summaryrefslogtreecommitdiff
path: root/Build/source/libs/graphite2/graphite2-src/src/Pass.cpp
blob: f6d269931d63c5fc5f4aa61722580c6abbab35a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
/*  GRAPHITE2 LICENSING

    Copyright 2010, SIL International
    All rights reserved.

    This library is free software; you can redistribute it and/or modify
    it under the terms of the GNU Lesser General Public License as published
    by the Free Software Foundation; either version 2.1 of License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should also have received a copy of the GNU Lesser General Public
    License along with this library in the file named "LICENSE".
    If not, write to the Free Software Foundation, 51 Franklin Street,
    Suite 500, Boston, MA 02110-1335, USA or visit their web page on the
    internet at http://www.fsf.org/licenses/lgpl.html.

Alternatively, the contents of this file may be used under the terms of the
Mozilla Public License (http://mozilla.org/MPL) or the GNU General Public
License, as published by the Free Software Foundation, either version 2
of the License or (at your option) any later version.
*/
#include "inc/Main.h"
#include "inc/debug.h"
#include "inc/Endian.h"
#include "inc/Pass.h"
#include <cstring>
#include <cstdlib>
#include <cassert>
#include <cmath>
#include "inc/Segment.h"
#include "inc/Code.h"
#include "inc/Rule.h"
#include "inc/Error.h"
#include "inc/Collider.h"

using namespace graphite2;
using vm::Machine;
typedef Machine::Code  Code;

enum KernCollison
{
    None       = 0,
    CrossSpace = 1,
    InWord     = 2,
    reserved   = 3
};

Pass::Pass()
: m_silf(0),
  m_cols(0),
  m_rules(0),
  m_ruleMap(0),
  m_startStates(0),
  m_transitions(0),
  m_states(0),
  m_codes(0),
  m_progs(0),
  m_numCollRuns(0),
  m_kernColls(0),
  m_iMaxLoop(0),
  m_numGlyphs(0),
  m_numRules(0),
  m_numStates(0),
  m_numTransition(0),
  m_numSuccess(0),
  m_successStart(0),
  m_numColumns(0),
  m_minPreCtxt(0),
  m_maxPreCtxt(0),
  m_colThreshold(0),
  m_isReverseDir(false)
{
}

Pass::~Pass()
{
    free(m_cols);
    free(m_startStates);
    free(m_transitions);
    free(m_states);
    free(m_ruleMap);

    if (m_rules) delete [] m_rules;
    if (m_codes) delete [] m_codes;
    free(m_progs);
}

bool Pass::readPass(const byte * const pass_start, size_t pass_length, size_t subtable_base,
        GR_MAYBE_UNUSED Face & face, passtype pt, GR_MAYBE_UNUSED uint32 version, Error &e)
{
    const byte * p              = pass_start,
               * const pass_end = p + pass_length;
    size_t numRanges;

    if (e.test(pass_length < 40, E_BADPASSLENGTH)) return face.error(e); 
    // Read in basic values
    const byte flags = be::read<byte>(p);
    if (e.test((flags & 0x1f) && pt < PASS_TYPE_POSITIONING, E_BADCOLLISIONPASS))
        return face.error(e);
    m_numCollRuns = flags & 0x7;
    m_kernColls   = (flags >> 3) & 0x3;
    m_isReverseDir = (flags >> 5) & 0x1;
    m_iMaxLoop = be::read<byte>(p);
    if (m_iMaxLoop < 1) m_iMaxLoop = 1;
    be::skip<byte>(p,2); // skip maxContext & maxBackup
    m_numRules = be::read<uint16>(p);
    if (e.test(!m_numRules && m_numCollRuns == 0, E_BADEMPTYPASS)) return face.error(e);
    be::skip<uint16>(p);   // fsmOffset - not sure why we would want this
    const byte * const pcCode = pass_start + be::read<uint32>(p) - subtable_base,
               * const rcCode = pass_start + be::read<uint32>(p) - subtable_base,
               * const aCode  = pass_start + be::read<uint32>(p) - subtable_base;
    be::skip<uint32>(p);
    m_numStates = be::read<uint16>(p);
    m_numTransition = be::read<uint16>(p);
    m_numSuccess = be::read<uint16>(p);
    m_numColumns = be::read<uint16>(p);
    numRanges = be::read<uint16>(p);
    be::skip<uint16>(p, 3); // skip searchRange, entrySelector & rangeShift.
    assert(p - pass_start == 40);
    // Perform some sanity checks.
    if ( e.test(m_numTransition > m_numStates, E_BADNUMTRANS)
            || e.test(m_numSuccess > m_numStates, E_BADNUMSUCCESS)
            || e.test(m_numSuccess + m_numTransition < m_numStates, E_BADNUMSTATES)
            || e.test(m_numRules && numRanges == 0, E_NORANGES)
            || e.test(m_numColumns > 0x7FFF, E_BADNUMCOLUMNS))
        return face.error(e);

    m_successStart = m_numStates - m_numSuccess;
    // test for beyond end - 1 to account for reading uint16
    if (e.test(p + numRanges * 6 - 2 > pass_end, E_BADPASSLENGTH)) return face.error(e);
    m_numGlyphs = be::peek<uint16>(p + numRanges * 6 - 4) + 1;
    // Calculate the start of various arrays.
    const byte * const ranges = p;
    be::skip<uint16>(p, numRanges*3);
    const byte * const o_rule_map = p;
    be::skip<uint16>(p, m_numSuccess + 1);

    // More sanity checks
    if (e.test(reinterpret_cast<const byte *>(o_rule_map + m_numSuccess*sizeof(uint16)) > pass_end
            || p > pass_end, E_BADRULEMAPLEN))
        return face.error(e);
    const size_t numEntries = be::peek<uint16>(o_rule_map + m_numSuccess*sizeof(uint16));
    const byte * const   rule_map = p;
    be::skip<uint16>(p, numEntries);

    if (e.test(p + 2*sizeof(uint8) > pass_end, E_BADPASSLENGTH)) return face.error(e);
    m_minPreCtxt = be::read<uint8>(p);
    m_maxPreCtxt = be::read<uint8>(p);
    if (e.test(m_minPreCtxt > m_maxPreCtxt, E_BADCTXTLENBOUNDS)) return face.error(e);
    const byte * const start_states = p;
    be::skip<int16>(p, m_maxPreCtxt - m_minPreCtxt + 1);
    const uint16 * const sort_keys = reinterpret_cast<const uint16 *>(p);
    be::skip<uint16>(p, m_numRules);
    const byte * const precontext = p;
    be::skip<byte>(p, m_numRules);

    if (e.test(p + sizeof(uint16) + sizeof(uint8) > pass_end, E_BADCTXTLENS)) return face.error(e);
    m_colThreshold = be::read<uint8>(p);
    if (m_colThreshold == 0) m_colThreshold = 10;       // A default
    const size_t pass_constraint_len = be::read<uint16>(p);

    const uint16 * const o_constraint = reinterpret_cast<const uint16 *>(p);
    be::skip<uint16>(p, m_numRules + 1);
    const uint16 * const o_actions = reinterpret_cast<const uint16 *>(p);
    be::skip<uint16>(p, m_numRules + 1);
    const byte * const states = p;
    if (e.test(p + 2u*m_numTransition*m_numColumns >= pass_end, E_BADPASSLENGTH)) return face.error(e);
    be::skip<int16>(p, m_numTransition*m_numColumns);
    be::skip<uint8>(p);
    if (e.test(p != pcCode, E_BADPASSCCODEPTR)) return face.error(e);
    be::skip<byte>(p, pass_constraint_len);
    if (e.test(p != rcCode, E_BADRULECCODEPTR)
        || e.test(size_t(rcCode - pcCode) != pass_constraint_len, E_BADCCODELEN)) return face.error(e);
    be::skip<byte>(p, be::peek<uint16>(o_constraint + m_numRules));
    if (e.test(p != aCode, E_BADACTIONCODEPTR)) return face.error(e);
    be::skip<byte>(p, be::peek<uint16>(o_actions + m_numRules));

    // We should be at the end or within the pass
    if (e.test(p > pass_end, E_BADPASSLENGTH)) return face.error(e);

    // Load the pass constraint if there is one.
    if (pass_constraint_len)
    {
        face.error_context(face.error_context() + 1);
        m_cPConstraint = vm::Machine::Code(true, pcCode, pcCode + pass_constraint_len, 
                                  precontext[0], be::peek<uint16>(sort_keys), *m_silf, face, PASS_TYPE_UNKNOWN);
        if (e.test(!m_cPConstraint, E_OUTOFMEM)
                || e.test(!m_cPConstraint, m_cPConstraint.status() + E_CODEFAILURE))
            return face.error(e);
        face.error_context(face.error_context() - 1);
    }
    if (m_numRules)
    {
        if (!readRanges(ranges, numRanges, e)) return face.error(e);
        if (!readRules(rule_map, numEntries,  precontext, sort_keys,
                   o_constraint, rcCode, o_actions, aCode, face, pt, e)) return false;
    }
#ifdef GRAPHITE2_TELEMETRY
    telemetry::category _states_cat(face.tele.states);
#endif
    return m_numRules ? readStates(start_states, states, o_rule_map, face, e) : true;
}


bool Pass::readRules(const byte * rule_map, const size_t num_entries,
                     const byte *precontext, const uint16 * sort_key,
                     const uint16 * o_constraint, const byte *rc_data,
                     const uint16 * o_action,     const byte * ac_data,
                     Face & face, passtype pt, Error &e)
{
    const byte * const ac_data_end = ac_data + be::peek<uint16>(o_action + m_numRules);
    const byte * const rc_data_end = rc_data + be::peek<uint16>(o_constraint + m_numRules);

    precontext += m_numRules;
    sort_key   += m_numRules;
    o_constraint += m_numRules;
    o_action += m_numRules;

    // Load rules.
    const byte * ac_begin = 0, * rc_begin = 0,
               * ac_end = ac_data + be::peek<uint16>(o_action),
               * rc_end = rc_data + be::peek<uint16>(o_constraint);

    // Allocate pools
    m_rules = new Rule [m_numRules];
    m_codes = new Code [m_numRules*2];
    const size_t prog_pool_sz = vm::Machine::Code::estimateCodeDataOut(ac_end - ac_data + rc_end - rc_data);
    m_progs = gralloc<byte>(prog_pool_sz);
    byte * prog_pool_free = m_progs,
         * prog_pool_end  = m_progs + prog_pool_sz;
    if (e.test(!(m_rules && m_codes && m_progs), E_OUTOFMEM)) return face.error(e);

    Rule * r = m_rules + m_numRules - 1;
    for (size_t n = m_numRules; n; --n, --r, ac_end = ac_begin, rc_end = rc_begin)
    {
        face.error_context((face.error_context() & 0xFFFF00) + EC_ARULE + ((n - 1) << 24));
        r->preContext = *--precontext;
        r->sort       = be::peek<uint16>(--sort_key);
#ifndef NDEBUG
        r->rule_idx   = n - 1;
#endif
        if (r->sort > 63 || r->preContext >= r->sort || r->preContext > m_maxPreCtxt || r->preContext < m_minPreCtxt)
            return false;
        ac_begin      = ac_data + be::peek<uint16>(--o_action);
        --o_constraint;
        rc_begin      = be::peek<uint16>(o_constraint) ? rc_data + be::peek<uint16>(o_constraint) : rc_end;

        if (ac_begin > ac_end || ac_begin > ac_data_end || ac_end > ac_data_end
                || rc_begin > rc_end || rc_begin > rc_data_end || rc_end > rc_data_end
                || vm::Machine::Code::estimateCodeDataOut(ac_end - ac_begin + rc_end - rc_begin) > size_t(prog_pool_end - prog_pool_free))
            return false;
        r->action     = new (m_codes+n*2-2) vm::Machine::Code(false, ac_begin, ac_end, r->preContext, r->sort, *m_silf, face, pt, &prog_pool_free);
        r->constraint = new (m_codes+n*2-1) vm::Machine::Code(true,  rc_begin, rc_end, r->preContext, r->sort, *m_silf, face, pt, &prog_pool_free);

        if (e.test(!r->action || !r->constraint, E_OUTOFMEM)
                || e.test(r->action->status() != Code::loaded, r->action->status() + E_CODEFAILURE)
                || e.test(r->constraint->status() != Code::loaded, r->constraint->status() + E_CODEFAILURE)
                || e.test(!r->constraint->immutable(), E_MUTABLECCODE))
            return face.error(e);
    }

    byte * moved_progs = static_cast<byte *>(realloc(m_progs, prog_pool_free - m_progs));
    if (e.test(!moved_progs, E_OUTOFMEM))
    {
        if (prog_pool_free - m_progs == 0) m_progs = 0;
        return face.error(e);
    }

    if (moved_progs != m_progs)
    {
        for (Code * c = m_codes, * const ce = c + m_numRules*2; c != ce; ++c)
        {
            c->externalProgramMoved(moved_progs - m_progs);
        }
        m_progs = moved_progs;
    }

    // Load the rule entries map
    face.error_context((face.error_context() & 0xFFFF00) + EC_APASS);
    //TODO: Coverty: 1315804: FORWARD_NULL
    RuleEntry * re = m_ruleMap = gralloc<RuleEntry>(num_entries);
    if (e.test(!re, E_OUTOFMEM)) return face.error(e);
    for (size_t n = num_entries; n; --n, ++re)
    {
        const ptrdiff_t rn = be::read<uint16>(rule_map);
        if (e.test(rn >= m_numRules, E_BADRULENUM))  return face.error(e);
        re->rule = m_rules + rn;
    }

    return true;
}

static int cmpRuleEntry(const void *a, const void *b) { return (*(RuleEntry *)a < *(RuleEntry *)b ? -1 :
                                                                (*(RuleEntry *)b < *(RuleEntry *)a ? 1 : 0)); }

bool Pass::readStates(const byte * starts, const byte *states, const byte * o_rule_map, GR_MAYBE_UNUSED Face & face, Error &e)
{
#ifdef GRAPHITE2_TELEMETRY
    telemetry::category _states_cat(face.tele.starts);
#endif
    m_startStates = gralloc<uint16>(m_maxPreCtxt - m_minPreCtxt + 1);
#ifdef GRAPHITE2_TELEMETRY
    telemetry::set_category(face.tele.states);
#endif
    m_states      = gralloc<State>(m_numStates);
#ifdef GRAPHITE2_TELEMETRY
    telemetry::set_category(face.tele.transitions);
#endif
    m_transitions      = gralloc<uint16>(m_numTransition * m_numColumns);

    if (e.test(!m_startStates || !m_states || !m_transitions, E_OUTOFMEM)) return face.error(e);
    // load start states
    for (uint16 * s = m_startStates,
                * const s_end = s + m_maxPreCtxt - m_minPreCtxt + 1; s != s_end; ++s)
    {
        *s = be::read<uint16>(starts);
        if (e.test(*s >= m_numStates, E_BADSTATE))
        {
            face.error_context((face.error_context() & 0xFFFF00) + EC_ASTARTS + ((s - m_startStates) << 24));
            return face.error(e); // true;
        }
    }

    // load state transition table.
    for (uint16 * t = m_transitions,
                * const t_end = t + m_numTransition*m_numColumns; t != t_end; ++t)
    {
        *t = be::read<uint16>(states);
        if (e.test(*t >= m_numStates, E_BADSTATE))
        {
            face.error_context((face.error_context() & 0xFFFF00) + EC_ATRANS + (((t - m_transitions) / m_numColumns) << 24));
            return face.error(e);
        }
    }

    State * s = m_states,
          * const success_begin = m_states + m_numStates - m_numSuccess;
    const RuleEntry * rule_map_end = m_ruleMap + be::peek<uint16>(o_rule_map + m_numSuccess*sizeof(uint16));
    for (size_t n = m_numStates; n; --n, ++s)
    {
        RuleEntry * const begin = s < success_begin ? 0 : m_ruleMap + be::read<uint16>(o_rule_map),
                  * const end   = s < success_begin ? 0 : m_ruleMap + be::peek<uint16>(o_rule_map);

        if (e.test(begin >= rule_map_end || end > rule_map_end || begin > end, E_BADRULEMAPPING))
        {
            face.error_context((face.error_context() & 0xFFFF00) + EC_ARULEMAP + (n << 24));
            return face.error(e);
        }
        s->rules = begin;
        s->rules_end = (end - begin <= FiniteStateMachine::MAX_RULES)? end :
            begin + FiniteStateMachine::MAX_RULES;
        qsort(begin, end - begin, sizeof(RuleEntry), &cmpRuleEntry);
    }

    return true;
}

bool Pass::readRanges(const byte * ranges, size_t num_ranges, Error &e)
{
    m_cols = gralloc<uint16>(m_numGlyphs);
    if (e.test(!m_cols, E_OUTOFMEM)) return false;
    memset(m_cols, 0xFF, m_numGlyphs * sizeof(uint16));
    for (size_t n = num_ranges; n; --n)
    {
        uint16     * ci     = m_cols + be::read<uint16>(ranges),
                   * ci_end = m_cols + be::read<uint16>(ranges) + 1,
                     col    = be::read<uint16>(ranges);

        if (e.test(ci >= ci_end || ci_end > m_cols+m_numGlyphs || col >= m_numColumns, E_BADRANGE))
            return false;

        // A glyph must only belong to one column at a time
        while (ci != ci_end && *ci == 0xffff)
            *ci++ = col;

        if (e.test(ci != ci_end, E_BADRANGE))
            return false;
    }
    return true;
}


bool Pass::runGraphite(vm::Machine & m, FiniteStateMachine & fsm, bool reverse) const
{
    Slot *s = m.slotMap().segment.first();
    if (!s || !testPassConstraint(m)) return true;
    if (reverse)
    {
        m.slotMap().segment.reverseSlots();
        s = m.slotMap().segment.first();
    }
    if (m_numRules)
    {
        Slot *currHigh = s->next();

#if !defined GRAPHITE2_NTRACING
        if (fsm.dbgout)  *fsm.dbgout << "rules" << json::array;
        json::closer rules_array_closer(fsm.dbgout);
#endif

        m.slotMap().highwater(currHigh);
        int lc = m_iMaxLoop;
        do
        {
            findNDoRule(s, m, fsm);
            if (s && (s == m.slotMap().highwater() || m.slotMap().highpassed() || --lc == 0)) {
                if (!lc)
                    s = m.slotMap().highwater();
                lc = m_iMaxLoop;
                if (s)
                    m.slotMap().highwater(s->next());
            }
        } while (s);
    }
    //TODO: Use enums for flags
    const bool collisions = m_numCollRuns || m_kernColls;

    if (!collisions || !m.slotMap().segment.hasCollisionInfo())
        return true;

    if (m_numCollRuns)
    {
        if (!(m.slotMap().segment.flags() & Segment::SEG_INITCOLLISIONS))
        {
            m.slotMap().segment.positionSlots(0, 0, 0, m.slotMap().dir(), true);
//            m.slotMap().segment.flags(m.slotMap().segment.flags() | Segment::SEG_INITCOLLISIONS);
        }
        if (!collisionShift(&m.slotMap().segment, m.slotMap().dir(), fsm.dbgout))
            return false;
    }
    if ((m_kernColls) && !collisionKern(&m.slotMap().segment, m.slotMap().dir(), fsm.dbgout))
        return false;
    if (collisions && !collisionFinish(&m.slotMap().segment, fsm.dbgout))
        return false;
    return true;
}

bool Pass::runFSM(FiniteStateMachine& fsm, Slot * slot) const
{
    fsm.reset(slot, m_maxPreCtxt);
    if (fsm.slots.context() < m_minPreCtxt)
        return false;

    uint16 state = m_startStates[m_maxPreCtxt - fsm.slots.context()];
    uint8  free_slots = SlotMap::MAX_SLOTS;
    do
    {
        fsm.slots.pushSlot(slot);
        if (--free_slots == 0
         || slot->gid() >= m_numGlyphs
         || m_cols[slot->gid()] == 0xffffU
         || state >= m_numTransition)
            return free_slots != 0;

        const uint16 * transitions = m_transitions + state*m_numColumns;
        state = transitions[m_cols[slot->gid()]];
        if (state >= m_successStart)
            fsm.rules.accumulate_rules(m_states[state]);

        slot = slot->next();
    } while (state != 0 && slot);

    fsm.slots.pushSlot(slot);
    return true;
}

#if !defined GRAPHITE2_NTRACING

inline
Slot * input_slot(const SlotMap &  slots, const int n)
{
    Slot * s = slots[slots.context() + n];
    if (!s->isCopied())     return s;

    return s->prev() ? s->prev()->next() : (s->next() ? s->next()->prev() : slots.segment.last());
}

inline
Slot * output_slot(const SlotMap &  slots, const int n)
{
    Slot * s = slots[slots.context() + n - 1];
    return s ? s->next() : slots.segment.first();
}

#endif //!defined GRAPHITE2_NTRACING

void Pass::findNDoRule(Slot * & slot, Machine &m, FiniteStateMachine & fsm) const
{
    assert(slot);

    if (runFSM(fsm, slot))
    {
        // Search for the first rule which passes the constraint
        const RuleEntry *        r = fsm.rules.begin(),
                        * const re = fsm.rules.end();
        while (r != re && !testConstraint(*r->rule, m)) ++r;

#if !defined GRAPHITE2_NTRACING
        if (fsm.dbgout)
        {
            if (fsm.rules.size() != 0)
            {
                *fsm.dbgout << json::item << json::object;
                dumpRuleEventConsidered(fsm, *r);
                if (r != re)
                {
                    const int adv = doAction(r->rule->action, slot, m);
                    dumpRuleEventOutput(fsm, m, *r->rule, slot);
                    if (r->rule->action->deletes()) fsm.slots.collectGarbage(slot);
                    adjustSlot(adv, slot, fsm.slots);
                    *fsm.dbgout << "cursor" << objectid(dslot(&fsm.slots.segment, slot))
                            << json::close; // Close RuelEvent object

                    return;
                }
                else
                {
                    *fsm.dbgout << json::close  // close "considered" array
                            << "output" << json::null
                            << "cursor" << objectid(dslot(&fsm.slots.segment, slot->next()))
                            << json::close;
                }
            }
        }
        else
#endif
        {
            if (r != re)
            {
                const int adv = doAction(r->rule->action, slot, m);
                if (r->rule->action->deletes()) fsm.slots.collectGarbage(slot);
                adjustSlot(adv, slot, fsm.slots);
                return;
            }
        }
    }

    slot = slot->next();
    return;
}

#if !defined GRAPHITE2_NTRACING

void Pass::dumpRuleEventConsidered(const FiniteStateMachine & fsm, const RuleEntry & re) const
{
    *fsm.dbgout << "considered" << json::array;
    for (const RuleEntry *r = fsm.rules.begin(); r != &re; ++r)
    {
        if (r->rule->preContext > fsm.slots.context())
            continue;
        *fsm.dbgout << json::flat << json::object
                    << "id" << r->rule - m_rules
                    << "failed" << true
                    << "input" << json::flat << json::object
                        << "start" << objectid(dslot(&fsm.slots.segment, input_slot(fsm.slots, -r->rule->preContext)))
                        << "length" << r->rule->sort
                        << json::close  // close "input"
                    << json::close; // close Rule object
    }
}


void Pass::dumpRuleEventOutput(const FiniteStateMachine & fsm, Machine & m, const Rule & r, Slot * const last_slot) const
{
    *fsm.dbgout     << json::item << json::flat << json::object
                        << "id"     << &r - m_rules
                        << "failed" << false
                        << "input" << json::flat << json::object
                            << "start" << objectid(dslot(&fsm.slots.segment, input_slot(fsm.slots, 0)))
                            << "length" << r.sort - r.preContext
                            << json::close // close "input"
                        << json::close  // close Rule object
                << json::close // close considered array
                << "output" << json::object
                    << "range" << json::flat << json::object
                        << "start"  << objectid(dslot(&fsm.slots.segment, input_slot(fsm.slots, 0)))
                        << "end"    << objectid(dslot(&fsm.slots.segment, last_slot))
                    << json::close // close "input"
                    << "slots"  << json::array;
    const Position rsb_prepos = last_slot ? last_slot->origin() : fsm.slots.segment.advance();
    fsm.slots.segment.positionSlots(0, 0, 0, m.slotMap().dir());

    for(Slot * slot = output_slot(fsm.slots, 0); slot != last_slot; slot = slot->next())
        *fsm.dbgout     << dslot(&fsm.slots.segment, slot);
    *fsm.dbgout         << json::close  // close "slots"
                    << "postshift"  << (last_slot ? last_slot->origin() : fsm.slots.segment.advance()) - rsb_prepos
                << json::close;         // close "output" object

}

#endif


inline
bool Pass::testPassConstraint(Machine & m) const
{
    if (!m_cPConstraint) return true;

    assert(m_cPConstraint.constraint());

    m.slotMap().reset(*m.slotMap().segment.first(), 0);
    m.slotMap().pushSlot(m.slotMap().segment.first());
    vm::slotref * map = m.slotMap().begin();
    const uint32 ret = m_cPConstraint.run(m, map);

#if !defined GRAPHITE2_NTRACING
    json * const dbgout = m.slotMap().segment.getFace()->logger();
    if (dbgout)
        *dbgout << "constraint" << (ret && m.status() == Machine::finished);
#endif

    return ret && m.status() == Machine::finished;
}


bool Pass::testConstraint(const Rule & r, Machine & m) const
{
    const uint16 curr_context = m.slotMap().context();
    if (unsigned(r.sort - r.preContext) > m.slotMap().size() - curr_context
        || curr_context - r.preContext < 0) return false;
    if (!*r.constraint) return true;
    assert(r.constraint->constraint());

    vm::slotref * map = m.slotMap().begin() + curr_context - r.preContext;
    for (int n = r.sort; n && map; --n, ++map)
    {
        if (!*map) continue;
        const int32 ret = r.constraint->run(m, map);
        if (!ret || m.status() != Machine::finished)
            return false;
    }

    return true;
}


void SlotMap::collectGarbage(Slot * &aSlot)
{
    for(Slot **s = begin(), *const *const se = end() - 1; s != se; ++s) {
        Slot *& slot = *s;
        if(slot->isDeleted() || slot->isCopied())
        {
            if (slot == aSlot)
                aSlot = slot->prev() ? slot->prev() : slot->next();
            segment.freeSlot(slot);
        }
    }
}



int Pass::doAction(const Code *codeptr, Slot * & slot_out, vm::Machine & m) const
{
    assert(codeptr);
    if (!*codeptr) return 0;
    SlotMap   & smap = m.slotMap();
    vm::slotref * map = &smap[smap.context()];
    smap.highpassed(false);

    int32 ret = codeptr->run(m, map);

    if (m.status() != Machine::finished)
    {
        slot_out = NULL;
        smap.highwater(0);
        return 0;
    }

    slot_out = *map;
    return ret;
}


void Pass::adjustSlot(int delta, Slot * & slot_out, SlotMap & smap) const
{
    if (!slot_out)
    {
        if (smap.highpassed() || slot_out == smap.highwater())
        {
            slot_out = smap.segment.last();
            ++delta;
            if (!smap.highwater())
                smap.highpassed(false);
        }
        else
        {
            slot_out = smap.segment.first();
            --delta;
        }
    }
    if (delta < 0)
    {
        while (++delta <= 0 && slot_out)
        {
            if (smap.highpassed() && smap.highwater() == slot_out)
                smap.highpassed(false);
            slot_out = slot_out->prev();
        }
    }
    else if (delta > 0)
    {
        while (--delta >= 0 && slot_out)
        {
            slot_out = slot_out->next();
            if (slot_out == smap.highwater() && slot_out)
                smap.highpassed(true);
        }
    }
}

bool Pass::collisionShift(Segment *seg, int dir, json * const dbgout) const
{
    ShiftCollider shiftcoll(dbgout);
    // bool isfirst = true;
    bool hasCollisions = false;
    Slot *start = seg->first();      // turn on collision fixing for the first slot
    Slot *end = NULL;
    bool moved = false;

#if !defined GRAPHITE2_NTRACING
    if (dbgout)
        *dbgout << "collisions" << json::array
            << json::flat << json::object << "num-loops" << m_numCollRuns << json::close;
#endif

    while (start)
    {
#if !defined GRAPHITE2_NTRACING
        if (dbgout)  *dbgout << json::object << "phase" << "1" << "moves" << json::array;
#endif
        hasCollisions = false;
        end = NULL;
        // phase 1 : position shiftable glyphs, ignoring kernable glyphs
        for (Slot *s = start; s; s = s->next())
        {
            const SlotCollision * c = seg->collisionInfo(s);
            if (start && (c->flags() & (SlotCollision::COLL_FIX | SlotCollision::COLL_KERN)) == SlotCollision::COLL_FIX
                      && !resolveCollisions(seg, s, start, shiftcoll, false, dir, moved, hasCollisions, dbgout))
                return false;
            if (s != start && (c->flags() & SlotCollision::COLL_END))
            {
                end = s->next();
                break;
            }
        }

#if !defined GRAPHITE2_NTRACING
        if (dbgout)
            *dbgout << json::close << json::close; // phase-1
#endif

        // phase 2 : loop until happy. 
        for (int i = 0; i < m_numCollRuns - 1; ++i)
        {
            if (hasCollisions || moved)
            {

#if !defined GRAPHITE2_NTRACING
                if (dbgout)
                    *dbgout << json::object << "phase" << "2a" << "loop" << i << "moves" << json::array;
#endif
                // phase 2a : if any shiftable glyphs are in collision, iterate backwards,
                // fixing them and ignoring other non-collided glyphs. Note that this handles ONLY
                // glyphs that are actually in collision from phases 1 or 2b, and working backwards
                // has the intended effect of breaking logjams.
                if (hasCollisions)
                {
                    hasCollisions = false;
                    #if 0
                    moved = true;
                    for (Slot *s = start; s != end; s = s->next())
                    {
                        SlotCollision * c = seg->collisionInfo(s);
                        c->setShift(Position(0, 0));
                    }
                    #endif
                    Slot *lend = end ? end->prev() : seg->last();
                    Slot *lstart = start->prev();
                    for (Slot *s = lend; s != lstart; s = s->prev())
                    {
                        SlotCollision * c = seg->collisionInfo(s);
                        if (start && (c->flags() & (SlotCollision::COLL_FIX | SlotCollision::COLL_KERN | SlotCollision::COLL_ISCOL))
                                        == (SlotCollision::COLL_FIX | SlotCollision::COLL_ISCOL)) // ONLY if this glyph is still colliding
                        {
                            if (!resolveCollisions(seg, s, lend, shiftcoll, true, dir, moved, hasCollisions, dbgout))
                                return false;
                            c->setFlags(c->flags() | SlotCollision::COLL_TEMPLOCK);
                        }
                    }
                }

#if !defined GRAPHITE2_NTRACING
                if (dbgout)
                    *dbgout << json::close << json::close // phase 2a
                        << json::object << "phase" << "2b" << "loop" << i << "moves" << json::array;
#endif

                // phase 2b : redo basic diacritic positioning pass for ALL glyphs. Each successive loop adjusts 
                // glyphs from their current adjusted position, which has the effect of gradually minimizing the  
                // resulting adjustment; ie, the final result will be gradually closer to the original location.  
                // Also it allows more flexibility in the final adjustment, since it is moving along the  
                // possible 8 vectors from successively different starting locations.
                if (moved)
                {
                    moved = false;
                    for (Slot *s = start; s != end; s = s->next())
                    {
                        SlotCollision * c = seg->collisionInfo(s);
                        if (start && (c->flags() & (SlotCollision::COLL_FIX | SlotCollision::COLL_TEMPLOCK
                                                        | SlotCollision::COLL_KERN)) == SlotCollision::COLL_FIX
                                  && !resolveCollisions(seg, s, start, shiftcoll, false, dir, moved, hasCollisions, dbgout))
                            return false;
                        else if (c->flags() & SlotCollision::COLL_TEMPLOCK)
                            c->setFlags(c->flags() & ~SlotCollision::COLL_TEMPLOCK);
                    }
                }
        //      if (!hasCollisions) // no, don't leave yet because phase 2b will continue to improve things
        //          break;
#if !defined GRAPHITE2_NTRACING
                if (dbgout)
                    *dbgout << json::close << json::close; // phase 2
#endif
            }
        }
        if (!end)
            break;
        start = NULL;
        for (Slot *s = end->prev(); s; s = s->next())
        {
            if (seg->collisionInfo(s)->flags() & SlotCollision::COLL_START)
            {
                start = s;
                break;
            }
        }
    }
    return true;
}

bool Pass::collisionKern(Segment *seg, int dir, json * const dbgout) const
{
    KernCollider kerncoll(dbgout);
    Slot *start = seg->first();
    float ymin = 1e38f;
    float ymax = -1e38f;
    const GlyphCache &gc = seg->getFace()->glyphs();

    // phase 3 : handle kerning of clusters
#if !defined GRAPHITE2_NTRACING
    if (dbgout)
        *dbgout << json::object << "phase" << "3" << "moves" << json::array;
#endif

    for (Slot *s = seg->first(); s; s = s->next())
    {
        if (!gc.check(s->gid()))
            return false;
        const SlotCollision * c = seg->collisionInfo(s);
        const Rect &bbox = seg->theGlyphBBoxTemporary(s->gid());
        float y = s->origin().y + c->shift().y;
        ymax = max(y + bbox.tr.y, ymax);
        ymin = min(y + bbox.bl.y, ymin);
        if (start && (c->flags() & (SlotCollision::COLL_KERN | SlotCollision::COLL_FIX))
                        == (SlotCollision::COLL_KERN | SlotCollision::COLL_FIX))
            resolveKern(seg, s, start, kerncoll, dir, ymin, ymax, dbgout);
        if (c->flags() & SlotCollision::COLL_END)
            start = NULL;
        if (c->flags() & SlotCollision::COLL_START)
            start = s;
    }

#if !defined GRAPHITE2_NTRACING
    if (dbgout)
        *dbgout << json::close << json::close; // phase 3
#endif
    return true;
}

bool Pass::collisionFinish(Segment *seg, GR_MAYBE_UNUSED json * const dbgout) const
{
    for (Slot *s = seg->first(); s; s = s->next())
    {
        SlotCollision *c = seg->collisionInfo(s);
        if (c->shift().x != 0 || c->shift().y != 0)
        {
            const Position newOffset = c->shift();
            const Position nullPosition(0, 0);
            c->setOffset(newOffset + c->offset());
            c->setShift(nullPosition);
        }
    }
//    seg->positionSlots();

#if !defined GRAPHITE2_NTRACING
        if (dbgout)
            *dbgout << json::close;
#endif
    return true;
}

// Can slot s be kerned, or is it attached to something that can be kerned?
static bool inKernCluster(Segment *seg, Slot *s)
{
    SlotCollision *c = seg->collisionInfo(s);
    if (c->flags() & SlotCollision::COLL_KERN /** && c->flags() & SlotCollision::COLL_FIX **/ )
        return true;
    while (s->attachedTo())
    {
        s = s->attachedTo();
        c = seg->collisionInfo(s);
        if (c->flags() & SlotCollision::COLL_KERN /** && c->flags() & SlotCollision::COLL_FIX **/ )
            return true;
    }
    return false;
}

// Fix collisions for the given slot.
// Return true if everything was fixed, false if there are still collisions remaining.
// isRev means be we are processing backwards.
bool Pass::resolveCollisions(Segment *seg, Slot *slotFix, Slot *start,
        ShiftCollider &coll, GR_MAYBE_UNUSED bool isRev, int dir, bool &moved, bool &hasCol,
        json * const dbgout) const
{
    Slot * nbor;  // neighboring slot
    SlotCollision *cFix = seg->collisionInfo(slotFix);
    if (!coll.initSlot(seg, slotFix, cFix->limit(), cFix->margin(), cFix->marginWt(),
            cFix->shift(), cFix->offset(), dir, dbgout))
        return false;
    bool collides = false;
    // When we're processing forward, ignore kernable glyphs that preceed the target glyph.
    // When processing backward, don't ignore these until we pass slotFix.
    bool ignoreForKern = !isRev;
    bool rtl = dir & 1;
    Slot *base = slotFix;
    while (base->attachedTo())
        base = base->attachedTo();
    Position zero(0., 0.);
    
    // Look for collisions with the neighboring glyphs.
    for (nbor = start; nbor; nbor = isRev ? nbor->prev() : nbor->next())
    {
        SlotCollision *cNbor = seg->collisionInfo(nbor);
        bool sameCluster = nbor->isChildOf(base);
        if (nbor != slotFix         // don't process if this is the slot of interest
                      && !(cNbor->flags() & SlotCollision::COLL_IGNORE)    // don't process if ignoring
                      && (nbor == base || sameCluster       // process if in the same cluster as slotFix
                            || !inKernCluster(seg, nbor)    // or this cluster is not to be kerned
                            || (rtl ^ ignoreForKern))       // or it comes before(ltr) or after(rtl)
                      && (!isRev    // if processing forwards then good to merge otherwise only:
                            || !(cNbor->flags() & SlotCollision::COLL_FIX)     // merge in immovable stuff
                            || ((cNbor->flags() & SlotCollision::COLL_KERN) && !sameCluster)     // ignore other kernable clusters
                            || (cNbor->flags() & SlotCollision::COLL_ISCOL))   // test against other collided glyphs
                      && !coll.mergeSlot(seg, nbor, cNbor->shift(), !ignoreForKern, sameCluster, collides, false, dbgout))
            return false;
        else if (nbor == slotFix)
            // Switching sides of this glyph - if we were ignoring kernable stuff before, don't anymore.
            ignoreForKern = !ignoreForKern;
            
        if (nbor != start && (cNbor->flags() & (isRev ? SlotCollision::COLL_START : SlotCollision::COLL_END)))
            break;
    }
    bool isCol = false;
    if (collides || cFix->shift().x != 0.f || cFix->shift().y != 0.f)
    {
        Position shift = coll.resolve(seg, isCol, dbgout);
        // isCol has been set to true if a collision remains.
        if (std::fabs(shift.x) < 1e38f && std::fabs(shift.y) < 1e38f)
        {
            if (sqr(shift.x-cFix->shift().x) + sqr(shift.y-cFix->shift().y) >= m_colThreshold * m_colThreshold)
                moved = true;
            cFix->setShift(shift);
            if (slotFix->firstChild())
            {
                Rect bbox;
                Position here = slotFix->origin() + shift;
                float clusterMin = here.x;
                slotFix->firstChild()->finalise(seg, NULL, here, bbox, 0, clusterMin, rtl, false);
            }
        }
    }
    else
    {
        // This glyph is not colliding with anything.
#if !defined GRAPHITE2_NTRACING
        if (dbgout)
        {
            *dbgout << json::object 
                            << "missed" << objectid(dslot(seg, slotFix));
            coll.outputJsonDbg(dbgout, seg, -1);
            *dbgout << json::close;
        }
#endif
    }

    // Set the is-collision flag bit.
    if (isCol)
    { cFix->setFlags(cFix->flags() | SlotCollision::COLL_ISCOL | SlotCollision::COLL_KNOWN); }
    else
    { cFix->setFlags((cFix->flags() & ~SlotCollision::COLL_ISCOL) | SlotCollision::COLL_KNOWN); }
    hasCol |= isCol;
    return true;
}

float Pass::resolveKern(Segment *seg, Slot *slotFix, GR_MAYBE_UNUSED Slot *start, KernCollider &coll, int dir,
    float &ymin, float &ymax, json *const dbgout) const
{
    Slot *nbor; // neighboring slot
    float currSpace = 0.;
    bool collides = false;
    unsigned int space_count = 0;
    Slot *base = slotFix;
    while (base->attachedTo())
        base = base->attachedTo();
    SlotCollision *cFix = seg->collisionInfo(base);
    const GlyphCache &gc = seg->getFace()->glyphs();

    if (base != slotFix)
    {
        cFix->setFlags(cFix->flags() | SlotCollision::COLL_KERN | SlotCollision::COLL_FIX);
        return 0;
    }
    bool seenEnd = (cFix->flags() & SlotCollision::COLL_END) != 0;
    bool isInit = false;

    for (nbor = slotFix->next(); nbor; nbor = nbor->next())
    {
        if (nbor->isChildOf(base))
            continue;
        if (!gc.check(nbor->gid()))
            return 0.;
        const Rect &bb = seg->theGlyphBBoxTemporary(nbor->gid());
        SlotCollision *cNbor = seg->collisionInfo(nbor);
        if (bb.bl.y == 0.f && bb.tr.y == 0.f)
        {
            if (m_kernColls == InWord)
                break;
            // Add space for a space glyph.
            currSpace += nbor->advance();
            ++space_count;
        }
        else
        {
            space_count = 0; 
            float y = nbor->origin().y + cNbor->shift().y;
            ymax = max(y + bb.tr.y, ymax);
            ymin = min(y + bb.bl.y, ymin);
            if (nbor != slotFix && !(cNbor->flags() & SlotCollision::COLL_IGNORE))
            {
                seenEnd = true;
                if (!isInit)
                {
                    if (!coll.initSlot(seg, slotFix, cFix->limit(), cFix->margin(),
                                    cFix->shift(), cFix->offset(), dir, ymin, ymax, dbgout))
                        return 0.;
                    isInit = true;
                }
                collides |= coll.mergeSlot(seg, nbor, cNbor->shift(), currSpace, dir, dbgout);
            }
        }
        if (cNbor->flags() & SlotCollision::COLL_END)
        {
            if (seenEnd && space_count < 2)
                break;
            else
                seenEnd = true;
        }
    }
    if (collides)
    {
        Position mv = coll.resolve(seg, slotFix, dir, cFix->margin(), dbgout);
        coll.shift(mv, dir);
        Position delta = slotFix->advancePos() + mv - cFix->shift();
        slotFix->advance(delta);
        cFix->setShift(mv);
        return mv.x;
    }
    return 0.;
}