1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
|
/* -*- Mode: c; c-basic-offset: 4; indent-tabs-mode: t; tab-width: 8; -*- */
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2002 University of Southern California
* Copyright © 2005 Red Hat, Inc.
* Copyright © 2007 Adrian Johnson
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is University of Southern
* California.
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
* Adrian Johnson <ajohnson@redneon.com>
*/
#include "cairoint.h"
#include "cairo-error-private.h"
COMPILE_TIME_ASSERT ((int)CAIRO_STATUS_LAST_STATUS < (int)CAIRO_INT_STATUS_UNSUPPORTED);
COMPILE_TIME_ASSERT (CAIRO_INT_STATUS_LAST_STATUS <= 127);
/**
* SECTION:cairo-status
* @Title: Error handling
* @Short_Description: Decoding cairo's status
* @See_Also: cairo_status(), cairo_surface_status(), cairo_pattern_status(),
* cairo_font_face_status(), cairo_scaled_font_status(),
* cairo_region_status()
*
* Cairo uses a single status type to represent all kinds of errors. A status
* value of %CAIRO_STATUS_SUCCESS represents no error and has an integer value
* of zero. All other status values represent an error.
*
* Cairo's error handling is designed to be easy to use and safe. All major
* cairo objects <firstterm>retain</firstterm> an error status internally which
* can be queried anytime by the users using cairo*_status() calls. In
* the mean time, it is safe to call all cairo functions normally even if the
* underlying object is in an error status. This means that no error handling
* code is required before or after each individual cairo function call.
**/
/* Public stuff */
/**
* cairo_status_to_string:
* @status: a cairo status
*
* Provides a human-readable description of a #cairo_status_t.
*
* Returns: a string representation of the status
*
* Since: 1.0
**/
const char *
cairo_status_to_string (cairo_status_t status)
{
switch (status) {
case CAIRO_STATUS_SUCCESS:
return "no error has occurred";
case CAIRO_STATUS_NO_MEMORY:
return "out of memory";
case CAIRO_STATUS_INVALID_RESTORE:
return "cairo_restore() without matching cairo_save()";
case CAIRO_STATUS_INVALID_POP_GROUP:
return "no saved group to pop, i.e. cairo_pop_group() without matching cairo_push_group()";
case CAIRO_STATUS_NO_CURRENT_POINT:
return "no current point defined";
case CAIRO_STATUS_INVALID_MATRIX:
return "invalid matrix (not invertible)";
case CAIRO_STATUS_INVALID_STATUS:
return "invalid value for an input cairo_status_t";
case CAIRO_STATUS_NULL_POINTER:
return "NULL pointer";
case CAIRO_STATUS_INVALID_STRING:
return "input string not valid UTF-8";
case CAIRO_STATUS_INVALID_PATH_DATA:
return "input path data not valid";
case CAIRO_STATUS_READ_ERROR:
return "error while reading from input stream";
case CAIRO_STATUS_WRITE_ERROR:
return "error while writing to output stream";
case CAIRO_STATUS_SURFACE_FINISHED:
return "the target surface has been finished";
case CAIRO_STATUS_SURFACE_TYPE_MISMATCH:
return "the surface type is not appropriate for the operation";
case CAIRO_STATUS_PATTERN_TYPE_MISMATCH:
return "the pattern type is not appropriate for the operation";
case CAIRO_STATUS_INVALID_CONTENT:
return "invalid value for an input cairo_content_t";
case CAIRO_STATUS_INVALID_FORMAT:
return "invalid value for an input cairo_format_t";
case CAIRO_STATUS_INVALID_VISUAL:
return "invalid value for an input Visual*";
case CAIRO_STATUS_FILE_NOT_FOUND:
return "file not found";
case CAIRO_STATUS_INVALID_DASH:
return "invalid value for a dash setting";
case CAIRO_STATUS_INVALID_DSC_COMMENT:
return "invalid value for a DSC comment";
case CAIRO_STATUS_INVALID_INDEX:
return "invalid index passed to getter";
case CAIRO_STATUS_CLIP_NOT_REPRESENTABLE:
return "clip region not representable in desired format";
case CAIRO_STATUS_TEMP_FILE_ERROR:
return "error creating or writing to a temporary file";
case CAIRO_STATUS_INVALID_STRIDE:
return "invalid value for stride";
case CAIRO_STATUS_FONT_TYPE_MISMATCH:
return "the font type is not appropriate for the operation";
case CAIRO_STATUS_USER_FONT_IMMUTABLE:
return "the user-font is immutable";
case CAIRO_STATUS_USER_FONT_ERROR:
return "error occurred in a user-font callback function";
case CAIRO_STATUS_NEGATIVE_COUNT:
return "negative number used where it is not allowed";
case CAIRO_STATUS_INVALID_CLUSTERS:
return "input clusters do not represent the accompanying text and glyph arrays";
case CAIRO_STATUS_INVALID_SLANT:
return "invalid value for an input cairo_font_slant_t";
case CAIRO_STATUS_INVALID_WEIGHT:
return "invalid value for an input cairo_font_weight_t";
case CAIRO_STATUS_INVALID_SIZE:
return "invalid value (typically too big) for the size of the input (surface, pattern, etc.)";
case CAIRO_STATUS_USER_FONT_NOT_IMPLEMENTED:
return "user-font method not implemented";
case CAIRO_STATUS_DEVICE_TYPE_MISMATCH:
return "the device type is not appropriate for the operation";
case CAIRO_STATUS_DEVICE_ERROR:
return "an operation to the device caused an unspecified error";
case CAIRO_STATUS_INVALID_MESH_CONSTRUCTION:
return "invalid operation during mesh pattern construction";
case CAIRO_STATUS_DEVICE_FINISHED:
return "the target device has been finished";
default:
case CAIRO_STATUS_LAST_STATUS:
return "<unknown error status>";
}
}
/**
* cairo_glyph_allocate:
* @num_glyphs: number of glyphs to allocate
*
* Allocates an array of #cairo_glyph_t's.
* This function is only useful in implementations of
* #cairo_user_scaled_font_text_to_glyphs_func_t where the user
* needs to allocate an array of glyphs that cairo will free.
* For all other uses, user can use their own allocation method
* for glyphs.
*
* This function returns %NULL if @num_glyphs is not positive,
* or if out of memory. That means, the %NULL return value
* signals out-of-memory only if @num_glyphs was positive.
*
* Returns: the newly allocated array of glyphs that should be
* freed using cairo_glyph_free()
*
* Since: 1.8
**/
cairo_glyph_t *
cairo_glyph_allocate (int num_glyphs)
{
if (num_glyphs <= 0)
return NULL;
return _cairo_malloc_ab (num_glyphs, sizeof (cairo_glyph_t));
}
slim_hidden_def (cairo_glyph_allocate);
/**
* cairo_glyph_free:
* @glyphs: array of glyphs to free, or %NULL
*
* Frees an array of #cairo_glyph_t's allocated using cairo_glyph_allocate().
* This function is only useful to free glyph array returned
* by cairo_scaled_font_text_to_glyphs() where cairo returns
* an array of glyphs that the user will free.
* For all other uses, user can use their own allocation method
* for glyphs.
*
* Since: 1.8
**/
void
cairo_glyph_free (cairo_glyph_t *glyphs)
{
free (glyphs);
}
slim_hidden_def (cairo_glyph_free);
/**
* cairo_text_cluster_allocate:
* @num_clusters: number of text_clusters to allocate
*
* Allocates an array of #cairo_text_cluster_t's.
* This function is only useful in implementations of
* #cairo_user_scaled_font_text_to_glyphs_func_t where the user
* needs to allocate an array of text clusters that cairo will free.
* For all other uses, user can use their own allocation method
* for text clusters.
*
* This function returns %NULL if @num_clusters is not positive,
* or if out of memory. That means, the %NULL return value
* signals out-of-memory only if @num_clusters was positive.
*
* Returns: the newly allocated array of text clusters that should be
* freed using cairo_text_cluster_free()
*
* Since: 1.8
**/
cairo_text_cluster_t *
cairo_text_cluster_allocate (int num_clusters)
{
if (num_clusters <= 0)
return NULL;
return _cairo_malloc_ab (num_clusters, sizeof (cairo_text_cluster_t));
}
slim_hidden_def (cairo_text_cluster_allocate);
/**
* cairo_text_cluster_free:
* @clusters: array of text clusters to free, or %NULL
*
* Frees an array of #cairo_text_cluster's allocated using cairo_text_cluster_allocate().
* This function is only useful to free text cluster array returned
* by cairo_scaled_font_text_to_glyphs() where cairo returns
* an array of text clusters that the user will free.
* For all other uses, user can use their own allocation method
* for text clusters.
*
* Since: 1.8
**/
void
cairo_text_cluster_free (cairo_text_cluster_t *clusters)
{
free (clusters);
}
slim_hidden_def (cairo_text_cluster_free);
/* Private stuff */
/**
* _cairo_validate_text_clusters:
* @utf8: UTF-8 text
* @utf8_len: length of @utf8 in bytes
* @glyphs: array of glyphs
* @num_glyphs: number of glyphs
* @clusters: array of cluster mapping information
* @num_clusters: number of clusters in the mapping
* @cluster_flags: cluster flags
*
* Check that clusters cover the entire glyphs and utf8 arrays,
* and that cluster boundaries are UTF-8 boundaries.
*
* Return value: %CAIRO_STATUS_SUCCESS upon success, or
* %CAIRO_STATUS_INVALID_CLUSTERS on error.
* The error is either invalid UTF-8 input,
* or bad cluster mapping.
**/
cairo_status_t
_cairo_validate_text_clusters (const char *utf8,
int utf8_len,
const cairo_glyph_t *glyphs,
int num_glyphs,
const cairo_text_cluster_t *clusters,
int num_clusters,
cairo_text_cluster_flags_t cluster_flags)
{
cairo_status_t status;
unsigned int n_bytes = 0;
unsigned int n_glyphs = 0;
int i;
for (i = 0; i < num_clusters; i++) {
int cluster_bytes = clusters[i].num_bytes;
int cluster_glyphs = clusters[i].num_glyphs;
if (cluster_bytes < 0 || cluster_glyphs < 0)
goto BAD;
/* A cluster should cover at least one character or glyph.
* I can't see any use for a 0,0 cluster.
* I can't see an immediate use for a zero-text cluster
* right now either, but they don't harm.
* Zero-glyph clusters on the other hand are useful for
* things like U+200C ZERO WIDTH NON-JOINER */
if (cluster_bytes == 0 && cluster_glyphs == 0)
goto BAD;
/* Since n_bytes and n_glyphs are unsigned, but the rest of
* values involved are signed, we can detect overflow easily */
if (n_bytes+cluster_bytes > (unsigned int)utf8_len || n_glyphs+cluster_glyphs > (unsigned int)num_glyphs)
goto BAD;
/* Make sure we've got valid UTF-8 for the cluster */
status = _cairo_utf8_to_ucs4 (utf8+n_bytes, cluster_bytes, NULL, NULL);
if (unlikely (status))
return _cairo_error (CAIRO_STATUS_INVALID_CLUSTERS);
n_bytes += cluster_bytes ;
n_glyphs += cluster_glyphs;
}
if (n_bytes != (unsigned int) utf8_len || n_glyphs != (unsigned int) num_glyphs) {
BAD:
return _cairo_error (CAIRO_STATUS_INVALID_CLUSTERS);
}
return CAIRO_STATUS_SUCCESS;
}
/**
* _cairo_operator_bounded_by_mask:
* @op: a #cairo_operator_t
*
* A bounded operator is one where mask pixel
* of zero results in no effect on the destination image.
*
* Unbounded operators often require special handling; if you, for
* example, draw trapezoids with an unbounded operator, the effect
* extends past the bounding box of the trapezoids.
*
* Return value: %TRUE if the operator is bounded by the mask operand
**/
cairo_bool_t
_cairo_operator_bounded_by_mask (cairo_operator_t op)
{
switch (op) {
case CAIRO_OPERATOR_CLEAR:
case CAIRO_OPERATOR_SOURCE:
case CAIRO_OPERATOR_OVER:
case CAIRO_OPERATOR_ATOP:
case CAIRO_OPERATOR_DEST:
case CAIRO_OPERATOR_DEST_OVER:
case CAIRO_OPERATOR_DEST_OUT:
case CAIRO_OPERATOR_XOR:
case CAIRO_OPERATOR_ADD:
case CAIRO_OPERATOR_SATURATE:
case CAIRO_OPERATOR_MULTIPLY:
case CAIRO_OPERATOR_SCREEN:
case CAIRO_OPERATOR_OVERLAY:
case CAIRO_OPERATOR_DARKEN:
case CAIRO_OPERATOR_LIGHTEN:
case CAIRO_OPERATOR_COLOR_DODGE:
case CAIRO_OPERATOR_COLOR_BURN:
case CAIRO_OPERATOR_HARD_LIGHT:
case CAIRO_OPERATOR_SOFT_LIGHT:
case CAIRO_OPERATOR_DIFFERENCE:
case CAIRO_OPERATOR_EXCLUSION:
case CAIRO_OPERATOR_HSL_HUE:
case CAIRO_OPERATOR_HSL_SATURATION:
case CAIRO_OPERATOR_HSL_COLOR:
case CAIRO_OPERATOR_HSL_LUMINOSITY:
return TRUE;
case CAIRO_OPERATOR_OUT:
case CAIRO_OPERATOR_IN:
case CAIRO_OPERATOR_DEST_IN:
case CAIRO_OPERATOR_DEST_ATOP:
return FALSE;
}
ASSERT_NOT_REACHED;
return FALSE;
}
/**
* _cairo_operator_bounded_by_source:
* @op: a #cairo_operator_t
*
* A bounded operator is one where source pixels of zero
* (in all four components, r, g, b and a) effect no change
* in the resulting destination image.
*
* Unbounded operators often require special handling; if you, for
* example, copy a surface with the SOURCE operator, the effect
* extends past the bounding box of the source surface.
*
* Return value: %TRUE if the operator is bounded by the source operand
**/
cairo_bool_t
_cairo_operator_bounded_by_source (cairo_operator_t op)
{
switch (op) {
case CAIRO_OPERATOR_OVER:
case CAIRO_OPERATOR_ATOP:
case CAIRO_OPERATOR_DEST:
case CAIRO_OPERATOR_DEST_OVER:
case CAIRO_OPERATOR_DEST_OUT:
case CAIRO_OPERATOR_XOR:
case CAIRO_OPERATOR_ADD:
case CAIRO_OPERATOR_SATURATE:
case CAIRO_OPERATOR_MULTIPLY:
case CAIRO_OPERATOR_SCREEN:
case CAIRO_OPERATOR_OVERLAY:
case CAIRO_OPERATOR_DARKEN:
case CAIRO_OPERATOR_LIGHTEN:
case CAIRO_OPERATOR_COLOR_DODGE:
case CAIRO_OPERATOR_COLOR_BURN:
case CAIRO_OPERATOR_HARD_LIGHT:
case CAIRO_OPERATOR_SOFT_LIGHT:
case CAIRO_OPERATOR_DIFFERENCE:
case CAIRO_OPERATOR_EXCLUSION:
case CAIRO_OPERATOR_HSL_HUE:
case CAIRO_OPERATOR_HSL_SATURATION:
case CAIRO_OPERATOR_HSL_COLOR:
case CAIRO_OPERATOR_HSL_LUMINOSITY:
return TRUE;
case CAIRO_OPERATOR_CLEAR:
case CAIRO_OPERATOR_SOURCE:
case CAIRO_OPERATOR_OUT:
case CAIRO_OPERATOR_IN:
case CAIRO_OPERATOR_DEST_IN:
case CAIRO_OPERATOR_DEST_ATOP:
return FALSE;
}
ASSERT_NOT_REACHED;
return FALSE;
}
uint32_t
_cairo_operator_bounded_by_either (cairo_operator_t op)
{
switch (op) {
default:
ASSERT_NOT_REACHED;
case CAIRO_OPERATOR_OVER:
case CAIRO_OPERATOR_ATOP:
case CAIRO_OPERATOR_DEST:
case CAIRO_OPERATOR_DEST_OVER:
case CAIRO_OPERATOR_DEST_OUT:
case CAIRO_OPERATOR_XOR:
case CAIRO_OPERATOR_ADD:
case CAIRO_OPERATOR_SATURATE:
case CAIRO_OPERATOR_MULTIPLY:
case CAIRO_OPERATOR_SCREEN:
case CAIRO_OPERATOR_OVERLAY:
case CAIRO_OPERATOR_DARKEN:
case CAIRO_OPERATOR_LIGHTEN:
case CAIRO_OPERATOR_COLOR_DODGE:
case CAIRO_OPERATOR_COLOR_BURN:
case CAIRO_OPERATOR_HARD_LIGHT:
case CAIRO_OPERATOR_SOFT_LIGHT:
case CAIRO_OPERATOR_DIFFERENCE:
case CAIRO_OPERATOR_EXCLUSION:
case CAIRO_OPERATOR_HSL_HUE:
case CAIRO_OPERATOR_HSL_SATURATION:
case CAIRO_OPERATOR_HSL_COLOR:
case CAIRO_OPERATOR_HSL_LUMINOSITY:
return CAIRO_OPERATOR_BOUND_BY_MASK | CAIRO_OPERATOR_BOUND_BY_SOURCE;
case CAIRO_OPERATOR_CLEAR:
case CAIRO_OPERATOR_SOURCE:
return CAIRO_OPERATOR_BOUND_BY_MASK;
case CAIRO_OPERATOR_OUT:
case CAIRO_OPERATOR_IN:
case CAIRO_OPERATOR_DEST_IN:
case CAIRO_OPERATOR_DEST_ATOP:
return 0;
}
}
#if DISABLE_SOME_FLOATING_POINT
/* This function is identical to the C99 function lround(), except that it
* performs arithmetic rounding (floor(d + .5) instead of away-from-zero rounding) and
* has a valid input range of (INT_MIN, INT_MAX] instead of
* [INT_MIN, INT_MAX]. It is much faster on both x86 and FPU-less systems
* than other commonly used methods for rounding (lround, round, rint, lrint
* or float (d + 0.5)).
*
* The reason why this function is much faster on x86 than other
* methods is due to the fact that it avoids the fldcw instruction.
* This instruction incurs a large performance penalty on modern Intel
* processors due to how it prevents efficient instruction pipelining.
*
* The reason why this function is much faster on FPU-less systems is for
* an entirely different reason. All common rounding methods involve multiple
* floating-point operations. Each one of these operations has to be
* emulated in software, which adds up to be a large performance penalty.
* This function doesn't perform any floating-point calculations, and thus
* avoids this penalty.
*/
int
_cairo_lround (double d)
{
uint32_t top, shift_amount, output;
union {
double d;
uint64_t ui64;
uint32_t ui32[2];
} u;
u.d = d;
/* If the integer word order doesn't match the float word order, we swap
* the words of the input double. This is needed because we will be
* treating the whole double as a 64-bit unsigned integer. Notice that we
* use WORDS_BIGENDIAN to detect the integer word order, which isn't
* exactly correct because WORDS_BIGENDIAN refers to byte order, not word
* order. Thus, we are making the assumption that the byte order is the
* same as the integer word order which, on the modern machines that we
* care about, is OK.
*/
#if ( defined(FLOAT_WORDS_BIGENDIAN) && !defined(WORDS_BIGENDIAN)) || \
(!defined(FLOAT_WORDS_BIGENDIAN) && defined(WORDS_BIGENDIAN))
{
uint32_t temp = u.ui32[0];
u.ui32[0] = u.ui32[1];
u.ui32[1] = temp;
}
#endif
#ifdef WORDS_BIGENDIAN
#define MSW (0) /* Most Significant Word */
#define LSW (1) /* Least Significant Word */
#else
#define MSW (1)
#define LSW (0)
#endif
/* By shifting the most significant word of the input double to the
* right 20 places, we get the very "top" of the double where the exponent
* and sign bit lie.
*/
top = u.ui32[MSW] >> 20;
/* Here, we calculate how much we have to shift the mantissa to normalize
* it to an integer value. We extract the exponent "top" by masking out the
* sign bit, then we calculate the shift amount by subtracting the exponent
* from the bias. Notice that the correct bias for 64-bit doubles is
* actually 1075, but we use 1053 instead for two reasons:
*
* 1) To perform rounding later on, we will first need the target
* value in a 31.1 fixed-point format. Thus, the bias needs to be one
* less: (1075 - 1: 1074).
*
* 2) To avoid shifting the mantissa as a full 64-bit integer (which is
* costly on certain architectures), we break the shift into two parts.
* First, the upper and lower parts of the mantissa are shifted
* individually by a constant amount that all valid inputs will require
* at the very least. This amount is chosen to be 21, because this will
* allow the two parts of the mantissa to later be combined into a
* single 32-bit representation, on which the remainder of the shift
* will be performed. Thus, we decrease the bias by an additional 21:
* (1074 - 21: 1053).
*/
shift_amount = 1053 - (top & 0x7FF);
/* We are done with the exponent portion in "top", so here we shift it off
* the end.
*/
top >>= 11;
/* Before we perform any operations on the mantissa, we need to OR in
* the implicit 1 at the top (see the IEEE-754 spec). We needn't mask
* off the sign bit nor the exponent bits because these higher bits won't
* make a bit of difference in the rest of our calculations.
*/
u.ui32[MSW] |= 0x100000;
/* If the input double is negative, we have to decrease the mantissa
* by a hair. This is an important part of performing arithmetic rounding,
* as negative numbers must round towards positive infinity in the
* halfwase case of -x.5. Since "top" contains only the sign bit at this
* point, we can just decrease the mantissa by the value of "top".
*/
u.ui64 -= top;
/* By decrementing "top", we create a bitmask with a value of either
* 0x0 (if the input was negative) or 0xFFFFFFFF (if the input was positive
* and thus the unsigned subtraction underflowed) that we'll use later.
*/
top--;
/* Here, we shift the mantissa by the constant value as described above.
* We can emulate a 64-bit shift right by 21 through shifting the top 32
* bits left 11 places and ORing in the bottom 32 bits shifted 21 places
* to the right. Both parts of the mantissa are now packed into a single
* 32-bit integer. Although we severely truncate the lower part in the
* process, we still have enough significant bits to perform the conversion
* without error (for all valid inputs).
*/
output = (u.ui32[MSW] << 11) | (u.ui32[LSW] >> 21);
/* Next, we perform the shift that converts the X.Y fixed-point number
* currently found in "output" to the desired 31.1 fixed-point format
* needed for the following rounding step. It is important to consider
* all possible values for "shift_amount" at this point:
*
* - {shift_amount < 0} Since shift_amount is an unsigned integer, it
* really can't have a value less than zero. But, if the shift_amount
* calculation above caused underflow (which would happen with
* input > INT_MAX or input <= INT_MIN) then shift_amount will now be
* a very large number, and so this shift will result in complete
* garbage. But that's OK, as the input was out of our range, so our
* output is undefined.
*
* - {shift_amount > 31} If the magnitude of the input was very small
* (i.e. |input| << 1.0), shift_amount will have a value greater than
* 31. Thus, this shift will also result in garbage. After performing
* the shift, we will zero-out "output" if this is the case.
*
* - {0 <= shift_amount < 32} In this case, the shift will properly convert
* the mantissa into a 31.1 fixed-point number.
*/
output >>= shift_amount;
/* This is where we perform rounding with the 31.1 fixed-point number.
* Since what we're after is arithmetic rounding, we simply add the single
* fractional bit into the integer part of "output", and just keep the
* integer part.
*/
output = (output >> 1) + (output & 1);
/* Here, we zero-out the result if the magnitude if the input was very small
* (as explained in the section above). Notice that all input out of the
* valid range is also caught by this condition, which means we produce 0
* for all invalid input, which is a nice side effect.
*
* The most straightforward way to do this would be:
*
* if (shift_amount > 31)
* output = 0;
*
* But we can use a little trick to avoid the potential branch. The
* expression (shift_amount > 31) will be either 1 or 0, which when
* decremented will be either 0x0 or 0xFFFFFFFF (unsigned underflow),
* which can be used to conditionally mask away all the bits in "output"
* (in the 0x0 case), effectively zeroing it out. Certain, compilers would
* have done this for us automatically.
*/
output &= ((shift_amount > 31) - 1);
/* If the input double was a negative number, then we have to negate our
* output. The most straightforward way to do this would be:
*
* if (!top)
* output = -output;
*
* as "top" at this point is either 0x0 (if the input was negative) or
* 0xFFFFFFFF (if the input was positive). But, we can use a trick to
* avoid the branch. Observe that the following snippet of code has the
* same effect as the reference snippet above:
*
* if (!top)
* output = 0 - output;
* else
* output = output - 0;
*
* Armed with the bitmask found in "top", we can condense the two statements
* into the following:
*
* output = (output & top) - (output & ~top);
*
* where, in the case that the input double was negative, "top" will be 0,
* and the statement will be equivalent to:
*
* output = (0) - (output);
*
* and if the input double was positive, "top" will be 0xFFFFFFFF, and the
* statement will be equivalent to:
*
* output = (output) - (0);
*
* Which, as pointed out earlier, is equivalent to the original reference
* snippet.
*/
output = (output & top) - (output & ~top);
return output;
#undef MSW
#undef LSW
}
#endif
/* Convert a 32-bit IEEE single precision floating point number to a
* 'half' representation (s10.5)
*/
uint16_t
_cairo_half_from_float (float f)
{
union {
uint32_t ui;
float f;
} u;
int s, e, m;
u.f = f;
s = (u.ui >> 16) & 0x00008000;
e = ((u.ui >> 23) & 0x000000ff) - (127 - 15);
m = u.ui & 0x007fffff;
if (e <= 0) {
if (e < -10) {
/* underflow */
return 0;
}
m = (m | 0x00800000) >> (1 - e);
/* round to nearest, round 0.5 up. */
if (m & 0x00001000)
m += 0x00002000;
return s | (m >> 13);
} else if (e == 0xff - (127 - 15)) {
if (m == 0) {
/* infinity */
return s | 0x7c00;
} else {
/* nan */
m >>= 13;
return s | 0x7c00 | m | (m == 0);
}
} else {
/* round to nearest, round 0.5 up. */
if (m & 0x00001000) {
m += 0x00002000;
if (m & 0x00800000) {
m = 0;
e += 1;
}
}
if (e > 30) {
/* overflow -> infinity */
return s | 0x7c00;
}
return s | (e << 10) | (m >> 13);
}
}
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
/* We require Windows 2000 features such as ETO_PDY */
#if !defined(WINVER) || (WINVER < 0x0500)
# define WINVER 0x0500
#endif
#if !defined(_WIN32_WINNT) || (_WIN32_WINNT < 0x0500)
# define _WIN32_WINNT 0x0500
#endif
#include <windows.h>
#include <io.h>
#if !_WIN32_WCE
/* tmpfile() replacement for Windows.
*
* On Windows tmpfile() creates the file in the root directory. This
* may fail due to unsufficient privileges. However, this isn't a
* problem on Windows CE so we don't use it there.
*/
FILE *
_cairo_win32_tmpfile (void)
{
DWORD path_len;
WCHAR path_name[MAX_PATH + 1];
WCHAR file_name[MAX_PATH + 1];
HANDLE handle;
int fd;
FILE *fp;
path_len = GetTempPathW (MAX_PATH, path_name);
if (path_len <= 0 || path_len >= MAX_PATH)
return NULL;
if (GetTempFileNameW (path_name, L"ps_", 0, file_name) == 0)
return NULL;
handle = CreateFileW (file_name,
GENERIC_READ | GENERIC_WRITE,
0,
NULL,
CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_DELETE_ON_CLOSE,
NULL);
if (handle == INVALID_HANDLE_VALUE) {
DeleteFileW (file_name);
return NULL;
}
fd = _open_osfhandle((intptr_t) handle, 0);
if (fd < 0) {
CloseHandle (handle);
return NULL;
}
fp = fdopen(fd, "w+b");
if (fp == NULL) {
_close(fd);
return NULL;
}
return fp;
}
#endif /* !_WIN32_WCE */
#endif /* _WIN32 */
typedef struct _cairo_intern_string {
cairo_hash_entry_t hash_entry;
int len;
char *string;
} cairo_intern_string_t;
static cairo_hash_table_t *_cairo_intern_string_ht;
static unsigned long
_intern_string_hash (const char *str, int len)
{
const signed char *p = (const signed char *) str;
unsigned int h = *p;
for (p += 1; --len; p++)
h = (h << 5) - h + *p;
return h;
}
static cairo_bool_t
_intern_string_equal (const void *_a, const void *_b)
{
const cairo_intern_string_t *a = _a;
const cairo_intern_string_t *b = _b;
if (a->len != b->len)
return FALSE;
return memcmp (a->string, b->string, a->len) == 0;
}
cairo_status_t
_cairo_intern_string (const char **str_inout, int len)
{
char *str = (char *) *str_inout;
cairo_intern_string_t tmpl, *istring;
cairo_status_t status = CAIRO_STATUS_SUCCESS;
if (CAIRO_INJECT_FAULT ())
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
if (len < 0)
len = strlen (str);
tmpl.hash_entry.hash = _intern_string_hash (str, len);
tmpl.len = len;
tmpl.string = (char *) str;
CAIRO_MUTEX_LOCK (_cairo_intern_string_mutex);
if (_cairo_intern_string_ht == NULL) {
_cairo_intern_string_ht = _cairo_hash_table_create (_intern_string_equal);
if (unlikely (_cairo_intern_string_ht == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto BAIL;
}
}
istring = _cairo_hash_table_lookup (_cairo_intern_string_ht,
&tmpl.hash_entry);
if (istring == NULL) {
istring = malloc (sizeof (cairo_intern_string_t) + len + 1);
if (likely (istring != NULL)) {
istring->hash_entry.hash = tmpl.hash_entry.hash;
istring->len = tmpl.len;
istring->string = (char *) (istring + 1);
memcpy (istring->string, str, len);
istring->string[len] = '\0';
status = _cairo_hash_table_insert (_cairo_intern_string_ht,
&istring->hash_entry);
if (unlikely (status)) {
free (istring);
goto BAIL;
}
} else {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto BAIL;
}
}
*str_inout = istring->string;
BAIL:
CAIRO_MUTEX_UNLOCK (_cairo_intern_string_mutex);
return status;
}
static void
_intern_string_pluck (void *entry, void *closure)
{
_cairo_hash_table_remove (closure, entry);
free (entry);
}
void
_cairo_intern_string_reset_static_data (void)
{
CAIRO_MUTEX_LOCK (_cairo_intern_string_mutex);
if (_cairo_intern_string_ht != NULL) {
_cairo_hash_table_foreach (_cairo_intern_string_ht,
_intern_string_pluck,
_cairo_intern_string_ht);
_cairo_hash_table_destroy(_cairo_intern_string_ht);
_cairo_intern_string_ht = NULL;
}
CAIRO_MUTEX_UNLOCK (_cairo_intern_string_mutex);
}
|