summaryrefslogtreecommitdiff
path: root/Build/source/libs/cairo/cairo-1.14.0/src/cairo-clip-tor-scan-converter.c
blob: e32a5a9d9c7a4e0d0460c1fc738fb9a7f3484df8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
/* glitter-paths - polygon scan converter
 *
 * Copyright (c) 2008  M Joonas Pihlaja
 * Copyright (c) 2007  David Turner
 *
 * Permission is hereby granted, free of charge, to any person
 * obtaining a copy of this software and associated documentation
 * files (the "Software"), to deal in the Software without
 * restriction, including without limitation the rights to use,
 * copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following
 * conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */
/* This is the Glitter paths scan converter incorporated into cairo.
 * The source is from commit 734c53237a867a773640bd5b64816249fa1730f8
 * of
 *
 *   http://gitweb.freedesktop.org/?p=users/joonas/glitter-paths
 */
/* Glitter-paths is a stand alone polygon rasteriser derived from
 * David Turner's reimplementation of Tor Anderssons's 15x17
 * supersampling rasteriser from the Apparition graphics library.  The
 * main new feature here is cheaply choosing per-scan line between
 * doing fully analytical coverage computation for an entire row at a
 * time vs. using a supersampling approach.
 *
 * David Turner's code can be found at
 *
 *   http://david.freetype.org/rasterizer-shootout/raster-comparison-20070813.tar.bz2
 *
 * In particular this file incorporates large parts of ftgrays_tor10.h
 * from raster-comparison-20070813.tar.bz2
 */
/* Overview
 *
 * A scan converter's basic purpose to take polygon edges and convert
 * them into an RLE compressed A8 mask.  This one works in two phases:
 * gathering edges and generating spans.
 *
 * 1) As the user feeds the scan converter edges they are vertically
 * clipped and bucketted into a _polygon_ data structure.  The edges
 * are also snapped from the user's coordinates to the subpixel grid
 * coordinates used during scan conversion.
 *
 *     user
 *      |
 *      | edges
 *      V
 *    polygon buckets
 *
 * 2) Generating spans works by performing a vertical sweep of pixel
 * rows from top to bottom and maintaining an _active_list_ of edges
 * that intersect the row.  From the active list the fill rule
 * determines which edges are the left and right edges of the start of
 * each span, and their contribution is then accumulated into a pixel
 * coverage list (_cell_list_) as coverage deltas.  Once the coverage
 * deltas of all edges are known we can form spans of constant pixel
 * coverage by summing the deltas during a traversal of the cell list.
 * At the end of a pixel row the cell list is sent to a coverage
 * blitter for rendering to some target surface.
 *
 * The pixel coverages are computed by either supersampling the row
 * and box filtering a mono rasterisation, or by computing the exact
 * coverages of edges in the active list.  The supersampling method is
 * used whenever some edge starts or stops within the row or there are
 * edge intersections in the row.
 *
 *   polygon bucket for       \
 *   current pixel row        |
 *      |                     |
 *      | activate new edges  |  Repeat GRID_Y times if we
 *      V                     \  are supersampling this row,
 *   active list              /  or just once if we're computing
 *      |                     |  analytical coverage.
 *      | coverage deltas     |
 *      V                     |
 *   pixel coverage list     /
 *      |
 *      V
 *   coverage blitter
 */
#include "cairoint.h"
#include "cairo-spans-private.h"
#include "cairo-error-private.h"

#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <setjmp.h>

/* The input coordinate scale and the rasterisation grid scales. */
#define GLITTER_INPUT_BITS CAIRO_FIXED_FRAC_BITS
#define GRID_X_BITS CAIRO_FIXED_FRAC_BITS
#define GRID_Y 15

/* Set glitter up to use a cairo span renderer to do the coverage
 * blitting. */
struct pool;
struct cell_list;

/*-------------------------------------------------------------------------
 * glitter-paths.h
 */

/* "Input scaled" numbers are fixed precision reals with multiplier
 * 2**GLITTER_INPUT_BITS.  Input coordinates are given to glitter as
 * pixel scaled numbers.  These get converted to the internal grid
 * scaled numbers as soon as possible. Internal overflow is possible
 * if GRID_X/Y inside glitter-paths.c is larger than
 * 1<<GLITTER_INPUT_BITS. */
#ifndef GLITTER_INPUT_BITS
#  define GLITTER_INPUT_BITS 8
#endif
#define GLITTER_INPUT_SCALE (1<<GLITTER_INPUT_BITS)
typedef int glitter_input_scaled_t;

/* Opaque type for scan converting. */
typedef struct glitter_scan_converter glitter_scan_converter_t;

/*-------------------------------------------------------------------------
 * glitter-paths.c: Implementation internal types
 */
#include <stdlib.h>
#include <string.h>
#include <limits.h>

/* All polygon coordinates are snapped onto a subsample grid. "Grid
 * scaled" numbers are fixed precision reals with multiplier GRID_X or
 * GRID_Y. */
typedef int grid_scaled_t;
typedef int grid_scaled_x_t;
typedef int grid_scaled_y_t;

/* Default x/y scale factors.
 *  You can either define GRID_X/Y_BITS to get a power-of-two scale
 *  or define GRID_X/Y separately. */
#if !defined(GRID_X) && !defined(GRID_X_BITS)
#  define GRID_X_BITS 8
#endif
#if !defined(GRID_Y) && !defined(GRID_Y_BITS)
#  define GRID_Y 15
#endif

/* Use GRID_X/Y_BITS to define GRID_X/Y if they're available. */
#ifdef GRID_X_BITS
#  define GRID_X (1 << GRID_X_BITS)
#endif
#ifdef GRID_Y_BITS
#  define GRID_Y (1 << GRID_Y_BITS)
#endif

/* The GRID_X_TO_INT_FRAC macro splits a grid scaled coordinate into
 * integer and fractional parts. The integer part is floored. */
#if defined(GRID_X_TO_INT_FRAC)
  /* do nothing */
#elif defined(GRID_X_BITS)
#  define GRID_X_TO_INT_FRAC(x, i, f) \
	_GRID_TO_INT_FRAC_shift(x, i, f, GRID_X_BITS)
#else
#  define GRID_X_TO_INT_FRAC(x, i, f) \
	_GRID_TO_INT_FRAC_general(x, i, f, GRID_X)
#endif

#define _GRID_TO_INT_FRAC_general(t, i, f, m) do {	\
    (i) = (t) / (m);					\
    (f) = (t) % (m);					\
    if ((f) < 0) {					\
	--(i);						\
	(f) += (m);					\
    }							\
} while (0)

#define _GRID_TO_INT_FRAC_shift(t, i, f, b) do {	\
    (f) = (t) & ((1 << (b)) - 1);			\
    (i) = (t) >> (b);					\
} while (0)

/* A grid area is a real in [0,1] scaled by 2*GRID_X*GRID_Y.  We want
 * to be able to represent exactly areas of subpixel trapezoids whose
 * vertices are given in grid scaled coordinates.  The scale factor
 * comes from needing to accurately represent the area 0.5*dx*dy of a
 * triangle with base dx and height dy in grid scaled numbers. */
typedef int grid_area_t;
#define GRID_XY (2*GRID_X*GRID_Y) /* Unit area on the grid. */

/* GRID_AREA_TO_ALPHA(area): map [0,GRID_XY] to [0,255]. */
#if GRID_XY == 510
#  define GRID_AREA_TO_ALPHA(c)	  (((c)+1) >> 1)
#elif GRID_XY == 255
#  define  GRID_AREA_TO_ALPHA(c)  (c)
#elif GRID_XY == 64
#  define  GRID_AREA_TO_ALPHA(c)  (((c) << 2) | -(((c) & 0x40) >> 6))
#elif GRID_XY == 128
#  define  GRID_AREA_TO_ALPHA(c)  ((((c) << 1) | -((c) >> 7)) & 255)
#elif GRID_XY == 256
#  define  GRID_AREA_TO_ALPHA(c)  (((c) | -((c) >> 8)) & 255)
#elif GRID_XY == 15
#  define  GRID_AREA_TO_ALPHA(c)  (((c) << 4) + (c))
#elif GRID_XY == 2*256*15
#  define  GRID_AREA_TO_ALPHA(c)  (((c) + ((c)<<4) + 256) >> 9)
#else
#  define  GRID_AREA_TO_ALPHA(c)  (((c)*255 + GRID_XY/2) / GRID_XY)
#endif

#define UNROLL3(x) x x x

struct quorem {
    int32_t quo;
    int32_t rem;
};

/* Header for a chunk of memory in a memory pool. */
struct _pool_chunk {
    /* # bytes used in this chunk. */
    size_t size;

    /* # bytes total in this chunk */
    size_t capacity;

    /* Pointer to the previous chunk or %NULL if this is the sentinel
     * chunk in the pool header. */
    struct _pool_chunk *prev_chunk;

    /* Actual data starts here.	 Well aligned for pointers. */
};

/* A memory pool.  This is supposed to be embedded on the stack or
 * within some other structure.	 It may optionally be followed by an
 * embedded array from which requests are fulfilled until
 * malloc needs to be called to allocate a first real chunk. */
struct pool {
    /* Chunk we're allocating from. */
    struct _pool_chunk *current;

    jmp_buf *jmp;

    /* Free list of previously allocated chunks.  All have >= default
     * capacity. */
    struct _pool_chunk *first_free;

    /* The default capacity of a chunk. */
    size_t default_capacity;

    /* Header for the sentinel chunk.  Directly following the pool
     * struct should be some space for embedded elements from which
     * the sentinel chunk allocates from. */
    struct _pool_chunk sentinel[1];
};

/* A polygon edge. */
struct edge {
    /* Next in y-bucket or active list. */
    struct edge *next;

    /* Current x coordinate while the edge is on the active
     * list. Initialised to the x coordinate of the top of the
     * edge. The quotient is in grid_scaled_x_t units and the
     * remainder is mod dy in grid_scaled_y_t units.*/
    struct quorem x;

    /* Advance of the current x when moving down a subsample line. */
    struct quorem dxdy;

    /* Advance of the current x when moving down a full pixel
     * row. Only initialised when the height of the edge is large
     * enough that there's a chance the edge could be stepped by a
     * full row's worth of subsample rows at a time. */
    struct quorem dxdy_full;

    /* The clipped y of the top of the edge. */
    grid_scaled_y_t ytop;

    /* y2-y1 after orienting the edge downwards.  */
    grid_scaled_y_t dy;

    /* Number of subsample rows remaining to scan convert of this
     * edge. */
    grid_scaled_y_t height_left;

    /* Original sign of the edge: +1 for downwards, -1 for upwards
     * edges.  */
    int dir;
    int vertical;
    int clip;
};

/* Number of subsample rows per y-bucket. Must be GRID_Y. */
#define EDGE_Y_BUCKET_HEIGHT GRID_Y

#define EDGE_Y_BUCKET_INDEX(y, ymin) (((y) - (ymin))/EDGE_Y_BUCKET_HEIGHT)

/* A collection of sorted and vertically clipped edges of the polygon.
 * Edges are moved from the polygon to an active list while scan
 * converting. */
struct polygon {
    /* The vertical clip extents. */
    grid_scaled_y_t ymin, ymax;

    /* Array of edges all starting in the same bucket.	An edge is put
     * into bucket EDGE_BUCKET_INDEX(edge->ytop, polygon->ymin) when
     * it is added to the polygon. */
    struct edge **y_buckets;
    struct edge *y_buckets_embedded[64];

    struct {
	struct pool base[1];
	struct edge embedded[32];
    } edge_pool;
};

/* A cell records the effect on pixel coverage of polygon edges
 * passing through a pixel.  It contains two accumulators of pixel
 * coverage.
 *
 * Consider the effects of a polygon edge on the coverage of a pixel
 * it intersects and that of the following one.  The coverage of the
 * following pixel is the height of the edge multiplied by the width
 * of the pixel, and the coverage of the pixel itself is the area of
 * the trapezoid formed by the edge and the right side of the pixel.
 *
 * +-----------------------+-----------------------+
 * |                       |                       |
 * |                       |                       |
 * |_______________________|_______________________|
 * |   \...................|.......................|\
 * |    \..................|.......................| |
 * |     \.................|.......................| |
 * |      \....covered.....|.......................| |
 * |       \....area.......|.......................| } covered height
 * |        \..............|.......................| |
 * |uncovered\.............|.......................| |
 * |  area    \............|.......................| |
 * |___________\...........|.......................|/
 * |                       |                       |
 * |                       |                       |
 * |                       |                       |
 * +-----------------------+-----------------------+
 *
 * Since the coverage of the following pixel will always be a multiple
 * of the width of the pixel, we can store the height of the covered
 * area instead.  The coverage of the pixel itself is the total
 * coverage minus the area of the uncovered area to the left of the
 * edge.  As it's faster to compute the uncovered area we only store
 * that and subtract it from the total coverage later when forming
 * spans to blit.
 *
 * The heights and areas are signed, with left edges of the polygon
 * having positive sign and right edges having negative sign.  When
 * two edges intersect they swap their left/rightness so their
 * contribution above and below the intersection point must be
 * computed separately. */
struct cell {
    struct cell		*next;
    int			 x;
    grid_area_t		 uncovered_area;
    grid_scaled_y_t	 covered_height;
    grid_scaled_y_t	 clipped_height;
};

/* A cell list represents the scan line sparsely as cells ordered by
 * ascending x.  It is geared towards scanning the cells in order
 * using an internal cursor. */
struct cell_list {
    /* Sentinel nodes */
    struct cell head, tail;

    /* Cursor state for iterating through the cell list. */
    struct cell *cursor;

    /* Cells in the cell list are owned by the cell list and are
     * allocated from this pool.  */
    struct {
	struct pool base[1];
	struct cell embedded[32];
    } cell_pool;
};

struct cell_pair {
    struct cell *cell1;
    struct cell *cell2;
};

/* The active list contains edges in the current scan line ordered by
 * the x-coordinate of the intercept of the edge and the scan line. */
struct active_list {
    /* Leftmost edge on the current scan line. */
    struct edge *head;

    /* A lower bound on the height of the active edges is used to
     * estimate how soon some active edge ends.	 We can't advance the
     * scan conversion by a full pixel row if an edge ends somewhere
     * within it. */
    grid_scaled_y_t min_height;
};

struct glitter_scan_converter {
    struct polygon	polygon[1];
    struct active_list	active[1];
    struct cell_list	coverages[1];

    /* Clip box. */
    grid_scaled_y_t ymin, ymax;
};

/* Compute the floored division a/b. Assumes / and % perform symmetric
 * division. */
inline static struct quorem
floored_divrem(int a, int b)
{
    struct quorem qr;
    qr.quo = a/b;
    qr.rem = a%b;
    if ((a^b)<0 && qr.rem) {
	qr.quo -= 1;
	qr.rem += b;
    }
    return qr;
}

/* Compute the floored division (x*a)/b. Assumes / and % perform symmetric
 * division. */
static struct quorem
floored_muldivrem(int x, int a, int b)
{
    struct quorem qr;
    long long xa = (long long)x*a;
    qr.quo = xa/b;
    qr.rem = xa%b;
    if ((xa>=0) != (b>=0) && qr.rem) {
	qr.quo -= 1;
	qr.rem += b;
    }
    return qr;
}

static struct _pool_chunk *
_pool_chunk_init(
    struct _pool_chunk *p,
    struct _pool_chunk *prev_chunk,
    size_t capacity)
{
    p->prev_chunk = prev_chunk;
    p->size = 0;
    p->capacity = capacity;
    return p;
}

static struct _pool_chunk *
_pool_chunk_create(struct pool *pool, size_t size)
{
    struct _pool_chunk *p;

    p = malloc(size + sizeof(struct _pool_chunk));
    if (unlikely (NULL == p))
	longjmp (*pool->jmp, _cairo_error (CAIRO_STATUS_NO_MEMORY));

    return _pool_chunk_init(p, pool->current, size);
}

static void
pool_init(struct pool *pool,
	  jmp_buf *jmp,
	  size_t default_capacity,
	  size_t embedded_capacity)
{
    pool->jmp = jmp;
    pool->current = pool->sentinel;
    pool->first_free = NULL;
    pool->default_capacity = default_capacity;
    _pool_chunk_init(pool->sentinel, NULL, embedded_capacity);
}

static void
pool_fini(struct pool *pool)
{
    struct _pool_chunk *p = pool->current;
    do {
	while (NULL != p) {
	    struct _pool_chunk *prev = p->prev_chunk;
	    if (p != pool->sentinel)
		free(p);
	    p = prev;
	}
	p = pool->first_free;
	pool->first_free = NULL;
    } while (NULL != p);
}

/* Satisfy an allocation by first allocating a new large enough chunk
 * and adding it to the head of the pool's chunk list. This function
 * is called as a fallback if pool_alloc() couldn't do a quick
 * allocation from the current chunk in the pool. */
static void *
_pool_alloc_from_new_chunk(
    struct pool *pool,
    size_t size)
{
    struct _pool_chunk *chunk;
    void *obj;
    size_t capacity;

    /* If the allocation is smaller than the default chunk size then
     * try getting a chunk off the free list.  Force alloc of a new
     * chunk for large requests. */
    capacity = size;
    chunk = NULL;
    if (size < pool->default_capacity) {
	capacity = pool->default_capacity;
	chunk = pool->first_free;
	if (chunk) {
	    pool->first_free = chunk->prev_chunk;
	    _pool_chunk_init(chunk, pool->current, chunk->capacity);
	}
    }

    if (NULL == chunk)
	chunk = _pool_chunk_create (pool, capacity);
    pool->current = chunk;

    obj = ((unsigned char*)chunk + sizeof(*chunk) + chunk->size);
    chunk->size += size;
    return obj;
}

/* Allocate size bytes from the pool.  The first allocated address
 * returned from a pool is aligned to sizeof(void*).  Subsequent
 * addresses will maintain alignment as long as multiples of void* are
 * allocated.  Returns the address of a new memory area or %NULL on
 * allocation failures.	 The pool retains ownership of the returned
 * memory. */
inline static void *
pool_alloc (struct pool *pool, size_t size)
{
    struct _pool_chunk *chunk = pool->current;

    if (size <= chunk->capacity - chunk->size) {
	void *obj = ((unsigned char*)chunk + sizeof(*chunk) + chunk->size);
	chunk->size += size;
	return obj;
    } else {
	return _pool_alloc_from_new_chunk(pool, size);
    }
}

/* Relinquish all pool_alloced memory back to the pool. */
static void
pool_reset (struct pool *pool)
{
    /* Transfer all used chunks to the chunk free list. */
    struct _pool_chunk *chunk = pool->current;
    if (chunk != pool->sentinel) {
	while (chunk->prev_chunk != pool->sentinel) {
	    chunk = chunk->prev_chunk;
	}
	chunk->prev_chunk = pool->first_free;
	pool->first_free = pool->current;
    }
    /* Reset the sentinel as the current chunk. */
    pool->current = pool->sentinel;
    pool->sentinel->size = 0;
}

/* Rewinds the cell list's cursor to the beginning.  After rewinding
 * we're good to cell_list_find() the cell any x coordinate. */
inline static void
cell_list_rewind (struct cell_list *cells)
{
    cells->cursor = &cells->head;
}

/* Rewind the cell list if its cursor has been advanced past x. */
inline static void
cell_list_maybe_rewind (struct cell_list *cells, int x)
{
    struct cell *tail = cells->cursor;
    if (tail->x > x)
	cell_list_rewind (cells);
}

static void
cell_list_init(struct cell_list *cells, jmp_buf *jmp)
{
    pool_init(cells->cell_pool.base, jmp,
	      256*sizeof(struct cell),
	      sizeof(cells->cell_pool.embedded));
    cells->tail.next = NULL;
    cells->tail.x = INT_MAX;
    cells->head.x = INT_MIN;
    cells->head.next = &cells->tail;
    cell_list_rewind (cells);
}

static void
cell_list_fini(struct cell_list *cells)
{
    pool_fini (cells->cell_pool.base);
}

/* Empty the cell list.  This is called at the start of every pixel
 * row. */
inline static void
cell_list_reset (struct cell_list *cells)
{
    cell_list_rewind (cells);
    cells->head.next = &cells->tail;
    pool_reset (cells->cell_pool.base);
}

static struct cell *
cell_list_alloc (struct cell_list *cells,
		 struct cell *tail,
		 int x)
{
    struct cell *cell;

    cell = pool_alloc (cells->cell_pool.base, sizeof (struct cell));
    cell->next = tail->next;
    tail->next = cell;
    cell->x = x;
    cell->uncovered_area = 0;
    cell->covered_height = 0;
    cell->clipped_height = 0;
    return cell;
}

/* Find a cell at the given x-coordinate.  Returns %NULL if a new cell
 * needed to be allocated but couldn't be.  Cells must be found with
 * non-decreasing x-coordinate until the cell list is rewound using
 * cell_list_rewind(). Ownership of the returned cell is retained by
 * the cell list. */
inline static struct cell *
cell_list_find (struct cell_list *cells, int x)
{
    struct cell *tail = cells->cursor;

    while (1) {
	UNROLL3({
	    if (tail->next->x > x)
		break;
	    tail = tail->next;
	});
    }

    if (tail->x != x)
	tail = cell_list_alloc (cells, tail, x);
    return cells->cursor = tail;

}

/* Find two cells at x1 and x2.	 This is exactly equivalent
 * to
 *
 *   pair.cell1 = cell_list_find(cells, x1);
 *   pair.cell2 = cell_list_find(cells, x2);
 *
 * except with less function call overhead. */
inline static struct cell_pair
cell_list_find_pair(struct cell_list *cells, int x1, int x2)
{
    struct cell_pair pair;

    pair.cell1 = cells->cursor;
    while (1) {
	UNROLL3({
	    if (pair.cell1->next->x > x1)
		break;
	    pair.cell1 = pair.cell1->next;
	});
    }
    if (pair.cell1->x != x1) {
	struct cell *cell = pool_alloc (cells->cell_pool.base,
					sizeof (struct cell));
	cell->x = x1;
	cell->uncovered_area = 0;
	cell->covered_height = 0;
	cell->clipped_height = 0;
	cell->next = pair.cell1->next;
	pair.cell1->next = cell;
	pair.cell1 = cell;
    }

    pair.cell2 = pair.cell1;
    while (1) {
	UNROLL3({
	    if (pair.cell2->next->x > x2)
		break;
	    pair.cell2 = pair.cell2->next;
	});
    }
    if (pair.cell2->x != x2) {
	struct cell *cell = pool_alloc (cells->cell_pool.base,
					sizeof (struct cell));
	cell->uncovered_area = 0;
	cell->covered_height = 0;
	cell->clipped_height = 0;
	cell->x = x2;
	cell->next = pair.cell2->next;
	pair.cell2->next = cell;
	pair.cell2 = cell;
    }

    cells->cursor = pair.cell2;
    return pair;
}

/* Add a subpixel span covering [x1, x2) to the coverage cells. */
inline static void
cell_list_add_subspan(struct cell_list *cells,
		      grid_scaled_x_t x1,
		      grid_scaled_x_t x2)
{
    int ix1, fx1;
    int ix2, fx2;

    GRID_X_TO_INT_FRAC(x1, ix1, fx1);
    GRID_X_TO_INT_FRAC(x2, ix2, fx2);

    if (ix1 != ix2) {
	struct cell_pair p;
	p = cell_list_find_pair(cells, ix1, ix2);
	p.cell1->uncovered_area += 2*fx1;
	++p.cell1->covered_height;
	p.cell2->uncovered_area -= 2*fx2;
	--p.cell2->covered_height;
    } else {
	struct cell *cell = cell_list_find(cells, ix1);
	cell->uncovered_area += 2*(fx1-fx2);
    }
}

/* Adds the analytical coverage of an edge crossing the current pixel
 * row to the coverage cells and advances the edge's x position to the
 * following row.
 *
 * This function is only called when we know that during this pixel row:
 *
 * 1) The relative order of all edges on the active list doesn't
 * change.  In particular, no edges intersect within this row to pixel
 * precision.
 *
 * 2) No new edges start in this row.
 *
 * 3) No existing edges end mid-row.
 *
 * This function depends on being called with all edges from the
 * active list in the order they appear on the list (i.e. with
 * non-decreasing x-coordinate.)  */
static void
cell_list_render_edge(
    struct cell_list *cells,
    struct edge *edge,
    int sign)
{
    grid_scaled_y_t y1, y2, dy;
    grid_scaled_x_t dx;
    int ix1, ix2;
    grid_scaled_x_t fx1, fx2;

    struct quorem x1 = edge->x;
    struct quorem x2 = x1;

    if (! edge->vertical) {
	x2.quo += edge->dxdy_full.quo;
	x2.rem += edge->dxdy_full.rem;
	if (x2.rem >= 0) {
	    ++x2.quo;
	    x2.rem -= edge->dy;
	}

	edge->x = x2;
    }

    GRID_X_TO_INT_FRAC(x1.quo, ix1, fx1);
    GRID_X_TO_INT_FRAC(x2.quo, ix2, fx2);

    /* Edge is entirely within a column? */
    if (ix1 == ix2) {
	/* We always know that ix1 is >= the cell list cursor in this
	 * case due to the no-intersections precondition.  */
	struct cell *cell = cell_list_find(cells, ix1);
	cell->covered_height += sign*GRID_Y;
	cell->uncovered_area += sign*(fx1 + fx2)*GRID_Y;
	return;
    }

    /* Orient the edge left-to-right. */
    dx = x2.quo - x1.quo;
    if (dx >= 0) {
	y1 = 0;
	y2 = GRID_Y;
    } else {
	int tmp;
	tmp = ix1; ix1 = ix2; ix2 = tmp;
	tmp = fx1; fx1 = fx2; fx2 = tmp;
	dx = -dx;
	sign = -sign;
	y1 = GRID_Y;
	y2 = 0;
    }
    dy = y2 - y1;

    /* Add coverage for all pixels [ix1,ix2] on this row crossed
     * by the edge. */
    {
	struct cell_pair pair;
	struct quorem y = floored_divrem((GRID_X - fx1)*dy, dx);

	/* When rendering a previous edge on the active list we may
	 * advance the cell list cursor past the leftmost pixel of the
	 * current edge even though the two edges don't intersect.
	 * e.g. consider two edges going down and rightwards:
	 *
	 *  --\_+---\_+-----+-----+----
	 *      \_    \_    |     |
	 *      | \_  | \_  |     |
	 *      |   \_|   \_|     |
	 *      |     \_    \_    |
	 *  ----+-----+-\---+-\---+----
	 *
	 * The left edge touches cells past the starting cell of the
	 * right edge.  Fortunately such cases are rare.
	 *
	 * The rewinding is never necessary if the current edge stays
	 * within a single column because we've checked before calling
	 * this function that the active list order won't change. */
	cell_list_maybe_rewind(cells, ix1);

	pair = cell_list_find_pair(cells, ix1, ix1+1);
	pair.cell1->uncovered_area += sign*y.quo*(GRID_X + fx1);
	pair.cell1->covered_height += sign*y.quo;
	y.quo += y1;

	if (ix1+1 < ix2) {
	    struct quorem dydx_full = floored_divrem(GRID_X*dy, dx);
	    struct cell *cell = pair.cell2;

	    ++ix1;
	    do {
		grid_scaled_y_t y_skip = dydx_full.quo;
		y.rem += dydx_full.rem;
		if (y.rem >= dx) {
		    ++y_skip;
		    y.rem -= dx;
		}

		y.quo += y_skip;

		y_skip *= sign;
		cell->uncovered_area += y_skip*GRID_X;
		cell->covered_height += y_skip;

		++ix1;
		cell = cell_list_find(cells, ix1);
	    } while (ix1 != ix2);

	    pair.cell2 = cell;
	}
	pair.cell2->uncovered_area += sign*(y2 - y.quo)*fx2;
	pair.cell2->covered_height += sign*(y2 - y.quo);
    }
}

static void
polygon_init (struct polygon *polygon, jmp_buf *jmp)
{
    polygon->ymin = polygon->ymax = 0;
    polygon->y_buckets = polygon->y_buckets_embedded;
    pool_init (polygon->edge_pool.base, jmp,
	       8192 - sizeof (struct _pool_chunk),
	       sizeof (polygon->edge_pool.embedded));
}

static void
polygon_fini (struct polygon *polygon)
{
    if (polygon->y_buckets != polygon->y_buckets_embedded)
	free (polygon->y_buckets);

    pool_fini (polygon->edge_pool.base);
}

/* Empties the polygon of all edges. The polygon is then prepared to
 * receive new edges and clip them to the vertical range
 * [ymin,ymax). */
static cairo_status_t
polygon_reset (struct polygon *polygon,
	       grid_scaled_y_t ymin,
	       grid_scaled_y_t ymax)
{
    unsigned h = ymax - ymin;
    unsigned num_buckets = EDGE_Y_BUCKET_INDEX(ymax + EDGE_Y_BUCKET_HEIGHT-1,
					       ymin);

    pool_reset(polygon->edge_pool.base);

    if (unlikely (h > 0x7FFFFFFFU - EDGE_Y_BUCKET_HEIGHT))
	goto bail_no_mem; /* even if you could, you wouldn't want to. */

    if (polygon->y_buckets != polygon->y_buckets_embedded)
	free (polygon->y_buckets);

    polygon->y_buckets =  polygon->y_buckets_embedded;
    if (num_buckets > ARRAY_LENGTH (polygon->y_buckets_embedded)) {
	polygon->y_buckets = _cairo_malloc_ab (num_buckets,
					       sizeof (struct edge *));
	if (unlikely (NULL == polygon->y_buckets))
	    goto bail_no_mem;
    }
    memset (polygon->y_buckets, 0, num_buckets * sizeof (struct edge *));

    polygon->ymin = ymin;
    polygon->ymax = ymax;
    return CAIRO_STATUS_SUCCESS;

 bail_no_mem:
    polygon->ymin = 0;
    polygon->ymax = 0;
    return CAIRO_STATUS_NO_MEMORY;
}

static void
_polygon_insert_edge_into_its_y_bucket(
    struct polygon *polygon,
    struct edge *e)
{
    unsigned ix = EDGE_Y_BUCKET_INDEX(e->ytop, polygon->ymin);
    struct edge **ptail = &polygon->y_buckets[ix];
    e->next = *ptail;
    *ptail = e;
}

inline static void
polygon_add_edge (struct polygon *polygon,
		  const cairo_edge_t *edge,
		  int clip)
{
    struct edge *e;
    grid_scaled_x_t dx;
    grid_scaled_y_t dy;
    grid_scaled_y_t ytop, ybot;
    grid_scaled_y_t ymin = polygon->ymin;
    grid_scaled_y_t ymax = polygon->ymax;

    assert (edge->bottom > edge->top);

    if (unlikely (edge->top >= ymax || edge->bottom <= ymin))
	return;

    e = pool_alloc (polygon->edge_pool.base, sizeof (struct edge));

    dx = edge->line.p2.x - edge->line.p1.x;
    dy = edge->line.p2.y - edge->line.p1.y;
    e->dy = dy;
    e->dir = edge->dir;
    e->clip = clip;

    ytop = edge->top >= ymin ? edge->top : ymin;
    ybot = edge->bottom <= ymax ? edge->bottom : ymax;
    e->ytop = ytop;
    e->height_left = ybot - ytop;

    if (dx == 0) {
	e->vertical = TRUE;
	e->x.quo = edge->line.p1.x;
	e->x.rem = 0;
	e->dxdy.quo = 0;
	e->dxdy.rem = 0;
	e->dxdy_full.quo = 0;
	e->dxdy_full.rem = 0;
    } else {
	e->vertical = FALSE;
	e->dxdy = floored_divrem (dx, dy);
	if (ytop == edge->line.p1.y) {
	    e->x.quo = edge->line.p1.x;
	    e->x.rem = 0;
	} else {
	    e->x = floored_muldivrem (ytop - edge->line.p1.y, dx, dy);
	    e->x.quo += edge->line.p1.x;
	}

	if (e->height_left >= GRID_Y) {
	    e->dxdy_full = floored_muldivrem (GRID_Y, dx, dy);
	} else {
	    e->dxdy_full.quo = 0;
	    e->dxdy_full.rem = 0;
	}
    }

    _polygon_insert_edge_into_its_y_bucket (polygon, e);

    e->x.rem -= dy;		/* Bias the remainder for faster
				 * edge advancement. */
}

static void
active_list_reset (struct active_list *active)
{
    active->head = NULL;
    active->min_height = 0;
}

static void
active_list_init(struct active_list *active)
{
    active_list_reset(active);
}

/*
 * Merge two sorted edge lists.
 * Input:
 *  - head_a: The head of the first list.
 *  - head_b: The head of the second list; head_b cannot be NULL.
 * Output:
 * Returns the head of the merged list.
 *
 * Implementation notes:
 * To make it fast (in particular, to reduce to an insertion sort whenever
 * one of the two input lists only has a single element) we iterate through
 * a list until its head becomes greater than the head of the other list,
 * then we switch their roles. As soon as one of the two lists is empty, we
 * just attach the other one to the current list and exit.
 * Writes to memory are only needed to "switch" lists (as it also requires
 * attaching to the output list the list which we will be iterating next) and
 * to attach the last non-empty list.
 */
static struct edge *
merge_sorted_edges (struct edge *head_a, struct edge *head_b)
{
    struct edge *head, **next;
    int32_t x;

    if (head_a == NULL)
	return head_b;

    next = &head;
    if (head_a->x.quo <= head_b->x.quo) {
	head = head_a;
    } else {
	head = head_b;
	goto start_with_b;
    }

    do {
	x = head_b->x.quo;
	while (head_a != NULL && head_a->x.quo <= x) {
	    next = &head_a->next;
	    head_a = head_a->next;
	}

	*next = head_b;
	if (head_a == NULL)
	    return head;

start_with_b:
	x = head_a->x.quo;
	while (head_b != NULL && head_b->x.quo <= x) {
	    next = &head_b->next;
	    head_b = head_b->next;
	}

	*next = head_a;
	if (head_b == NULL)
	    return head;
    } while (1);
}

/*
 * Sort (part of) a list.
 * Input:
 *  - list: The list to be sorted; list cannot be NULL.
 *  - limit: Recursion limit.
 * Output:
 *  - head_out: The head of the sorted list containing the first 2^(level+1) elements of the
 *              input list; if the input list has fewer elements, head_out be a sorted list
 *              containing all the elements of the input list.
 * Returns the head of the list of unprocessed elements (NULL if the sorted list contains
 * all the elements of the input list).
 *
 * Implementation notes:
 * Special case single element list, unroll/inline the sorting of the first two elements.
 * Some tail recursion is used since we iterate on the bottom-up solution of the problem
 * (we start with a small sorted list and keep merging other lists of the same size to it).
 */
static struct edge *
sort_edges (struct edge  *list,
	    unsigned int  level,
	    struct edge **head_out)
{
    struct edge *head_other, *remaining;
    unsigned int i;

    head_other = list->next;

    /* Single element list -> return */
    if (head_other == NULL) {
	*head_out = list;
	return NULL;
    }

    /* Unroll the first iteration of the following loop (halves the number of calls to merge_sorted_edges):
     *  - Initialize remaining to be the list containing the elements after the second in the input list.
     *  - Initialize *head_out to be the sorted list containing the first two element.
     */
    remaining = head_other->next;
    if (list->x.quo <= head_other->x.quo) {
	*head_out = list;
	/* list->next = head_other; */ /* The input list is already like this. */
	head_other->next = NULL;
    } else {
	*head_out = head_other;
	head_other->next = list;
	list->next = NULL;
    }

    for (i = 0; i < level && remaining; i++) {
	/* Extract a sorted list of the same size as *head_out
	 * (2^(i+1) elements) from the list of remaining elements. */
	remaining = sort_edges (remaining, i, &head_other);
	*head_out = merge_sorted_edges (*head_out, head_other);
    }

    /* *head_out now contains (at most) 2^(level+1) elements. */

    return remaining;
}

/* Test if the edges on the active list can be safely advanced by a
 * full row without intersections or any edges ending. */
inline static int
active_list_can_step_full_row (struct active_list *active)
{
    const struct edge *e;
    int prev_x = INT_MIN;

    /* Recomputes the minimum height of all edges on the active
     * list if we have been dropping edges. */
    if (active->min_height <= 0) {
	int min_height = INT_MAX;

	e = active->head;
	while (NULL != e) {
	    if (e->height_left < min_height)
		min_height = e->height_left;
	    e = e->next;
	}

	active->min_height = min_height;
    }

    if (active->min_height < GRID_Y)
	return 0;

    /* Check for intersections as no edges end during the next row. */
    e = active->head;
    while (NULL != e) {
	struct quorem x = e->x;

	if (! e->vertical) {
	    x.quo += e->dxdy_full.quo;
	    x.rem += e->dxdy_full.rem;
	    if (x.rem >= 0)
		++x.quo;
	}

	if (x.quo <= prev_x)
	    return 0;

	prev_x = x.quo;
	e = e->next;
    }

    return 1;
}

/* Merges edges on the given subpixel row from the polygon to the
 * active_list. */
inline static void
active_list_merge_edges_from_polygon(struct active_list *active,
				     struct edge **ptail,
				     grid_scaled_y_t y,
				     struct polygon *polygon)
{
    /* Split off the edges on the current subrow and merge them into
     * the active list. */
    int min_height = active->min_height;
    struct edge *subrow_edges = NULL;
    struct edge *tail = *ptail;

    do {
	struct edge *next = tail->next;

	if (y == tail->ytop) {
	    tail->next = subrow_edges;
	    subrow_edges = tail;

	    if (tail->height_left < min_height)
		min_height = tail->height_left;

	    *ptail = next;
	} else
	    ptail = &tail->next;

	tail = next;
    } while (tail);

    if (subrow_edges) {
	sort_edges (subrow_edges, UINT_MAX, &subrow_edges);
	active->head = merge_sorted_edges (active->head, subrow_edges);
	active->min_height = min_height;
    }
}

/* Advance the edges on the active list by one subsample row by
 * updating their x positions.  Drop edges from the list that end. */
inline static void
active_list_substep_edges(struct active_list *active)
{
    struct edge **cursor = &active->head;
    grid_scaled_x_t prev_x = INT_MIN;
    struct edge *unsorted = NULL;
    struct edge *edge = *cursor;

    do {
	UNROLL3({
	    struct edge *next;

	    if (NULL == edge)
		break;

	    next = edge->next;
	    if (--edge->height_left) {
		edge->x.quo += edge->dxdy.quo;
		edge->x.rem += edge->dxdy.rem;
		if (edge->x.rem >= 0) {
		    ++edge->x.quo;
		    edge->x.rem -= edge->dy;
		}

		if (edge->x.quo < prev_x) {
		    *cursor = next;
		    edge->next = unsorted;
		    unsorted = edge;
		} else {
		    prev_x = edge->x.quo;
		    cursor = &edge->next;
		}
	    } else {
		 *cursor = next;
	    }
	    edge = next;
	})
    } while (1);

    if (unsorted) {
	sort_edges (unsorted, UINT_MAX, &unsorted);
	active->head = merge_sorted_edges (active->head, unsorted);
    }
}

inline static void
apply_nonzero_fill_rule_for_subrow (struct active_list *active,
				    struct cell_list *coverages)
{
    struct edge *edge = active->head;
    int winding = 0;
    int xstart;
    int xend;

    cell_list_rewind (coverages);

    while (NULL != edge) {
	xstart = edge->x.quo;
	winding = edge->dir;
	while (1) {
	    edge = edge->next;
	    if (NULL == edge) {
		ASSERT_NOT_REACHED;
		return;
	    }

	    winding += edge->dir;
	    if (0 == winding) {
		if (edge->next == NULL || edge->next->x.quo != edge->x.quo)
		    break;
	    }
	}

	xend = edge->x.quo;
	cell_list_add_subspan (coverages, xstart, xend);

	edge = edge->next;
    }
}

static void
apply_evenodd_fill_rule_for_subrow (struct active_list *active,
				    struct cell_list *coverages)
{
    struct edge *edge = active->head;
    int xstart;
    int xend;

    cell_list_rewind (coverages);

    while (NULL != edge) {
	xstart = edge->x.quo;

	while (1) {
	    edge = edge->next;
	    if (NULL == edge) {
		ASSERT_NOT_REACHED;
		return;
	    }

	    if (edge->next == NULL || edge->next->x.quo != edge->x.quo)
		break;

	    edge = edge->next;
	}

	xend = edge->x.quo;
	cell_list_add_subspan (coverages, xstart, xend);

	edge = edge->next;
    }
}

static void
apply_nonzero_fill_rule_and_step_edges (struct active_list *active,
					struct cell_list *coverages)
{
    struct edge **cursor = &active->head;
    struct edge *left_edge;

    left_edge = *cursor;
    while (NULL != left_edge) {
	struct edge *right_edge;
	int winding = left_edge->dir;

	left_edge->height_left -= GRID_Y;
	if (left_edge->height_left)
	    cursor = &left_edge->next;
	else
	    *cursor = left_edge->next;

	while (1) {
	    right_edge = *cursor;
	    if (NULL == right_edge) {
		cell_list_render_edge (coverages, left_edge, +1);
		return;
	    }

	    right_edge->height_left -= GRID_Y;
	    if (right_edge->height_left)
		cursor = &right_edge->next;
	    else
		*cursor = right_edge->next;

	    winding += right_edge->dir;
	    if (0 == winding) {
		if (right_edge->next == NULL ||
		    right_edge->next->x.quo != right_edge->x.quo)
		{
		    break;
		}
	    }

	    if (! right_edge->vertical) {
		right_edge->x.quo += right_edge->dxdy_full.quo;
		right_edge->x.rem += right_edge->dxdy_full.rem;
		if (right_edge->x.rem >= 0) {
		    ++right_edge->x.quo;
		    right_edge->x.rem -= right_edge->dy;
		}
	    }
	}

	cell_list_render_edge (coverages, left_edge, +1);
	cell_list_render_edge (coverages, right_edge, -1);

	left_edge = *cursor;
    }
}

static void
apply_evenodd_fill_rule_and_step_edges (struct active_list *active,
					struct cell_list *coverages)
{
    struct edge **cursor = &active->head;
    struct edge *left_edge;

    left_edge = *cursor;
    while (NULL != left_edge) {
	struct edge *right_edge;

	left_edge->height_left -= GRID_Y;
	if (left_edge->height_left)
	    cursor = &left_edge->next;
	else
	    *cursor = left_edge->next;

	while (1) {
	    right_edge = *cursor;
	    if (NULL == right_edge) {
		cell_list_render_edge (coverages, left_edge, +1);
		return;
	    }

	    right_edge->height_left -= GRID_Y;
	    if (right_edge->height_left)
		cursor = &right_edge->next;
	    else
		*cursor = right_edge->next;

	    if (right_edge->next == NULL ||
		right_edge->next->x.quo != right_edge->x.quo)
	    {
		break;
	    }

	    if (! right_edge->vertical) {
		right_edge->x.quo += right_edge->dxdy_full.quo;
		right_edge->x.rem += right_edge->dxdy_full.rem;
		if (right_edge->x.rem >= 0) {
		    ++right_edge->x.quo;
		    right_edge->x.rem -= right_edge->dy;
		}
	    }
	}

	cell_list_render_edge (coverages, left_edge, +1);
	cell_list_render_edge (coverages, right_edge, -1);

	left_edge = *cursor;
    }
}

static void
_glitter_scan_converter_init(glitter_scan_converter_t *converter, jmp_buf *jmp)
{
    polygon_init(converter->polygon, jmp);
    active_list_init(converter->active);
    cell_list_init(converter->coverages, jmp);
    converter->ymin=0;
    converter->ymax=0;
}

static void
_glitter_scan_converter_fini(glitter_scan_converter_t *converter)
{
    polygon_fini(converter->polygon);
    cell_list_fini(converter->coverages);
    converter->ymin=0;
    converter->ymax=0;
}

static grid_scaled_t
int_to_grid_scaled(int i, int scale)
{
    /* Clamp to max/min representable scaled number. */
    if (i >= 0) {
	if (i >= INT_MAX/scale)
	    i = INT_MAX/scale;
    }
    else {
	if (i <= INT_MIN/scale)
	    i = INT_MIN/scale;
    }
    return i*scale;
}

#define int_to_grid_scaled_x(x) int_to_grid_scaled((x), GRID_X)
#define int_to_grid_scaled_y(x) int_to_grid_scaled((x), GRID_Y)

static cairo_status_t
glitter_scan_converter_reset(glitter_scan_converter_t *converter,
			     int ymin, int ymax)
{
    cairo_status_t status;

    converter->ymin = 0;
    converter->ymax = 0;

    ymin = int_to_grid_scaled_y(ymin);
    ymax = int_to_grid_scaled_y(ymax);

    active_list_reset(converter->active);
    cell_list_reset(converter->coverages);
    status = polygon_reset(converter->polygon, ymin, ymax);
    if (status)
	return status;

    converter->ymin = ymin;
    converter->ymax = ymax;
    return CAIRO_STATUS_SUCCESS;
}

/* INPUT_TO_GRID_X/Y (in_coord, out_grid_scaled, grid_scale)
 *   These macros convert an input coordinate in the client's
 *   device space to the rasterisation grid.
 */
/* Gah.. this bit of ugly defines INPUT_TO_GRID_X/Y so as to use
 * shifts if possible, and something saneish if not.
 */
#if !defined(INPUT_TO_GRID_Y) && defined(GRID_Y_BITS) && GRID_Y_BITS <= GLITTER_INPUT_BITS
#  define INPUT_TO_GRID_Y(in, out) (out) = (in) >> (GLITTER_INPUT_BITS - GRID_Y_BITS)
#else
#  define INPUT_TO_GRID_Y(in, out) INPUT_TO_GRID_general(in, out, GRID_Y)
#endif

#if !defined(INPUT_TO_GRID_X) && defined(GRID_X_BITS) && GRID_X_BITS <= GLITTER_INPUT_BITS
#  define INPUT_TO_GRID_X(in, out) (out) = (in) >> (GLITTER_INPUT_BITS - GRID_X_BITS)
#else
#  define INPUT_TO_GRID_X(in, out) INPUT_TO_GRID_general(in, out, GRID_X)
#endif

#define INPUT_TO_GRID_general(in, out, grid_scale) do {		\
	long long tmp__ = (long long)(grid_scale) * (in);	\
	tmp__ >>= GLITTER_INPUT_BITS;				\
	(out) = tmp__;						\
} while (0)

static void
glitter_scan_converter_add_edge (glitter_scan_converter_t *converter,
				 const cairo_edge_t *edge,
				 int clip)
{
    cairo_edge_t e;

    INPUT_TO_GRID_Y (edge->top, e.top);
    INPUT_TO_GRID_Y (edge->bottom, e.bottom);
    if (e.top >= e.bottom)
	return;

    /* XXX: possible overflows if GRID_X/Y > 2**GLITTER_INPUT_BITS */
    INPUT_TO_GRID_Y (edge->line.p1.y, e.line.p1.y);
    INPUT_TO_GRID_Y (edge->line.p2.y, e.line.p2.y);
    if (e.line.p1.y == e.line.p2.y)
	return;

    INPUT_TO_GRID_X (edge->line.p1.x, e.line.p1.x);
    INPUT_TO_GRID_X (edge->line.p2.x, e.line.p2.x);

    e.dir = edge->dir;

    polygon_add_edge (converter->polygon, &e, clip);
}

static cairo_bool_t
active_list_is_vertical (struct active_list *active)
{
    struct edge *e;

    for (e = active->head; e != NULL; e = e->next) {
	if (! e->vertical)
	    return FALSE;
    }

    return TRUE;
}

static void
step_edges (struct active_list *active, int count)
{
    struct edge **cursor = &active->head;
    struct edge *edge;

    for (edge = *cursor; edge != NULL; edge = *cursor) {
	edge->height_left -= GRID_Y * count;
	if (edge->height_left)
	    cursor = &edge->next;
	else
	    *cursor = edge->next;
    }
}

static cairo_status_t
blit_coverages (struct cell_list *cells,
		cairo_span_renderer_t *renderer,
		struct pool *span_pool,
		int y, int height)
{
    struct cell *cell = cells->head.next;
    int prev_x = -1;
    int cover = 0, last_cover = 0;
    int clip = 0;
    cairo_half_open_span_t *spans;
    unsigned num_spans;

    assert (cell != &cells->tail);

    /* Count number of cells remaining. */
    {
	struct cell *next = cell;
	num_spans = 2;
	while (next->next) {
	    next = next->next;
	    ++num_spans;
	}
	num_spans = 2*num_spans;
    }

    /* Allocate enough spans for the row. */
    pool_reset (span_pool);
    spans = pool_alloc (span_pool, sizeof(spans[0])*num_spans);
    num_spans = 0;

    /* Form the spans from the coverages and areas. */
    for (; cell->next; cell = cell->next) {
	int x = cell->x;
	int area;

	if (x > prev_x && cover != last_cover) {
	    spans[num_spans].x = prev_x;
	    spans[num_spans].coverage = GRID_AREA_TO_ALPHA (cover);
	    spans[num_spans].inverse = 0;
	    last_cover = cover;
	    ++num_spans;
	}

	cover += cell->covered_height*GRID_X*2;
	clip += cell->covered_height*GRID_X*2;
	area = cover - cell->uncovered_area;

	if (area != last_cover) {
	    spans[num_spans].x = x;
	    spans[num_spans].coverage = GRID_AREA_TO_ALPHA (area);
	    spans[num_spans].inverse = 0;
	    last_cover = area;
	    ++num_spans;
	}

	prev_x = x+1;
    }

    /* Dump them into the renderer. */
    return renderer->render_rows (renderer, y, height, spans, num_spans);
}

static void
glitter_scan_converter_render(glitter_scan_converter_t *converter,
			      int nonzero_fill,
			      cairo_span_renderer_t *span_renderer,
			      struct pool *span_pool)
{
    int i, j;
    int ymax_i = converter->ymax / GRID_Y;
    int ymin_i = converter->ymin / GRID_Y;
    int h = ymax_i - ymin_i;
    struct polygon *polygon = converter->polygon;
    struct cell_list *coverages = converter->coverages;
    struct active_list *active = converter->active;

    /* Render each pixel row. */
    for (i = 0; i < h; i = j) {
	int do_full_step = 0;

	j = i + 1;

	/* Determine if we can ignore this row or use the full pixel
	 * stepper. */
	if (GRID_Y == EDGE_Y_BUCKET_HEIGHT && ! polygon->y_buckets[i]) {
	    if (! active->head) {
		for (; j < h && ! polygon->y_buckets[j]; j++)
		    ;
		continue;
	    }

	    do_full_step = active_list_can_step_full_row (active);
	}

	if (do_full_step) {
	    /* Step by a full pixel row's worth. */
	    if (nonzero_fill)
		apply_nonzero_fill_rule_and_step_edges (active, coverages);
	    else
		apply_evenodd_fill_rule_and_step_edges (active, coverages);

	    if (active_list_is_vertical (active)) {
		while (j < h &&
		       polygon->y_buckets[j] == NULL &&
		       active->min_height >= 2*GRID_Y)
		{
		    active->min_height -= GRID_Y;
		    j++;
		}
		if (j != i + 1)
		    step_edges (active, j - (i + 1));
	    }
	} else {
	    grid_scaled_y_t suby;

	    /* Subsample this row. */
	    for (suby = 0; suby < GRID_Y; suby++) {
		grid_scaled_y_t y = (i+ymin_i)*GRID_Y + suby;

		if (polygon->y_buckets[i]) {
		    active_list_merge_edges_from_polygon (active,
							  &polygon->y_buckets[i], y,
							  polygon);
		}

		if (nonzero_fill)
		    apply_nonzero_fill_rule_for_subrow (active, coverages);
		else
		    apply_evenodd_fill_rule_for_subrow (active, coverages);

		active_list_substep_edges(active);
	    }
	}

	blit_coverages (coverages, span_renderer, span_pool, i+ymin_i, j -i);
	cell_list_reset (coverages);

	if (! active->head)
	    active->min_height = INT_MAX;
	else
	    active->min_height -= GRID_Y;
    }
}

struct _cairo_clip_tor_scan_converter {
    cairo_scan_converter_t base;

    glitter_scan_converter_t converter[1];
    cairo_fill_rule_t fill_rule;
    cairo_antialias_t antialias;

    cairo_fill_rule_t clip_fill_rule;
    cairo_antialias_t clip_antialias;

    jmp_buf jmp;

    struct {
	struct pool base[1];
	cairo_half_open_span_t embedded[32];
    } span_pool;
};

typedef struct _cairo_clip_tor_scan_converter cairo_clip_tor_scan_converter_t;

static void
_cairo_clip_tor_scan_converter_destroy (void *converter)
{
    cairo_clip_tor_scan_converter_t *self = converter;
    if (self == NULL) {
	return;
    }
    _glitter_scan_converter_fini (self->converter);
    pool_fini (self->span_pool.base);
    free(self);
}

static cairo_status_t
_cairo_clip_tor_scan_converter_generate (void			*converter,
				    cairo_span_renderer_t	*renderer)
{
    cairo_clip_tor_scan_converter_t *self = converter;
    cairo_status_t status;

    if ((status = setjmp (self->jmp)))
	return _cairo_scan_converter_set_error (self, _cairo_error (status));

    glitter_scan_converter_render (self->converter,
				   self->fill_rule == CAIRO_FILL_RULE_WINDING,
				   renderer,
				   self->span_pool.base);
    return CAIRO_STATUS_SUCCESS;
}

cairo_scan_converter_t *
_cairo_clip_tor_scan_converter_create (cairo_clip_t *clip,
				       cairo_polygon_t *polygon,
				       cairo_fill_rule_t fill_rule,
				       cairo_antialias_t antialias)
{
    cairo_clip_tor_scan_converter_t *self;
    cairo_polygon_t clipper;
    cairo_status_t status;
    int i;

    self = calloc (1, sizeof(struct _cairo_clip_tor_scan_converter));
    if (unlikely (self == NULL)) {
	status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
	goto bail_nomem;
    }

    self->base.destroy = _cairo_clip_tor_scan_converter_destroy;
    self->base.generate = _cairo_clip_tor_scan_converter_generate;

    pool_init (self->span_pool.base, &self->jmp,
	       250 * sizeof(self->span_pool.embedded[0]),
	       sizeof(self->span_pool.embedded));

    _glitter_scan_converter_init (self->converter, &self->jmp);
    status = glitter_scan_converter_reset (self->converter,
					   clip->extents.y,
					   clip->extents.y + clip->extents.height);
    if (unlikely (status))
	goto bail;

    self->fill_rule = fill_rule;
    self->antialias = antialias;

    for (i = 0; i < polygon->num_edges; i++)
	 glitter_scan_converter_add_edge (self->converter,
					  &polygon->edges[i],
					  FALSE);

    status = _cairo_clip_get_polygon (clip,
				      &clipper,
				      &self->clip_fill_rule,
				      &self->clip_antialias);
    if (unlikely (status))
	goto bail;

    for (i = 0; i < clipper.num_edges; i++)
	 glitter_scan_converter_add_edge (self->converter,
					  &clipper.edges[i],
					  TRUE);
    _cairo_polygon_fini (&clipper);

    return &self->base;

 bail:
    self->base.destroy(&self->base);
 bail_nomem:
    return _cairo_scan_converter_create_in_error (status);
}