1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
|
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2002 University of Southern California
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is University of Southern
* California.
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
*/
#include "cairoint.h"
#include "cairo-error-private.h"
#include <float.h>
#define PIXMAN_MAX_INT ((pixman_fixed_1 >> 1) - pixman_fixed_e) /* need to ensure deltas also fit */
#if _XOPEN_SOURCE >= 600 || defined (_ISOC99_SOURCE)
#define ISFINITE(x) isfinite (x)
#else
#define ISFINITE(x) ((x) * (x) >= 0.) /* check for NaNs */
#endif
/**
* SECTION:cairo-matrix
* @Title: cairo_matrix_t
* @Short_Description: Generic matrix operations
* @See_Also: #cairo_t
*
* #cairo_matrix_t is used throughout cairo to convert between different
* coordinate spaces. A #cairo_matrix_t holds an affine transformation,
* such as a scale, rotation, shear, or a combination of these.
* The transformation of a point (<literal>x</literal>,<literal>y</literal>)
* is given by:
*
* <programlisting>
* x_new = xx * x + xy * y + x0;
* y_new = yx * x + yy * y + y0;
* </programlisting>
*
* The current transformation matrix of a #cairo_t, represented as a
* #cairo_matrix_t, defines the transformation from user-space
* coordinates to device-space coordinates. See cairo_get_matrix() and
* cairo_set_matrix().
**/
static void
_cairo_matrix_scalar_multiply (cairo_matrix_t *matrix, double scalar);
static void
_cairo_matrix_compute_adjoint (cairo_matrix_t *matrix);
/**
* cairo_matrix_init_identity:
* @matrix: a #cairo_matrix_t
*
* Modifies @matrix to be an identity transformation.
*
* Since: 1.0
**/
void
cairo_matrix_init_identity (cairo_matrix_t *matrix)
{
cairo_matrix_init (matrix,
1, 0,
0, 1,
0, 0);
}
slim_hidden_def(cairo_matrix_init_identity);
/**
* cairo_matrix_init:
* @matrix: a #cairo_matrix_t
* @xx: xx component of the affine transformation
* @yx: yx component of the affine transformation
* @xy: xy component of the affine transformation
* @yy: yy component of the affine transformation
* @x0: X translation component of the affine transformation
* @y0: Y translation component of the affine transformation
*
* Sets @matrix to be the affine transformation given by
* @xx, @yx, @xy, @yy, @x0, @y0. The transformation is given
* by:
* <programlisting>
* x_new = xx * x + xy * y + x0;
* y_new = yx * x + yy * y + y0;
* </programlisting>
*
* Since: 1.0
**/
void
cairo_matrix_init (cairo_matrix_t *matrix,
double xx, double yx,
double xy, double yy,
double x0, double y0)
{
matrix->xx = xx; matrix->yx = yx;
matrix->xy = xy; matrix->yy = yy;
matrix->x0 = x0; matrix->y0 = y0;
}
slim_hidden_def(cairo_matrix_init);
/**
* _cairo_matrix_get_affine:
* @matrix: a #cairo_matrix_t
* @xx: location to store xx component of matrix
* @yx: location to store yx component of matrix
* @xy: location to store xy component of matrix
* @yy: location to store yy component of matrix
* @x0: location to store x0 (X-translation component) of matrix, or %NULL
* @y0: location to store y0 (Y-translation component) of matrix, or %NULL
*
* Gets the matrix values for the affine transformation that @matrix represents.
* See cairo_matrix_init().
*
*
* This function is a leftover from the old public API, but is still
* mildly useful as an internal means for getting at the matrix
* members in a positional way. For example, when reassigning to some
* external matrix type, or when renaming members to more meaningful
* names (such as a,b,c,d,e,f) for particular manipulations.
**/
void
_cairo_matrix_get_affine (const cairo_matrix_t *matrix,
double *xx, double *yx,
double *xy, double *yy,
double *x0, double *y0)
{
*xx = matrix->xx;
*yx = matrix->yx;
*xy = matrix->xy;
*yy = matrix->yy;
if (x0)
*x0 = matrix->x0;
if (y0)
*y0 = matrix->y0;
}
/**
* cairo_matrix_init_translate:
* @matrix: a #cairo_matrix_t
* @tx: amount to translate in the X direction
* @ty: amount to translate in the Y direction
*
* Initializes @matrix to a transformation that translates by @tx and
* @ty in the X and Y dimensions, respectively.
*
* Since: 1.0
**/
void
cairo_matrix_init_translate (cairo_matrix_t *matrix,
double tx, double ty)
{
cairo_matrix_init (matrix,
1, 0,
0, 1,
tx, ty);
}
slim_hidden_def(cairo_matrix_init_translate);
/**
* cairo_matrix_translate:
* @matrix: a #cairo_matrix_t
* @tx: amount to translate in the X direction
* @ty: amount to translate in the Y direction
*
* Applies a translation by @tx, @ty to the transformation in
* @matrix. The effect of the new transformation is to first translate
* the coordinates by @tx and @ty, then apply the original transformation
* to the coordinates.
*
* Since: 1.0
**/
void
cairo_matrix_translate (cairo_matrix_t *matrix, double tx, double ty)
{
cairo_matrix_t tmp;
cairo_matrix_init_translate (&tmp, tx, ty);
cairo_matrix_multiply (matrix, &tmp, matrix);
}
slim_hidden_def (cairo_matrix_translate);
/**
* cairo_matrix_init_scale:
* @matrix: a #cairo_matrix_t
* @sx: scale factor in the X direction
* @sy: scale factor in the Y direction
*
* Initializes @matrix to a transformation that scales by @sx and @sy
* in the X and Y dimensions, respectively.
*
* Since: 1.0
**/
void
cairo_matrix_init_scale (cairo_matrix_t *matrix,
double sx, double sy)
{
cairo_matrix_init (matrix,
sx, 0,
0, sy,
0, 0);
}
slim_hidden_def(cairo_matrix_init_scale);
/**
* cairo_matrix_scale:
* @matrix: a #cairo_matrix_t
* @sx: scale factor in the X direction
* @sy: scale factor in the Y direction
*
* Applies scaling by @sx, @sy to the transformation in @matrix. The
* effect of the new transformation is to first scale the coordinates
* by @sx and @sy, then apply the original transformation to the coordinates.
*
* Since: 1.0
**/
void
cairo_matrix_scale (cairo_matrix_t *matrix, double sx, double sy)
{
cairo_matrix_t tmp;
cairo_matrix_init_scale (&tmp, sx, sy);
cairo_matrix_multiply (matrix, &tmp, matrix);
}
slim_hidden_def(cairo_matrix_scale);
/**
* cairo_matrix_init_rotate:
* @matrix: a #cairo_matrix_t
* @radians: angle of rotation, in radians. The direction of rotation
* is defined such that positive angles rotate in the direction from
* the positive X axis toward the positive Y axis. With the default
* axis orientation of cairo, positive angles rotate in a clockwise
* direction.
*
* Initialized @matrix to a transformation that rotates by @radians.
*
* Since: 1.0
**/
void
cairo_matrix_init_rotate (cairo_matrix_t *matrix,
double radians)
{
double s;
double c;
s = sin (radians);
c = cos (radians);
cairo_matrix_init (matrix,
c, s,
-s, c,
0, 0);
}
slim_hidden_def(cairo_matrix_init_rotate);
/**
* cairo_matrix_rotate:
* @matrix: a #cairo_matrix_t
* @radians: angle of rotation, in radians. The direction of rotation
* is defined such that positive angles rotate in the direction from
* the positive X axis toward the positive Y axis. With the default
* axis orientation of cairo, positive angles rotate in a clockwise
* direction.
*
* Applies rotation by @radians to the transformation in
* @matrix. The effect of the new transformation is to first rotate the
* coordinates by @radians, then apply the original transformation
* to the coordinates.
*
* Since: 1.0
**/
void
cairo_matrix_rotate (cairo_matrix_t *matrix, double radians)
{
cairo_matrix_t tmp;
cairo_matrix_init_rotate (&tmp, radians);
cairo_matrix_multiply (matrix, &tmp, matrix);
}
/**
* cairo_matrix_multiply:
* @result: a #cairo_matrix_t in which to store the result
* @a: a #cairo_matrix_t
* @b: a #cairo_matrix_t
*
* Multiplies the affine transformations in @a and @b together
* and stores the result in @result. The effect of the resulting
* transformation is to first apply the transformation in @a to the
* coordinates and then apply the transformation in @b to the
* coordinates.
*
* It is allowable for @result to be identical to either @a or @b.
*
* Since: 1.0
**/
/*
* XXX: The ordering of the arguments to this function corresponds
* to [row_vector]*A*B. If we want to use column vectors instead,
* then we need to switch the two arguments and fix up all
* uses.
*/
void
cairo_matrix_multiply (cairo_matrix_t *result, const cairo_matrix_t *a, const cairo_matrix_t *b)
{
cairo_matrix_t r;
r.xx = a->xx * b->xx + a->yx * b->xy;
r.yx = a->xx * b->yx + a->yx * b->yy;
r.xy = a->xy * b->xx + a->yy * b->xy;
r.yy = a->xy * b->yx + a->yy * b->yy;
r.x0 = a->x0 * b->xx + a->y0 * b->xy + b->x0;
r.y0 = a->x0 * b->yx + a->y0 * b->yy + b->y0;
*result = r;
}
slim_hidden_def(cairo_matrix_multiply);
void
_cairo_matrix_multiply (cairo_matrix_t *r,
const cairo_matrix_t *a,
const cairo_matrix_t *b)
{
r->xx = a->xx * b->xx + a->yx * b->xy;
r->yx = a->xx * b->yx + a->yx * b->yy;
r->xy = a->xy * b->xx + a->yy * b->xy;
r->yy = a->xy * b->yx + a->yy * b->yy;
r->x0 = a->x0 * b->xx + a->y0 * b->xy + b->x0;
r->y0 = a->x0 * b->yx + a->y0 * b->yy + b->y0;
}
/**
* cairo_matrix_transform_distance:
* @matrix: a #cairo_matrix_t
* @dx: X component of a distance vector. An in/out parameter
* @dy: Y component of a distance vector. An in/out parameter
*
* Transforms the distance vector (@dx,@dy) by @matrix. This is
* similar to cairo_matrix_transform_point() except that the translation
* components of the transformation are ignored. The calculation of
* the returned vector is as follows:
*
* <programlisting>
* dx2 = dx1 * a + dy1 * c;
* dy2 = dx1 * b + dy1 * d;
* </programlisting>
*
* Affine transformations are position invariant, so the same vector
* always transforms to the same vector. If (@x1,@y1) transforms
* to (@x2,@y2) then (@x1+@dx1,@y1+@dy1) will transform to
* (@x1+@dx2,@y1+@dy2) for all values of @x1 and @x2.
*
* Since: 1.0
**/
void
cairo_matrix_transform_distance (const cairo_matrix_t *matrix, double *dx, double *dy)
{
double new_x, new_y;
new_x = (matrix->xx * *dx + matrix->xy * *dy);
new_y = (matrix->yx * *dx + matrix->yy * *dy);
*dx = new_x;
*dy = new_y;
}
slim_hidden_def(cairo_matrix_transform_distance);
/**
* cairo_matrix_transform_point:
* @matrix: a #cairo_matrix_t
* @x: X position. An in/out parameter
* @y: Y position. An in/out parameter
*
* Transforms the point (@x, @y) by @matrix.
*
* Since: 1.0
**/
void
cairo_matrix_transform_point (const cairo_matrix_t *matrix, double *x, double *y)
{
cairo_matrix_transform_distance (matrix, x, y);
*x += matrix->x0;
*y += matrix->y0;
}
slim_hidden_def(cairo_matrix_transform_point);
void
_cairo_matrix_transform_bounding_box (const cairo_matrix_t *matrix,
double *x1, double *y1,
double *x2, double *y2,
cairo_bool_t *is_tight)
{
int i;
double quad_x[4], quad_y[4];
double min_x, max_x;
double min_y, max_y;
if (matrix->xy == 0. && matrix->yx == 0.) {
/* non-rotation/skew matrix, just map the two extreme points */
if (matrix->xx != 1.) {
quad_x[0] = *x1 * matrix->xx;
quad_x[1] = *x2 * matrix->xx;
if (quad_x[0] < quad_x[1]) {
*x1 = quad_x[0];
*x2 = quad_x[1];
} else {
*x1 = quad_x[1];
*x2 = quad_x[0];
}
}
if (matrix->x0 != 0.) {
*x1 += matrix->x0;
*x2 += matrix->x0;
}
if (matrix->yy != 1.) {
quad_y[0] = *y1 * matrix->yy;
quad_y[1] = *y2 * matrix->yy;
if (quad_y[0] < quad_y[1]) {
*y1 = quad_y[0];
*y2 = quad_y[1];
} else {
*y1 = quad_y[1];
*y2 = quad_y[0];
}
}
if (matrix->y0 != 0.) {
*y1 += matrix->y0;
*y2 += matrix->y0;
}
if (is_tight)
*is_tight = TRUE;
return;
}
/* general matrix */
quad_x[0] = *x1;
quad_y[0] = *y1;
cairo_matrix_transform_point (matrix, &quad_x[0], &quad_y[0]);
quad_x[1] = *x2;
quad_y[1] = *y1;
cairo_matrix_transform_point (matrix, &quad_x[1], &quad_y[1]);
quad_x[2] = *x1;
quad_y[2] = *y2;
cairo_matrix_transform_point (matrix, &quad_x[2], &quad_y[2]);
quad_x[3] = *x2;
quad_y[3] = *y2;
cairo_matrix_transform_point (matrix, &quad_x[3], &quad_y[3]);
min_x = max_x = quad_x[0];
min_y = max_y = quad_y[0];
for (i=1; i < 4; i++) {
if (quad_x[i] < min_x)
min_x = quad_x[i];
if (quad_x[i] > max_x)
max_x = quad_x[i];
if (quad_y[i] < min_y)
min_y = quad_y[i];
if (quad_y[i] > max_y)
max_y = quad_y[i];
}
*x1 = min_x;
*y1 = min_y;
*x2 = max_x;
*y2 = max_y;
if (is_tight) {
/* it's tight if and only if the four corner points form an axis-aligned
rectangle.
And that's true if and only if we can derive corners 0 and 3 from
corners 1 and 2 in one of two straightforward ways...
We could use a tolerance here but for now we'll fall back to FALSE in the case
of floating point error.
*/
*is_tight =
(quad_x[1] == quad_x[0] && quad_y[1] == quad_y[3] &&
quad_x[2] == quad_x[3] && quad_y[2] == quad_y[0]) ||
(quad_x[1] == quad_x[3] && quad_y[1] == quad_y[0] &&
quad_x[2] == quad_x[0] && quad_y[2] == quad_y[3]);
}
}
cairo_private void
_cairo_matrix_transform_bounding_box_fixed (const cairo_matrix_t *matrix,
cairo_box_t *bbox,
cairo_bool_t *is_tight)
{
double x1, y1, x2, y2;
_cairo_box_to_doubles (bbox, &x1, &y1, &x2, &y2);
_cairo_matrix_transform_bounding_box (matrix, &x1, &y1, &x2, &y2, is_tight);
_cairo_box_from_doubles (bbox, &x1, &y1, &x2, &y2);
}
static void
_cairo_matrix_scalar_multiply (cairo_matrix_t *matrix, double scalar)
{
matrix->xx *= scalar;
matrix->yx *= scalar;
matrix->xy *= scalar;
matrix->yy *= scalar;
matrix->x0 *= scalar;
matrix->y0 *= scalar;
}
/* This function isn't a correct adjoint in that the implicit 1 in the
homogeneous result should actually be ad-bc instead. But, since this
adjoint is only used in the computation of the inverse, which
divides by det (A)=ad-bc anyway, everything works out in the end. */
static void
_cairo_matrix_compute_adjoint (cairo_matrix_t *matrix)
{
/* adj (A) = transpose (C:cofactor (A,i,j)) */
double a, b, c, d, tx, ty;
_cairo_matrix_get_affine (matrix,
&a, &b,
&c, &d,
&tx, &ty);
cairo_matrix_init (matrix,
d, -b,
-c, a,
c*ty - d*tx, b*tx - a*ty);
}
/**
* cairo_matrix_invert:
* @matrix: a #cairo_matrix_t
*
* Changes @matrix to be the inverse of its original value. Not
* all transformation matrices have inverses; if the matrix
* collapses points together (it is <firstterm>degenerate</firstterm>),
* then it has no inverse and this function will fail.
*
* Returns: If @matrix has an inverse, modifies @matrix to
* be the inverse matrix and returns %CAIRO_STATUS_SUCCESS. Otherwise,
* returns %CAIRO_STATUS_INVALID_MATRIX.
*
* Since: 1.0
**/
cairo_status_t
cairo_matrix_invert (cairo_matrix_t *matrix)
{
double det;
/* Simple scaling|translation matrices are quite common... */
if (matrix->xy == 0. && matrix->yx == 0.) {
matrix->x0 = -matrix->x0;
matrix->y0 = -matrix->y0;
if (matrix->xx != 1.) {
if (matrix->xx == 0.)
return _cairo_error (CAIRO_STATUS_INVALID_MATRIX);
matrix->xx = 1. / matrix->xx;
matrix->x0 *= matrix->xx;
}
if (matrix->yy != 1.) {
if (matrix->yy == 0.)
return _cairo_error (CAIRO_STATUS_INVALID_MATRIX);
matrix->yy = 1. / matrix->yy;
matrix->y0 *= matrix->yy;
}
return CAIRO_STATUS_SUCCESS;
}
/* inv (A) = 1/det (A) * adj (A) */
det = _cairo_matrix_compute_determinant (matrix);
if (! ISFINITE (det))
return _cairo_error (CAIRO_STATUS_INVALID_MATRIX);
if (det == 0)
return _cairo_error (CAIRO_STATUS_INVALID_MATRIX);
_cairo_matrix_compute_adjoint (matrix);
_cairo_matrix_scalar_multiply (matrix, 1 / det);
return CAIRO_STATUS_SUCCESS;
}
slim_hidden_def(cairo_matrix_invert);
cairo_bool_t
_cairo_matrix_is_invertible (const cairo_matrix_t *matrix)
{
double det;
det = _cairo_matrix_compute_determinant (matrix);
return ISFINITE (det) && det != 0.;
}
cairo_bool_t
_cairo_matrix_is_scale_0 (const cairo_matrix_t *matrix)
{
return matrix->xx == 0. &&
matrix->xy == 0. &&
matrix->yx == 0. &&
matrix->yy == 0.;
}
double
_cairo_matrix_compute_determinant (const cairo_matrix_t *matrix)
{
double a, b, c, d;
a = matrix->xx; b = matrix->yx;
c = matrix->xy; d = matrix->yy;
return a*d - b*c;
}
/**
* _cairo_matrix_compute_basis_scale_factors:
* @matrix: a matrix
* @basis_scale: the scale factor in the direction of basis
* @normal_scale: the scale factor in the direction normal to the basis
* @x_basis: basis to use. X basis if true, Y basis otherwise.
*
* Computes |Mv| and det(M)/|Mv| for v=[1,0] if x_basis is true, and v=[0,1]
* otherwise, and M is @matrix.
*
* Return value: the scale factor of @matrix on the height of the font,
* or 1.0 if @matrix is %NULL.
**/
cairo_status_t
_cairo_matrix_compute_basis_scale_factors (const cairo_matrix_t *matrix,
double *basis_scale, double *normal_scale,
cairo_bool_t x_basis)
{
double det;
det = _cairo_matrix_compute_determinant (matrix);
if (! ISFINITE (det))
return _cairo_error (CAIRO_STATUS_INVALID_MATRIX);
if (det == 0)
{
*basis_scale = *normal_scale = 0;
}
else
{
double x = x_basis != 0;
double y = x == 0;
double major, minor;
cairo_matrix_transform_distance (matrix, &x, &y);
major = hypot (x, y);
/*
* ignore mirroring
*/
if (det < 0)
det = -det;
if (major)
minor = det / major;
else
minor = 0.0;
if (x_basis)
{
*basis_scale = major;
*normal_scale = minor;
}
else
{
*basis_scale = minor;
*normal_scale = major;
}
}
return CAIRO_STATUS_SUCCESS;
}
cairo_bool_t
_cairo_matrix_is_integer_translation (const cairo_matrix_t *matrix,
int *itx, int *ity)
{
if (_cairo_matrix_is_translation (matrix))
{
cairo_fixed_t x0_fixed = _cairo_fixed_from_double (matrix->x0);
cairo_fixed_t y0_fixed = _cairo_fixed_from_double (matrix->y0);
if (_cairo_fixed_is_integer (x0_fixed) &&
_cairo_fixed_is_integer (y0_fixed))
{
if (itx)
*itx = _cairo_fixed_integer_part (x0_fixed);
if (ity)
*ity = _cairo_fixed_integer_part (y0_fixed);
return TRUE;
}
}
return FALSE;
}
cairo_bool_t
_cairo_matrix_has_unity_scale (const cairo_matrix_t *matrix)
{
if (matrix->xy == 0.0 && matrix->yx == 0.0) {
if (! (matrix->xx == 1.0 || matrix->xx == -1.0))
return FALSE;
if (! (matrix->yy == 1.0 || matrix->yy == -1.0))
return FALSE;
} else if (matrix->xx == 0.0 && matrix->yy == 0.0) {
if (! (matrix->xy == 1.0 || matrix->xy == -1.0))
return FALSE;
if (! (matrix->yx == 1.0 || matrix->yx == -1.0))
return FALSE;
} else
return FALSE;
return TRUE;
}
/* By pixel exact here, we mean a matrix that is composed only of
* 90 degree rotations, flips, and integer translations and produces a 1:1
* mapping between source and destination pixels. If we transform an image
* with a pixel-exact matrix, filtering is not useful.
*/
cairo_bool_t
_cairo_matrix_is_pixel_exact (const cairo_matrix_t *matrix)
{
cairo_fixed_t x0_fixed, y0_fixed;
if (! _cairo_matrix_has_unity_scale (matrix))
return FALSE;
x0_fixed = _cairo_fixed_from_double (matrix->x0);
y0_fixed = _cairo_fixed_from_double (matrix->y0);
return _cairo_fixed_is_integer (x0_fixed) && _cairo_fixed_is_integer (y0_fixed);
}
/*
A circle in user space is transformed into an ellipse in device space.
The following is a derivation of a formula to calculate the length of the
major axis for this ellipse; this is useful for error bounds calculations.
Thanks to Walter Brisken <wbrisken@aoc.nrao.edu> for this derivation:
1. First some notation:
All capital letters represent vectors in two dimensions. A prime '
represents a transformed coordinate. Matrices are written in underlined
form, ie _R_. Lowercase letters represent scalar real values.
2. The question has been posed: What is the maximum expansion factor
achieved by the linear transformation
X' = X _R_
where _R_ is a real-valued 2x2 matrix with entries:
_R_ = [a b]
[c d] .
In other words, what is the maximum radius, MAX[ |X'| ], reached for any
X on the unit circle ( |X| = 1 ) ?
3. Some useful formulae
(A) through (C) below are standard double-angle formulae. (D) is a lesser
known result and is derived below:
(A) sin²(θ) = (1 - cos(2*θ))/2
(B) cos²(θ) = (1 + cos(2*θ))/2
(C) sin(θ)*cos(θ) = sin(2*θ)/2
(D) MAX[a*cos(θ) + b*sin(θ)] = sqrt(a² + b²)
Proof of (D):
find the maximum of the function by setting the derivative to zero:
-a*sin(θ)+b*cos(θ) = 0
From this it follows that
tan(θ) = b/a
and hence
sin(θ) = b/sqrt(a² + b²)
and
cos(θ) = a/sqrt(a² + b²)
Thus the maximum value is
MAX[a*cos(θ) + b*sin(θ)] = (a² + b²)/sqrt(a² + b²)
= sqrt(a² + b²)
4. Derivation of maximum expansion
To find MAX[ |X'| ] we search brute force method using calculus. The unit
circle on which X is constrained is to be parameterized by t:
X(θ) = (cos(θ), sin(θ))
Thus
X'(θ) = X(θ) * _R_ = (cos(θ), sin(θ)) * [a b]
[c d]
= (a*cos(θ) + c*sin(θ), b*cos(θ) + d*sin(θ)).
Define
r(θ) = |X'(θ)|
Thus
r²(θ) = (a*cos(θ) + c*sin(θ))² + (b*cos(θ) + d*sin(θ))²
= (a² + b²)*cos²(θ) + (c² + d²)*sin²(θ)
+ 2*(a*c + b*d)*cos(θ)*sin(θ)
Now apply the double angle formulae (A) to (C) from above:
r²(θ) = (a² + b² + c² + d²)/2
+ (a² + b² - c² - d²)*cos(2*θ)/2
+ (a*c + b*d)*sin(2*θ)
= f + g*cos(φ) + h*sin(φ)
Where
f = (a² + b² + c² + d²)/2
g = (a² + b² - c² - d²)/2
h = (a*c + d*d)
φ = 2*θ
It is clear that MAX[ |X'| ] = sqrt(MAX[ r² ]). Here we determine MAX[ r² ]
using (D) from above:
MAX[ r² ] = f + sqrt(g² + h²)
And finally
MAX[ |X'| ] = sqrt( f + sqrt(g² + h²) )
Which is the solution to this problem.
Walter Brisken
2004/10/08
(Note that the minor axis length is at the minimum of the above solution,
which is just sqrt ( f - sqrt(g² + h²) ) given the symmetry of (D)).
For another derivation of the same result, using Singular Value Decomposition,
see doc/tutorial/src/singular.c.
*/
/* determine the length of the major axis of a circle of the given radius
after applying the transformation matrix. */
double
_cairo_matrix_transformed_circle_major_axis (const cairo_matrix_t *matrix,
double radius)
{
double a, b, c, d, f, g, h, i, j;
if (_cairo_matrix_has_unity_scale (matrix))
return radius;
_cairo_matrix_get_affine (matrix,
&a, &b,
&c, &d,
NULL, NULL);
i = a*a + b*b;
j = c*c + d*d;
f = 0.5 * (i + j);
g = 0.5 * (i - j);
h = a*c + b*d;
return radius * sqrt (f + hypot (g, h));
/*
* we don't need the minor axis length, which is
* double min = radius * sqrt (f - sqrt (g*g+h*h));
*/
}
static const pixman_transform_t pixman_identity_transform = {{
{1 << 16, 0, 0},
{ 0, 1 << 16, 0},
{ 0, 0, 1 << 16}
}};
static cairo_status_t
_cairo_matrix_to_pixman_matrix (const cairo_matrix_t *matrix,
pixman_transform_t *pixman_transform,
double xc,
double yc)
{
cairo_matrix_t inv;
unsigned max_iterations;
pixman_transform->matrix[0][0] = _cairo_fixed_16_16_from_double (matrix->xx);
pixman_transform->matrix[0][1] = _cairo_fixed_16_16_from_double (matrix->xy);
pixman_transform->matrix[0][2] = _cairo_fixed_16_16_from_double (matrix->x0);
pixman_transform->matrix[1][0] = _cairo_fixed_16_16_from_double (matrix->yx);
pixman_transform->matrix[1][1] = _cairo_fixed_16_16_from_double (matrix->yy);
pixman_transform->matrix[1][2] = _cairo_fixed_16_16_from_double (matrix->y0);
pixman_transform->matrix[2][0] = 0;
pixman_transform->matrix[2][1] = 0;
pixman_transform->matrix[2][2] = 1 << 16;
/* The conversion above breaks cairo's translation invariance:
* a translation of (a, b) in device space translates to
* a translation of (xx * a + xy * b, yx * a + yy * b)
* for cairo, while pixman uses rounded versions of xx ... yy.
* This error increases as a and b get larger.
*
* To compensate for this, we fix the point (xc, yc) in pattern
* space and adjust pixman's transform to agree with cairo's at
* that point.
*/
if (_cairo_matrix_has_unity_scale (matrix))
return CAIRO_STATUS_SUCCESS;
if (unlikely (fabs (matrix->xx) > PIXMAN_MAX_INT ||
fabs (matrix->xy) > PIXMAN_MAX_INT ||
fabs (matrix->x0) > PIXMAN_MAX_INT ||
fabs (matrix->yx) > PIXMAN_MAX_INT ||
fabs (matrix->yy) > PIXMAN_MAX_INT ||
fabs (matrix->y0) > PIXMAN_MAX_INT))
{
return _cairo_error (CAIRO_STATUS_INVALID_MATRIX);
}
/* Note: If we can't invert the transformation, skip the adjustment. */
inv = *matrix;
if (cairo_matrix_invert (&inv) != CAIRO_STATUS_SUCCESS)
return CAIRO_STATUS_SUCCESS;
/* find the pattern space coordinate that maps to (xc, yc) */
max_iterations = 5;
do {
double x,y;
pixman_vector_t vector;
cairo_fixed_16_16_t dx, dy;
vector.vector[0] = _cairo_fixed_16_16_from_double (xc);
vector.vector[1] = _cairo_fixed_16_16_from_double (yc);
vector.vector[2] = 1 << 16;
/* If we can't transform the reference point, skip the adjustment. */
if (! pixman_transform_point_3d (pixman_transform, &vector))
return CAIRO_STATUS_SUCCESS;
x = pixman_fixed_to_double (vector.vector[0]);
y = pixman_fixed_to_double (vector.vector[1]);
cairo_matrix_transform_point (&inv, &x, &y);
/* Ideally, the vector should now be (xc, yc).
* We can now compensate for the resulting error.
*/
x -= xc;
y -= yc;
cairo_matrix_transform_distance (matrix, &x, &y);
dx = _cairo_fixed_16_16_from_double (x);
dy = _cairo_fixed_16_16_from_double (y);
pixman_transform->matrix[0][2] -= dx;
pixman_transform->matrix[1][2] -= dy;
if (dx == 0 && dy == 0)
return CAIRO_STATUS_SUCCESS;
} while (--max_iterations);
/* We didn't find an exact match between cairo and pixman, but
* the matrix should be mostly correct */
return CAIRO_STATUS_SUCCESS;
}
static inline double
_pixman_nearest_sample (double d)
{
return ceil (d - .5);
}
/**
* _cairo_matrix_is_pixman_translation:
* @matrix: a matrix
* @filter: the filter to be used on the pattern transformed by @matrix
* @x_offset: the translation in the X direction
* @y_offset: the translation in the Y direction
*
* Checks if @matrix translated by (x_offset, y_offset) can be
* represented using just an offset (within the range pixman can
* accept) and an identity matrix.
*
* Passing a non-zero value in x_offset/y_offset has the same effect
* as applying cairo_matrix_translate(matrix, x_offset, y_offset) and
* setting x_offset and y_offset to 0.
*
* Upon return x_offset and y_offset contain the translation vector if
* the return value is %TRUE. If the return value is %FALSE, they will
* not be modified.
*
* Return value: %TRUE if @matrix can be represented as a pixman
* translation, %FALSE otherwise.
**/
cairo_bool_t
_cairo_matrix_is_pixman_translation (const cairo_matrix_t *matrix,
cairo_filter_t filter,
int *x_offset,
int *y_offset)
{
double tx, ty;
if (!_cairo_matrix_is_translation (matrix))
return FALSE;
if (matrix->x0 == 0. && matrix->y0 == 0.)
return TRUE;
tx = matrix->x0 + *x_offset;
ty = matrix->y0 + *y_offset;
if (filter == CAIRO_FILTER_FAST || filter == CAIRO_FILTER_NEAREST) {
tx = _pixman_nearest_sample (tx);
ty = _pixman_nearest_sample (ty);
} else if (tx != floor (tx) || ty != floor (ty)) {
return FALSE;
}
if (fabs (tx) > PIXMAN_MAX_INT || fabs (ty) > PIXMAN_MAX_INT)
return FALSE;
*x_offset = _cairo_lround (tx);
*y_offset = _cairo_lround (ty);
return TRUE;
}
/**
* _cairo_matrix_to_pixman_matrix_offset:
* @matrix: a matrix
* @filter: the filter to be used on the pattern transformed by @matrix
* @xc: the X coordinate of the point to fix in pattern space
* @yc: the Y coordinate of the point to fix in pattern space
* @out_transform: the transformation which best approximates @matrix
* @x_offset: the translation in the X direction
* @y_offset: the translation in the Y direction
*
* This function tries to represent @matrix translated by (x_offset,
* y_offset) as a %pixman_transform_t and an translation.
*
* Passing a non-zero value in x_offset/y_offset has the same effect
* as applying cairo_matrix_translate(matrix, x_offset, y_offset) and
* setting x_offset and y_offset to 0.
*
* If it is possible to represent the matrix with an identity
* %pixman_transform_t and a translation within the valid range for
* pixman, this function will set @out_transform to be the identity,
* @x_offset and @y_offset to be the translation vector and will
* return %CAIRO_INT_STATUS_NOTHING_TO_DO. Otherwise it will try to
* evenly divide the translational component of @matrix between
* @out_transform and (@x_offset, @y_offset).
*
* Upon return x_offset and y_offset contain the translation vector.
*
* Return value: %CAIRO_INT_STATUS_NOTHING_TO_DO if the out_transform
* is the identity, %CAIRO_STATUS_INVALID_MATRIX if it was not
* possible to represent @matrix as a pixman_transform_t without
* overflows, %CAIRO_STATUS_SUCCESS otherwise.
**/
cairo_status_t
_cairo_matrix_to_pixman_matrix_offset (const cairo_matrix_t *matrix,
cairo_filter_t filter,
double xc,
double yc,
pixman_transform_t *out_transform,
int *x_offset,
int *y_offset)
{
cairo_bool_t is_pixman_translation;
is_pixman_translation = _cairo_matrix_is_pixman_translation (matrix,
filter,
x_offset,
y_offset);
if (is_pixman_translation) {
*out_transform = pixman_identity_transform;
return CAIRO_INT_STATUS_NOTHING_TO_DO;
} else {
cairo_matrix_t m;
m = *matrix;
cairo_matrix_translate (&m, *x_offset, *y_offset);
if (m.x0 != 0.0 || m.y0 != 0.0) {
double tx, ty, norm;
int i, j;
/* pixman also limits the [xy]_offset to 16 bits so evenly
* spread the bits between the two.
*
* To do this, find the solutions of:
* |x| = |x*m.xx + y*m.xy + m.x0|
* |y| = |x*m.yx + y*m.yy + m.y0|
*
* and select the one whose maximum norm is smallest.
*/
tx = m.x0;
ty = m.y0;
norm = MAX (fabs (tx), fabs (ty));
for (i = -1; i < 2; i+=2) {
for (j = -1; j < 2; j+=2) {
double x, y, den, new_norm;
den = (m.xx + i) * (m.yy + j) - m.xy * m.yx;
if (fabs (den) < DBL_EPSILON)
continue;
x = m.y0 * m.xy - m.x0 * (m.yy + j);
y = m.x0 * m.yx - m.y0 * (m.xx + i);
den = 1 / den;
x *= den;
y *= den;
new_norm = MAX (fabs (x), fabs (y));
if (norm > new_norm) {
norm = new_norm;
tx = x;
ty = y;
}
}
}
tx = floor (tx);
ty = floor (ty);
*x_offset = -tx;
*y_offset = -ty;
cairo_matrix_translate (&m, tx, ty);
} else {
*x_offset = 0;
*y_offset = 0;
}
return _cairo_matrix_to_pixman_matrix (&m, out_transform, xc, yc);
}
}
|