summaryrefslogtreecommitdiff
path: root/Build/source/libs/gd/libgd-2.1.0/src/gd_nnquant.c
blob: c4b43d6ea35eb77da23ec9d0e07c5dae3972e845 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/* NeuQuant Neural-Net Quantization Algorithm
 * ------------------------------------------
 *
 * Copyright (c) 1994 Anthony Dekker
 *
 * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
 * See "Kohonen neural networks for optimal colour quantization"
 * in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
 * for a discussion of the algorithm.
 * See also  http://members.ozemail.com.au/~dekker/NEUQUANT.HTML
 *
 * Any party obtaining a copy of these files from the author, directly or
 * indirectly, is granted, free of charge, a full and unrestricted irrevocable,
 * world-wide, paid up, royalty-free, nonexclusive right and license to deal
 * in this software and documentation files (the "Software"), including without
 * limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons who receive
 * copies from any such party to do so, with the only requirement being
 * that this copyright notice remain intact.
 *
 *
 * Modified to process 32bit RGBA images.
 * Stuart Coyle 2004-2007
 * From: http://pngnq.sourceforge.net/
 *
 * Ported to libgd by Pierre A. Joye
 * (and make it thread safety by droping static and  global variables)
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif /* HAVE_CONFIG_H */

#include <stdlib.h>
#include <string.h>
#include "gd.h"
#include "gdhelpers.h"
#include "gd_errors.h"

#include "gd_nnquant.h"

/* Network Definitions
   ------------------- */

#define maxnetpos	(MAXNETSIZE-1)
#define netbiasshift	4			/* bias for colour values */
#define ncycles		100			/* no. of learning cycles */

/* defs for freq and bias */
#define intbiasshift    16			/* bias for fractions */
#define intbias		(((int) 1)<<intbiasshift)
#define gammashift  	10			/* gamma = 1024 */
#define gamma   	(((int) 1)<<gammashift)
#define betashift  	10
#define beta		(intbias>>betashift)	/* beta = 1/1024 */
#define betagamma	(intbias<<(gammashift-betashift))

/* defs for decreasing radius factor */
#define initrad		(MAXNETSIZE>>3)		/* for 256 cols, radius starts */
#define radiusbiasshift	6			/* at 32.0 biased by 6 bits */
#define radiusbias	(((int) 1)<<radiusbiasshift)
#define initradius	(initrad*radiusbias)	/* and decreases by a */
#define radiusdec	30			/* factor of 1/30 each cycle */

/* defs for decreasing alpha factor */
#define alphabiasshift	10			/* alpha starts at 1.0 */
#define initalpha	(((int) 1)<<alphabiasshift)
int alphadec;

/* radbias and alpharadbias used for radpower calculation */
#define radbiasshift	8
#define radbias		(((int) 1)<<radbiasshift)
#define alpharadbshift  (alphabiasshift+radbiasshift)
#define alpharadbias    (((int) 1)<<alpharadbshift)

#define ALPHA 0
#define RED 1
#define BLUE 2
#define GREEN 3

typedef int nq_pixel[5];

typedef struct {
	/* biased by 10 bits */
	int alphadec;

	/* lengthcount = H*W*3 */
	int lengthcount;

	/* sampling factor 1..30 */
	int samplefac;

	/* Number of colours to use. Made a global instead of #define */
	int netsize;

	/* for network lookup - really 256 */
	int netindex[256];

	/* ABGRc */
	/* the network itself */
	nq_pixel network[MAXNETSIZE];

	/* bias and freq arrays for learning */
	int bias[MAXNETSIZE];
	int freq[MAXNETSIZE];

	/* radpower for precomputation */
	int radpower[initrad];

	/* the input image itself */
	unsigned char *thepicture;
} nn_quant;

/* Initialise network in range (0,0,0,0) to (255,255,255,255) and set parameters
   ----------------------------------------------------------------------- */
void initnet(nnq, thepic, len, sample, colours)
nn_quant *nnq;
unsigned char *thepic;
int len;
int sample;
int colours;
{
	register int i;
	register int *p;

	/* Clear out network from previous runs */
	/* thanks to Chen Bin for this fix */
	memset((void*)nnq->network, 0, sizeof(nq_pixel)*MAXNETSIZE);

	nnq->thepicture = thepic;
	nnq->lengthcount = len;
	nnq->samplefac = sample;
	nnq->netsize = colours;

	for (i=0; i < nnq->netsize; i++) {
		p = nnq->network[i];
		p[0] = p[1] = p[2] = p[3] = (i << (netbiasshift+8)) / nnq->netsize;
		nnq->freq[i] = intbias / nnq->netsize;	/* 1/netsize */
		nnq->bias[i] = 0;
	}
}

/* -------------------------- */

/* Unbias network to give byte values 0..255 and record
 * position i to prepare for sort
 */
/* -------------------------- */

void unbiasnet(nn_quant *nnq)
{
	int i,j,temp;

	for (i=0; i < nnq->netsize; i++) {
		for (j=0; j<4; j++) {
			/* OLD CODE: network[i][j] >>= netbiasshift; */
			/* Fix based on bug report by Juergen Weigert jw@suse.de */
			temp = (nnq->network[i][j] + (1 << (netbiasshift - 1))) >> netbiasshift;
			if (temp > 255) temp = 255;
			nnq->network[i][j] = temp;
		}
		nnq->network[i][4] = i;			/* record colour no */
	}
}

/* Output colour map
	 ----------------- */
void writecolourmap(nnq, f)
nn_quant *nnq;
FILE *f;
{
	int i,j;

	for (i=3; i>=0; i--)
		for (j=0; j < nnq->netsize; j++)
			putc(nnq->network[j][i], f);
}

/* Output colormap to unsigned char ptr in RGBA format */
void getcolormap(nnq, map)
nn_quant *nnq;
unsigned char *map;
{
	int i,j;
	for(j=0; j < nnq->netsize; j++) {
		for (i=3; i>=0; i--) {
			*map = nnq->network[j][i];
			map++;
		}
	}
}

/* Insertion sort of network and building of netindex[0..255] (to do after unbias)
   ------------------------------------------------------------------------------- */
void inxbuild(nn_quant *nnq)
{
	register int i,j,smallpos,smallval;
	register int *p,*q;
	int previouscol,startpos;

	previouscol = 0;
	startpos = 0;
	for (i=0; i < nnq->netsize; i++) {
		p = nnq->network[i];
		smallpos = i;
		smallval = p[2];			/* index on g */
		/* find smallest in i..netsize-1 */
		for (j=i+1; j < nnq->netsize; j++) {
			q = nnq->network[j];
			if (q[2] < smallval) {		/* index on g */
				smallpos = j;
				smallval = q[2];	/* index on g */
			}
		}
		q = nnq->network[smallpos];
		/* swap p (i) and q (smallpos) entries */
		if (i != smallpos) {
			j = q[0];
			q[0] = p[0];
			p[0] = j;
			j = q[1];
			q[1] = p[1];
			p[1] = j;
			j = q[2];
			q[2] = p[2];
			p[2] = j;
			j = q[3];
			q[3] = p[3];
			p[3] = j;
			j = q[4];
			q[4] = p[4];
			p[4] = j;
		}
		/* smallval entry is now in position i */
		if (smallval != previouscol) {
			nnq->netindex[previouscol] = (startpos+i)>>1;
			for (j=previouscol+1; j<smallval; j++) nnq->netindex[j] = i;
			previouscol = smallval;
			startpos = i;
		}
	}
	nnq->netindex[previouscol] = (startpos+maxnetpos)>>1;
	for (j=previouscol+1; j<256; j++) nnq->netindex[j] = maxnetpos; /* really 256 */
}


/* Search for ABGR values 0..255 (after net is unbiased) and return colour index
	 ---------------------------------------------------------------------------- */
int inxsearch(nnq, al,b,g,r)
nn_quant *nnq;
register int al, b, g, r;
{
	register int i, j, dist, a, bestd;
	register int *p;
	int best;

	bestd = 1000;		/* biggest possible dist is 256*3 */
	best = -1;
	i = nnq->netindex[g];	/* index on g */
	j = i-1;		/* start at netindex[g] and work outwards */

	while ((i<nnq->netsize) || (j>=0)) {
		if (i< nnq->netsize) {
			p = nnq->network[i];
			dist = p[2] - g;		/* inx key */
			if (dist >= bestd) i = nnq->netsize;	/* stop iter */
			else {
				i++;
				if (dist<0) dist = -dist;
				a = p[1] - b;
				if (a<0) a = -a;
				dist += a;
				if (dist<bestd) {
					a = p[3] - r;
					if (a<0) a = -a;
					dist += a;
				}
				if(dist<bestd) {
					a = p[0] - al;
					if (a<0) a = -a;
					dist += a;
				}
				if (dist<bestd) {
					bestd=dist;
					best=p[4];
				}
			}
		}

		if (j>=0) {
			p = nnq->network[j];
			dist = g - p[2]; /* inx key - reverse dif */
			if (dist >= bestd) j = -1; /* stop iter */
			else {
				j--;
				if (dist<0) dist = -dist;
				a = p[1] - b;
				if (a<0) a = -a;
				dist += a;
				if (dist<bestd) {
					a = p[3] - r;
					if (a<0) a = -a;
					dist += a;
				}
				if(dist<bestd) {
					a = p[0] - al;
					if (a<0) a = -a;
					dist += a;
				}
				if (dist<bestd) {
					bestd=dist;
					best=p[4];
				}
			}
		}
	}

	return(best);
}

/* Search for biased ABGR values
   ---------------------------- */
int contest(nnq, al,b,g,r)
nn_quant *nnq;
register int al,b,g,r;
{
	/* finds closest neuron (min dist) and updates freq */
	/* finds best neuron (min dist-bias) and returns position */
	/* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
	/* bias[i] = gamma*((1/netsize)-freq[i]) */

	register int i,dist,a,biasdist,betafreq;
	int bestpos,bestbiaspos,bestd,bestbiasd;
	register int *p,*f, *n;

	bestd = ~(((int) 1)<<31);
	bestbiasd = bestd;
	bestpos = -1;
	bestbiaspos = bestpos;
	p = nnq->bias;
	f = nnq->freq;

	for (i=0; i< nnq->netsize; i++) {
		n = nnq->network[i];
		dist = n[0] - al;
		if (dist<0) dist = -dist;
		a = n[1] - b;
		if (a<0) a = -a;
		dist += a;
		a = n[2] - g;
		if (a<0) a = -a;
		dist += a;
		a = n[3] - r;
		if (a<0) a = -a;
		dist += a;
		if (dist<bestd) {
			bestd=dist;
			bestpos=i;
		}
		biasdist = dist - ((*p)>>(intbiasshift-netbiasshift));
		if (biasdist<bestbiasd) {
			bestbiasd=biasdist;
			bestbiaspos=i;
		}
		betafreq = (*f >> betashift);
		*f++ -= betafreq;
		*p++ += (betafreq<<gammashift);
	}
	nnq->freq[bestpos] += beta;
	nnq->bias[bestpos] -= betagamma;
	return(bestbiaspos);
}


/* Move neuron i towards biased (a,b,g,r) by factor alpha
	 ---------------------------------------------------- */

void altersingle(nnq, alpha,i,al,b,g,r)
nn_quant *nnq;
register int alpha,i,al,b,g,r;
{
	register int *n;

	n = nnq->network[i];	/* alter hit neuron */
	*n -= (alpha*(*n - al)) / initalpha;
	n++;
	*n -= (alpha*(*n - b)) / initalpha;
	n++;
	*n -= (alpha*(*n - g)) / initalpha;
	n++;
	*n -= (alpha*(*n - r)) / initalpha;
}


/* Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|]
	 --------------------------------------------------------------------------------- */

void alterneigh(nnq, rad,i,al,b,g,r)
nn_quant *nnq;
int rad,i;
register int al,b,g,r;
{
	register int j,k,lo,hi,a;
	register int *p, *q;

	lo = i-rad;
	if (lo<-1) lo=-1;
	hi = i+rad;
	if (hi>nnq->netsize) hi=nnq->netsize;

	j = i+1;
	k = i-1;
	q = nnq->radpower;
	while ((j<hi) || (k>lo)) {
		a = (*(++q));
		if (j<hi) {
			p = nnq->network[j];
			*p -= (a*(*p - al)) / alpharadbias;
			p++;
			*p -= (a*(*p - b)) / alpharadbias;
			p++;
			*p -= (a*(*p - g)) / alpharadbias;
			p++;
			*p -= (a*(*p - r)) / alpharadbias;
			j++;
		}
		if (k>lo) {
			p = nnq->network[k];
			*p -= (a*(*p - al)) / alpharadbias;
			p++;
			*p -= (a*(*p - b)) / alpharadbias;
			p++;
			*p -= (a*(*p - g)) / alpharadbias;
			p++;
			*p -= (a*(*p - r)) / alpharadbias;
			k--;
		}
	}
}


/* Main Learning Loop
   ------------------ */

void learn(nnq, verbose) /* Stu: N.B. added parameter so that main() could control verbosity. */
nn_quant *nnq;
int verbose;
{
	register int i,j,al,b,g,r;
	int radius,rad,alpha,step,delta,samplepixels;
	register unsigned char *p;
	unsigned char *lim;

	nnq->alphadec = 30 + ((nnq->samplefac-1)/3);
	p = nnq->thepicture;
	lim = nnq->thepicture + nnq->lengthcount;
	samplepixels = nnq->lengthcount/(4 * nnq->samplefac);
	/* here's a problem with small images: samplepixels < ncycles => delta = 0 */
	delta = samplepixels/ncycles;
	/* kludge to fix */
	if(delta==0) delta = 1;
	alpha = initalpha;
	radius = initradius;

	rad = radius >> radiusbiasshift;
	if (rad <= 1) rad = 0;
	for (i=0; i<rad; i++)
		nnq->radpower[i] = alpha*(((rad*rad - i*i)*radbias)/(rad*rad));

	if (verbose) gd_error_ex(GD_NOTICE, "beginning 1D learning: initial radius=%d\n", rad);

	if ((nnq->lengthcount%prime1) != 0) step = 4*prime1;
	else {
		if ((nnq->lengthcount%prime2) !=0) step = 4*prime2;
		else {
			if ((nnq->lengthcount%prime3) !=0) step = 4*prime3;
			else step = 4*prime4;
		}
	}

	i = 0;
	while (i < samplepixels) {
		al = p[ALPHA] << netbiasshift;
		b = p[BLUE] << netbiasshift;
		g = p[GREEN] << netbiasshift;
		r = p[RED] << netbiasshift;
		j = contest(nnq, al,b,g,r);

		altersingle(nnq, alpha,j,al,b,g,r);
		if (rad) alterneigh(nnq, rad,j,al,b,g,r);   /* alter neighbours */

		p += step;
		while (p >= lim) p -= nnq->lengthcount;

		i++;
		if (i%delta == 0) {                    /* FPE here if delta=0*/
			alpha -= alpha / nnq->alphadec;
			radius -= radius / radiusdec;
			rad = radius >> radiusbiasshift;
			if (rad <= 1) rad = 0;
			for (j=0; j<rad; j++)
				nnq->radpower[j] = alpha*(((rad*rad - j*j)*radbias)/(rad*rad));
		}
	}
	if (verbose) gd_error_ex(GD_NOTICE, "finished 1D learning: final alpha=%f !\n",((float)alpha)/initalpha);
}

BGD_DECLARE(gdImagePtr) gdImageNeuQuant(gdImagePtr im, const int max_color, int sample_factor)
{
	const int newcolors = max_color;
	const int verbose = 1;

	int bot_idx, top_idx; /* for remapping of indices */
	int remap[MAXNETSIZE];
	int i,x;

	unsigned char map[MAXNETSIZE][4];
	unsigned char *d;

	nn_quant *nnq = NULL;

	int row;
	unsigned char *rgba = NULL;
	gdImagePtr dst = NULL;

	/* Default it to 3 */
	if (sample_factor < 1) {
		sample_factor = 3;
	}
	/* Start neuquant */
	/* Pierre:
	 * This implementation works with aligned contiguous buffer only
	 * Upcoming new buffers are contiguous and will be much faster.
	 * let don't bloat this code to support our good "old" 31bit format.
	 * It alos lets us convert palette image, if one likes to reduce
	 * a palette
	 */
	if (overflow2(gdImageSX(im), gdImageSY(im))
	        || overflow2(gdImageSX(im) * gdImageSY(im), 4)) {
		goto done;
	}
	rgba = (unsigned char *) gdMalloc(gdImageSX(im) * gdImageSY(im) * 4);
	if (!rgba) {
		goto done;
	}

	d = rgba;
	for (row = 0; row < gdImageSY(im); row++) {
		int *p = im->tpixels[row];
		register int c;

		for (i = 0; i < gdImageSX(im); i++) {
			c = *p;
			*d++ = gdImageAlpha(im, c);
			*d++ = gdImageRed(im, c);
			*d++ = gdImageBlue(im, c);
			*d++ = gdImageGreen(im, c);
			p++;
		}
	}

	nnq = (nn_quant *) gdMalloc(sizeof(nn_quant));
	if (!nnq) {
		goto done;
	}

	initnet(nnq, rgba, gdImageSY(im) * gdImageSX(im) * 4, sample_factor, newcolors);

	learn(nnq, verbose);
	unbiasnet(nnq);
	getcolormap(nnq, (unsigned char*)map);
	inxbuild(nnq);
	/* remapping colormap to eliminate opaque tRNS-chunk entries... */
	for (top_idx = newcolors-1, bot_idx = x = 0;  x < newcolors;  ++x) {
		if (map[x][3] == 255) { /* maxval */
			remap[x] = top_idx--;
		} else {
			remap[x] = bot_idx++;
		}
	}
	if (bot_idx != top_idx + 1) {
		gd_error("  internal logic error: remapped bot_idx = %d, top_idx = %d\n",
			 bot_idx, top_idx);
		goto done;
	}

	dst = gdImageCreate(gdImageSX(im), gdImageSY(im));
	if (!dst) {
		goto done;
	}

	for (x = 0; x < newcolors; ++x) {
		dst->red[remap[x]] = map[x][0];
		dst->green[remap[x]] = map[x][1];
		dst->blue[remap[x]] = map[x][2];
		dst->alpha[remap[x]] = map[x][3];
		dst->open[remap[x]] = 0;
		dst->colorsTotal++;
	}

	/* Do each image row */
	for ( row = 0; row < gdImageSY(im); ++row ) {
		int offset;
		unsigned char *p = dst->pixels[row];

		/* Assign the new colors */
		offset = row * gdImageSX(im) * 4;
		for(i=0; i < gdImageSX(im); i++) {
			p[i] = remap[
			           inxsearch(nnq, rgba[i * 4 + offset + ALPHA],
			                     rgba[i * 4 + offset + BLUE],
			                     rgba[i * 4 + offset + GREEN],
			                     rgba[i * 4 + offset + RED])
			       ];
		}
	}

done:
	if (rgba) {
		gdFree(rgba);
	}

	if (nnq) {
		gdFree(nnq);
	}
	return dst;
}