1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
/* Functions needed for bootstrapping the gmp build, based on mini-gmp.
Copyright 2001, 2002, 2004, 2011, 2012 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any
later version.
or both in parallel, as here.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the GNU MP Library. If not,
see https://www.gnu.org/licenses/. */
#include "mini-gmp/mini-gmp.c"
#define MIN(l,o) ((l) < (o) ? (l) : (o))
#define PTR(x) ((x)->_mp_d)
#define SIZ(x) ((x)->_mp_size)
#define xmalloc gmp_default_alloc
int
isprime (unsigned long int t)
{
unsigned long int q, r, d;
if (t < 32)
return (0xa08a28acUL >> t) & 1;
if ((t & 1) == 0)
return 0;
if (t % 3 == 0)
return 0;
if (t % 5 == 0)
return 0;
if (t % 7 == 0)
return 0;
for (d = 11;;)
{
q = t / d;
r = t - q * d;
if (q < d)
return 1;
if (r == 0)
break;
d += 2;
q = t / d;
r = t - q * d;
if (q < d)
return 1;
if (r == 0)
break;
d += 4;
}
return 0;
}
int
log2_ceil (int n)
{
int e;
assert (n >= 1);
for (e = 0; ; e++)
if ((1 << e) >= n)
break;
return e;
}
/* Set inv to the inverse of d, in the style of invert_limb, ie. for
udiv_qrnnd_preinv. */
void
mpz_preinv_invert (mpz_t inv, mpz_t d, int numb_bits)
{
mpz_t t;
int norm;
assert (SIZ(d) > 0);
norm = numb_bits - mpz_sizeinbase (d, 2);
assert (norm >= 0);
mpz_init_set_ui (t, 1L);
mpz_mul_2exp (t, t, 2*numb_bits - norm);
mpz_tdiv_q (inv, t, d);
mpz_set_ui (t, 1L);
mpz_mul_2exp (t, t, numb_bits);
mpz_sub (inv, inv, t);
mpz_clear (t);
}
/* Calculate r satisfying r*d == 1 mod 2^n. */
void
mpz_invert_2exp (mpz_t r, mpz_t a, unsigned long n)
{
unsigned long i;
mpz_t inv, prod;
assert (mpz_odd_p (a));
mpz_init_set_ui (inv, 1L);
mpz_init (prod);
for (i = 1; i < n; i++)
{
mpz_mul (prod, inv, a);
if (mpz_tstbit (prod, i) != 0)
mpz_setbit (inv, i);
}
mpz_mul (prod, inv, a);
mpz_tdiv_r_2exp (prod, prod, n);
assert (mpz_cmp_ui (prod, 1L) == 0);
mpz_set (r, inv);
mpz_clear (inv);
mpz_clear (prod);
}
/* Calculate inv satisfying r*a == 1 mod 2^n. */
void
mpz_invert_ui_2exp (mpz_t r, unsigned long a, unsigned long n)
{
mpz_t az;
mpz_init_set_ui (az, a);
mpz_invert_2exp (r, az, n);
mpz_clear (az);
}
|