s++)!=0) {
            if((char)c!=*otherName++) {
                return 0xffff;
            }
        }

        start=(UChar32)range->start;
        limit=(UChar32)(range->end+1);

        /* initialize the suffix elements for enumeration; indexes should all be set to 0 */
        writeFactorSuffix(factors, count, s, 0,
                          indexes, elementBases, elements, buffer, sizeof(buffer));

        /* compare the first suffix */
        if(0==uprv_strcmp(otherName, buffer)) {
            return start;
        }

        /* enumerate and compare the rest of the suffixes */
        while(++start<limit) {
            /* increment the indexes in lexical order bound by the factors */
            i=count;
            for (;;) {
                idx=(uint16_t)(indexes[--i]+1);
                if(idx<factors[i]) {
                    /* skip one index and its element string */
                    indexes[i]=idx;
                    s=elements[i];
                    while(*s++!=0) {}
                    elements[i]=s;
                    break;
                } else {
                    /* reset this index to 0 and its element string to the first one */
                    indexes[i]=0;
                    elements[i]=elementBases[i];
                }
            }

            /* to make matters a little easier, just compare all elements of the suffix */
            t=otherName;
            for(i=0; i<count; ++i) {
                s=elements[i];
                while((c=*s++)!=0) {
                    if(c!=*t++) {
                        s=""; /* does not match */
                        i=99;
                    }
                }
            }
            if(i<99 && *t==0) {
                return start;
            }
        }
        break;
    }
    default:
        /* undefined type */
        break;
    }

    return 0xffff;
}

/* sets of name characters, maximum name lengths ---------------------------- */

#define SET_ADD(set, c) ((set)[(uint8_t)c>>5]|=((uint32_t)1<<((uint8_t)c&0x1f)))
#define SET_CONTAINS(set, c) (((set)[(uint8_t)c>>5]&((uint32_t)1<<((uint8_t)c&0x1f)))!=0)

static int32_t
calcStringSetLength(uint32_t set[8], const char *s) {
    int32_t length=0;
    char c;

    while((c=*s++)!=0) {
        SET_ADD(set, c);
        ++length;
    }
    return length;
}

static int32_t
calcAlgNameSetsLengths(int32_t maxNameLength) {
    AlgorithmicRange *range;
    uint32_t *p;
    uint32_t rangeCount;
    int32_t length;

    /* enumerate algorithmic ranges */
    p=(uint32_t *)((uint8_t *)uCharNames+uCharNames->algNamesOffset);
    rangeCount=*p;
    range=(AlgorithmicRange *)(p+1);
    while(rangeCount>0) {
        switch(range->type) {
        case 0:
            /* name = prefix + (range->variant times) hex-digits */
            /* prefix */
            length=calcStringSetLength(gNameSet, (const char *)(range+1))+range->variant;
            if(length>maxNameLength) {
                maxNameLength=length;
            }
            break;
        case 1: {
            /* name = prefix factorized-elements */
            const uint16_t *factors=(const uint16_t *)(range+1);
            const char *s;
            int32_t i, count=range->variant, factor, factorLength, maxFactorLength;

            /* prefix length */
            s=(const char *)(factors+count);
            length=calcStringSetLength(gNameSet, s);
            s+=length+1; /* start of factor suffixes */

            /* get the set and maximum factor suffix length for each factor */
            for(i=0; i<count; ++i) {
                maxFactorLength=0;
                for(factor=factors[i]; factor>0; --factor) {
                    factorLength=calcStringSetLength(gNameSet, s);
                    s+=factorLength+1;
                    if(factorLength>maxFactorLength) {
                        maxFactorLength=factorLength;
                    }
                }
                length+=maxFactorLength;
            }

            if(length>maxNameLength) {
                maxNameLength=length;
            }
            break;
        }
        default:
            /* unknown type */
            break;
        }

        range=(AlgorithmicRange *)((uint8_t *)range+range->size);
        --rangeCount;
    }
    return maxNameLength;
}

static int32_t
calcExtNameSetsLengths(int32_t maxNameLength) {
    int32_t i, length;

    for(i=0; i<LENGTHOF(charCatNames); ++i) {
        /*
         * for each category, count the length of the category name
         * plus 9=
         * 2 for <>
         * 1 for -
         * 6 for most hex digits per code point
         */
        length=9+calcStringSetLength(gNameSet, charCatNames[i]);
        if(length>maxNameLength) {
            maxNameLength=length;
        }
    }
    return maxNameLength;
}

static int32_t
calcNameSetLength(const uint16_t *tokens, uint16_t tokenCount, const uint8_t *tokenStrings, int8_t *tokenLengths,
                  uint32_t set[8],
                  const uint8_t **pLine, const uint8_t *lineLimit) {
    const uint8_t *line=*pLine;
    int32_t length=0, tokenLength;
    uint16_t c, token;

    while(line!=lineLimit && (c=*line++)!=(uint8_t)';') {
        if(c>=tokenCount) {
            /* implicit letter */
            SET_ADD(set, c);
            ++length;
        } else {
            token=tokens[c];
            if(token==(uint16_t)(-2)) {
                /* this is a lead byte for a double-byte token */
                c=c<<8|*line++;
                token=tokens[c];
            }
            if(token==(uint16_t)(-1)) {
                /* explicit letter */
                SET_ADD(set, c);
                ++length;
            } else {
                /* count token word */
                if(tokenLengths!=NULL) {
                    /* use cached token length */
                    tokenLength=tokenLengths[c];
                    if(tokenLength==0) {
                        tokenLength=calcStringSetLength(set, (const char *)tokenStrings+token);
                        tokenLengths[c]=(int8_t)tokenLength;
                    }
                } else {
                    tokenLength=calcStringSetLength(set, (const char *)tokenStrings+token);
                }
                length+=tokenLength;
            }
        }
    }

    *pLine=line;
    return length;
}

static void
calcGroupNameSetsLengths(int32_t maxNameLength) {
    uint16_t offsets[LINES_PER_GROUP+2], lengths[LINES_PER_GROUP+2];

    uint16_t *tokens=(uint16_t *)uCharNames+8;
    uint16_t tokenCount=*tokens++;
    uint8_t *tokenStrings=(uint8_t *)uCharNames+uCharNames->tokenStringOffset;

    int8_t *tokenLengths;

    const uint16_t *group;
    const uint8_t *s, *line, *lineLimit;

    int32_t groupCount, lineNumber, length;

    tokenLengths=(int8_t *)uprv_malloc(tokenCount);
    if(tokenLengths!=NULL) {
        uprv_memset(tokenLengths, 0, tokenCount);
    }

    group=GET_GROUPS(uCharNames);
    groupCount=*group++;

    /* enumerate all groups */
    while(groupCount>0) {
        s=(uint8_t *)uCharNames+uCharNames->groupStringOffset+GET_GROUP_OFFSET(group);
        s=expandGroupLengths(s, offsets, lengths);

        /* enumerate all lines in each group */
        for(lineNumber=0; lineNumber<LINES_PER_GROUP; ++lineNumber) {
            line=s+offsets[lineNumber];
            length=lengths[lineNumber];
            if(length==0) {
                continue;
            }

            lineLimit=line+length;

            /* read regular name */
            length=calcNameSetLength(tokens, tokenCount, tokenStrings, tokenLengths, gNameSet, &line, lineLimit);
            if(length>maxNameLength) {
                maxNameLength=length;
            }
            if(line==lineLimit) {
                continue;
            }

            /* read Unicode 1.0 name */
            length=calcNameSetLength(tokens, tokenCount, tokenStrings, tokenLengths, gNameSet, &line, lineLimit);
            if(length>maxNameLength) {
                maxNameLength=length;
            }
            if(line==lineLimit) {
                continue;
            }

            /* read ISO comment */
            /*length=calcNameSetLength(tokens, tokenCount, tokenStrings, tokenLengths, gISOCommentSet, &line, lineLimit);*/
        }

        group=NEXT_GROUP(group);
        --groupCount;
    }

    if(tokenLengths!=NULL) {
        uprv_free(tokenLengths);
    }

    /* set gMax... - name length last for threading */
    gMaxNameLength=maxNameLength;
}

static UBool
calcNameSetsLengths(UErrorCode *pErrorCode) {
    static const char extChars[]="0123456789ABCDEF<>-";
    int32_t i, maxNameLength;

    if(gMaxNameLength!=0) {
        return TRUE;
    }

    if(!isDataLoaded(pErrorCode)) {
        return FALSE;
    }

    /* set hex digits, used in various names, and <>-, used in extended names */
    for(i=0; i<sizeof(extChars)-1; ++i) {
        SET_ADD(gNameSet, extChars[i]);
    }

    /* set sets and lengths from algorithmic names */
    maxNameLength=calcAlgNameSetsLengths(0);

    /* set sets and lengths from extended names */
    maxNameLength=calcExtNameSetsLengths(maxNameLength);

    /* set sets and lengths from group names, set global maximum values */
    calcGroupNameSetsLengths(maxNameLength);

    return TRUE;
}

/* public API --------------------------------------------------------------- */

U_CAPI int32_t U_EXPORT2
u_charName(UChar32 code, UCharNameChoice nameChoice,
           char *buffer, int32_t bufferLength,
           UErrorCode *pErrorCode) {
    AlgorithmicRange *algRange;
    uint32_t *p;
    uint32_t i;
    int32_t length;

    /* check the argument values */
    if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
        return 0;
    } else if(nameChoice>=U_CHAR_NAME_CHOICE_COUNT ||
              bufferLength<0 || (bufferLength>0 && buffer==NULL)
    ) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return 0;
    }

    if((uint32_t)code>UCHAR_MAX_VALUE || !isDataLoaded(pErrorCode)) {
        return u_terminateChars(buffer, bufferLength, 0, pErrorCode);
    }

    length=0;

    /* try algorithmic names first */
    p=(uint32_t *)((uint8_t *)uCharNames+uCharNames->algNamesOffset);
    i=*p;
    algRange=(AlgorithmicRange *)(p+1);
    while(i>0) {
        if(algRange->start<=(uint32_t)code && (uint32_t)code<=algRange->end) {
            length=getAlgName(algRange, (uint32_t)code, nameChoice, buffer, (uint16_t)bufferLength);
            break;
        }
        algRange=(AlgorithmicRange *)((uint8_t *)algRange+algRange->size);
        --i;
    }

    if(i==0) {
        if (nameChoice == U_EXTENDED_CHAR_NAME) {
            length = getName(uCharNames, (uint32_t )code, U_EXTENDED_CHAR_NAME, buffer, (uint16_t) bufferLength);
            if (!length) {
                /* extended character name */
                length = getExtName((uint32_t) code, buffer, (uint16_t) bufferLength);
            }
        } else {
            /* normal character name */
            length=getName(uCharNames, (uint32_t)code, nameChoice, buffer, (uint16_t)bufferLength);
        }
    }

    return u_terminateChars(buffer, bufferLength, length, pErrorCode);
}

U_CAPI int32_t U_EXPORT2
u_getISOComment(UChar32 c,
                char *dest, int32_t destCapacity,
                UErrorCode *pErrorCode) {
    int32_t length;

    /* check the argument values */
    if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
        return 0;
    } else if(destCapacity<0 || (destCapacity>0 && dest==NULL)) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return 0;
    }

    if((uint32_t)c>UCHAR_MAX_VALUE || !isDataLoaded(pErrorCode)) {
        return u_terminateChars(dest, destCapacity, 0, pErrorCode);
    }

    /* the ISO comment is stored like a normal character name */
    length=getName(uCharNames, (uint32_t)c, U_ISO_COMMENT, dest, (uint16_t)destCapacity);
    return u_terminateChars(dest, destCapacity, length, pErrorCode);
}

U_CAPI UChar32 U_EXPORT2
u_charFromName(UCharNameChoice nameChoice,
               const char *name,
               UErrorCode *pErrorCode) {
    char upper[120], lower[120];
    FindName findName;
    AlgorithmicRange *algRange;
    uint32_t *p;
    uint32_t i;
    UChar32 cp = 0;
    char c0;
    UChar32 error = 0xffff;     /* Undefined, but use this for backwards compatibility. */

    if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
        return error;
    }

    if(nameChoice>=U_CHAR_NAME_CHOICE_COUNT || name==NULL || *name==0) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return error;
    }

    if(!isDataLoaded(pErrorCode)) {
        return error;
    }

    /* construct the uppercase and lowercase of the name first */
    for(i=0; i<sizeof(upper); ++i) {
        if((c0=*name++)!=0) {
            upper[i]=uprv_toupper(c0);
            lower[i]=uprv_tolower(c0);
        } else {
            upper[i]=lower[i]=0;
            break;
        }
    }
    if(i==sizeof(upper)) {
        /* name too long, there is no such character */
        *pErrorCode = U_ILLEGAL_CHAR_FOUND;
        return error;
    }

    /* try extended names first */
    if (lower[0] == '<') {
        if (nameChoice == U_EXTENDED_CHAR_NAME) {
            if (lower[--i] == '>') {
                for (--i; lower[i] && lower[i] != '-'; --i) {
                }

                if (lower[i] == '-') { /* We've got a category. */
                    uint32_t cIdx;

                    lower[i] = 0;

                    for (++i; lower[i] != '>'; ++i) {
                        if (lower[i] >= '0' && lower[i] <= '9') {
                            cp = (cp << 4) + lower[i] - '0';
                        } else if (lower[i] >= 'a' && lower[i] <= 'f') {
                            cp = (cp << 4) + lower[i] - 'a' + 10;
                        } else {
                            *pErrorCode = U_ILLEGAL_CHAR_FOUND;
                            return error;
                        }
                    }

                    /* Now validate the category name.
                       We could use a binary search, or a trie, if
                       we really wanted to. */

                    for (lower[i] = 0, cIdx = 0; cIdx < LENGTHOF(charCatNames); ++cIdx) {

                        if (!uprv_strcmp(lower + 1, charCatNames[cIdx])) {
                            if (getCharCat(cp) == cIdx) {
                                return cp;
                            }
                            break;
                        }
                    }
                }
            }
        }

        *pErrorCode = U_ILLEGAL_CHAR_FOUND;
        return error;
    }

    /* try algorithmic names now */
    p=(uint32_t *)((uint8_t *)uCharNames+uCharNames->algNamesOffset);
    i=*p;
    algRange=(AlgorithmicRange *)(p+1);
    while(i>0) {
        if((cp=findAlgName(algRange, nameChoice, upper))!=0xffff) {
            return cp;
        }
        algRange=(AlgorithmicRange *)((uint8_t *)algRange+algRange->size);
        --i;
    }

    /* normal character name */
    findName.otherName=upper;
    findName.code=error;
    enumNames(uCharNames, 0, UCHAR_MAX_VALUE + 1, DO_FIND_NAME, &findName, nameChoice);
    if (findName.code == error) {
         *pErrorCode = U_ILLEGAL_CHAR_FOUND;
    }
    return findName.code;
}

U_CAPI void U_EXPORT2
u_enumCharNames(UChar32 start, UChar32 limit,
                UEnumCharNamesFn *fn,
                void *context,
                UCharNameChoice nameChoice,
                UErrorCode *pErrorCode) {
    AlgorithmicRange *algRange;
    uint32_t *p;
    uint32_t i;

    if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
        return;
    }

    if(nameChoice>=U_CHAR_NAME_CHOICE_COUNT || fn==NULL) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return;
    }

    if((uint32_t) limit > UCHAR_MAX_VALUE + 1) {
        limit = UCHAR_MAX_VALUE + 1;
    }
    if((uint32_t)start>=(uint32_t)limit) {
        return;
    }

    if(!isDataLoaded(pErrorCode)) {
        return;
    }

    /* interleave the data-driven ones with the algorithmic ones */
    /* iterate over all algorithmic ranges; assume that they are in ascending order */
    p=(uint32_t *)((uint8_t *)uCharNames+uCharNames->algNamesOffset);
    i=*p;
    algRange=(AlgorithmicRange *)(p+1);
    while(i>0) {
        /* enumerate the character names before the current algorithmic range */
        /* here: start<limit */
        if((uint32_t)start<algRange->start) {
            if((uint32_t)limit<=algRange->start) {
                enumNames(uCharNames, start, limit, fn, context, nameChoice);
                return;
            }
            if(!enumNames(uCharNames, start, (UChar32)algRange->start, fn, context, nameChoice)) {
                return;
            }
            start=(UChar32)algRange->start;
        }
        /* enumerate the character names in the current algorithmic range */
        /* here: algRange->start<=start<limit */
        if((uint32_t)start<=algRange->end) {
            if((uint32_t)limit<=(algRange->end+1)) {
                enumAlgNames(algRange, start, limit, fn, context, nameChoice);
                return;
            }
            if(!enumAlgNames(algRange, start, (UChar32)algRange->end+1, fn, context, nameChoice)) {
                return;
            }
            start=(UChar32)algRange->end+1;
        }
        /* continue to the next algorithmic range (here: start<limit) */
        algRange=(AlgorithmicRange *)((uint8_t *)algRange+algRange->size);
        --i;
    }
    /* enumerate the character names after the last algorithmic range */
    enumNames(uCharNames, start, limit, fn, context, nameChoice);
}

U_CAPI int32_t U_EXPORT2
uprv_getMaxCharNameLength() {
    UErrorCode errorCode=U_ZERO_ERROR;
    if(calcNameSetsLengths(&errorCode)) {
        return gMaxNameLength;
    } else {
        return 0;
    }
}

/**
 * Converts the char set cset into a Unicode set uset.
 * @param cset Set of 256 bit flags corresponding to a set of chars.
 * @param uset USet to receive characters. Existing contents are deleted.
 */
static void
charSetToUSet(uint32_t cset[8], const USetAdder *sa) {
    UChar us[256];
    char cs[256];

    int32_t i, length;
    UErrorCode errorCode;

    errorCode=U_ZERO_ERROR;

    if(!calcNameSetsLengths(&errorCode)) {
        return;
    }

    /* build a char string with all chars that are used in character names */
    length=0;
    for(i=0; i<256; ++i) {
        if(SET_CONTAINS(cset, i)) {
            cs[length++]=(char)i;
        }
    }

    /* convert the char string to a UChar string */
    u_charsToUChars(cs, us, length);

    /* add each UChar to the USet */
    for(i=0; i<length; ++i) {
        if(us[i]!=0 || cs[i]==0) { /* non-invariant chars become (UChar)0 */
            sa->add(sa->set, us[i]);
        }
    }
}

/**
 * Fills set with characters that are used in Unicode character names.
 * @param set USet to receive characters.
 */
U_CAPI void U_EXPORT2
uprv_getCharNameCharacters(const USetAdder *sa) {
    charSetToUSet(gNameSet, sa);
}

/* data swapping ------------------------------------------------------------ */

/*
 * The token table contains non-negative entries for token bytes,
 * and -1 for bytes that represent themselves in the data file's charset.
 * -2 entries are used for lead bytes.
 *
 * Direct bytes (-1 entries) must be translated from the input charset family
 * to the output charset family.
 * makeTokenMap() writes a permutation mapping for this.
 * Use it once for single-/lead-byte tokens and once more for all trail byte
 * tokens. (';' is an unused trail byte marked with -1.)
 */
static void
makeTokenMap(const UDataSwapper *ds,
             int16_t tokens[], uint16_t tokenCount,
             uint8_t map[256],
             UErrorCode *pErrorCode) {
    UBool usedOutChar[256];
    uint16_t i, j;
    uint8_t c1, c2;

    if(U_FAILURE(*pErrorCode)) {
        return;
    }

    if(ds->inCharset==ds->outCharset) {
        /* Same charset family: identity permutation */
        for(i=0; i<256; ++i) {
            map[i]=(uint8_t)i;
        }
    } else {
        uprv_memset(map, 0, 256);
        uprv_memset(usedOutChar, 0, 256);

        if(tokenCount>256) {
            tokenCount=256;
        }

        /* set the direct bytes (byte 0 always maps to itself) */
        for(i=1; i<tokenCount; ++i) {
            if(tokens[i]==-1) {
                /* convert the direct byte character */
                c1=(uint8_t)i;
                ds->swapInvChars(ds, &c1, 1, &c2, pErrorCode);
                if(U_FAILURE(*pErrorCode)) {
                    udata_printError(ds, "unames/makeTokenMap() finds variant character 0x%02x used (input charset family %d)\n",
                                     i, ds->inCharset);
                    return;
                }

                /* enter the converted character into the map and mark it used */
                map[c1]=c2;
                usedOutChar[c2]=TRUE;
            }
        }

        /* set the mappings for the rest of the permutation */
        for(i=j=1; i<tokenCount; ++i) {
            /* set mappings that were not set for direct bytes */
            if(map[i]==0) {
                /* set an output byte value that was not used as an output byte above */
                while(usedOutChar[j]) {
                    ++j;
                }
                map[i]=(uint8_t)j++;
            }
        }

        /*
         * leave mappings at tokenCount and above unset if tokenCount<256
         * because they won't be used
         */
    }
}

U_CAPI int32_t U_EXPORT2
uchar_swapNames(const UDataSwapper *ds,
                const void *inData, int32_t length, void *outData,
                UErrorCode *pErrorCode) {
    const UDataInfo *pInfo;
    int32_t headerSize;

    const uint8_t *inBytes;
    uint8_t *outBytes;

    uint32_t tokenStringOffset, groupsOffset, groupStringOffset, algNamesOffset,
             offset, i, count, stringsCount;

    const AlgorithmicRange *inRange;
    AlgorithmicRange *outRange;

    /* udata_swapDataHeader checks the arguments */
    headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode);
    if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
        return 0;
    }

    /* check data format and format version */
    pInfo=(const UDataInfo *)((const char *)inData+4);
    if(!(
        pInfo->dataFormat[0]==0x75 &&   /* dataFormat="unam" */
        pInfo->dataFormat[1]==0x6e &&
        pInfo->dataFormat[2]==0x61 &&
        pInfo->dataFormat[3]==0x6d &&
        pInfo->formatVersion[0]==1
    )) {
        udata_printError(ds, "uchar_swapNames(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as unames.icu\n",
                         pInfo->dataFormat[0], pInfo->dataFormat[1],
                         pInfo->dataFormat[2], pInfo->dataFormat[3],
                         pInfo->formatVersion[0]);
        *pErrorCode=U_UNSUPPORTED_ERROR;
        return 0;
    }

    inBytes=(const uint8_t *)inData+headerSize;
    outBytes=(uint8_t *)outData+headerSize;
    if(length<0) {
        algNamesOffset=ds->readUInt32(((const uint32_t *)inBytes)[3]);
    } else {
        length-=headerSize;
        if( length<20 ||
            (uint32_t)length<(algNamesOffset=ds->readUInt32(((const uint32_t *)inBytes)[3]))
        ) {
            udata_printError(ds, "uchar_swapNames(): too few bytes (%d after header) for unames.icu\n",
                             length);
            *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
            return 0;
        }
    }

    if(length<0) {
        /* preflighting: iterate through algorithmic ranges */
        offset=algNamesOffset;
        count=ds->readUInt32(*((const uint32_t *)(inBytes+offset)));
        offset+=4;

        for(i=0; i<count; ++i) {
            inRange=(const AlgorithmicRange *)(inBytes+offset);
            offset+=ds->readUInt16(inRange->size);
        }
    } else {
        /* swap data */
        const uint16_t *p;
        uint16_t *q, *temp;

        int16_t tokens[512];
        uint16_t tokenCount;

        uint8_t map[256], trailMap[256];

        /* copy the data for inaccessible bytes */
        if(inBytes!=outBytes) {
            uprv_memcpy(outBytes, inBytes, length);
        }

        /* the initial 4 offsets first */
        tokenStringOffset=ds->readUInt32(((const uint32_t *)inBytes)[0]);
        groupsOffset=ds->readUInt32(((const uint32_t *)inBytes)[1]);
        groupStringOffset=ds->readUInt32(((const uint32_t *)inBytes)[2]);
        ds->swapArray32(ds, inBytes, 16, outBytes, pErrorCode);

        /*
         * now the tokens table
         * it needs to be permutated along with the compressed name strings
         */
        p=(const uint16_t *)(inBytes+16);
        q=(uint16_t *)(outBytes+16);

        /* read and swap the tokenCount */
        tokenCount=ds->readUInt16(*p);
        ds->swapArray16(ds, p, 2, q, pErrorCode);
        ++p;
        ++q;

        /* read the first 512 tokens and make the token maps */
        if(tokenCount<=512) {
            count=tokenCount;
        } else {
            count=512;
        }
        for(i=0; i<count; ++i) {
            tokens[i]=udata_readInt16(ds, p[i]);
        }
        for(; i<512; ++i) {
            tokens[i]=0; /* fill the rest of the tokens array if tokenCount<512 */
        }
        makeTokenMap(ds, tokens, tokenCount, map, pErrorCode);
        makeTokenMap(ds, tokens+256, (uint16_t)(tokenCount>256 ? tokenCount-256 : 0), trailMap, pErrorCode);
        if(U_FAILURE(*pErrorCode)) {
            return 0;
        }

        /*
         * swap and permutate the tokens
         * go through a temporary array to support in-place swapping
         */
        temp=(uint16_t *)uprv_malloc(tokenCount*2);
        if(temp==NULL) {
            udata_printError(ds, "out of memory swapping %u unames.icu tokens\n",
                             tokenCount);
            *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
            return 0;
        }

        /* swap and permutate single-/lead-byte tokens */
        for(i=0; i<tokenCount && i<256; ++i) {
            ds->swapArray16(ds, p+i, 2, temp+map[i], pErrorCode);
        }

        /* swap and permutate trail-byte tokens */
        for(; i<tokenCount; ++i) {
            ds->swapArray16(ds, p+i, 2, temp+(i&0xffffff00)+trailMap[i&0xff], pErrorCode);
        }

        /* copy the result into the output and free the temporary array */
        uprv_memcpy(q, temp, tokenCount*2);
        uprv_free(temp);

        /*
         * swap the token strings but not a possible padding byte after
         * the terminating NUL of the last string
         */
        udata_swapInvStringBlock(ds, inBytes+tokenStringOffset, (int32_t)(groupsOffset-tokenStringOffset),
                                    outBytes+tokenStringOffset, pErrorCode);
        if(U_FAILURE(*pErrorCode)) {
            udata_printError(ds, "uchar_swapNames(token strings) failed\n");
            return 0;
        }

        /* swap the group table */
        count=ds->readUInt16(*((const uint16_t *)(inBytes+groupsOffset)));
        ds->swapArray16(ds, inBytes+groupsOffset, (int32_t)((1+count*3)*2),
                           outBytes+groupsOffset, pErrorCode);

        /*
         * swap the group strings
         * swap the string bytes but not the nibble-encoded string lengths
         */
        if(ds->inCharset!=ds->outCharset) {
            uint16_t offsets[LINES_PER_GROUP+1], lengths[LINES_PER_GROUP+1];

            const uint8_t *inStrings, *nextInStrings;
            uint8_t *outStrings;

            uint8_t c;

            inStrings=inBytes+groupStringOffset;
            outStrings=outBytes+groupStringOffset;

            stringsCount=algNamesOffset-groupStringOffset;

            /* iterate through string groups until only a few padding bytes are left */
            while(stringsCount>32) {
                nextInStrings=expandGroupLengths(inStrings, offsets, lengths);

                /* move past the length bytes */
                stringsCount-=(uint32_t)(nextInStrings-inStrings);
                outStrings+=nextInStrings-inStrings;
                inStrings=nextInStrings;

                count=offsets[31]+lengths[31]; /* total number of string bytes in this group */
                stringsCount-=count;

                /* swap the string bytes using map[] and trailMap[] */
                while(count>0) {
                    c=*inStrings++;
                    *outStrings++=map[c];
                    if(tokens[c]!=-2) {
                        --count;
                    } else {
                        /* token lead byte: swap the trail byte, too */
                        *outStrings++=trailMap[*inStrings++];
                        count-=2;
                    }
                }
            }
        }

        /* swap the algorithmic ranges */
        offset=algNamesOffset;
        count=ds->readUInt32(*((const uint32_t *)(inBytes+offset)));
        ds->swapArray32(ds, inBytes+offset, 4, outBytes+offset, pErrorCode);
        offset+=4;

        for(i=0; i<count; ++i) {
            if(offset>(uint32_t)length) {
                udata_printError(ds, "uchar_swapNames(): too few bytes (%d after header) for unames.icu algorithmic range %u\n",
                                 length, i);
                *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
                return 0;
            }

            inRange=(const AlgorithmicRange *)(inBytes+offset);
            outRange=(AlgorithmicRange *)(outBytes+offset);
            offset+=ds->readUInt16(inRange->size);

            ds->swapArray32(ds, inRange, 8, outRange, pErrorCode);
            ds->swapArray16(ds, &inRange->size, 2, &outRange->size, pErrorCode);
            switch(inRange->type) {
            case 0:
                /* swap prefix string */
                ds->swapInvChars(ds, inRange+1, (int32_t)uprv_strlen((const char *)(inRange+1)),
                                    outRange+1, pErrorCode);
                if(U_FAILURE(*pErrorCode)) {
                    udata_printError(ds, "uchar_swapNames(prefix string of algorithmic range %u) failed\n",
                                     i);
                    return 0;
                }
                break;
            case 1:
                {
                    /* swap factors and the prefix and factor strings */
                    uint32_t factorsCount;

                    factorsCount=inRange->variant;
                    p=(const uint16_t *)(inRange+1);
                    q=(uint16_t *)(outRange+1);
                    ds->swapArray16(ds, p, (int32_t)(factorsCount*2), q, pErrorCode);

                    /* swap the strings, up to the last terminating NUL */
                    p+=factorsCount;
                    q+=factorsCount;
                    stringsCount=(uint32_t)((inBytes+offset)-(const uint8_t *)p);
                    while(stringsCount>0 && ((const uint8_t *)p)[stringsCount-1]!=0) {
                        --stringsCount;
                    }
                    ds->swapInvChars(ds, p, (int32_t)stringsCount, q, pErrorCode);
                }
                break;
            default:
                udata_printError(ds, "uchar_swapNames(): unknown type %u of algorithmic range %u\n",
                                 inRange->type, i);
                *pErrorCode=U_UNSUPPORTED_ERROR;
                return 0;
            }
        }
    }

    return headerSize+(int32_t)offset;
}

/*
 * Hey, Emacs, please set the following:
 *
 * Local Variables:
 * indent-tabs-mode: nil
 * End:
 *
 */