summaryrefslogtreecommitdiff
path: root/Build/source/libs/gd/libgd-2.1.1/src/gd_matrix.c
blob: 182ea35b546dd091775bf302c1c804e0e160fb94 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif /* HAVE_CONFIG_H */

#include "gd.h"
#include <math.h>

#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif

/**
 * Title: Matrix
 * Group: Affine Matrix
 */

/**
 * Function: gdAffineApplyToPointF
 *  Applies an affine transformation to a point (floating point
 *  gdPointF)
 *
 *
 * Parameters:
 * 	dst - Where to store the resulting point
 *  affine - Source Point
 *  flip_horz - affine matrix
 *
 * Returns:
 *  GD_TRUE if the affine is rectilinear or GD_FALSE
 */
BGD_DECLARE(int) gdAffineApplyToPointF (gdPointFPtr dst, const gdPointFPtr src,
		  const double affine[6])
{
	double x = src->x;
	double y = src->y;
	dst->x = x * affine[0] + y * affine[2] + affine[4];
	dst->y = x * affine[1] + y * affine[3] + affine[5];
	return GD_TRUE;
}

/**
 * Function: gdAffineInvert
 *  Find the inverse of an affine transformation.
 *
 * All non-degenerate affine transforms are invertible. Applying the
 * inverted matrix will restore the original values. Multiplying <src>
 * by <dst> (commutative) will return the identity affine (rounding
 * error possible).
 *
 * Parameters:
 * 	dst - Where to store the resulting affine transform
 *  src_affine - Original affine matrix
 *  flip_horz - Whether or not to flip horizontally
 *  flip_vert - Whether or not to flip vertically
 *
 * See also:
 *  <gdAffineIdentity>
 *
 * Returns:
 *  GD_TRUE if the affine is rectilinear or GD_FALSE
 */
BGD_DECLARE(int) gdAffineInvert (double dst[6], const double src[6])
{
	double r_det = (src[0] * src[3] - src[1] * src[2]);

	if (r_det <= 0.0) {
		return GD_FALSE;
	}

	r_det = 1.0 / r_det;
	dst[0] = src[3] * r_det;
	dst[1] = -src[1] * r_det;
	dst[2] = -src[2] * r_det;
	dst[3] = src[0] * r_det;
	dst[4] = -src[4] * dst[0] - src[5] * dst[2];
	dst[5] = -src[4] * dst[1] - src[5] * dst[3];
	return GD_TRUE;
}

/**
 * Function: gdAffineFlip
 *  Flip an affine transformation horizontally or vertically.
 *
 * Flips the affine transform, giving GD_FALSE for <flip_horz> and
 * <flip_vert> will clone the affine matrix. GD_TRUE for both will
 * copy a 180° rotation.
 *
 * Parameters:
 * 	dst - Where to store the resulting affine transform
 *  src_affine - Original affine matrix
 *  flip_h - Whether or not to flip horizontally
 *  flip_v - Whether or not to flip vertically
 *
 * Returns:
 *  GD_TRUE on success or GD_FALSE
 */
BGD_DECLARE(int) gdAffineFlip (double dst[6], const double src[6], const int flip_h, const int flip_v)
{
	dst[0] = flip_h ? - src[0] : src[0];
	dst[1] = flip_h ? - src[1] : src[1];
	dst[2] = flip_v ? - src[2] : src[2];
	dst[3] = flip_v ? - src[3] : src[3];
	dst[4] = flip_h ? - src[4] : src[4];
	dst[5] = flip_v ? - src[5] : src[5];
	return GD_TRUE;
}

/**
 * Function: gdAffineConcat
 * Concat (Multiply) two affine transformation matrices.
 *
 * Concats two affine transforms together, i.e. the result
 * will be the equivalent of doing first the transformation m1 and then
 * m2. All parameters can be the same matrix (safe to call using
 * the same array for all three arguments).
 *
 * Parameters:
 * 	dst - Where to store the resulting affine transform
 *  m1 - First affine matrix
 *  m2 - Second affine matrix
 *
 * Returns:
 *  GD_TRUE on success or GD_FALSE
 */
BGD_DECLARE(int) gdAffineConcat (double dst[6], const double m1[6], const double m2[6])
{
	double dst0, dst1, dst2, dst3, dst4, dst5;

	dst0 = m1[0] * m2[0] + m1[1] * m2[2];
	dst1 = m1[0] * m2[1] + m1[1] * m2[3];
	dst2 = m1[2] * m2[0] + m1[3] * m2[2];
	dst3 = m1[2] * m2[1] + m1[3] * m2[3];
	dst4 = m1[4] * m2[0] + m1[5] * m2[2] + m2[4];
	dst5 = m1[4] * m2[1] + m1[5] * m2[3] + m2[5];
	dst[0] = dst0;
	dst[1] = dst1;
	dst[2] = dst2;
	dst[3] = dst3;
	dst[4] = dst4;
	dst[5] = dst5;
	return GD_TRUE;
}

/**
 * Function: gdAffineIdentity
 * Set up the identity matrix.
 *
 * Parameters:
 * 	dst - Where to store the resulting affine transform
 *
 * Returns:
 *  GD_TRUE on success or GD_FALSE
 */
BGD_DECLARE(int) gdAffineIdentity (double dst[6])
{
	dst[0] = 1;
	dst[1] = 0;
	dst[2] = 0;
	dst[3] = 1;
	dst[4] = 0;
	dst[5] = 0;
	return GD_TRUE;
}

/**
 * Function: gdAffineScale
 * Set up a scaling matrix.
 *
 * Parameters:
 * 	scale_x - X scale factor
 * 	scale_y - Y scale factor
 *
 * Returns:
 *  GD_TRUE on success or GD_FALSE
 */
BGD_DECLARE(int) gdAffineScale (double dst[6], const double scale_x, const double scale_y)
{
	dst[0] = scale_x;
	dst[1] = 0;
	dst[2] = 0;
	dst[3] = scale_y;
	dst[4] = 0;
	dst[5] = 0;
	return GD_TRUE;
}

/**
 * Function: gdAffineRotate
 * Set up a rotation affine transform.
 *
 * Like the other angle in libGD, in which increasing y moves
 * downward, this is a counterclockwise rotation.
 *
 * Parameters:
 * 	dst - Where to store the resulting affine transform
 * 	angle - Rotation angle in degrees
 *
 * Returns:
 *  GD_TRUE on success or GD_FALSE
 */
BGD_DECLARE(int) gdAffineRotate (double dst[6], const double angle)
{
	const double sin_t = sin (angle * M_PI / 180.0);
	const double cos_t = cos (angle * M_PI / 180.0);

	dst[0] = cos_t;
	dst[1] = sin_t;
	dst[2] = -sin_t;
	dst[3] = cos_t;
	dst[4] = 0;
	dst[5] = 0;
	return GD_TRUE;
}

/**
 * Function: gdAffineShearHorizontal
 * Set up a horizontal shearing matrix || becomes \\.
 *
 * Parameters:
 * 	dst - Where to store the resulting affine transform
 * 	angle - Shear angle in degrees
 *
 * Returns:
 *  GD_TRUE on success or GD_FALSE
 */
BGD_DECLARE(int) gdAffineShearHorizontal(double dst[6], const double angle)
{
	dst[0] = 1;
	dst[1] = 0;
	dst[2] = tan(angle * M_PI / 180.0);
	dst[3] = 1;
	dst[4] = 0;
	dst[5] = 0;
  	return GD_TRUE;
}

/**
 * Function: gdAffineShearVertical
 * Set up a vertical shearing matrix, columns are untouched.
 *
 * Parameters:
 * 	dst - Where to store the resulting affine transform
 * 	angle - Shear angle in degrees
 *
 * Returns:
 *  GD_TRUE on success or GD_FALSE
 */
BGD_DECLARE(int) gdAffineShearVertical(double dst[6], const double angle)
{
	dst[0] = 1;
	dst[1] = tan(angle * M_PI / 180.0);;
	dst[2] = 0;
	dst[3] = 1;
	dst[4] = 0;
	dst[5] = 0;
  	return GD_TRUE;
}

/**
 * Function: gdAffineTranslate
 * Set up a translation matrix.
 *
 * Parameters:
 * 	dst - Where to store the resulting affine transform
 * 	offset_x - Horizontal translation amount
 * 	offset_y - Vertical translation amount
 *
 * Returns:
 *  GD_TRUE on success or GD_FALSE
 */
BGD_DECLARE(int) gdAffineTranslate (double dst[6], const double offset_x, const double offset_y)
{
	dst[0] = 1;
	dst[1] = 0;
	dst[2] = 0;
	dst[3] = 1;
	dst[4] = offset_x;
	dst[5] = offset_y;
    return GD_TRUE;
}

/**
 * gdAffineexpansion: Find the affine's expansion factor.
 * @src: The affine transformation.
 *
 * Finds the expansion factor, i.e. the square root of the factor
 * by which the affine transform affects area. In an affine transform
 * composed of scaling, rotation, shearing, and translation, returns
 * the amount of scaling.
 *
 *  GD_TRUE on success or GD_FALSE
 **/
BGD_DECLARE(double) gdAffineExpansion (const double src[6])
{
  return sqrt (fabs (src[0] * src[3] - src[1] * src[2]));
}

/**
 * Function: gdAffineRectilinear
 * Determines whether the affine transformation is axis aligned. A
 * tolerance has been implemented using GD_EPSILON.
 *
 * Parameters:
 * 	m - The affine transformation
 *
 * Returns:
 *  GD_TRUE if the affine is rectilinear or GD_FALSE
 */
BGD_DECLARE(int) gdAffineRectilinear (const double m[6])
{
  return ((fabs (m[1]) < GD_EPSILON && fabs (m[2]) < GD_EPSILON) ||
	  (fabs (m[0]) < GD_EPSILON && fabs (m[3]) < GD_EPSILON));
}

/**
 * Function: gdAffineEqual
 * Determines whether two affine transformations are equal. A tolerance
 * has been implemented using GD_EPSILON.
 *
 * Parameters:
 * 	m1 - The first affine transformation
 * 	m2 - The first affine transformation
 *
 * Returns:
 * 	GD_TRUE on success or GD_FALSE
 */
BGD_DECLARE(int) gdAffineEqual (const double m1[6], const double m2[6])
{
  return (fabs (m1[0] - m2[0]) < GD_EPSILON &&
	  fabs (m1[1] - m2[1]) < GD_EPSILON &&
	  fabs (m1[2] - m2[2]) < GD_EPSILON &&
	  fabs (m1[3] - m2[3]) < GD_EPSILON &&
	  fabs (m1[4] - m2[4]) < GD_EPSILON &&
	  fabs (m1[5] - m2[5]) < GD_EPSILON);
}