summaryrefslogtreecommitdiff
path: root/Build/source/libs/cairo/cairo-1.12.14/src/cairo-traps.c
blob: 9f1d4a7f5a536b0dfd223519637b73806b8ad707 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
/*
 * Copyright © 2002 Keith Packard
 * Copyright © 2007 Red Hat, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 *
 * The Original Code is the cairo graphics library.
 *
 * The Initial Developer of the Original Code is Keith Packard
 *
 * Contributor(s):
 *	Keith R. Packard <keithp@keithp.com>
 *	Carl D. Worth <cworth@cworth.org>
 *
 * 2002-07-15: Converted from XRenderCompositeDoublePoly to #cairo_trap_t. Carl D. Worth
 */

#include "cairoint.h"

#include "cairo-box-inline.h"
#include "cairo-boxes-private.h"
#include "cairo-error-private.h"
#include "cairo-region-private.h"
#include "cairo-slope-private.h"
#include "cairo-traps-private.h"
#include "cairo-spans-private.h"

/* private functions */

void
_cairo_traps_init (cairo_traps_t *traps)
{
    VG (VALGRIND_MAKE_MEM_UNDEFINED (traps, sizeof (cairo_traps_t)));

    traps->status = CAIRO_STATUS_SUCCESS;

    traps->maybe_region = 1;
    traps->is_rectilinear = 0;
    traps->is_rectangular = 0;

    traps->num_traps = 0;

    traps->traps_size = ARRAY_LENGTH (traps->traps_embedded);
    traps->traps = traps->traps_embedded;

    traps->num_limits = 0;
    traps->has_intersections = FALSE;
}

void
_cairo_traps_limit (cairo_traps_t	*traps,
		    const cairo_box_t	*limits,
		    int			 num_limits)
{
    int i;

    traps->limits = limits;
    traps->num_limits = num_limits;

    traps->bounds = limits[0];
    for (i = 1; i < num_limits; i++)
	_cairo_box_add_box (&traps->bounds, &limits[i]);
}

void
_cairo_traps_init_with_clip (cairo_traps_t *traps,
			     const cairo_clip_t *clip)
{
    _cairo_traps_init (traps);
    if (clip)
	_cairo_traps_limit (traps, clip->boxes, clip->num_boxes);
}

void
_cairo_traps_clear (cairo_traps_t *traps)
{
    traps->status = CAIRO_STATUS_SUCCESS;

    traps->maybe_region = 1;
    traps->is_rectilinear = 0;
    traps->is_rectangular = 0;

    traps->num_traps = 0;
    traps->has_intersections = FALSE;
}

void
_cairo_traps_fini (cairo_traps_t *traps)
{
    if (traps->traps != traps->traps_embedded)
	free (traps->traps);

    VG (VALGRIND_MAKE_MEM_NOACCESS (traps, sizeof (cairo_traps_t)));
}

/* make room for at least one more trap */
static cairo_bool_t
_cairo_traps_grow (cairo_traps_t *traps)
{
    cairo_trapezoid_t *new_traps;
    int new_size = 4 * traps->traps_size;

    if (CAIRO_INJECT_FAULT ()) {
	traps->status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
	return FALSE;
    }

    if (traps->traps == traps->traps_embedded) {
	new_traps = _cairo_malloc_ab (new_size, sizeof (cairo_trapezoid_t));
	if (new_traps != NULL)
	    memcpy (new_traps, traps->traps, sizeof (traps->traps_embedded));
    } else {
	new_traps = _cairo_realloc_ab (traps->traps,
	                               new_size, sizeof (cairo_trapezoid_t));
    }

    if (unlikely (new_traps == NULL)) {
	traps->status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
	return FALSE;
    }

    traps->traps = new_traps;
    traps->traps_size = new_size;
    return TRUE;
}

void
_cairo_traps_add_trap (cairo_traps_t *traps,
		       cairo_fixed_t top, cairo_fixed_t bottom,
		       cairo_line_t *left, cairo_line_t *right)
{
    cairo_trapezoid_t *trap;

    if (unlikely (traps->num_traps == traps->traps_size)) {
	if (unlikely (! _cairo_traps_grow (traps)))
	    return;
    }

    trap = &traps->traps[traps->num_traps++];
    trap->top = top;
    trap->bottom = bottom;
    trap->left = *left;
    trap->right = *right;
}

static void
_cairo_traps_add_clipped_trap (cairo_traps_t *traps,
			       cairo_fixed_t _top, cairo_fixed_t _bottom,
			       cairo_line_t *_left, cairo_line_t *_right)
{
    /* Note: With the goofy trapezoid specification, (where an
     * arbitrary two points on the lines can specified for the left
     * and right edges), these limit checks would not work in
     * general. For example, one can imagine a trapezoid entirely
     * within the limits, but with two points used to specify the left
     * edge entirely to the right of the limits.  Fortunately, for our
     * purposes, cairo will never generate such a crazy
     * trapezoid. Instead, cairo always uses for its points the
     * extreme positions of the edge that are visible on at least some
     * trapezoid. With this constraint, it's impossible for both
     * points to be outside the limits while the relevant edge is
     * entirely inside the limits.
     */
    if (traps->num_limits) {
	const cairo_box_t *b = &traps->bounds;
	cairo_fixed_t top = _top, bottom = _bottom;
	cairo_line_t left = *_left, right = *_right;

	/* Trivially reject if trapezoid is entirely to the right or
	 * to the left of the limits. */
	if (left.p1.x >= b->p2.x && left.p2.x >= b->p2.x)
	    return;

	if (right.p1.x <= b->p1.x && right.p2.x <= b->p1.x)
	    return;

	/* And reject if the trapezoid is entirely above or below */
	if (top >= b->p2.y || bottom <= b->p1.y)
	    return;

	/* Otherwise, clip the trapezoid to the limits. We only clip
	 * where an edge is entirely outside the limits. If we wanted
	 * to be more clever, we could handle cases where a trapezoid
	 * edge intersects the edge of the limits, but that would
	 * require slicing this trapezoid into multiple trapezoids,
	 * and I'm not sure the effort would be worth it. */
	if (top < b->p1.y)
	    top = b->p1.y;

	if (bottom > b->p2.y)
	    bottom = b->p2.y;

	if (left.p1.x <= b->p1.x && left.p2.x <= b->p1.x)
	    left.p1.x = left.p2.x = b->p1.x;

	if (right.p1.x >= b->p2.x && right.p2.x >= b->p2.x)
	    right.p1.x = right.p2.x = b->p2.x;

	/* Trivial discards for empty trapezoids that are likely to
	 * be produced by our tessellators (most notably convex_quad
	 * when given a simple rectangle).
	 */
	if (top >= bottom)
	    return;

	/* cheap colinearity check */
	if (right.p1.x <= left.p1.x && right.p1.y == left.p1.y &&
	    right.p2.x <= left.p2.x && right.p2.y == left.p2.y)
	    return;

	_cairo_traps_add_trap (traps, top, bottom, &left, &right);
    } else
	_cairo_traps_add_trap (traps, _top, _bottom, _left, _right);
}

static int
_compare_point_fixed_by_y (const void *av, const void *bv)
{
    const cairo_point_t	*a = av, *b = bv;
    int ret = a->y - b->y;
    if (ret == 0)
	ret = a->x - b->x;
    return ret;
}

void
_cairo_traps_tessellate_convex_quad (cairo_traps_t *traps,
				     const cairo_point_t q[4])
{
    int a, b, c, d;
    int i;
    cairo_slope_t ab, ad;
    cairo_bool_t b_left_of_d;
    cairo_line_t left;
    cairo_line_t right;

    /* Choose a as a point with minimal y */
    a = 0;
    for (i = 1; i < 4; i++)
	if (_compare_point_fixed_by_y (&q[i], &q[a]) < 0)
	    a = i;

    /* b and d are adjacent to a, while c is opposite */
    b = (a + 1) % 4;
    c = (a + 2) % 4;
    d = (a + 3) % 4;

    /* Choose between b and d so that b.y is less than d.y */
    if (_compare_point_fixed_by_y (&q[d], &q[b]) < 0) {
	b = (a + 3) % 4;
	d = (a + 1) % 4;
    }

    /* Without freedom left to choose anything else, we have four
     * cases to tessellate.
     *
     * First, we have to determine the Y-axis sort of the four
     * vertices, (either abcd or abdc). After that we need to detemine
     * which edges will be "left" and which will be "right" in the
     * resulting trapezoids. This can be determined by computing a
     * slope comparison of ab and ad to determine if b is left of d or
     * not.
     *
     * Note that "left of" here is in the sense of which edges should
     * be the left vs. right edges of the trapezoid. In particular, b
     * left of d does *not* mean that b.x is less than d.x.
     *
     * This should hopefully be made clear in the lame ASCII art
     * below. Since the same slope comparison is used in all cases, we
     * compute it before testing for the Y-value sort. */

    /* Note: If a == b then the ab slope doesn't give us any
     * information. In that case, we can replace it with the ac (or
     * equivalenly the bc) slope which gives us exactly the same
     * information we need. At worst the names of the identifiers ab
     * and b_left_of_d are inaccurate in this case, (would be ac, and
     * c_left_of_d). */
    if (q[a].x == q[b].x && q[a].y == q[b].y)
	_cairo_slope_init (&ab, &q[a], &q[c]);
    else
	_cairo_slope_init (&ab, &q[a], &q[b]);

    _cairo_slope_init (&ad, &q[a], &q[d]);

    b_left_of_d = _cairo_slope_compare (&ab, &ad) > 0;

    if (q[c].y <= q[d].y) {
	if (b_left_of_d) {
	    /* Y-sort is abcd and b is left of d, (slope(ab) > slope (ad))
	     *
	     *                      top bot left right
	     *        _a  a  a
	     *      / /  /|  |\      a.y b.y  ab   ad
	     *     b /  b |  b \
	     *    / /   | |   \ \    b.y c.y  bc   ad
	     *   c /    c |    c \
	     *  | /      \|     \ \  c.y d.y  cd   ad
	     *  d         d       d
	     */
	    left.p1  = q[a]; left.p2  = q[b];
	    right.p1 = q[a]; right.p2 = q[d];
	    _cairo_traps_add_clipped_trap (traps, q[a].y, q[b].y, &left, &right);
	    left.p1  = q[b]; left.p2  = q[c];
	    _cairo_traps_add_clipped_trap (traps, q[b].y, q[c].y, &left, &right);
	    left.p1  = q[c]; left.p2  = q[d];
	    _cairo_traps_add_clipped_trap (traps, q[c].y, q[d].y, &left, &right);
	} else {
	    /* Y-sort is abcd and b is right of d, (slope(ab) <= slope (ad))
	     *
	     *       a  a  a_
	     *      /|  |\  \ \     a.y b.y  ad  ab
	     *     / b  | b  \ b
	     *    / /   | |   \ \   b.y c.y  ad  bc
	     *   / c    | c    \ c
	     *  / /     |/      \ | c.y d.y  ad  cd
	     *  d       d         d
	     */
	    left.p1  = q[a]; left.p2  = q[d];
	    right.p1 = q[a]; right.p2 = q[b];
	    _cairo_traps_add_clipped_trap (traps, q[a].y, q[b].y, &left, &right);
	    right.p1 = q[b]; right.p2 = q[c];
	    _cairo_traps_add_clipped_trap (traps, q[b].y, q[c].y, &left, &right);
	    right.p1 = q[c]; right.p2 = q[d];
	    _cairo_traps_add_clipped_trap (traps, q[c].y, q[d].y, &left, &right);
	}
    } else {
	if (b_left_of_d) {
	    /* Y-sort is abdc and b is left of d, (slope (ab) > slope (ad))
	     *
	     *        a   a     a
	     *       //  / \    |\     a.y b.y  ab  ad
	     *     /b/  b   \   b \
	     *    / /    \   \   \ \   b.y d.y  bc  ad
	     *   /d/      \   d   \ d
	     *  //         \ /     \|  d.y c.y  bc  dc
	     *  c           c       c
	     */
	    left.p1  = q[a]; left.p2  = q[b];
	    right.p1 = q[a]; right.p2 = q[d];
	    _cairo_traps_add_clipped_trap (traps, q[a].y, q[b].y, &left, &right);
	    left.p1  = q[b]; left.p2  = q[c];
	    _cairo_traps_add_clipped_trap (traps, q[b].y, q[d].y, &left, &right);
	    right.p1 = q[d]; right.p2 = q[c];
	    _cairo_traps_add_clipped_trap (traps, q[d].y, q[c].y, &left, &right);
	} else {
	    /* Y-sort is abdc and b is right of d, (slope (ab) <= slope (ad))
	     *
	     *      a     a   a
	     *     /|    / \  \\       a.y b.y  ad  ab
	     *    / b   /   b  \b\
	     *   / /   /   /    \ \    b.y d.y  ad  bc
	     *  d /   d   /	 \d\
	     *  |/     \ /         \\  d.y c.y  dc  bc
	     *  c       c	   c
	     */
	    left.p1  = q[a]; left.p2  = q[d];
	    right.p1 = q[a]; right.p2 = q[b];
	    _cairo_traps_add_clipped_trap (traps, q[a].y, q[b].y, &left, &right);
	    right.p1 = q[b]; right.p2 = q[c];
	    _cairo_traps_add_clipped_trap (traps, q[b].y, q[d].y, &left, &right);
	    left.p1  = q[d]; left.p2  = q[c];
	    _cairo_traps_add_clipped_trap (traps, q[d].y, q[c].y, &left, &right);
	}
    }
}

/* A triangle is simply a degenerate case of a convex
 * quadrilateral. We would not benefit from having any distinct
 * implementation of triangle vs. quadrilateral tessellation here. */
void
_cairo_traps_tessellate_triangle (cairo_traps_t *traps,
				  const cairo_point_t t[3])
{
    cairo_point_t quad[4];

    quad[0] = t[0];
    quad[1] = t[0];
    quad[2] = t[1];
    quad[3] = t[2];

    _cairo_traps_tessellate_convex_quad (traps, quad);
}


/**
 * _cairo_traps_init_boxes:
 * @traps: a #cairo_traps_t
 * @box: an array box that will each be converted to a single trapezoid
 *       to store in @traps.
 *
 * Initializes a #cairo_traps_t to contain an array of rectangular
 * trapezoids.
 **/
cairo_status_t
_cairo_traps_init_boxes (cairo_traps_t	    *traps,
		         const cairo_boxes_t *boxes)
{
    cairo_trapezoid_t *trap;
    const struct _cairo_boxes_chunk *chunk;

    _cairo_traps_init (traps);

    while (traps->traps_size < boxes->num_boxes) {
	if (unlikely (! _cairo_traps_grow (traps))) {
	    _cairo_traps_fini (traps);
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);
	}
    }

    traps->num_traps = boxes->num_boxes;
    traps->is_rectilinear = TRUE;
    traps->is_rectangular = TRUE;
    traps->maybe_region = boxes->is_pixel_aligned;

    trap = &traps->traps[0];
    for (chunk = &boxes->chunks; chunk != NULL; chunk = chunk->next) {
	const cairo_box_t *box;
	int i;

	box = chunk->base;
	for (i = 0; i < chunk->count; i++) {
	    trap->top    = box->p1.y;
	    trap->bottom = box->p2.y;

	    trap->left.p1   = box->p1;
	    trap->left.p2.x = box->p1.x;
	    trap->left.p2.y = box->p2.y;

	    trap->right.p1.x = box->p2.x;
	    trap->right.p1.y = box->p1.y;
	    trap->right.p2   = box->p2;

	    box++, trap++;
	}
    }

    return CAIRO_STATUS_SUCCESS;
}

cairo_status_t
_cairo_traps_tessellate_rectangle (cairo_traps_t *traps,
				   const cairo_point_t *top_left,
				   const cairo_point_t *bottom_right)
{
    cairo_line_t left;
    cairo_line_t right;
    cairo_fixed_t top, bottom;

    if (top_left->y == bottom_right->y)
	return CAIRO_STATUS_SUCCESS;

    if (top_left->x == bottom_right->x)
	return CAIRO_STATUS_SUCCESS;

     left.p1.x =  left.p2.x = top_left->x;
     left.p1.y = right.p1.y = top_left->y;
    right.p1.x = right.p2.x = bottom_right->x;
     left.p2.y = right.p2.y = bottom_right->y;

     top = top_left->y;
     bottom = bottom_right->y;

    if (traps->num_limits) {
	cairo_bool_t reversed;
	int n;

	if (top >= traps->bounds.p2.y || bottom <= traps->bounds.p1.y)
	    return CAIRO_STATUS_SUCCESS;

	/* support counter-clockwise winding for rectangular tessellation */
	reversed = top_left->x > bottom_right->x;
	if (reversed) {
	    right.p1.x = right.p2.x = top_left->x;
	    left.p1.x = left.p2.x = bottom_right->x;
	}

	if (left.p1.x >= traps->bounds.p2.x || right.p1.x <= traps->bounds.p1.x)
	    return CAIRO_STATUS_SUCCESS;

	for (n = 0; n < traps->num_limits; n++) {
	    const cairo_box_t *limits = &traps->limits[n];
	    cairo_line_t _left, _right;
	    cairo_fixed_t _top, _bottom;

	    if (top >= limits->p2.y)
		continue;
	    if (bottom <= limits->p1.y)
		continue;

	    /* Trivially reject if trapezoid is entirely to the right or
	     * to the left of the limits. */
	    if (left.p1.x >= limits->p2.x)
		continue;
	    if (right.p1.x <= limits->p1.x)
		continue;

	    /* Otherwise, clip the trapezoid to the limits. */
	    _top = top;
	    if (_top < limits->p1.y)
		_top = limits->p1.y;

	    _bottom = bottom;
	    if (_bottom > limits->p2.y)
		_bottom = limits->p2.y;

	    if (_bottom <= _top)
		continue;

	    _left = left;
	    if (_left.p1.x < limits->p1.x) {
		_left.p1.x = limits->p1.x;
		_left.p1.y = limits->p1.y;
		_left.p2.x = limits->p1.x;
		_left.p2.y = limits->p2.y;
	    }

	    _right = right;
	    if (_right.p1.x > limits->p2.x) {
		_right.p1.x = limits->p2.x;
		_right.p1.y = limits->p1.y;
		_right.p2.x = limits->p2.x;
		_right.p2.y = limits->p2.y;
	    }

	    if (left.p1.x >= right.p1.x)
		continue;

	    if (reversed)
		_cairo_traps_add_trap (traps, _top, _bottom, &_right, &_left);
	    else
		_cairo_traps_add_trap (traps, _top, _bottom, &_left, &_right);
	}
    } else {
	_cairo_traps_add_trap (traps, top, bottom, &left, &right);
    }

    return traps->status;
}

void
_cairo_traps_translate (cairo_traps_t *traps, int x, int y)
{
    cairo_fixed_t xoff, yoff;
    cairo_trapezoid_t *t;
    int i;

    /* Ugh. The cairo_composite/(Render) interface doesn't allow
       an offset for the trapezoids. Need to manually shift all
       the coordinates to align with the offset origin of the
       intermediate surface. */

    xoff = _cairo_fixed_from_int (x);
    yoff = _cairo_fixed_from_int (y);

    for (i = 0, t = traps->traps; i < traps->num_traps; i++, t++) {
	t->top += yoff;
	t->bottom += yoff;
	t->left.p1.x += xoff;
	t->left.p1.y += yoff;
	t->left.p2.x += xoff;
	t->left.p2.y += yoff;
	t->right.p1.x += xoff;
	t->right.p1.y += yoff;
	t->right.p2.x += xoff;
	t->right.p2.y += yoff;
    }
}

void
_cairo_trapezoid_array_translate_and_scale (cairo_trapezoid_t *offset_traps,
                                            cairo_trapezoid_t *src_traps,
                                            int num_traps,
                                            double tx, double ty,
                                            double sx, double sy)
{
    int i;
    cairo_fixed_t xoff = _cairo_fixed_from_double (tx);
    cairo_fixed_t yoff = _cairo_fixed_from_double (ty);

    if (sx == 1.0 && sy == 1.0) {
        for (i = 0; i < num_traps; i++) {
            offset_traps[i].top = src_traps[i].top + yoff;
            offset_traps[i].bottom = src_traps[i].bottom + yoff;
            offset_traps[i].left.p1.x = src_traps[i].left.p1.x + xoff;
            offset_traps[i].left.p1.y = src_traps[i].left.p1.y + yoff;
            offset_traps[i].left.p2.x = src_traps[i].left.p2.x + xoff;
            offset_traps[i].left.p2.y = src_traps[i].left.p2.y + yoff;
            offset_traps[i].right.p1.x = src_traps[i].right.p1.x + xoff;
            offset_traps[i].right.p1.y = src_traps[i].right.p1.y + yoff;
            offset_traps[i].right.p2.x = src_traps[i].right.p2.x + xoff;
            offset_traps[i].right.p2.y = src_traps[i].right.p2.y + yoff;
        }
    } else {
        cairo_fixed_t xsc = _cairo_fixed_from_double (sx);
        cairo_fixed_t ysc = _cairo_fixed_from_double (sy);

        for (i = 0; i < num_traps; i++) {
            offset_traps[i].top = _cairo_fixed_mul (src_traps[i].top + yoff, ysc);
            offset_traps[i].bottom = _cairo_fixed_mul (src_traps[i].bottom + yoff, ysc);
            offset_traps[i].left.p1.x = _cairo_fixed_mul (src_traps[i].left.p1.x + xoff, xsc);
            offset_traps[i].left.p1.y = _cairo_fixed_mul (src_traps[i].left.p1.y + yoff, ysc);
            offset_traps[i].left.p2.x = _cairo_fixed_mul (src_traps[i].left.p2.x + xoff, xsc);
            offset_traps[i].left.p2.y = _cairo_fixed_mul (src_traps[i].left.p2.y + yoff, ysc);
            offset_traps[i].right.p1.x = _cairo_fixed_mul (src_traps[i].right.p1.x + xoff, xsc);
            offset_traps[i].right.p1.y = _cairo_fixed_mul (src_traps[i].right.p1.y + yoff, ysc);
            offset_traps[i].right.p2.x = _cairo_fixed_mul (src_traps[i].right.p2.x + xoff, xsc);
            offset_traps[i].right.p2.y = _cairo_fixed_mul (src_traps[i].right.p2.y + yoff, ysc);
        }
    }
}

static cairo_bool_t
_cairo_trap_contains (cairo_trapezoid_t *t, cairo_point_t *pt)
{
    cairo_slope_t slope_left, slope_pt, slope_right;

    if (t->top > pt->y)
	return FALSE;
    if (t->bottom < pt->y)
	return FALSE;

    _cairo_slope_init (&slope_left, &t->left.p1, &t->left.p2);
    _cairo_slope_init (&slope_pt, &t->left.p1, pt);

    if (_cairo_slope_compare (&slope_left, &slope_pt) < 0)
	return FALSE;

    _cairo_slope_init (&slope_right, &t->right.p1, &t->right.p2);
    _cairo_slope_init (&slope_pt, &t->right.p1, pt);

    if (_cairo_slope_compare (&slope_pt, &slope_right) < 0)
	return FALSE;

    return TRUE;
}

cairo_bool_t
_cairo_traps_contain (const cairo_traps_t *traps,
		      double x, double y)
{
    int i;
    cairo_point_t point;

    point.x = _cairo_fixed_from_double (x);
    point.y = _cairo_fixed_from_double (y);

    for (i = 0; i < traps->num_traps; i++) {
	if (_cairo_trap_contains (&traps->traps[i], &point))
	    return TRUE;
    }

    return FALSE;
}

static cairo_fixed_t
_line_compute_intersection_x_for_y (const cairo_line_t *line,
				    cairo_fixed_t y)
{
    return _cairo_edge_compute_intersection_x_for_y (&line->p1, &line->p2, y);
}

void
_cairo_traps_extents (const cairo_traps_t *traps,
		      cairo_box_t *extents)
{
    int i;

    if (traps->num_traps == 0) {
	extents->p1.x = extents->p1.y = 0;
	extents->p2.x = extents->p2.y = 0;
	return;
    }

    extents->p1.x = extents->p1.y = INT32_MAX;
    extents->p2.x = extents->p2.y = INT32_MIN;

    for (i = 0; i < traps->num_traps; i++) {
	const cairo_trapezoid_t *trap =  &traps->traps[i];

	if (trap->top < extents->p1.y)
	    extents->p1.y = trap->top;
	if (trap->bottom > extents->p2.y)
	    extents->p2.y = trap->bottom;

	if (trap->left.p1.x < extents->p1.x) {
	    cairo_fixed_t x = trap->left.p1.x;
	    if (trap->top != trap->left.p1.y) {
		x = _line_compute_intersection_x_for_y (&trap->left,
							trap->top);
		if (x < extents->p1.x)
		    extents->p1.x = x;
	    } else
		extents->p1.x = x;
	}
	if (trap->left.p2.x < extents->p1.x) {
	    cairo_fixed_t x = trap->left.p2.x;
	    if (trap->bottom != trap->left.p2.y) {
		x = _line_compute_intersection_x_for_y (&trap->left,
							trap->bottom);
		if (x < extents->p1.x)
		    extents->p1.x = x;
	    } else
		extents->p1.x = x;
	}

	if (trap->right.p1.x > extents->p2.x) {
	    cairo_fixed_t x = trap->right.p1.x;
	    if (trap->top != trap->right.p1.y) {
		x = _line_compute_intersection_x_for_y (&trap->right,
							trap->top);
		if (x > extents->p2.x)
		    extents->p2.x = x;
	    } else
		extents->p2.x = x;
	}
	if (trap->right.p2.x > extents->p2.x) {
	    cairo_fixed_t x = trap->right.p2.x;
	    if (trap->bottom != trap->right.p2.y) {
		x = _line_compute_intersection_x_for_y (&trap->right,
							trap->bottom);
		if (x > extents->p2.x)
		    extents->p2.x = x;
	    } else
		extents->p2.x = x;
	}
    }
}

static cairo_bool_t
_mono_edge_is_vertical (const cairo_line_t *line)
{
    return _cairo_fixed_integer_round_down (line->p1.x) == _cairo_fixed_integer_round_down (line->p2.x);
}

static cairo_bool_t
_traps_are_pixel_aligned (cairo_traps_t *traps,
			  cairo_antialias_t antialias)
{
    int i;

    if (antialias == CAIRO_ANTIALIAS_NONE) {
	for (i = 0; i < traps->num_traps; i++) {
	    if (! _mono_edge_is_vertical (&traps->traps[i].left)   ||
		! _mono_edge_is_vertical (&traps->traps[i].right))
	    {
		traps->maybe_region = FALSE;
		return FALSE;
	    }
	}
    } else {
	for (i = 0; i < traps->num_traps; i++) {
	    if (traps->traps[i].left.p1.x != traps->traps[i].left.p2.x   ||
		traps->traps[i].right.p1.x != traps->traps[i].right.p2.x ||
		! _cairo_fixed_is_integer (traps->traps[i].top)          ||
		! _cairo_fixed_is_integer (traps->traps[i].bottom)       ||
		! _cairo_fixed_is_integer (traps->traps[i].left.p1.x)    ||
		! _cairo_fixed_is_integer (traps->traps[i].right.p1.x))
	    {
		traps->maybe_region = FALSE;
		return FALSE;
	    }
	}
    }

    return TRUE;
}

/**
 * _cairo_traps_extract_region:
 * @traps: a #cairo_traps_t
 * @region: a #cairo_region_t
 *
 * Determines if a set of trapezoids are exactly representable as a
 * cairo region.  If so, the passed-in region is initialized to
 * the area representing the given traps.  It should be finalized
 * with cairo_region_fini().  If not, %CAIRO_INT_STATUS_UNSUPPORTED
 * is returned.
 *
 * Return value: %CAIRO_STATUS_SUCCESS, %CAIRO_INT_STATUS_UNSUPPORTED
 * or %CAIRO_STATUS_NO_MEMORY
 **/
cairo_int_status_t
_cairo_traps_extract_region (cairo_traps_t   *traps,
			     cairo_antialias_t antialias,
			     cairo_region_t **region)
{
    cairo_rectangle_int_t stack_rects[CAIRO_STACK_ARRAY_LENGTH (cairo_rectangle_int_t)];
    cairo_rectangle_int_t *rects = stack_rects;
    cairo_int_status_t status;
    int i, rect_count;

    /* we only treat this a hint... */
    if (antialias != CAIRO_ANTIALIAS_NONE && ! traps->maybe_region)
	return CAIRO_INT_STATUS_UNSUPPORTED;

    if (! _traps_are_pixel_aligned (traps, antialias)) {
	traps->maybe_region = FALSE;
	return CAIRO_INT_STATUS_UNSUPPORTED;
    }

    if (traps->num_traps > ARRAY_LENGTH (stack_rects)) {
	rects = _cairo_malloc_ab (traps->num_traps, sizeof (cairo_rectangle_int_t));

	if (unlikely (rects == NULL))
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);
    }

    rect_count = 0;
    for (i = 0; i < traps->num_traps; i++) {
	int x1, y1, x2, y2;

	if (antialias == CAIRO_ANTIALIAS_NONE) {
	    x1 = _cairo_fixed_integer_round_down (traps->traps[i].left.p1.x);
	    y1 = _cairo_fixed_integer_round_down (traps->traps[i].top);
	    x2 = _cairo_fixed_integer_round_down (traps->traps[i].right.p1.x);
	    y2 = _cairo_fixed_integer_round_down (traps->traps[i].bottom);
	} else {
	    x1 = _cairo_fixed_integer_part (traps->traps[i].left.p1.x);
	    y1 = _cairo_fixed_integer_part (traps->traps[i].top);
	    x2 = _cairo_fixed_integer_part (traps->traps[i].right.p1.x);
	    y2 = _cairo_fixed_integer_part (traps->traps[i].bottom);
	}

	if (x2 > x1 && y2 > y1) {
	    rects[rect_count].x = x1;
	    rects[rect_count].y = y1;
	    rects[rect_count].width  = x2 - x1;
	    rects[rect_count].height = y2 - y1;
	    rect_count++;
	}
    }


    *region = cairo_region_create_rectangles (rects, rect_count);
    status = (*region)->status;

    if (rects != stack_rects)
	free (rects);

    return status;
}

cairo_bool_t
_cairo_traps_to_boxes (cairo_traps_t *traps,
		       cairo_antialias_t antialias,
		       cairo_boxes_t *boxes)
{
    int i;

    for (i = 0; i < traps->num_traps; i++) {
	if (traps->traps[i].left.p1.x  != traps->traps[i].left.p2.x ||
	    traps->traps[i].right.p1.x != traps->traps[i].right.p2.x)
	    return FALSE;
    }

    _cairo_boxes_init (boxes);

    boxes->num_boxes    = traps->num_traps;
    boxes->chunks.base  = (cairo_box_t *) traps->traps;
    boxes->chunks.count = traps->num_traps;
    boxes->chunks.size  = traps->num_traps;

    if (antialias != CAIRO_ANTIALIAS_NONE) {
	for (i = 0; i < traps->num_traps; i++) {
	    /* Note the traps and boxes alias so we need to take the local copies first. */
	    cairo_fixed_t x1 = traps->traps[i].left.p1.x;
	    cairo_fixed_t x2 = traps->traps[i].right.p1.x;
	    cairo_fixed_t y1 = traps->traps[i].top;
	    cairo_fixed_t y2 = traps->traps[i].bottom;

	    boxes->chunks.base[i].p1.x = x1;
	    boxes->chunks.base[i].p1.y = y1;
	    boxes->chunks.base[i].p2.x = x2;
	    boxes->chunks.base[i].p2.y = y2;

	    if (boxes->is_pixel_aligned) {
		boxes->is_pixel_aligned =
		    _cairo_fixed_is_integer (x1) && _cairo_fixed_is_integer (y1) &&
		    _cairo_fixed_is_integer (x2) && _cairo_fixed_is_integer (y2);
	    }
	}
    } else {
	boxes->is_pixel_aligned = TRUE;

	for (i = 0; i < traps->num_traps; i++) {
	    /* Note the traps and boxes alias so we need to take the local copies first. */
	    cairo_fixed_t x1 = traps->traps[i].left.p1.x;
	    cairo_fixed_t x2 = traps->traps[i].right.p1.x;
	    cairo_fixed_t y1 = traps->traps[i].top;
	    cairo_fixed_t y2 = traps->traps[i].bottom;

	    /* round down here to match Pixman's behavior when using traps. */
	    boxes->chunks.base[i].p1.x = _cairo_fixed_round_down (x1);
	    boxes->chunks.base[i].p1.y = _cairo_fixed_round_down (y1);
	    boxes->chunks.base[i].p2.x = _cairo_fixed_round_down (x2);
	    boxes->chunks.base[i].p2.y = _cairo_fixed_round_down (y2);
	}
    }

    return TRUE;
}

/* moves trap points such that they become the actual corners of the trapezoid */
static void
_sanitize_trap (cairo_trapezoid_t *t)
{
    cairo_trapezoid_t s = *t;

#define FIX(lr, tb, p) \
    if (t->lr.p.y != t->tb) { \
        t->lr.p.x = s.lr.p2.x + _cairo_fixed_mul_div_floor (s.lr.p1.x - s.lr.p2.x, s.tb - s.lr.p2.y, s.lr.p1.y - s.lr.p2.y); \
        t->lr.p.y = s.tb; \
    }
    FIX (left,  top,    p1);
    FIX (left,  bottom, p2);
    FIX (right, top,    p1);
    FIX (right, bottom, p2);
}

cairo_private cairo_status_t
_cairo_traps_path (const cairo_traps_t *traps,
		   cairo_path_fixed_t  *path)
{
    int i;

    for (i = 0; i < traps->num_traps; i++) {
	cairo_status_t status;
	cairo_trapezoid_t trap = traps->traps[i];

	if (trap.top == trap.bottom)
	    continue;

	_sanitize_trap (&trap);

	status = _cairo_path_fixed_move_to (path, trap.left.p1.x, trap.top);
	if (unlikely (status)) return status;
	status = _cairo_path_fixed_line_to (path, trap.right.p1.x, trap.top);
	if (unlikely (status)) return status;
	status = _cairo_path_fixed_line_to (path, trap.right.p2.x, trap.bottom);
	if (unlikely (status)) return status;
	status = _cairo_path_fixed_line_to (path, trap.left.p2.x, trap.bottom);
	if (unlikely (status)) return status;
	status = _cairo_path_fixed_close_path (path);
	if (unlikely (status)) return status;
    }

    return CAIRO_STATUS_SUCCESS;
}

void
_cairo_debug_print_traps (FILE *file, const cairo_traps_t *traps)
{
    cairo_box_t extents;
    int n;

#if 0
    if (traps->has_limits) {
	printf ("%s: limits=(%d, %d, %d, %d)\n",
		filename,
		traps->limits.p1.x, traps->limits.p1.y,
		traps->limits.p2.x, traps->limits.p2.y);
    }
#endif

    _cairo_traps_extents (traps, &extents);
    fprintf (file, "extents=(%d, %d, %d, %d)\n",
	     extents.p1.x, extents.p1.y,
	     extents.p2.x, extents.p2.y);

    for (n = 0; n < traps->num_traps; n++) {
	fprintf (file, "%d %d L:(%d, %d), (%d, %d) R:(%d, %d), (%d, %d)\n",
		 traps->traps[n].top,
		 traps->traps[n].bottom,
		 traps->traps[n].left.p1.x,
		 traps->traps[n].left.p1.y,
		 traps->traps[n].left.p2.x,
		 traps->traps[n].left.p2.y,
		 traps->traps[n].right.p1.x,
		 traps->traps[n].right.p1.y,
		 traps->traps[n].right.p2.x,
		 traps->traps[n].right.p2.y);
    }
}

struct cairo_trap_renderer {
    cairo_span_renderer_t base;
    cairo_traps_t *traps;
};

static cairo_status_t
span_to_traps (void *abstract_renderer, int y, int h,
	       const cairo_half_open_span_t *spans, unsigned num_spans)
{
    struct cairo_trap_renderer *r = abstract_renderer;
    cairo_fixed_t top, bot;

    if (num_spans == 0)
	return CAIRO_STATUS_SUCCESS;

    top = _cairo_fixed_from_int (y);
    bot = _cairo_fixed_from_int (y + h);
    do {
	if (spans[0].coverage) {
	    cairo_fixed_t x0 = _cairo_fixed_from_int(spans[0].x);
	    cairo_fixed_t x1 = _cairo_fixed_from_int(spans[1].x);
	    cairo_line_t left = { { x0, top }, { x0, bot } },
			 right = { { x1, top }, { x1, bot } };
	    _cairo_traps_add_trap (r->traps, top, bot, &left, &right);
	}
	spans++;
    } while (--num_spans > 1);

    return CAIRO_STATUS_SUCCESS;
}

cairo_int_status_t
_cairo_rasterise_polygon_to_traps (cairo_polygon_t			*polygon,
				   cairo_fill_rule_t			 fill_rule,
				   cairo_antialias_t			 antialias,
				   cairo_traps_t *traps)
{
    struct cairo_trap_renderer renderer;
    cairo_scan_converter_t *converter;
    cairo_int_status_t status;
    cairo_rectangle_int_t r;

    TRACE ((stderr, "%s: fill_rule=%d, antialias=%d\n",
	    __FUNCTION__, fill_rule, antialias));
    assert(antialias == CAIRO_ANTIALIAS_NONE);

    renderer.traps = traps;
    renderer.base.render_rows = span_to_traps;

    _cairo_box_round_to_rectangle (&polygon->extents, &r);
    converter = _cairo_mono_scan_converter_create (r.x, r.y,
						   r.x + r.width,
						   r.y + r.height,
						   fill_rule);
    status = _cairo_mono_scan_converter_add_polygon (converter, polygon);
    if (likely (status == CAIRO_INT_STATUS_SUCCESS))
	status = converter->generate (converter, &renderer.base);
    converter->destroy (converter);
    return status;
}