summaryrefslogtreecommitdiff
path: root/Master
diff options
context:
space:
mode:
Diffstat (limited to 'Master')
-rw-r--r--Master/texmf-dist/doc/generic/pstricks-add/Changes3
-rw-r--r--Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.pdfbin5110999 -> 5109672 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex232
-rw-r--r--Master/texmf-dist/tex/generic/pstricks-add/pstricks-add.tex38
4 files changed, 145 insertions, 128 deletions
diff --git a/Master/texmf-dist/doc/generic/pstricks-add/Changes b/Master/texmf-dist/doc/generic/pstricks-add/Changes
index 3d3d11e931b..e716f5e5b02 100644
--- a/Master/texmf-dist/doc/generic/pstricks-add/Changes
+++ b/Master/texmf-dist/doc/generic/pstricks-add/Changes
@@ -1,4 +1,4 @@
-%% $Id: Changes 825 2013-09-18 12:10:17Z herbert $
+%% $Id: Changes 847 2013-11-13 18:44:15Z herbert $
%%
pstricks-add.pro -----------
0.23 2009-12-17 - add RGBtoGRAY and WavelengthToGRAY
@@ -39,6 +39,7 @@ pstricks-add.sty ----------- (hv)
pstricks-add.tex ----------- (Dominik Rodriguez/hv)
+ v 3.62 2013-11-13 - added \noVerticalLines
v 3.61 2013-09-18 - added \pstContour
v 3.60 2013-01-01 - fix bug with correct angle in \psPlotTangent
v 3.59 2012-09-27 - added uselinecolor option for \psChart
diff --git a/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.pdf b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.pdf
index a099d3a65ed..7f11f2d73c4 100644
--- a/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.pdf
+++ b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex
index 99d0fdd1263..070660a92ba 100644
--- a/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex
+++ b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex
@@ -1,4 +1,4 @@
-%% $Id: pstricks-add-doc.tex 825 2013-09-18 12:10:17Z herbert $
+%% $Id: pstricks-add-doc.tex 848 2013-11-14 21:30:42Z herbert $
\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings
headexclude,footexclude,oneside]{pst-doc}
\listfiles
@@ -1542,13 +1542,13 @@ with \Lkeyword{lower} as the default setting. The syntax of the function is
(x1,x2) is the given interval for the step wise calculated
function, n is the number of the rectangles and \Larg{function} is
-the mathematical function in postfix or algebraic=true notation (with
-\Lkeyset{algebraic=true}).
+the mathematical function in postfix or algebraic notation (with
+\Lkeyword{algebraic}).
\begin{LTXexample}[pos=t,preset=\centering]
\begin{pspicture}(-0.5,-0.5)(10,3)
\psaxes[labelFontSize=\scriptstyle]{->}(10,3)
- \psplot[plotpoints=100,linewidth=1.5pt,algebraic=true]{0}{10}{sqrt(x)}
+ \psplot[plotpoints=100,linewidth=1.5pt,algebraic]{0}{10}{sqrt(x)}
\psStep[linecolor=magenta,StepType=upper,fillstyle=hlines](0,9){9}{x sqrt}
\psStep[linecolor=blue,fillstyle=vlines](0,9){9}{x sqrt }
\end{pspicture}
@@ -1558,8 +1558,8 @@ the mathematical function in postfix or algebraic=true notation (with
\psset{plotpoints=200}
\begin{pspicture}(-0.5,-2.25)(10,3)
\psaxes[labelFontSize=\scriptstyle]{->}(0,0)(0,-2.25)(10,3)
- \psplot[linewidth=1.5pt,algebraic=true]{0}{10}{sqrt(x)*sin(x)}
- \psStep[algebraic=true,linecolor=magenta,StepType=upper](0,9){20}{sqrt(x)*sin(x)}
+ \psplot[linewidth=1.5pt,algebraic]{0}{10}{sqrt(x)*sin(x)}
+ \psStep[algebraic,linecolor=magenta,StepType=upper](0,9){20}{sqrt(x)*sin(x)}
\psStep[linecolor=blue,linestyle=dashed](0,9){20}{x sqrt x RadtoDeg sin mul}
\end{pspicture}
\end{LTXexample}
@@ -1568,9 +1568,9 @@ the mathematical function in postfix or algebraic=true notation (with
\psset{yunit=1.25cm,plotpoints=200}
\begin{pspicture}(-0.5,-1.5)(10,1.5)
\psaxes[labelFontSize=\scriptstyle]{->}(0,0)(0,-1.5)(10,1.5)
- \psStep[algebraic=true,StepType=Riemann,fillstyle=solid,fillcolor=black!10](0,10){50}%
+ \psStep[algebraic,StepType=Riemann,fillstyle=solid,fillcolor=black!10](0,10){50}%
{sqrt(x)*cos(x)*sin(x)}
- \psplot[linewidth=1.5pt,algebraic=true]{0}{10}{sqrt(x)*cos(x)*sin(x)}
+ \psplot[linewidth=1.5pt,algebraic]{0}{10}{sqrt(x)*cos(x)*sin(x)}
\end{pspicture}
\end{LTXexample}
@@ -1579,9 +1579,9 @@ the mathematical function in postfix or algebraic=true notation (with
\psset{yunit=1.25cm,plotpoints=200}
\begin{pspicture}(-0.5,-1.5)(10,1.5)
\psaxes[labelFontSize=\scriptstyle]{->}(0,0)(0,-1.5)(10,1.5)
- \psStep[algebraic=true,StepType=infimum,fillstyle=solid,fillcolor=black!10](0,10){50}%
+ \psStep[algebraic,StepType=infimum,fillstyle=solid,fillcolor=black!10](0,10){50}%
{sqrt(x)*cos(x)*sin(x)}
- \psplot[linewidth=1.5pt,algebraic=true]{0}{10}{sqrt(x)*cos(x)*sin(x)}
+ \psplot[linewidth=1.5pt,algebraic]{0}{10}{sqrt(x)*cos(x)*sin(x)}
\end{pspicture}
\end{LTXexample}
@@ -1589,23 +1589,27 @@ the mathematical function in postfix or algebraic=true notation (with
\psset{yunit=1.25cm,plotpoints=200}
\begin{pspicture}(-0.5,-1.5)(10,1.5)
\psaxes[labelFontSize=\scriptstyle]{->}(0,0)(0,-1.5)(10,1.5)
- \psStep[algebraic=true,StepType=supremum,fillstyle=solid,fillcolor=black!10](0,10){50}%
+ \psStep[algebraic,StepType=supremum,fillstyle=solid,fillcolor=black!10](0,10){50}%
{sqrt(x)*cos(x)*sin(x)}
- \psplot[linewidth=1.5pt,algebraic=true]{0}{10}{sqrt(x)*cos(x)*sin(x)}
+ \psplot[linewidth=1.5pt,algebraic]{0}{10}{sqrt(x)*cos(x)*sin(x)}
\end{pspicture}
\end{LTXexample}
\begin{LTXexample}[pos=t,preset=\centering]
\psset{unit=1.5cm,plotpoints=200}
\begin{pspicture}[plotpoints=200](-0.5,-3)(10,2.5)
- \psStep[algebraic=true,fillstyle=solid,fillcolor=yellow](0.001,9.5){40}{2*sqrt(x)*cos(ln(x))*sin(x)}
- \psStep[algebraic=true,StepType=Riemann,fillstyle=solid,fillcolor=blue](0.001,9.5){40}{2*sqrt(x)*cos(ln(x))*sin(x)}
+ \psStep[algebraic,fillstyle=solid,fillcolor=yellow](0.001,9.5){40}{2*sqrt(x)*cos(ln(x))*sin(x)}
+ \psStep[algebraic,StepType=Riemann,fillstyle=solid,fillcolor=blue](0.001,9.5){40}{2*sqrt(x)*cos(ln(x))*sin(x)}
\psaxes[labelFontSize=\scriptstyle]{->}(0,0)(0,-2.75)(10,2.5)
- \psplot[algebraic=true,linecolor=white]{0.001}{9.75}{2*sqrt(x)*cos(ln(x))*sin(x)}
+ \psplot[algebraic,linecolor=white]{0.001}{9.75}{2*sqrt(x)*cos(ln(x))*sin(x)}
\uput[90](6,1.2){$f(x)=2\cdot\sqrt{x}\cdot\cos{(\ln{x})}\cdot\sin{x}$}
\end{pspicture}
\end{LTXexample}
+There is also an optional argument \Lkeyword{noVerticalLines} which suppresses all
+vertical lines of the step function in the output.
+
+
\clearpage
%--------------------------------------------------------------------------------------
@@ -1694,7 +1698,7 @@ The macro expects three parameters:
postfix (PostScript) notation
\end{description}
-The following examples show the use of the algebraic=true option together with the Derive option.
+The following examples show the use of the algebraic option together with the Derive option.
Remember that using the \Lkeyword{algebraic} option implies that the angles have to be in the
radian unit!
@@ -1735,10 +1739,10 @@ The star version plots only the tangent line in the positive $x$-direction:
\def\Falg{cos(x)+cos(2*x)+cos(3*x)} \def\Fpalg{-sin(x)-2*sin(2*x)-3*sin(3*x)}
\begin{pspicture}(-7.5,-2.5)(7.5,4)%\psgrid
\psaxes{->}(0,0)(-7.5,-2)(7.5,3.5)
- \psplot[linewidth=1.5pt,algebraic=true,plotpoints=500]{-7.5}{7.5}{\Falg}
- \multido{\n=-7+1}{8}{\psplotTangent*[linecolor=red,arrows=->,arrowscale=2,algebraic=true]{\n}{1}{\Falg}}
+ \psplot[linewidth=1.5pt,algebraic,plotpoints=500]{-7.5}{7.5}{\Falg}
+ \multido{\n=-7+1}{8}{\psplotTangent*[linecolor=red,arrows=->,arrowscale=2,algebraic]{\n}{1}{\Falg}}
\multido{\n=0+1}{8}{\psplotTangent*[linecolor=magenta,%
- arrows=->,arrowscale=2,algebraic=true,Derive={\Fpalg}]{\n}{1}{\Falg}}
+ arrows=->,arrowscale=2,algebraic,Derive={\Fpalg}]{\n}{1}{\Falg}}
\end{pspicture}
\egroup
\end{center}
@@ -1747,10 +1751,10 @@ The star version plots only the tangent line in the positive $x$-direction:
\def\Falg{cos(x)+cos(2*x)+cos(3*x)} \def\Fpalg{-sin(x)-2*sin(2*x)-3*sin(3*x)}
\begin{pspicture}(-7.5,-2.5)(7.5,4)%\psgrid
\psaxes{->}(0,0)(-7.5,-2)(7.5,3.5)
- \psplot[linewidth=1.5pt,algebraic=true,plotpoints=500]{-7.5}{7.5}{\Falg}
- \multido{\n=-7+1}{8}{\psplotTangent*[linecolor=red,arrows=->,arrowscale=2,algebraic=true]{\n}{1}{\Falg}}
+ \psplot[linewidth=1.5pt,algebraic,plotpoints=500]{-7.5}{7.5}{\Falg}
+ \multido{\n=-7+1}{8}{\psplotTangent*[linecolor=red,arrows=->,arrowscale=2,algebraic]{\n}{1}{\Falg}}
\multido{\n=0+1}{8}{\psplotTangent*[linecolor=magenta,%
- arrows=->,arrowscale=2,algebraic=true,Derive={\Fpalg}]{\n}{1}{\Falg}}
+ arrows=->,arrowscale=2,algebraic,Derive={\Fpalg}]{\n}{1}{\Falg}}
\end{pspicture}
\end{lstlisting}
@@ -1761,9 +1765,9 @@ the perpendicular line to the tangent.
\begin{pspicture}(-0.5,-0.5)(7.25,7.25)
\def\Func{10 x div}
\psaxes[arrowscale=1.5]{->}(7,7)
- \psplot[linewidth=2pt,algebraic=true]{1.5}{5}{10/x}
- \psplotTangent[linewidth=.5\pslinewidth,linecolor=red,algebraic=true]{3}{2}{10/x}
- \psplotTangent[linewidth=.5\pslinewidth,linecolor=blue,algebraic=true,Derive=(x*x)/10]{3}{2}{10/x}
+ \psplot[linewidth=2pt,algebraic]{1.5}{5}{10/x}
+ \psplotTangent[linewidth=.5\pslinewidth,linecolor=red,algebraic]{3}{2}{10/x}
+ \psplotTangent[linewidth=.5\pslinewidth,linecolor=blue,algebraic,Derive=(x*x)/10]{3}{2}{10/x}
\psline[linestyle=dashed](!0 /x 3 def \Func)(!3 /x 3 def \Func)(3,0)
\end{pspicture}
\end{LTXexample}
@@ -1816,9 +1820,9 @@ where $x=r\cdot\cos\theta$ and $y=r\cdot\sin\theta$
\begin{LTXexample}[width=6cm,wide]
\begin{pspicture}(-1,-3)(5,3)%\psgrid[subgridcolor=lightgray]
\psaxes{->}(0,0)(-1,-3)(5,3)
- \psplot[polarplot,linewidth=3\pslinewidth,linecolor=blue,algebraic=true,plotpoints=500]{0}{6.289}{2*(1+cos(x))}
+ \psplot[polarplot,linewidth=3\pslinewidth,linecolor=blue,algebraic,plotpoints=500]{0}{6.289}{2*(1+cos(x))}
\multido{\r=0.000+0.314}{21}{%
- \psplotTangent[polarplot,Derive=-2*sin(x),algebraic=true,linecolor=red,arrows=<->]{\r}{1.5}{2*(1+cos(x))} }
+ \psplotTangent[polarplot,Derive=-2*sin(x),algebraic,linecolor=red,arrows=<->]{\r}{1.5}{2*(1+cos(x))} }
\end{pspicture}
\end{LTXexample}
@@ -1829,7 +1833,7 @@ whose derivative is :
$\displaystyle\left\{\begin{array}{l}x=-7\sin(2t)\\y=21\cos(6t)\end{array}\right.$
The parameter must be the letter $t$ instead of $x$ and when using
-the \Lkeyword{algebraic=true} option you must separate the two equations by
+the \Lkeyword{algebraic} option you must separate the two equations by
a \Lnotation{|} (see example).
\begin{LTXexample}[pos=t,wide]
@@ -1844,11 +1848,11 @@ a \Lnotation{|} (see example).
\end{pspicture}\hfill%
\def\LissaAlg{3.5*cos(2*t)|3.5*sin(6*t)} \def\LissaAlgDer{-7*sin(2*t)|21*cos(6*t)}%
\begin{pspicture}(-4,-4)(4,6)
- \parametricplot[algebraic=true,plotpoints=500,linewidth=3\pslinewidth]{0}{3.141592}{\LissaAlg}
+ \parametricplot[algebraic,plotpoints=500,linewidth=3\pslinewidth]{0}{3.141592}{\LissaAlg}
\multido{\r=0.000+0.314}{11}{%
- \psplotTangent[algebraic=true,linecolor=red,arrows=<->]{\r}{1.5}{\LissaAlg} }
+ \psplotTangent[algebraic,linecolor=red,arrows=<->]{\r}{1.5}{\LissaAlg} }
\multido{\r=0.157+0.314}{11}{%
- \psplotTangent[algebraic=true,linecolor=blue,arrows=<->,%
+ \psplotTangent[algebraic,linecolor=blue,arrows=<->,%
Derive=\LissaAlgDer]{\r}{1.5}{\LissaAlg} }
\end{pspicture}
\end{LTXexample}
@@ -1859,7 +1863,7 @@ a \Lnotation{|} (see example).
The new PostScript function \Lps{Derive} has been added for
plotting successive derivatives of a function. It must be used
-with the \Lkeyword{algebraic=true} option. This function has two arguments:
+with the \Lkeyword{algebraic} option. This function has two arguments:
\begin{enumerate}
\item a positive integer which defines the order of the derivative; obviously $0$ means the
@@ -1887,7 +1891,7 @@ the cosine.
\begin{pspicture}[showgrid=true](0,-1.2)(7,1.5)
\psclip{\psframe[linestyle=none](0,-1.1)(7,1.1)}
\multido{\in=0+1}{16}{%
- \psplot[linewidth=1pt,algebraic=true,linecolor=\getColor{\in}]{0}{7}
+ \psplot[linewidth=1pt,algebraic,linecolor=\getColor{\in}]{0}{7}
{Derive(\in,1-x^2/2+x^4/24-x^6/720+x^8/40320-x^10/3628800+x^12/479001600-x^14/87178291200)}}
\endpsclip
\end{pspicture}
@@ -1895,8 +1899,8 @@ the cosine.
\begin{LTXexample}[width=3.5cm]
\begin{pspicture}[shift=-2.5,showgrid=true,linewidth=1pt](0,-2)(3,3)
- \psplot[algebraic=true]{.001}{3}{x*ln(x)} % f(x)
- \psplot[algebraic=true,linecolor=red]{.05}{3}{Derive(1,x*ln(x))} % f'(x)=1+ln(x)
+ \psplot[algebraic]{.001}{3}{x*ln(x)} % f(x)
+ \psplot[algebraic,linecolor=red]{.05}{3}{Derive(1,x*ln(x))} % f'(x)=1+ln(x)
\end{pspicture}
\end{LTXexample}
@@ -1947,7 +1951,7 @@ magenta the default variable step behavior.
\begin{center}
\bgroup
-\psset{algebraic=true, VarStep=true, unit=2, showpoints=true, linecolor=red}
+\psset{algebraic, VarStep=true, unit=2, showpoints=true, linecolor=red}
\begin{pspicture}(-0,-1)(3.14,2)\psgrid
\psplot[VarStepEpsilon=.01]{0}{3.14}{cos(x)}
\psplot[VarStepEpsilon=.001]{0}{3.14}{cos(x)+.15}
@@ -1959,7 +1963,7 @@ magenta the default variable step behavior.
\end{center}
\begin{lstlisting}
-\psset{algebraic=true, VarStep=true, unit=2, showpoints=true, linecolor=red}
+\psset{algebraic, VarStep=true, unit=2, showpoints=true, linecolor=red}
\begin{pspicture}[showgrid=true](-0,-1)(3.14,2)
\psplot[VarStepEpsilon=.01]{0}{3.14}{cos(x)}
\psplot[VarStepEpsilon=.001]{0}{3.14}{cos(x)+.15}
@@ -1976,7 +1980,7 @@ A really classic example which gives a bad beginning, the tolerance is set to $0
\begin{center}
\bgroup
-\psset{algebraic=true, VarStep=true, linecolor=red, showpoints=true}
+\psset{algebraic, VarStep=true, linecolor=red, showpoints=true}
\begin{pspicture}[showgrid=true](0,-5)(16,4)
\psplot[VarStep=false, linecolor=black]{.01}{16}{ln(x)+1}
\psplot[linecolor=magenta]{.51}{16}{ln(x-1/2)+1/2}
@@ -1987,7 +1991,7 @@ A really classic example which gives a bad beginning, the tolerance is set to $0
\end{center}
\begin{lstlisting}
-\psset{algebraic=true, VarStep=true, linecolor=red, showpoints=true}
+\psset{algebraic, VarStep=true, linecolor=red, showpoints=true}
\begin{pspicture}[showgrid=true](0,-5)(16,4)
\psplot[VarStep=false, linecolor=black]{.01}{16}{ln(x)+1}
\psplot[linecolor=magenta]{.51}{16}{ln(x-1/2)+1/2}
@@ -2003,7 +2007,7 @@ Impossible to draw, but let's try!
\begin{center}
\bgroup
-\psset{xunit=64,algebraic=true,VarStep,linecolor=red,showpoints=true,linewidth=1pt}
+\psset{xunit=64,algebraic,VarStep,linecolor=red,showpoints=true,linewidth=1pt}
\begin{pspicture}[showgrid=true](0,-1)(.5,1)
\psplot[VarStepEpsilon=.0001]{.01}{.25}{sin(1/x)}
\end{pspicture}\\
@@ -2020,7 +2024,7 @@ Impossible to draw, but let's try!
\end{center}
\begin{lstlisting}
-\psset{xunit=64,algebraic=true,VarStep,linecolor=red,showpoints=true,linewidth=1pt}
+\psset{xunit=64,algebraic,VarStep,linecolor=red,showpoints=true,linewidth=1pt}
\begin{pspicture}[showgrid=true](0,-1)(.5,1)
\psplot[VarStepEpsilon=.0001]{.01}{.25}{sin(1/x)}
\end{pspicture}\\
@@ -2049,7 +2053,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{center}
\bgroup
-\psset{xunit=3, algebraic=true, VarStep, showpoints=true}
+\psset{xunit=3, algebraic, VarStep, showpoints=true}
\begin{pspicture}[showgrid=true](0,-2)(5,6)
\psplot[VarStepEpsilon=.0005, linecolor=red]{.1}{5}{x-x^2/10+ln(x)+cos(2*x)+sin(x^2)}
\psplot[linecolor=magenta]{.1}{5}{x-x^2/10+ln(x)+cos(2*x)+sin(x^2)+.5}
@@ -2059,7 +2063,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\end{center}
\begin{lstlisting}
-\psset{xunit=3, algebraic=true, VarStep, showpoints=true}
+\psset{xunit=3, algebraic, VarStep, showpoints=true}
\begin{pspicture}[showgrid=true](0,-2)(5,6)
\psplot[VarStepEpsilon=.0005, linecolor=red]{.1}{5}{x-x^2/10+ln(x)+cos(2*x)+sin(x^2)}
\psplot[linecolor=magenta]{.1}{5}{x-x^2/10+ln(x)+cos(2*x)+sin(x^2)+.5}
@@ -2073,7 +2077,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{center}
\bgroup
-\psset{algebraic=true, showpoints=true, unit=0.75}
+\psset{algebraic, showpoints=true, unit=0.75}
\begin{pspicture}(-5,-4)(9,6)
\psplot[linecolor=black]{-5}{1.8}{(x-1)/(x-2)}
\psplot[VarStep=true, VarStepEpsilon=.001, linecolor=red]{2.2}{9}{(x-1)/(x-2)}
@@ -2083,7 +2087,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\end{center}
\begin{lstlisting}
-\psset{algebraic=true, showpoints=true, unit=0.75}
+\psset{algebraic, showpoints=true, unit=0.75}
\begin{pspicture}(-5,-4)(9,6)
\psplot[linecolor=black]{-5}{1.8}{(x-1)/(x-2)}
\psplot[VarStep=true, VarStepEpsilon=.001, linecolor=red]{2.2}{9}{(x-1)/(x-2)}
@@ -2104,12 +2108,12 @@ Just appreciate the difference between the normal behavior and the plotting with
\bgroup
\psset{unit=2.5}
\begin{pspicture}[showgrid=true](-1,-1)(1,1)
-\parametricplot[algebraic=true,linecolor=red,VarStep=true, showpoints=true,
+\parametricplot[algebraic,linecolor=red,VarStep=true, showpoints=true,
VarStepEpsilon=.0001]
{-3.14}{3.14}{cos(3*t)|sin(2*t)}
\end{pspicture}
\begin{pspicture}[showgrid=true](-1,-1)(1,1)
-\parametricplot[algebraic=true,linecolor=blue,VarStep=true, showpoints=false,
+\parametricplot[algebraic,linecolor=blue,VarStep=true, showpoints=false,
VarStepEpsilon=.0001]
{-3.14}{3.14}{cos(3*t)|sin(2*t)}
\end{pspicture}
@@ -2119,12 +2123,12 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{lstlisting}
\psset{unit=3}
\begin{pspicture}[showgrid=true](-1,-1)(1,1)
-\parametricplot[algebraic=true,linecolor=red,VarStep=true, showpoints=true,
+\parametricplot[algebraic,linecolor=red,VarStep=true, showpoints=true,
VarStepEpsilon=.0001]
{-3.14}{3.14}{cos(3*t)|sin(2*t)}
\end{pspicture}
\begin{pspicture}[showgrid=true](-1,-1)(1,1)
-\parametricplot[algebraic=true,linecolor=blue,VarStep=true, showpoints=false,
+\parametricplot[algebraic,linecolor=blue,VarStep=true, showpoints=false,
VarStepEpsilon=.0001]
{-3.14}{3.14}{cos(3*t)|sin(2*t)}
\end{pspicture}
@@ -2135,12 +2139,12 @@ Just appreciate the difference between the normal behavior and the plotting with
\bgroup
\psset{unit=2.5}
\begin{pspicture}[showgrid=true](-1,-1)(1,1)
-\parametricplot[algebraic=true,linecolor=red,VarStep=true, showpoints=true,
+\parametricplot[algebraic,linecolor=red,VarStep=true, showpoints=true,
VarStepEpsilon=.0001]
{0}{47.115}{cos(5*t)|sin(3*t)}
\end{pspicture}
\begin{pspicture}[showgrid=true](-1,-1)(1,1)
-\parametricplot[algebraic=true,linecolor=blue,VarStep=true, showpoints=false,
+\parametricplot[algebraic,linecolor=blue,VarStep=true, showpoints=false,
VarStepEpsilon=.0001]
{0}{47.115}{cos(5*t)|sin(3*t)}
\end{pspicture}
@@ -2150,12 +2154,12 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{lstlisting}
\psset{unit=2.5}
\begin{pspicture}[showgrid=true](-1,-1)(1,1)
-\parametricplot[algebraic=true,linecolor=red,VarStep=true, showpoints=true,
+\parametricplot[algebraic,linecolor=red,VarStep=true, showpoints=true,
VarStepEpsilon=.0001]
{0}{47.115}{cos(5*t)|sin(3*t)}
\end{pspicture}
\begin{pspicture}[showgrid=true](-1,-1)(1,1)
-\parametricplot[algebraic=true,linecolor=blue,VarStep=true, showpoints=false,
+\parametricplot[algebraic,linecolor=blue,VarStep=true, showpoints=false,
VarStepEpsilon=.0001]
{0}{47.115}{cos(5*t)|sin(3*t)}
\end{pspicture}
@@ -2166,12 +2170,12 @@ Just appreciate the difference between the normal behavior and the plotting with
\bgroup
\psset{xunit=.5}
\begin{pspicture}[showgrid=true](0,0)(12.566,2)
-\parametricplot[algebraic=true,linecolor=red,VarStep, showpoints=true,
+\parametricplot[algebraic,linecolor=red,VarStep, showpoints=true,
VarStepEpsilon=.01]{0}{12.566}{t+cos(-t-Pi/2)|1+sin(-t-Pi/2)}
\end{pspicture}
%
\begin{pspicture}[showgrid=true](0,0)(12.566,2)
-\parametricplot[algebraic=true,linecolor=blue,VarStep, showpoints=false,
+\parametricplot[algebraic,linecolor=blue,VarStep, showpoints=false,
VarStepEpsilon=.001]{0}{12.566}{t+cos(-t-Pi/2)|1+sin(-t-Pi/2)}
\end{pspicture}
\egroup
@@ -2180,12 +2184,12 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{lstlisting}
\psset{xunit=.5}
\begin{pspicture}[showgrid=true](0,0)(12.566,2)
-\parametricplot[algebraic=true,linecolor=red,VarStep, showpoints=true,
+\parametricplot[algebraic,linecolor=red,VarStep, showpoints=true,
VarStepEpsilon=.01]{0}{12.566}{t+cos(-t-Pi/2)|1+sin(-t-Pi/2)}
\end{pspicture}
%
\begin{pspicture}[showgrid=true](0,0)(12.566,2)
-\parametricplot[algebraic=true,linecolor=blue,VarStep, showpoints=false,
+\parametricplot[algebraic,linecolor=blue,VarStep, showpoints=false,
VarStepEpsilon=.001]{0}{12.566}{t+cos(-t-Pi/2)|1+sin(-t-Pi/2)}
\end{pspicture}
\end{lstlisting}
@@ -2199,7 +2203,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\bgroup
\psset{unit=1.5}
\begin{pspicture}[showgrid=true](-1,-2)(1,2)
- \psplot[linecolor=blue,algebraic=true]{-1}{1}{asin(x)}
+ \psplot[linecolor=blue,algebraic]{-1}{1}{asin(x)}
\end{pspicture}
\hspace{1em}
\psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true}
@@ -2211,7 +2215,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\psplot[linecolor=blue]{-.97}{.97}{Derive(1,asin(x))}
\end{pspicture}
\hspace{1em}
-\psset{algebraic=true, VarStep, VarStepEpsilon=.0001, showpoints=true}
+\psset{algebraic, VarStep, VarStepEpsilon=.0001, showpoints=true}
\begin{pspicture}[showgrid=true](-1,0)(1,4)
\psplot[linecolor=blue]{-.97}{.97}{Derive(1,asin(x))}
\end{pspicture}
@@ -2221,10 +2225,10 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{lstlisting}
\psset{unit=1.5}
\begin{pspicture}[showgrid=true](-1,-2)(1,2)
- \psplot[linecolor=blue,algebraic=true]{-1}{1}{asin(x)}
+ \psplot[linecolor=blue,algebraic]{-1}{1}{asin(x)}
\end{pspicture}
\hspace{1em}
-\psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true}
+\psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true}
\begin{pspicture}[showgrid=true](-1,-2)(1,2)
\psplot[linecolor=blue]{-.999}{.999}{asin(x)}
\end{pspicture}
@@ -2233,7 +2237,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\psplot[linecolor=red]{-.97}{.97}{Derive(1,asin(x))}
\end{pspicture}
\hspace{1em}
-\psset{algebraic=true, VarStep, VarStepEpsilon=.0001, showpoints=true}
+\psset{algebraic, VarStep, VarStepEpsilon=.0001, showpoints=true}
\begin{pspicture}[showgrid=true](-1,0)(1,4)
\psplot[linecolor=red]{-.97}{.97}{Derive(1,asin(x))}
\end{pspicture}
@@ -2246,10 +2250,10 @@ Just appreciate the difference between the normal behavior and the plotting with
\bgroup
\psset{unit=1.5}
\begin{pspicture}[showgrid=true](-1,0)(1,3)
- \psplot[linecolor=blue,algebraic=true]{-1}{1}{acos(x)}
+ \psplot[linecolor=blue,algebraic]{-1}{1}{acos(x)}
\end{pspicture}
\hspace{1em}
-\psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true}
+\psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true}
\begin{pspicture}[showgrid=true](-1,0)(1,3)
\psplot[linecolor=blue]{-.999}{.999}{acos(x)}
\end{pspicture}
@@ -2258,7 +2262,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\psplot[linecolor=blue]{-.97}{.97}{Derive(1,acos(x))}
\end{pspicture}
\hspace{1em}
-\psset{algebraic=true, VarStep, VarStepEpsilon=.0001, showpoints=true}
+\psset{algebraic, VarStep, VarStepEpsilon=.0001, showpoints=true}
\begin{pspicture}[showgrid=true](-1,-4)(1,-1)
\psplot[linecolor=blue]{-.97}{.97}{Derive(1,acos(x))}
\end{pspicture}
@@ -2268,10 +2272,10 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{lstlisting}
\psset{unit=1.5}
\begin{pspicture}[showgrid=true](-1,0)(1,3)
- \psplot[linecolor=blue,algebraic=true]{-1}{1}{acos(x)}
+ \psplot[linecolor=blue,algebraic]{-1}{1}{acos(x)}
\end{pspicture}
\hspace{1em}
-\psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true}
+\psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true}
\begin{pspicture}[showgrid=true](-1,0)(1,3)
\psplot[linecolor=blue]{-.999}{.999}{acos(x)}
\end{pspicture}
@@ -2280,7 +2284,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\psplot[linecolor=red]{-.97}{.97}{Derive(1,acos(x))}
\end{pspicture}
\hspace{1em}
-\psset{algebraic=true, VarStep, VarStepEpsilon=.0001, showpoints=true}
+\psset{algebraic, VarStep, VarStepEpsilon=.0001, showpoints=true}
\begin{pspicture}[showgrid=true](-1,-4)(1,-1)
\psplot[linecolor=red]{-.97}{.97}{Derive(1,acos(x))}
\end{pspicture}
@@ -2293,13 +2297,13 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{center}
\bgroup
\begin{pspicture}[showgrid=true](-4,-2)(4,2)
-\psset{algebraic=true}
+\psset{algebraic}
\psplot[linecolor=blue,linewidth=1pt]{-4}{4}{atg(x)}
\psplot[linecolor=red,VarStep, VarStepEpsilon=.0001, showpoints=true]{-4}{4}{Derive(1,atg(x))}
\end{pspicture}
\hspace{1em}
\begin{pspicture}[showgrid=true](-4,-2)(4,2)
-\psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true}
+\psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true}
\psplot[linecolor=blue]{-4}{4}{atg(x)}
\psplot[linecolor=red]{-4}{4}{Derive(1,atg(x))}
\end{pspicture}
@@ -2308,13 +2312,13 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{lstlisting}
\begin{pspicture}[showgrid=true](-4,-2)(4,2)
-\psset{algebraic=true}
+\psset{algebraic}
\psplot[linecolor=blue,linewidth=1pt]{-4}{4}{atg(x)}
\psplot[linecolor=red,VarStep, VarStepEpsilon=.0001, showpoints=true]{-4}{4}{Derive(1,atg(x))}
\end{pspicture}
\hspace{1em}
\begin{pspicture}[showgrid=true](-4,-2)(4,2)
-\psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true}
+\psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true}
\psplot[linecolor=blue]{-4}{4}{atg(x)}
\psplot[linecolor=red]{-4}{4}{Derive(1,atg(x))}
\end{pspicture}
@@ -2325,7 +2329,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{center}
\bgroup
\begin{pspicture}(-3,-4)(3,4)
-\psset{algebraic=true}
+\psset{algebraic}
\psplot[linecolor=red,linewidth=1pt]{-2}{2}{sh(x)}
\psplot[linecolor=blue,linewidth=1pt]{-2}{2}{ch(x)}
\psplot[linecolor=green,linewidth=1pt]{-3}{3}{th(x)}
@@ -2333,7 +2337,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\end{pspicture}
\hspace{1em}
\begin{pspicture}(-3,-4)(3,4)
-\psset{algebraic=true, VarStep=true, VarStepEpsilon=.001, showpoints=true}
+\psset{algebraic, VarStep=true, VarStepEpsilon=.001, showpoints=true}
\psplot[linecolor=red,linewidth=1pt]{-2}{2}{sh(x)}
\psplot[linecolor=blue,linewidth=1pt]{-2}{2}{ch(x)}
\psplot[linecolor=green,linewidth=1pt]{-3}{3}{th(x)}
@@ -2344,7 +2348,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{lstlisting}
\begin{pspicture}(-3,-4)(3,4)
-\psset{algebraic=true}
+\psset{algebraic}
\psplot[linecolor=red,linewidth=1pt]{-2}{2}{sh(x)}
\psplot[linecolor=blue,linewidth=1pt]{-2}{2}{ch(x)}
\psplot[linecolor=green,linewidth=1pt]{-3}{3}{th(x)}
@@ -2352,7 +2356,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\end{pspicture}
\hspace{1em}
\begin{pspicture}(-3,-4)(3,4)
-\psset{algebraic=true, VarStep=true, VarStepEpsilon=.001, showpoints=true}
+\psset{algebraic, VarStep=true, VarStepEpsilon=.001, showpoints=true}
\psplot[linecolor=red,linewidth=1pt]{-2}{2}{sh(x)}
\psplot[linecolor=blue,linewidth=1pt]{-2}{2}{ch(x)}
\psplot[linecolor=green,linewidth=1pt]{-3}{3}{th(x)}
@@ -2365,7 +2369,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{center}
\bgroup
\begin{pspicture}(-3,-4)(3,4)
-\psset{algebraic=true}
+\psset{algebraic}
\psplot[linecolor=red,linewidth=1pt]{-2}{2}{Derive(1,sh(x))}
\psplot[linecolor=blue,linewidth=1pt]{-2}{2}{Derive(1,ch(x))}
\psplot[linecolor=green,linewidth=1pt]{-3}{3}{Derive(1,th(x))}
@@ -2373,7 +2377,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\end{pspicture}
\hspace{1em}
\begin{pspicture}(-3,-4)(3,4)
-\psset{algebraic=true, VarStep=true, VarStepEpsilon=.001, showpoints=true}
+\psset{algebraic, VarStep=true, VarStepEpsilon=.001, showpoints=true}
\psplot[linecolor=red,linewidth=1pt]{-2}{2}{Derive(1,sh(x))}
\psplot[linecolor=blue,linewidth=1pt]{-2}{2}{Derive(1,ch(x))}
\psplot[linecolor=green,linewidth=1pt]{-3}{3}{Derive(1,th(x))}
@@ -2384,7 +2388,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{lstlisting}
\begin{pspicture}(-3,-4)(3,4)
-\psset{algebraic=true,linewidth=1pt}
+\psset{algebraic,linewidth=1pt}
\psplot[linecolor=red,linewidth=1pt]{-2}{2}{Derive(1,sh(x))}
\psplot[linecolor=blue,linewidth=1pt]{-2}{2}{Derive(1,ch(x))}
\psplot[linecolor=green,linewidth=1pt]{-3}{3}{Derive(1,th(x))}
@@ -2392,7 +2396,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\end{pspicture}
\hspace{1em}
\begin{pspicture}(-3,-4)(3,4)
-\psset{algebraic=true, VarStep=true, VarStepEpsilon=.001, showpoints=true}
+\psset{algebraic, VarStep=true, VarStepEpsilon=.001, showpoints=true}
\psplot[linecolor=red,linewidth=1pt]{-2}{2}{Derive(1,sh(x))}
\psplot[linecolor=blue,linewidth=1pt]{-2}{2}{Derive(1,ch(x))}
\psplot[linecolor=green,linewidth=1pt]{-3}{3}{Derive(1,th(x))}
@@ -2405,14 +2409,14 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{center}
\bgroup
\begin{pspicture}(-7,-3)(7,3)
-\psset{algebraic=true}
+\psset{algebraic}
\psplot[linecolor=red,linewidth=1pt]{-7}{7}{Argsh(x)}
\psplot[linecolor=blue,linewidth=1pt]{1}{7}{Argch(x)}
\psplot[linecolor=green,linewidth=1pt]{-.99}{.99}{Argth(x)}
\psaxes{->}(0,0)(-7,-3)(7,3)
\end{pspicture}\\[\baselineskip]
\begin{pspicture}(-7,-3)(7,3)
- \psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true}
+ \psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true}
\psplot[linecolor=red,linewidth=1pt]{-7}{7}{Argsh(x)}
\psplot[linecolor=blue,linewidth=1pt]{1.001}{7}{Argch(x)}
\psplot[linecolor=green,linewidth=1pt]{-.99}{.99}{Argth(x)}
@@ -2423,14 +2427,14 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{lstlisting}
\begin{pspicture}(-7,-3)(7,3)
-\psset{algebraic=true}
+\psset{algebraic}
\psplot[linecolor=red,linewidth=1pt]{-7}{7}{Argsh(x)}
\psplot[linecolor=blue,linewidth=1pt]{1}{7}{Argch(x)}
\psplot[linecolor=green,linewidth=1pt]{-.99}{.99}{Argth(x)}
\psaxes{->}(0,0)(-7,-3)(7,3)
\end{pspicture}\\[\baselineskip]
\begin{pspicture}(-7,-3)(7,3)
- \psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true}
+ \psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true}
\psplot[linecolor=red,linewidth=1pt]{-7}{7}{Argsh(x)}
\psplot[linecolor=blue,linewidth=1pt]{1.001}{7}{Argch(x)}
\psplot[linecolor=green,linewidth=1pt]{-.99}{.99}{Argth(x)}
@@ -2443,15 +2447,15 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{center}
\bgroup
\begin{pspicture}(-7,-0.5)(7,6)
-\psset{algebraic=true}
+\psset{algebraic}
\psplot[linecolor=red,linewidth=1pt]{-7}{7}{Derive(1,Argsh(x))}
\psplot[linecolor=blue,linewidth=1pt]{1.014}{7}{Derive(1,Argch(x))}
\psplot[linecolor=green,linewidth=1pt]{-.9}{.9}{Derive(1,Argth(x))}
\psaxes{->}(0,0)(-7,0)(7,6)
\end{pspicture}\\[\baselineskip]
\begin{pspicture}(-7,-0.5)(7,6)
-\psset{algebraic=true}
- \psset{algebraic=true, VarStep=true, VarStepEpsilon=.001, showpoints=true}
+\psset{algebraic}
+ \psset{algebraic, VarStep=true, VarStepEpsilon=.001, showpoints=true}
\psplot[linecolor=red,linewidth=1pt]{-7}{7}{Derive(1,Argsh(x))}
\psplot[linecolor=blue,linewidth=1pt]{1.014}{7}{Derive(1,Argch(x))}
\psplot[linecolor=green,linewidth=1pt]{-.9}{.9}{Derive(1,Argth(x))}
@@ -2462,15 +2466,15 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{lstlisting}
\begin{pspicture}(-7,-0.5)(7,6)
-\psset{algebraic=true}
+\psset{algebraic}
\psplot[linecolor=red,linewidth=1pt]{-7}{7}{Derive(1,Argsh(x))}
\psplot[linecolor=blue,linewidth=1pt]{1.014}{7}{Derive(1,Argch(x))}
\psplot[linecolor=green,linewidth=1pt]{-.9}{.9}{Derive(1,Argth(x))}
\psaxes{->}(0,0)(-7,0)(7,6)
\end{pspicture}\\[\baselineskip]
\begin{pspicture}(-7,-0.5)(7,6)
-\psset{algebraic=true}
- \psset{algebraic=true, VarStep=true, VarStepEpsilon=.001, showpoints=true}
+\psset{algebraic}
+ \psset{algebraic, VarStep=true, VarStepEpsilon=.001, showpoints=true}
\psplot[linecolor=red,linewidth=1pt]{-7}{7}{Derive(1,Argsh(x))}
\psplot[linecolor=blue,linewidth=1pt]{1.014}{7}{Derive(1,Argch(x))}
\psplot[linecolor=green,linewidth=1pt]{-.9}{.9}{Derive(1,Argth(x))}
@@ -2532,7 +2536,7 @@ The new options are:
in the same way;
\end{description}
-\item \Lkeyword{algebraic=true}: algebraic=true description for $f$, \Lkeyword{buildvector}
+\item \Lkeyword{algebraic}: algebraic description for $f$, \Lkeyword{buildvector}
parameter is useless when activating this option.
\end{itemize}
@@ -2606,7 +2610,7 @@ the algortihm.
\def\quatrepi{12.5663706144}
\begin{pspicture}(0,-1)(10,1.3)
\psaxes{->}(0,0)(0,-1)(10,1.3)
- \psplot[linewidth=4\pslinewidth, linecolor=green, algebraic=true]{0}{10}{cos(x)}
+ \psplot[linewidth=4\pslinewidth, linecolor=green, algebraic]{0}{10}{cos(x)}
\rput(0,.0){\psplotDiffEqn[linecolor=magenta, plotpoints=7, varsteptol=.1]{0}{10}{1 0}{\Funct}}
\rput(0,.0){\psplotDiffEqn[linecolor=blue, plotpoints=201, varsteptol=.01]{0}{10}{1 0}{\Funct}}
\rput(0,.1){\psplotDiffEqn[linewidth=2\pslinewidth, linecolor=red, varsteptol=.001]{0}{10}{1 0}{\Funct}}
@@ -2636,7 +2640,7 @@ the algortihm.
\def\quatrepi{12.5663706144}
\begin{pspicture}(0,-1)(10,1.3)
\psaxes{->}(0,0)(0,-1)(10,1.3)
- \psplot[linewidth=4\pslinewidth, linecolor=green, algebraic=true]{0}{10}{cos(x)}
+ \psplot[linewidth=4\pslinewidth, linecolor=green, algebraic]{0}{10}{cos(x)}
\rput(0,.0){\psplotDiffEqn[linecolor=magenta, plotpoints=7, varsteptol=.1]{0}{10}{1 0}{\Funct}}
\rput(0,.0){\psplotDiffEqn[linecolor=blue, plotpoints=201, varsteptol=.01]{0}{10}{1 0}{\Funct}}
\rput(0,.1){\psplotDiffEqn[linewidth=2\pslinewidth, linecolor=red, varsteptol=.001]{0}{10}{1 0}{\Funct}}
@@ -2668,7 +2672,7 @@ the algortihm.
\def\quatrepi{12.5663706144}
\begin{pspicture}(0,-0.5)(3,11)
\psaxes{->}(0,0)(3,11)
- \psplot[linewidth=4\pslinewidth, linecolor=green, algebraic=true]{0}{3}{ch(x)}
+ \psplot[linewidth=4\pslinewidth, linecolor=green, algebraic]{0}{3}{ch(x)}
\rput(0,.0){\psplotDiffEqn[linecolor=magenta, varsteptol=.1]{0}{3}{1 0}{\Funct}}
\rput(0,.3){\psplotDiffEqn[linecolor=blue, varsteptol=.01]{0}{3}{1 0}{\Funct}}
\rput(0,.6){\psplotDiffEqn[linecolor=red, varsteptol=.001]{0}{3}{1 0}{\Funct}}
@@ -2698,7 +2702,7 @@ the algortihm.
\def\quatrepi{12.5663706144}
\begin{pspicture}(0,-0.5)(3,11)
\psaxes{->}(0,0)(3,11)
- \psplot[linewidth=4\pslinewidth, linecolor=green, algebraic=true]{0}{3}{ch(x)}
+ \psplot[linewidth=4\pslinewidth, linecolor=green, algebraic]{0}{3}{ch(x)}
\rput(0,.0){\psplotDiffEqn[linecolor=magenta, varsteptol=.1]{0}{3}{1 0}{\Funct}}
\rput(0,.3){\psplotDiffEqn[linecolor=blue, varsteptol=.01]{0}{3}{1 0}{\Funct}}
\rput(0,.6){\psplotDiffEqn[linecolor=red, varsteptol=.001]{0}{3}{1 0}{\Funct}}
@@ -2883,7 +2887,7 @@ stars} \egroup
%--------------------------------------------------------------------------------------
For the initial value $y(0)=1$ we have the solution $y(x)=e^x$. $y$ is always
-on the stack, so we have to do nothing. Using the \Lkeyword{algebraic=true} option, we write it
+on the stack, so we have to do nothing. Using the \Lkeyword{algebraic} option, we write it
as \verb$y[0]$. The following example shows different solutions depending to the number of plotpoints
with $y_0=1$:
@@ -2893,7 +2897,7 @@ with $y_0=1$:
\psset{xunit=4, yunit=.4}
\begin{pspicture}(3,19)\psgrid[subgriddiv=1]
\psplot[linewidth=6\pslinewidth, linecolor=green]{0}{3}{Euler x exp}
- \psplotDiffEqn[linecolor=magenta,plotpoints=16,algebraic=true]{0}{3}{1}{y[0]}
+ \psplotDiffEqn[linecolor=magenta,plotpoints=16,algebraic]{0}{3}{1}{y[0]}
\psplotDiffEqn[linecolor=blue,plotpoints=151]{0}{3}{1}{}
\psplotDiffEqn[linecolor=red,method=rk4,plotpoints=15]{0}{3}{1}{}
\psplotDiffEqn[linecolor=Orange,method=rk4,plotpoints=4]{0}{3}{1}{}
@@ -2916,7 +2920,7 @@ with $y_0=1$:
\psset{xunit=4, yunit=.4}
\begin{pspicture}(3,19)\psgrid[subgriddiv=1]
\psplot[linewidth=6\pslinewidth, linecolor=green]{0}{3}{Euler x exp}
- \psplotDiffEqn[linecolor=magenta,plotpoints=16,algebraic=true]{0}{3}{1}{y[0]}
+ \psplotDiffEqn[linecolor=magenta,plotpoints=16,algebraic]{0}{3}{1}{y[0]}
\psplotDiffEqn[linecolor=blue,plotpoints=151]{0}{3}{1}{}
\psplotDiffEqn[linecolor=red,method=rk4,plotpoints=15]{0}{3}{1}{}
\psplotDiffEqn[linecolor=Orange,method=rk4,plotpoints=4]{0}{3}{1}{}
@@ -2971,9 +2975,9 @@ The following example uses $y_0=1$.
\psplotDiffEqn[linecolor=magenta, plotpoints=20]{0}{1.9}{\InitCond}{\Func}
\psplotDiffEqn[linecolor=blue, plotpoints=191]{0}{1.9}{\InitCond}{\Func}
\psplotDiffEqn[linecolor=red, method=rk4, plotpoints=11,%
- algebraic=true]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)}
+ algebraic]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)}
\psplotDiffEqn[linecolor=Orange, method=rk4, plotpoints=21,%
- algebraic=true]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)}
+ algebraic]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)}
\psset{linewidth=4\pslinewidth}\small
\rput*(0,1.4){\psline[linecolor=magenta](-.75cm,0)}\rput*[l](0,1.4){Euler order 1 $h=0{,}1$}
\rput*(0,1.35){\psline[linecolor=blue](-.75cm,0)}\rput*[l](0,1.35){Euler order 1 $h=0{,}01$}
@@ -2995,9 +2999,9 @@ The following example uses $y_0=1$.
\psplotDiffEqn[linecolor=magenta, plotpoints=20]{0}{1.9}{\InitCond}{\Func}
\psplotDiffEqn[linecolor=blue, plotpoints=191]{0}{1.9}{\InitCond}{\Func}
\psplotDiffEqn[linecolor=red, method=rk4, plotpoints=11,%
- algebraic=true]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)}
+ algebraic]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)}
\psplotDiffEqn[linecolor=Orange, method=rk4, plotpoints=21,%
- algebraic=true]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)}
+ algebraic]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)}
\psset{linewidth=4\pslinewidth}
\rput*(0.3,1.6){\psline[linecolor=magenta](-.75cm,0)}\rput*[l](0.3,1.6){\small Euler order 1 $h=0{,}1$}
\rput*(0.3,1.55){\psline[linecolor=blue](-.75cm,0)}\rput*[l](0.3,1.55){\small Euler order 1 $h=0{,}01$}
@@ -3075,7 +3079,7 @@ The integrals of \Index{Fresnel}:
\begin{lstlisting}
\psset{unit=8}
\begin{pspicture}(1,1)\psgrid[subgriddiv=5]
- \psplotDiffEqn[whichabs=0,whichord=1,linecolor=red,method=rk4,algebraic=true,%
+ \psplotDiffEqn[whichabs=0,whichord=1,linecolor=red,method=rk4,algebraic,%
plotpoints=500,showpoints=true]{0}{10}{0 0}{cos(Pi*x^2/2)|sin(Pi*x^2/2)}
\end{pspicture}
\end{lstlisting}
@@ -3085,7 +3089,7 @@ The integrals of \Index{Fresnel}:
\bgroup
\psset{unit=8}
\begin{pspicture}(1,1)\psgrid[subgriddiv=5]
- \psplotDiffEqn[whichabs=0,whichord=1,linecolor=red,method=rk4,algebraic=true,%
+ \psplotDiffEqn[whichabs=0,whichord=1,linecolor=red,method=rk4,algebraic,%
plotpoints=500,showpoints=true]{0}{10}{0 0}{cos(Pi*x^2/2)|sin(Pi*x^2/2)}
\end{pspicture}
\egroup
@@ -3134,7 +3138,7 @@ converters and many connectors.
-\Vaigle*y[1]/sqrt(y[1]^2+(y[2]-y[0])^2)|%
-\Vlapin}
\def\Vlapin{1} \def\Vaigle{1.6}
-\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic=true,%
+\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic,%
plotpoints=20,showpoints=true}
\begin{pspicture}[showgrid=true](-3,-3)(10,10)
\psplotDiffEqn[plotfuncy=pop 0,whichabs=2,linecolor=red]{0}{10}{\InitCond}{\Faiglelapin}
@@ -3149,7 +3153,7 @@ converters and many connectors.
-\Vaigle*y[1]/sqrt(y[1]^2+(y[2]-y[0])^2)|%
-\Vlapin}
\def\Vlapin{1} \def\Vaigle{1.6}
-\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic=true,%
+\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic,%
plotpoints=20,showpoints=true}
\begin{pspicture}[showgrid=true](-3,-3)(10,10)
\psplotDiffEqn[plotfuncy=pop 0,whichabs=2,linecolor=red]{0}{10}{\InitCond}{\Faiglelapin}
@@ -3165,7 +3169,7 @@ converters and many connectors.
-\Vaigle*y[1]/sqrt(y[1]^2+(y[2]-y[0])^2)|%
-\Vlapin}
\def\Vlapin{1} \def\Vaigle{1.6}
-\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic=true,%
+\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic,%
plotpoints=20,showpoints=true}
\begin{pspicture}[showgrid=true](0,-0.25)(10,14)
\psplotDiffEqn[plotfuncy=dup 1 get dup mul exch dup 0 get exch 2 get sub dup
@@ -3184,7 +3188,7 @@ converters and many connectors.
-\Vaigle*y[1]/sqrt(y[1]^2+(y[2]-y[0])^2)|%
-\Vlapin}
\def\Vlapin{1} \def\Vaigle{1.6}
-\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic=true,%
+\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic,%
plotpoints=20,showpoints=true}
\begin{pspicture}[showgrid=true](10,12)
\psplotDiffEqn[plotfuncy=dup 1 get dup mul exch dup 0 get exch 2 get sub dup
@@ -3314,7 +3318,7 @@ exch RadtoDeg sin -9.8 mul %% y' -gsin(y)
\begin{center}
\bgroup
\def\Func{y[1]|-9.8*sin(y[0])}
-\psset{yunit=2,xunit=4,algebraic=true,linewidth=1.5pt}
+\psset{yunit=2,xunit=4,algebraic,linewidth=1.5pt}
\begin{pspicture}(0,-2.25)(3,2.25)
\psaxes{->}(0,0)(0,-2)(3,2)
\psplot[linewidth=3\pslinewidth, linecolor=Orange]{0}{3}{.1*cos(sqrt(9.8)*x)}
@@ -3331,7 +3335,7 @@ exch RadtoDeg sin -9.8 mul %% y' -gsin(y)
\begin{lstlisting}[label=fig:second]
\def\Func{y[1]|-9.8*sin(y[0])}
-\psset{yunit=2,xunit=4,algebraic=true,linewidth=1.5pt}
+\psset{yunit=2,xunit=4,algebraic,linewidth=1.5pt}
\begin{pspicture}(0,-2.25)(3,2.25)
\psaxes{->}(0,0)(0,-2)(3,2)
\psplot[linewidth=3\pslinewidth, linecolor=Orange]{0}{3}{.1*cos(sqrt(9.8)*x)}
@@ -3366,11 +3370,11 @@ For $y_0=5$ and $y'_0=0$ the solution is:
Euler x -8 div exp x 127 sqrt 8 div mul RadtoDeg dup cos 5 mul exch sin 127 sqrt div 5 mul add mul}
\psplotDiffEqn[linecolor=red,linewidth=5\pslinewidth]{0}{26}{5 0}
{dup 3 1 roll -4 div exch 2 mul sub}
- \psplotDiffEqn[linecolor=black,algebraic=true]{0}{26}{5 0} {y[1]|-y[1]/4-2*y[0]}
+ \psplotDiffEqn[linecolor=black,algebraic]{0}{26}{5 0} {y[1]|-y[1]/4-2*y[0]}
\psset{method=rk4, plotpoints=50}
\psplotDiffEqn[linecolor=blue,linewidth=5\pslinewidth]{0}{26}{5 0}{%
dup 3 1 roll -4 div exch 2 mul sub}
- \psplotDiffEqn[linecolor=black,algebraic=true]{0}{26}{5 0}{y[1]|-y[1]/4-2*y[0]}
+ \psplotDiffEqn[linecolor=black,algebraic]{0}{26}{5 0}{y[1]|-y[1]/4-2*y[0]}
\end{pspicture}
\egroup
\end{center}
@@ -3383,11 +3387,11 @@ For $y_0=5$ and $y'_0=0$ the solution is:
Euler x -8 div exp x 127 sqrt 8 div mul RadtoDeg dup cos 5 mul exch sin 127 sqrt div 5 mul add mul}
\psplotDiffEqn[linecolor=red,linewidth=5\pslinewidth]{0}{26}{5 0}
{dup 3 1 roll -4 div exch 2 mul sub}
- \psplotDiffEqn[linecolor=black,algebraic=true]{0}{26}{5 0} {y[1]|-y[1]/4-2*y[0]}
+ \psplotDiffEqn[linecolor=black,algebraic]{0}{26}{5 0} {y[1]|-y[1]/4-2*y[0]}
\psset{method=rk4, plotpoints=50}
\psplotDiffEqn[linecolor=blue,linewidth=5\pslinewidth]{0}{26}{5 0}{%
dup 3 1 roll -4 div exch 2 mul sub}
- \psplotDiffEqn[linecolor=black,algebraic=true]{0}{26}{5 0}{y[1]|-y[1]/4-2*y[0]}
+ \psplotDiffEqn[linecolor=black,algebraic]{0}{26}{5 0}{y[1]|-y[1]/4-2*y[0]}
\end{pspicture}
\end{lstlisting}
diff --git a/Master/texmf-dist/tex/generic/pstricks-add/pstricks-add.tex b/Master/texmf-dist/tex/generic/pstricks-add/pstricks-add.tex
index 3c2a480e948..37c0a3ccd0c 100644
--- a/Master/texmf-dist/tex/generic/pstricks-add/pstricks-add.tex
+++ b/Master/texmf-dist/tex/generic/pstricks-add/pstricks-add.tex
@@ -1,4 +1,4 @@
-%% $Id: pstricks-add.tex 825 2013-09-18 12:10:17Z herbert $
+%% $Id: pstricks-add.tex 847 2013-11-13 18:44:15Z herbert $
%%
%%
%% This is file `pstricks-add.tex',
@@ -31,8 +31,8 @@
\ifx\PSTXKeyLoaded\endinput\else \input pst-xkey \fi
\ifx\PSTmathLoaded\endinput\else \input pst-math \fi
%
-\def\fileversion{3.61}
-\def\filedate{2013/09/18}
+\def\fileversion{3.62}
+\def\filedate{2013/11/13}
\message{`pstricks-add' v\fileversion, \filedate\space (dr,hv)}
%
\edef\PstAtCode{\the\catcode`\@} \catcode`\@=11\relax
@@ -1277,6 +1277,8 @@ a add
\else\ifx#1s\let\psk@StepType\f@ur
\else\let\psk@StepType\tw@\fi\fi\fi\fi}
\psset{StepType=lower} % alternative StepType=upper/inf/sup/Riemann
+\define@boolkey[psset]{pstricks-add}[Pst@]{noVerticalLines}[true]{}%
+\psset{noVerticalLines=false}
%
\def\psStep{\def\pst@par{}\pst@object{psStep}}
\def\psStep@i(#1,#2)#3#4{%
@@ -1290,16 +1292,20 @@ a add
\ifcase\psk@StepType % 0->lower, height is always f(x)
x scx 0 moveto
#3 {
- \ifPst@algebraic Func \else #4 \fi scy dup x scx exch lineto
+ \ifPst@algebraic Func \else #4 \fi
+ scy dup x scx exch \ifPst@noVerticalLines moveto \else lineto \fi
/x x dx add def
- x scx exch lineto x scx 0 lineto
+ x scx exch lineto
+ x scx 0 \ifPst@noVerticalLines moveto \else lineto \fi
} repeat
\or % 1-> upper, height is always f(x+dx)
x scx 0 moveto
#3 {
/x x dx add def
- \ifPst@algebraic Func \else #4 \fi scy dup x dx sub scx exch lineto
- x scx exch lineto x scx 0 lineto
+ \ifPst@algebraic Func \else #4 \fi scy dup x dx sub scx exch
+ \ifPst@noVerticalLines moveto \else lineto \fi
+ x scx exch lineto
+ x scx 0 \ifPst@noVerticalLines moveto \else lineto \fi
} repeat
\or % 2-> Riemann
/eps3 100 def
@@ -1324,8 +1330,12 @@ a add
/dx dx scx def
xMinMax aload length 3 div cvi {
/yMax ED /yMin ED /x ED
- x yMin moveto dx 0 rlineto x dx add yMax lineto
- dx neg 0 rlineto x yMin lineto } repeat
+ x yMin moveto
+ dx 0 \ifPst@noVerticalLines rmoveto \else rlineto \fi
+ x dx add yMax lineto
+ dx neg 0 \ifPst@noVerticalLines rmoveto \else rlineto \fi
+ x yMin \ifPst@noVerticalLines moveto \else lineto \fi
+ } repeat
\or % 3->inf(imum)
x scx 0 moveto
#3 {
@@ -1334,8 +1344,9 @@ a add
/x x dx add def
\ifPst@algebraic Func \else #4 \fi /y1 ED % right value f(x+dx)
y0 y1 lt { y0 }{ y1 } ifelse % use infimum
- scy dup xOld scx exch lineto
- x scx exch lineto x scx 0 lineto
+ scy dup xOld scx exch \ifPst@noVerticalLines moveto \else lineto \fi
+ x scx exch lineto
+ x scx 0 \ifPst@noVerticalLines moveto \else lineto \fi
} repeat
\or % 4-> sup(remum)
x scx 0 moveto
@@ -1344,8 +1355,9 @@ a add
/x x dx add def
\ifPst@algebraic Func \else #4 \fi /y1 ED % right value f(x+dx)
y0 y1 gt { y0 }{ y1 } ifelse % use supremum
- scy dup x dx sub scx exch lineto
- x scx exch lineto x scx 0 lineto
+ scy dup x dx sub scx exch \ifPst@noVerticalLines moveto \else lineto \fi
+ x scx exch lineto
+ x scx 0 \ifPst@noVerticalLines moveto \else lineto \fi
} repeat
\fi
}%