summaryrefslogtreecommitdiff
path: root/Build/source/libs/icu-xetex/i18n/digitlst.cpp
blob: 39e69fd7998ee7b2f56c5311e6bcaf82f450b590 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
/*
**********************************************************************
*   Copyright (C) 1997-2007, International Business Machines
*   Corporation and others.  All Rights Reserved.
**********************************************************************
*
* File DIGITLST.CPP
*
* Modification History:
*
*   Date        Name        Description
*   03/21/97    clhuang     Converted from java.
*   03/21/97    clhuang     Implemented with new APIs.
*   03/27/97    helena      Updated to pass the simple test after code review.
*   03/31/97    aliu        Moved isLONG_MIN to here, and fixed it.
*   04/15/97    aliu        Changed MAX_COUNT to DBL_DIG.  Changed Digit to char.
*                           Reworked representation by replacing fDecimalAt
*                           with fExponent.
*   04/16/97    aliu        Rewrote set() and getDouble() to use sprintf/atof
*                           to do digit conversion.
*   09/09/97    aliu        Modified for exponential notation support.
*   08/02/98    stephen     Added nearest/even rounding
*                            Fixed bug in fitsIntoLong
******************************************************************************
*/

#include "digitlst.h"

#if !UCONFIG_NO_FORMATTING
#include "unicode/putil.h"
#include "cstring.h"
#include "putilimp.h"
#include "uassert.h"
#include <stdlib.h>
#include <limits.h>
#include <string.h>
#include <stdio.h>

// ***************************************************************************
// class DigitList
// This class handles the transcoding between numeric values and strings of
//  characters.  Only handles as non-negative numbers.
// ***************************************************************************

/**
 * This is the zero digit.  Array elements fDigits[i] have values from
 * kZero to kZero + 9.  Typically, this is '0'.
 */
#define kZero '0'

static char gDecimal = 0;

/* Only for 32 bit numbers. Ignore the negative sign. */
static const char LONG_MIN_REP[] = "2147483648";
static const char I64_MIN_REP[] = "9223372036854775808";

enum {
    LONG_MIN_REP_LENGTH = sizeof(LONG_MIN_REP) - 1, //Ignore the NULL at the end
    I64_MIN_REP_LENGTH = sizeof(I64_MIN_REP) - 1 //Ignore the NULL at the end
};

U_NAMESPACE_BEGIN


// -------------------------------------
// default constructor

DigitList::DigitList()
{
    fDigits = fDecimalDigits + 1;   // skip the decimal
    clear();
}

// -------------------------------------

DigitList::~DigitList()
{
}

// -------------------------------------
// copy constructor

DigitList::DigitList(const DigitList &other)
{
    fDigits = fDecimalDigits + 1;   // skip the decimal
    *this = other;
}

// -------------------------------------
// assignment operator

DigitList&
DigitList::operator=(const DigitList& other)
{
    if (this != &other)
    {
        fDecimalAt = other.fDecimalAt;
        fCount = other.fCount;
        fIsPositive = other.fIsPositive;
        fRoundingMode = other.fRoundingMode;
        uprv_strncpy(fDigits, other.fDigits, fCount);
    }
    return *this;
}

// -------------------------------------

UBool
DigitList::operator==(const DigitList& that) const
{
    return ((this == &that) ||
            (fDecimalAt == that.fDecimalAt &&
             fCount == that.fCount &&
             fIsPositive == that.fIsPositive &&
             fRoundingMode == that.fRoundingMode &&
             uprv_strncmp(fDigits, that.fDigits, fCount) == 0));
}

// -------------------------------------
// Resets the digit list; sets all the digits to zero.

void
DigitList::clear()
{
    fDecimalAt = 0;
    fCount = 0;
    fIsPositive = TRUE;
    fRoundingMode = DecimalFormat::kRoundHalfEven;

    // Don't bother initializing fDigits because fCount is 0.
}



// -------------------------------------

/**
 * Formats a number into a base 10 string representation, and NULL terminates it.
 * @param number The number to format
 * @param outputStr The string to output to
 * @param outputLen The maximum number of characters to put into outputStr
 *                  (including NULL).
 * @return the number of digits written, not including the sign.
 */
static int32_t
formatBase10(int64_t number, char *outputStr, int32_t outputLen)
{
    char buffer[MAX_DIGITS + 1];
    int32_t bufferLen;
    int32_t result;

    if (outputLen > MAX_DIGITS) {
        outputLen = MAX_DIGITS;     // Ignore NULL
    }
    else if (outputLen < 3) {
        return 0;                   // Not enough room
    }

    bufferLen = outputLen;

    if (number < 0) {   // Negative numbers are slightly larger than a postive
        buffer[bufferLen--] = (char)(-(number % 10) + kZero);
        number /= -10;
        *(outputStr++) = '-';
    }
    else {
        *(outputStr++) = '+';    // allow +0
    }
    while (bufferLen >= 0 && number) {      // Output the number
        buffer[bufferLen--] = (char)(number % 10 + kZero);
        number /= 10;
    }

    result = outputLen - bufferLen++;

    while (bufferLen <= outputLen) {     // Copy the number to output
        *(outputStr++) = buffer[bufferLen++];
    }
    *outputStr = 0;   // NULL terminate.
    return result;
}

/**
 * Currently, getDouble() depends on atof() to do its conversion.
 *
 * WARNING!!
 * This is an extremely costly function. ~1/2 of the conversion time
 * can be linked to this function.
 */
double
DigitList::getDouble() /*const*/
{
    double value;

    if (fCount == 0) {
        value = 0.0;
    }
    else {
        char* end = NULL;
        if (!gDecimal) {
            char rep[MAX_DIGITS];
            // For machines that decide to change the decimal on you,
            // and try to be too smart with localization.
            // This normally should be just a '.'.
            sprintf(rep, "%+1.1f", 1.0);
            gDecimal = rep[2];
        }

        *fDecimalDigits = gDecimal;
        *(fDigits+fCount) = 'e';    // add an e after the digits.
        formatBase10(fDecimalAt,
                     fDigits + fCount + 1,  // skip the 'e'
                     MAX_DEC_DIGITS - fCount - 3);  // skip the 'e' and '.'
        value = uprv_strtod(fDecimalDigits, &end);
    }

    return fIsPositive ? value : -value;
}

// -------------------------------------

/**
 * Make sure that fitsIntoLong() is called before calling this function.
 */
int32_t DigitList::getLong() /*const*/
{
    if (fCount == fDecimalAt) {
        int32_t value;

        fDigits[fCount] = 0;    // NULL terminate

        // This conversion is bad on 64-bit platforms when we want to
        // be able to return a 64-bit number [grhoten]
        *fDecimalDigits = fIsPositive ? '+' : '-';
        value = (int32_t)atol(fDecimalDigits);
        return value;
    }
    else {
        // This is 100% accurate in c++ because if we are representing
        // an integral value, we suffer nothing in the conversion to
        // double.  If we are to support 64-bit longs later, getLong()
        // must be rewritten. [LIU]
        return (int32_t)getDouble();
    }
}


/**
 * Make sure that fitsIntoInt64() is called before calling this function.
 */
int64_t DigitList::getInt64() /*const*/
{
    if (fCount == fDecimalAt) {
        uint64_t value;

        fDigits[fCount] = 0;    // NULL terminate

        // This conversion is bad on 64-bit platforms when we want to
        // be able to return a 64-bit number [grhoten]
        *fDecimalDigits = fIsPositive ? '+' : '-';

        // emulate a platform independent atoi64()
        value = 0;
        for (int i = 0; i < fCount; ++i) {
            int v = fDigits[i] - kZero;
            value = value * (uint64_t)10 + (uint64_t)v;
        }
        if (!fIsPositive) {
            value = ~value;
            value += 1;
        }
        int64_t svalue = (int64_t)value;
        return svalue;
    }
    else {
        // TODO: figure out best approach

        // This is 100% accurate in c++ because if we are representing
        // an integral value, we suffer nothing in the conversion to
        // double.  If we are to support 64-bit longs later, getLong()
        // must be rewritten. [LIU]
        return (int64_t)getDouble();
    }
}

/**
 * Return true if the number represented by this object can fit into
 * a long.
 */
UBool
DigitList::fitsIntoLong(UBool ignoreNegativeZero) /*const*/
{
    // Figure out if the result will fit in a long.  We have to
    // first look for nonzero digits after the decimal point;
    // then check the size.

    // Trim trailing zeros after the decimal point. This does not change
    // the represented value.
    while (fCount > fDecimalAt && fCount > 0 && fDigits[fCount - 1] == kZero)
        --fCount;

    if (fCount == 0) {
        // Positive zero fits into a long, but negative zero can only
        // be represented as a double. - bug 4162852
        return fIsPositive || ignoreNegativeZero;
    }

    // If the digit list represents a double or this number is too
    // big for a long.
    if (fDecimalAt < fCount || fDecimalAt > LONG_MIN_REP_LENGTH)
        return FALSE;

    // If number is small enough to fit in a long
    if (fDecimalAt < LONG_MIN_REP_LENGTH)
        return TRUE;

    // At this point we have fDecimalAt == fCount, and fCount == LONG_MIN_REP_LENGTH.
    // The number will overflow if it is larger than LONG_MAX
    // or smaller than LONG_MIN.
    for (int32_t i=0; i<fCount; ++i)
    {
        char dig = fDigits[i],
             max = LONG_MIN_REP[i];
        if (dig > max)
            return FALSE;
        if (dig < max)
            return TRUE;
    }

    // At this point the first count digits match.  If fDecimalAt is less
    // than count, then the remaining digits are zero, and we return true.
    if (fCount < fDecimalAt)
        return TRUE;

    // Now we have a representation of Long.MIN_VALUE, without the leading
    // negative sign.  If this represents a positive value, then it does
    // not fit; otherwise it fits.
    return !fIsPositive;
}

/**
 * Return true if the number represented by this object can fit into
 * a long.
 */
UBool
DigitList::fitsIntoInt64(UBool ignoreNegativeZero) /*const*/
{
    // Figure out if the result will fit in a long.  We have to
    // first look for nonzero digits after the decimal point;
    // then check the size.

    // Trim trailing zeros after the decimal point. This does not change
    // the represented value.
    while (fCount > fDecimalAt && fCount > 0 && fDigits[fCount - 1] == kZero)
        --fCount;

    if (fCount == 0) {
        // Positive zero fits into a long, but negative zero can only
        // be represented as a double. - bug 4162852
        return fIsPositive || ignoreNegativeZero;
    }

    // If the digit list represents a double or this number is too
    // big for a long.
    if (fDecimalAt < fCount || fDecimalAt > I64_MIN_REP_LENGTH)
        return FALSE;

    // If number is small enough to fit in an int64
    if (fDecimalAt < I64_MIN_REP_LENGTH)
        return TRUE;

    // At this point we have fDecimalAt == fCount, and fCount == INT64_MIN_REP_LENGTH.
    // The number will overflow if it is larger than U_INT64_MAX
    // or smaller than U_INT64_MIN.
    for (int32_t i=0; i<fCount; ++i)
    {
        char dig = fDigits[i],
             max = I64_MIN_REP[i];
        if (dig > max)
            return FALSE;
        if (dig < max)
            return TRUE;
    }

    // At this point the first count digits match.  If fDecimalAt is less
    // than count, then the remaining digits are zero, and we return true.
    if (fCount < fDecimalAt)
        return TRUE;

    // Now we have a representation of INT64_MIN_VALUE, without the leading
    // negative sign.  If this represents a positive value, then it does
    // not fit; otherwise it fits.
    return !fIsPositive;
}


// -------------------------------------

void
DigitList::set(int32_t source, int32_t maximumDigits)
{
    set((int64_t)source, maximumDigits);
}

// -------------------------------------
/**
 * @param maximumDigits The maximum digits to be generated.  If zero,
 * there is no maximum -- generate all digits.
 */
void
DigitList::set(int64_t source, int32_t maximumDigits)
{
    fCount = fDecimalAt = formatBase10(source, fDecimalDigits, MAX_DIGITS);

    fIsPositive = (*fDecimalDigits == '+');

    // Don't copy trailing zeros
    while (fCount > 1 && fDigits[fCount - 1] == kZero)
        --fCount;

    if(maximumDigits > 0)
        round(maximumDigits);
}

/**
 * Set the digit list to a representation of the given double value.
 * This method supports both fixed-point and exponential notation.
 * @param source Value to be converted; must not be Inf, -Inf, Nan,
 * or a value <= 0.
 * @param maximumDigits The most fractional or total digits which should
 * be converted.  If total digits, and the value is zero, then
 * there is no maximum -- generate all digits.
 * @param fixedPoint If true, then maximumDigits is the maximum
 * fractional digits to be converted.  If false, total digits.
 */
void
DigitList::set(double source, int32_t maximumDigits, UBool fixedPoint)
{
    // for now, simple implementation; later, do proper IEEE stuff
    char rep[MAX_DIGITS + 8]; // Extra space for '+', '.', e+NNN, and '\0' (actually +8 is enough)
    char *digitPtr      = fDigits;
    char *repPtr        = rep + 2;  // +2 to skip the sign and decimal
    int32_t exponent    = 0;

    fIsPositive = !uprv_isNegative(source);    // Allow +0 and -0

    // Generate a representation of the form /[+-][0-9]+e[+-][0-9]+/
    sprintf(rep, "%+1.*e", MAX_DBL_DIGITS - 1, source);
    fDecimalAt  = 0;
    rep[2]      = rep[1];    // remove decimal

    while (*repPtr == kZero) {
        repPtr++;
        fDecimalAt--;   // account for leading zeros
    }

    while (*repPtr != 'e') {
        *(digitPtr++) = *(repPtr++);
    }
    fCount = MAX_DBL_DIGITS + fDecimalAt;

    // Parse an exponent of the form /[eE][+-][0-9]+/
    UBool negExp = (*(++repPtr) == '-');
    while (*(++repPtr) != 0) {
        exponent = 10*exponent + *repPtr - kZero;
    }
    if (negExp) {
        exponent = -exponent;
    }
    fDecimalAt += exponent + 1; // +1 for decimal removal

    // The negative of the exponent represents the number of leading
    // zeros between the decimal and the first non-zero digit, for
    // a value < 0.1 (e.g., for 0.00123, -decimalAt == 2).  If this
    // is more than the maximum fraction digits, then we have an underflow
    // for the printed representation.
    if (fixedPoint && -fDecimalAt >= maximumDigits)
    {
        // If we round 0.0009 to 3 fractional digits, then we have to
        // create a new one digit in the least significant location.
        if (-fDecimalAt == maximumDigits && shouldRoundUp(0)) {
            fCount = 1;
            ++fDecimalAt;
            fDigits[0] = (char)'1';
        } else {
            // Handle an underflow to zero when we round something like
            // 0.0009 to 2 fractional digits.
            fCount = 0;
        }
        return;
    }


    // Eliminate digits beyond maximum digits to be displayed.
    // Round up if appropriate.  Do NOT round in the special
    // case where maximumDigits == 0 and fixedPoint is FALSE.
    if (fixedPoint || (0 < maximumDigits && maximumDigits < fCount)) {
        round(fixedPoint ? (maximumDigits + fDecimalAt) : maximumDigits);
    }
    else {
        // Eliminate trailing zeros.
        while (fCount > 1 && fDigits[fCount - 1] == kZero)
            --fCount;
    }
}

// -------------------------------------

/**
 * Round the representation to the given number of digits.
 * @param maximumDigits The maximum number of digits to be shown.
 * Upon return, count will be less than or equal to maximumDigits.
 */
void
DigitList::round(int32_t maximumDigits)
{
    // Eliminate digits beyond maximum digits to be displayed.
    // Round up if appropriate.
    if (maximumDigits >= 0 && maximumDigits < fCount)
    {
        if (shouldRoundUp(maximumDigits)) {
            // Rounding up involved incrementing digits from LSD to MSD.
            // In most cases this is simple, but in a worst case situation
            // (9999..99) we have to adjust the decimalAt value.
            while (--maximumDigits >= 0 && ++fDigits[maximumDigits] > '9')
                ;

            if (maximumDigits < 0)
            {
                // We have all 9's, so we increment to a single digit
                // of one and adjust the exponent.
                fDigits[0] = (char) '1';
                ++fDecimalAt;
                maximumDigits = 1; // Adjust the count
            }
            else
            {
                ++maximumDigits; // Increment for use as count
            }
        }
        fCount = maximumDigits;
    }

    // Eliminate trailing zeros.
    while (fCount > 1 && fDigits[fCount-1] == kZero) {
        --fCount;
    }
}

/**
 * Return true if truncating the representation to the given number
 * of digits will result in an increment to the last digit.  This
 * method implements the requested rounding mode.
 * [bnf]
 * @param maximumDigits the number of digits to keep, from 0 to
 * <code>count-1</code>.  If 0, then all digits are rounded away, and
 * this method returns true if a one should be generated (e.g., formatting
 * 0.09 with "#.#").
 * @return true if digit <code>maximumDigits-1</code> should be
 * incremented
 */
UBool DigitList::shouldRoundUp(int32_t maximumDigits) const {
    int i = 0;
    if (fRoundingMode == DecimalFormat::kRoundDown ||
        fRoundingMode == DecimalFormat::kRoundFloor   &&  fIsPositive ||
        fRoundingMode == DecimalFormat::kRoundCeiling && !fIsPositive) {
        return FALSE;
    }

    if (fRoundingMode == DecimalFormat::kRoundHalfEven ||
        fRoundingMode == DecimalFormat::kRoundHalfDown ||
        fRoundingMode == DecimalFormat::kRoundHalfUp) {
        if (fDigits[maximumDigits] == '5' ) {
            for (i=maximumDigits+1; i<fCount; ++i) {
                if (fDigits[i] != kZero) {
                    return TRUE;
                }
            }
            switch (fRoundingMode) {
            case DecimalFormat::kRoundHalfEven:
            default:
                // Implement IEEE half-even rounding
                return maximumDigits > 0 && (fDigits[maximumDigits-1] % 2 != 0);
            case DecimalFormat::kRoundHalfDown:
                return FALSE;
            case DecimalFormat::kRoundHalfUp:
                return TRUE;
            }
        }
        return (fDigits[maximumDigits] > '5');
    }

    U_ASSERT(fRoundingMode == DecimalFormat::kRoundUp ||
             fRoundingMode == DecimalFormat::kRoundFloor   && !fIsPositive ||
             fRoundingMode == DecimalFormat::kRoundCeiling &&  fIsPositive);

     for (i=maximumDigits; i<fCount; ++i) {
         if (fDigits[i] != kZero) {
             return TRUE;
         }
     }
     return false;
}

// -------------------------------------

// In the Java implementation, we need a separate set(long) because 64-bit longs
// have too much precision to fit into a 64-bit double.  In C++, longs can just
// be passed to set(double) as long as they are 32 bits in size.  We currently
// don't implement 64-bit longs in C++, although the code below would work for
// that with slight modifications. [LIU]
/*
void
DigitList::set(long source)
{
    // handle the special case of zero using a standard exponent of 0.
    // mathematically, the exponent can be any value.
    if (source == 0)
    {
        fcount = 0;
        fDecimalAt = 0;
        return;
    }

    // we don't accept negative numbers, with the exception of long_min.
    // long_min is treated specially by being represented as long_max+1,
    // which is actually an impossible signed long value, so there is no
    // ambiguity.  we do this for convenience, so digitlist can easily
    // represent the digits of a long.
    bool islongmin = (source == long_min);
    if (islongmin)
    {
        source = -(source + 1); // that is, long_max
        islongmin = true;
    }
    sprintf(fdigits, "%d", source);

    // now we need to compute the exponent.  it's easy in this case; it's
    // just the same as the count.  e.g., 0.123 * 10^3 = 123.
    fcount = strlen(fdigits);
    fDecimalAt = fcount;

    // here's how we represent long_max + 1.  note that we always know
    // that the last digit of long_max will not be 9, because long_max
    // is of the form (2^n)-1.
    if (islongmin)
        ++fdigits[fcount-1];

    // finally, we trim off trailing zeros.  we don't alter fDecimalAt,
    // so this has no effect on the represented value.  we know the first
    // digit is non-zero (see code above), so we only have to check down
    // to fdigits[1].
    while (fcount > 1 && fdigits[fcount-1] == kzero)
        --fcount;
}
*/

/**
 * Return true if this object represents the value zero.  Anything with
 * no digits, or all zero digits, is zero, regardless of fDecimalAt.
 */
UBool
DigitList::isZero() const
{
    for (int32_t i=0; i<fCount; ++i)
        if (fDigits[i] != kZero)
            return FALSE;
    return TRUE;
}

U_NAMESPACE_END
#endif // #if !UCONFIG_NO_FORMATTING

//eof