diff options
Diffstat (limited to 'Master')
-rw-r--r-- | Master/texmf-dist/doc/generic/pstricks-add/Changes | 3 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.pdf | bin | 5110999 -> 5109672 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex | 232 | ||||
-rw-r--r-- | Master/texmf-dist/tex/generic/pstricks-add/pstricks-add.tex | 38 |
4 files changed, 145 insertions, 128 deletions
diff --git a/Master/texmf-dist/doc/generic/pstricks-add/Changes b/Master/texmf-dist/doc/generic/pstricks-add/Changes index 3d3d11e931b..e716f5e5b02 100644 --- a/Master/texmf-dist/doc/generic/pstricks-add/Changes +++ b/Master/texmf-dist/doc/generic/pstricks-add/Changes @@ -1,4 +1,4 @@ -%% $Id: Changes 825 2013-09-18 12:10:17Z herbert $ +%% $Id: Changes 847 2013-11-13 18:44:15Z herbert $ %% pstricks-add.pro ----------- 0.23 2009-12-17 - add RGBtoGRAY and WavelengthToGRAY @@ -39,6 +39,7 @@ pstricks-add.sty ----------- (hv) pstricks-add.tex ----------- (Dominik Rodriguez/hv) + v 3.62 2013-11-13 - added \noVerticalLines v 3.61 2013-09-18 - added \pstContour v 3.60 2013-01-01 - fix bug with correct angle in \psPlotTangent v 3.59 2012-09-27 - added uselinecolor option for \psChart diff --git a/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.pdf b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.pdf Binary files differindex a099d3a65ed..7f11f2d73c4 100644 --- a/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.pdf +++ b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.pdf diff --git a/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex index 99d0fdd1263..070660a92ba 100644 --- a/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex +++ b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex @@ -1,4 +1,4 @@ -%% $Id: pstricks-add-doc.tex 825 2013-09-18 12:10:17Z herbert $ +%% $Id: pstricks-add-doc.tex 848 2013-11-14 21:30:42Z herbert $ \documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings headexclude,footexclude,oneside]{pst-doc} \listfiles @@ -1542,13 +1542,13 @@ with \Lkeyword{lower} as the default setting. The syntax of the function is (x1,x2) is the given interval for the step wise calculated function, n is the number of the rectangles and \Larg{function} is -the mathematical function in postfix or algebraic=true notation (with -\Lkeyset{algebraic=true}). +the mathematical function in postfix or algebraic notation (with +\Lkeyword{algebraic}). \begin{LTXexample}[pos=t,preset=\centering] \begin{pspicture}(-0.5,-0.5)(10,3) \psaxes[labelFontSize=\scriptstyle]{->}(10,3) - \psplot[plotpoints=100,linewidth=1.5pt,algebraic=true]{0}{10}{sqrt(x)} + \psplot[plotpoints=100,linewidth=1.5pt,algebraic]{0}{10}{sqrt(x)} \psStep[linecolor=magenta,StepType=upper,fillstyle=hlines](0,9){9}{x sqrt} \psStep[linecolor=blue,fillstyle=vlines](0,9){9}{x sqrt } \end{pspicture} @@ -1558,8 +1558,8 @@ the mathematical function in postfix or algebraic=true notation (with \psset{plotpoints=200} \begin{pspicture}(-0.5,-2.25)(10,3) \psaxes[labelFontSize=\scriptstyle]{->}(0,0)(0,-2.25)(10,3) - \psplot[linewidth=1.5pt,algebraic=true]{0}{10}{sqrt(x)*sin(x)} - \psStep[algebraic=true,linecolor=magenta,StepType=upper](0,9){20}{sqrt(x)*sin(x)} + \psplot[linewidth=1.5pt,algebraic]{0}{10}{sqrt(x)*sin(x)} + \psStep[algebraic,linecolor=magenta,StepType=upper](0,9){20}{sqrt(x)*sin(x)} \psStep[linecolor=blue,linestyle=dashed](0,9){20}{x sqrt x RadtoDeg sin mul} \end{pspicture} \end{LTXexample} @@ -1568,9 +1568,9 @@ the mathematical function in postfix or algebraic=true notation (with \psset{yunit=1.25cm,plotpoints=200} \begin{pspicture}(-0.5,-1.5)(10,1.5) \psaxes[labelFontSize=\scriptstyle]{->}(0,0)(0,-1.5)(10,1.5) - \psStep[algebraic=true,StepType=Riemann,fillstyle=solid,fillcolor=black!10](0,10){50}% + \psStep[algebraic,StepType=Riemann,fillstyle=solid,fillcolor=black!10](0,10){50}% {sqrt(x)*cos(x)*sin(x)} - \psplot[linewidth=1.5pt,algebraic=true]{0}{10}{sqrt(x)*cos(x)*sin(x)} + \psplot[linewidth=1.5pt,algebraic]{0}{10}{sqrt(x)*cos(x)*sin(x)} \end{pspicture} \end{LTXexample} @@ -1579,9 +1579,9 @@ the mathematical function in postfix or algebraic=true notation (with \psset{yunit=1.25cm,plotpoints=200} \begin{pspicture}(-0.5,-1.5)(10,1.5) \psaxes[labelFontSize=\scriptstyle]{->}(0,0)(0,-1.5)(10,1.5) - \psStep[algebraic=true,StepType=infimum,fillstyle=solid,fillcolor=black!10](0,10){50}% + \psStep[algebraic,StepType=infimum,fillstyle=solid,fillcolor=black!10](0,10){50}% {sqrt(x)*cos(x)*sin(x)} - \psplot[linewidth=1.5pt,algebraic=true]{0}{10}{sqrt(x)*cos(x)*sin(x)} + \psplot[linewidth=1.5pt,algebraic]{0}{10}{sqrt(x)*cos(x)*sin(x)} \end{pspicture} \end{LTXexample} @@ -1589,23 +1589,27 @@ the mathematical function in postfix or algebraic=true notation (with \psset{yunit=1.25cm,plotpoints=200} \begin{pspicture}(-0.5,-1.5)(10,1.5) \psaxes[labelFontSize=\scriptstyle]{->}(0,0)(0,-1.5)(10,1.5) - \psStep[algebraic=true,StepType=supremum,fillstyle=solid,fillcolor=black!10](0,10){50}% + \psStep[algebraic,StepType=supremum,fillstyle=solid,fillcolor=black!10](0,10){50}% {sqrt(x)*cos(x)*sin(x)} - \psplot[linewidth=1.5pt,algebraic=true]{0}{10}{sqrt(x)*cos(x)*sin(x)} + \psplot[linewidth=1.5pt,algebraic]{0}{10}{sqrt(x)*cos(x)*sin(x)} \end{pspicture} \end{LTXexample} \begin{LTXexample}[pos=t,preset=\centering] \psset{unit=1.5cm,plotpoints=200} \begin{pspicture}[plotpoints=200](-0.5,-3)(10,2.5) - \psStep[algebraic=true,fillstyle=solid,fillcolor=yellow](0.001,9.5){40}{2*sqrt(x)*cos(ln(x))*sin(x)} - \psStep[algebraic=true,StepType=Riemann,fillstyle=solid,fillcolor=blue](0.001,9.5){40}{2*sqrt(x)*cos(ln(x))*sin(x)} + \psStep[algebraic,fillstyle=solid,fillcolor=yellow](0.001,9.5){40}{2*sqrt(x)*cos(ln(x))*sin(x)} + \psStep[algebraic,StepType=Riemann,fillstyle=solid,fillcolor=blue](0.001,9.5){40}{2*sqrt(x)*cos(ln(x))*sin(x)} \psaxes[labelFontSize=\scriptstyle]{->}(0,0)(0,-2.75)(10,2.5) - \psplot[algebraic=true,linecolor=white]{0.001}{9.75}{2*sqrt(x)*cos(ln(x))*sin(x)} + \psplot[algebraic,linecolor=white]{0.001}{9.75}{2*sqrt(x)*cos(ln(x))*sin(x)} \uput[90](6,1.2){$f(x)=2\cdot\sqrt{x}\cdot\cos{(\ln{x})}\cdot\sin{x}$} \end{pspicture} \end{LTXexample} +There is also an optional argument \Lkeyword{noVerticalLines} which suppresses all +vertical lines of the step function in the output. + + \clearpage %-------------------------------------------------------------------------------------- @@ -1694,7 +1698,7 @@ The macro expects three parameters: postfix (PostScript) notation \end{description} -The following examples show the use of the algebraic=true option together with the Derive option. +The following examples show the use of the algebraic option together with the Derive option. Remember that using the \Lkeyword{algebraic} option implies that the angles have to be in the radian unit! @@ -1735,10 +1739,10 @@ The star version plots only the tangent line in the positive $x$-direction: \def\Falg{cos(x)+cos(2*x)+cos(3*x)} \def\Fpalg{-sin(x)-2*sin(2*x)-3*sin(3*x)} \begin{pspicture}(-7.5,-2.5)(7.5,4)%\psgrid \psaxes{->}(0,0)(-7.5,-2)(7.5,3.5) - \psplot[linewidth=1.5pt,algebraic=true,plotpoints=500]{-7.5}{7.5}{\Falg} - \multido{\n=-7+1}{8}{\psplotTangent*[linecolor=red,arrows=->,arrowscale=2,algebraic=true]{\n}{1}{\Falg}} + \psplot[linewidth=1.5pt,algebraic,plotpoints=500]{-7.5}{7.5}{\Falg} + \multido{\n=-7+1}{8}{\psplotTangent*[linecolor=red,arrows=->,arrowscale=2,algebraic]{\n}{1}{\Falg}} \multido{\n=0+1}{8}{\psplotTangent*[linecolor=magenta,% - arrows=->,arrowscale=2,algebraic=true,Derive={\Fpalg}]{\n}{1}{\Falg}} + arrows=->,arrowscale=2,algebraic,Derive={\Fpalg}]{\n}{1}{\Falg}} \end{pspicture} \egroup \end{center} @@ -1747,10 +1751,10 @@ The star version plots only the tangent line in the positive $x$-direction: \def\Falg{cos(x)+cos(2*x)+cos(3*x)} \def\Fpalg{-sin(x)-2*sin(2*x)-3*sin(3*x)} \begin{pspicture}(-7.5,-2.5)(7.5,4)%\psgrid \psaxes{->}(0,0)(-7.5,-2)(7.5,3.5) - \psplot[linewidth=1.5pt,algebraic=true,plotpoints=500]{-7.5}{7.5}{\Falg} - \multido{\n=-7+1}{8}{\psplotTangent*[linecolor=red,arrows=->,arrowscale=2,algebraic=true]{\n}{1}{\Falg}} + \psplot[linewidth=1.5pt,algebraic,plotpoints=500]{-7.5}{7.5}{\Falg} + \multido{\n=-7+1}{8}{\psplotTangent*[linecolor=red,arrows=->,arrowscale=2,algebraic]{\n}{1}{\Falg}} \multido{\n=0+1}{8}{\psplotTangent*[linecolor=magenta,% - arrows=->,arrowscale=2,algebraic=true,Derive={\Fpalg}]{\n}{1}{\Falg}} + arrows=->,arrowscale=2,algebraic,Derive={\Fpalg}]{\n}{1}{\Falg}} \end{pspicture} \end{lstlisting} @@ -1761,9 +1765,9 @@ the perpendicular line to the tangent. \begin{pspicture}(-0.5,-0.5)(7.25,7.25) \def\Func{10 x div} \psaxes[arrowscale=1.5]{->}(7,7) - \psplot[linewidth=2pt,algebraic=true]{1.5}{5}{10/x} - \psplotTangent[linewidth=.5\pslinewidth,linecolor=red,algebraic=true]{3}{2}{10/x} - \psplotTangent[linewidth=.5\pslinewidth,linecolor=blue,algebraic=true,Derive=(x*x)/10]{3}{2}{10/x} + \psplot[linewidth=2pt,algebraic]{1.5}{5}{10/x} + \psplotTangent[linewidth=.5\pslinewidth,linecolor=red,algebraic]{3}{2}{10/x} + \psplotTangent[linewidth=.5\pslinewidth,linecolor=blue,algebraic,Derive=(x*x)/10]{3}{2}{10/x} \psline[linestyle=dashed](!0 /x 3 def \Func)(!3 /x 3 def \Func)(3,0) \end{pspicture} \end{LTXexample} @@ -1816,9 +1820,9 @@ where $x=r\cdot\cos\theta$ and $y=r\cdot\sin\theta$ \begin{LTXexample}[width=6cm,wide] \begin{pspicture}(-1,-3)(5,3)%\psgrid[subgridcolor=lightgray] \psaxes{->}(0,0)(-1,-3)(5,3) - \psplot[polarplot,linewidth=3\pslinewidth,linecolor=blue,algebraic=true,plotpoints=500]{0}{6.289}{2*(1+cos(x))} + \psplot[polarplot,linewidth=3\pslinewidth,linecolor=blue,algebraic,plotpoints=500]{0}{6.289}{2*(1+cos(x))} \multido{\r=0.000+0.314}{21}{% - \psplotTangent[polarplot,Derive=-2*sin(x),algebraic=true,linecolor=red,arrows=<->]{\r}{1.5}{2*(1+cos(x))} } + \psplotTangent[polarplot,Derive=-2*sin(x),algebraic,linecolor=red,arrows=<->]{\r}{1.5}{2*(1+cos(x))} } \end{pspicture} \end{LTXexample} @@ -1829,7 +1833,7 @@ whose derivative is : $\displaystyle\left\{\begin{array}{l}x=-7\sin(2t)\\y=21\cos(6t)\end{array}\right.$ The parameter must be the letter $t$ instead of $x$ and when using -the \Lkeyword{algebraic=true} option you must separate the two equations by +the \Lkeyword{algebraic} option you must separate the two equations by a \Lnotation{|} (see example). \begin{LTXexample}[pos=t,wide] @@ -1844,11 +1848,11 @@ a \Lnotation{|} (see example). \end{pspicture}\hfill% \def\LissaAlg{3.5*cos(2*t)|3.5*sin(6*t)} \def\LissaAlgDer{-7*sin(2*t)|21*cos(6*t)}% \begin{pspicture}(-4,-4)(4,6) - \parametricplot[algebraic=true,plotpoints=500,linewidth=3\pslinewidth]{0}{3.141592}{\LissaAlg} + \parametricplot[algebraic,plotpoints=500,linewidth=3\pslinewidth]{0}{3.141592}{\LissaAlg} \multido{\r=0.000+0.314}{11}{% - \psplotTangent[algebraic=true,linecolor=red,arrows=<->]{\r}{1.5}{\LissaAlg} } + \psplotTangent[algebraic,linecolor=red,arrows=<->]{\r}{1.5}{\LissaAlg} } \multido{\r=0.157+0.314}{11}{% - \psplotTangent[algebraic=true,linecolor=blue,arrows=<->,% + \psplotTangent[algebraic,linecolor=blue,arrows=<->,% Derive=\LissaAlgDer]{\r}{1.5}{\LissaAlg} } \end{pspicture} \end{LTXexample} @@ -1859,7 +1863,7 @@ a \Lnotation{|} (see example). The new PostScript function \Lps{Derive} has been added for plotting successive derivatives of a function. It must be used -with the \Lkeyword{algebraic=true} option. This function has two arguments: +with the \Lkeyword{algebraic} option. This function has two arguments: \begin{enumerate} \item a positive integer which defines the order of the derivative; obviously $0$ means the @@ -1887,7 +1891,7 @@ the cosine. \begin{pspicture}[showgrid=true](0,-1.2)(7,1.5) \psclip{\psframe[linestyle=none](0,-1.1)(7,1.1)} \multido{\in=0+1}{16}{% - \psplot[linewidth=1pt,algebraic=true,linecolor=\getColor{\in}]{0}{7} + \psplot[linewidth=1pt,algebraic,linecolor=\getColor{\in}]{0}{7} {Derive(\in,1-x^2/2+x^4/24-x^6/720+x^8/40320-x^10/3628800+x^12/479001600-x^14/87178291200)}} \endpsclip \end{pspicture} @@ -1895,8 +1899,8 @@ the cosine. \begin{LTXexample}[width=3.5cm] \begin{pspicture}[shift=-2.5,showgrid=true,linewidth=1pt](0,-2)(3,3) - \psplot[algebraic=true]{.001}{3}{x*ln(x)} % f(x) - \psplot[algebraic=true,linecolor=red]{.05}{3}{Derive(1,x*ln(x))} % f'(x)=1+ln(x) + \psplot[algebraic]{.001}{3}{x*ln(x)} % f(x) + \psplot[algebraic,linecolor=red]{.05}{3}{Derive(1,x*ln(x))} % f'(x)=1+ln(x) \end{pspicture} \end{LTXexample} @@ -1947,7 +1951,7 @@ magenta the default variable step behavior. \begin{center} \bgroup -\psset{algebraic=true, VarStep=true, unit=2, showpoints=true, linecolor=red} +\psset{algebraic, VarStep=true, unit=2, showpoints=true, linecolor=red} \begin{pspicture}(-0,-1)(3.14,2)\psgrid \psplot[VarStepEpsilon=.01]{0}{3.14}{cos(x)} \psplot[VarStepEpsilon=.001]{0}{3.14}{cos(x)+.15} @@ -1959,7 +1963,7 @@ magenta the default variable step behavior. \end{center} \begin{lstlisting} -\psset{algebraic=true, VarStep=true, unit=2, showpoints=true, linecolor=red} +\psset{algebraic, VarStep=true, unit=2, showpoints=true, linecolor=red} \begin{pspicture}[showgrid=true](-0,-1)(3.14,2) \psplot[VarStepEpsilon=.01]{0}{3.14}{cos(x)} \psplot[VarStepEpsilon=.001]{0}{3.14}{cos(x)+.15} @@ -1976,7 +1980,7 @@ A really classic example which gives a bad beginning, the tolerance is set to $0 \begin{center} \bgroup -\psset{algebraic=true, VarStep=true, linecolor=red, showpoints=true} +\psset{algebraic, VarStep=true, linecolor=red, showpoints=true} \begin{pspicture}[showgrid=true](0,-5)(16,4) \psplot[VarStep=false, linecolor=black]{.01}{16}{ln(x)+1} \psplot[linecolor=magenta]{.51}{16}{ln(x-1/2)+1/2} @@ -1987,7 +1991,7 @@ A really classic example which gives a bad beginning, the tolerance is set to $0 \end{center} \begin{lstlisting} -\psset{algebraic=true, VarStep=true, linecolor=red, showpoints=true} +\psset{algebraic, VarStep=true, linecolor=red, showpoints=true} \begin{pspicture}[showgrid=true](0,-5)(16,4) \psplot[VarStep=false, linecolor=black]{.01}{16}{ln(x)+1} \psplot[linecolor=magenta]{.51}{16}{ln(x-1/2)+1/2} @@ -2003,7 +2007,7 @@ Impossible to draw, but let's try! \begin{center} \bgroup -\psset{xunit=64,algebraic=true,VarStep,linecolor=red,showpoints=true,linewidth=1pt} +\psset{xunit=64,algebraic,VarStep,linecolor=red,showpoints=true,linewidth=1pt} \begin{pspicture}[showgrid=true](0,-1)(.5,1) \psplot[VarStepEpsilon=.0001]{.01}{.25}{sin(1/x)} \end{pspicture}\\ @@ -2020,7 +2024,7 @@ Impossible to draw, but let's try! \end{center} \begin{lstlisting} -\psset{xunit=64,algebraic=true,VarStep,linecolor=red,showpoints=true,linewidth=1pt} +\psset{xunit=64,algebraic,VarStep,linecolor=red,showpoints=true,linewidth=1pt} \begin{pspicture}[showgrid=true](0,-1)(.5,1) \psplot[VarStepEpsilon=.0001]{.01}{.25}{sin(1/x)} \end{pspicture}\\ @@ -2049,7 +2053,7 @@ Just appreciate the difference between the normal behavior and the plotting with \begin{center} \bgroup -\psset{xunit=3, algebraic=true, VarStep, showpoints=true} +\psset{xunit=3, algebraic, VarStep, showpoints=true} \begin{pspicture}[showgrid=true](0,-2)(5,6) \psplot[VarStepEpsilon=.0005, linecolor=red]{.1}{5}{x-x^2/10+ln(x)+cos(2*x)+sin(x^2)} \psplot[linecolor=magenta]{.1}{5}{x-x^2/10+ln(x)+cos(2*x)+sin(x^2)+.5} @@ -2059,7 +2063,7 @@ Just appreciate the difference between the normal behavior and the plotting with \end{center} \begin{lstlisting} -\psset{xunit=3, algebraic=true, VarStep, showpoints=true} +\psset{xunit=3, algebraic, VarStep, showpoints=true} \begin{pspicture}[showgrid=true](0,-2)(5,6) \psplot[VarStepEpsilon=.0005, linecolor=red]{.1}{5}{x-x^2/10+ln(x)+cos(2*x)+sin(x^2)} \psplot[linecolor=magenta]{.1}{5}{x-x^2/10+ln(x)+cos(2*x)+sin(x^2)+.5} @@ -2073,7 +2077,7 @@ Just appreciate the difference between the normal behavior and the plotting with \begin{center} \bgroup -\psset{algebraic=true, showpoints=true, unit=0.75} +\psset{algebraic, showpoints=true, unit=0.75} \begin{pspicture}(-5,-4)(9,6) \psplot[linecolor=black]{-5}{1.8}{(x-1)/(x-2)} \psplot[VarStep=true, VarStepEpsilon=.001, linecolor=red]{2.2}{9}{(x-1)/(x-2)} @@ -2083,7 +2087,7 @@ Just appreciate the difference between the normal behavior and the plotting with \end{center} \begin{lstlisting} -\psset{algebraic=true, showpoints=true, unit=0.75} +\psset{algebraic, showpoints=true, unit=0.75} \begin{pspicture}(-5,-4)(9,6) \psplot[linecolor=black]{-5}{1.8}{(x-1)/(x-2)} \psplot[VarStep=true, VarStepEpsilon=.001, linecolor=red]{2.2}{9}{(x-1)/(x-2)} @@ -2104,12 +2108,12 @@ Just appreciate the difference between the normal behavior and the plotting with \bgroup \psset{unit=2.5} \begin{pspicture}[showgrid=true](-1,-1)(1,1) -\parametricplot[algebraic=true,linecolor=red,VarStep=true, showpoints=true, +\parametricplot[algebraic,linecolor=red,VarStep=true, showpoints=true, VarStepEpsilon=.0001] {-3.14}{3.14}{cos(3*t)|sin(2*t)} \end{pspicture} \begin{pspicture}[showgrid=true](-1,-1)(1,1) -\parametricplot[algebraic=true,linecolor=blue,VarStep=true, showpoints=false, +\parametricplot[algebraic,linecolor=blue,VarStep=true, showpoints=false, VarStepEpsilon=.0001] {-3.14}{3.14}{cos(3*t)|sin(2*t)} \end{pspicture} @@ -2119,12 +2123,12 @@ Just appreciate the difference between the normal behavior and the plotting with \begin{lstlisting} \psset{unit=3} \begin{pspicture}[showgrid=true](-1,-1)(1,1) -\parametricplot[algebraic=true,linecolor=red,VarStep=true, showpoints=true, +\parametricplot[algebraic,linecolor=red,VarStep=true, showpoints=true, VarStepEpsilon=.0001] {-3.14}{3.14}{cos(3*t)|sin(2*t)} \end{pspicture} \begin{pspicture}[showgrid=true](-1,-1)(1,1) -\parametricplot[algebraic=true,linecolor=blue,VarStep=true, showpoints=false, +\parametricplot[algebraic,linecolor=blue,VarStep=true, showpoints=false, VarStepEpsilon=.0001] {-3.14}{3.14}{cos(3*t)|sin(2*t)} \end{pspicture} @@ -2135,12 +2139,12 @@ Just appreciate the difference between the normal behavior and the plotting with \bgroup \psset{unit=2.5} \begin{pspicture}[showgrid=true](-1,-1)(1,1) -\parametricplot[algebraic=true,linecolor=red,VarStep=true, showpoints=true, +\parametricplot[algebraic,linecolor=red,VarStep=true, showpoints=true, VarStepEpsilon=.0001] {0}{47.115}{cos(5*t)|sin(3*t)} \end{pspicture} \begin{pspicture}[showgrid=true](-1,-1)(1,1) -\parametricplot[algebraic=true,linecolor=blue,VarStep=true, showpoints=false, +\parametricplot[algebraic,linecolor=blue,VarStep=true, showpoints=false, VarStepEpsilon=.0001] {0}{47.115}{cos(5*t)|sin(3*t)} \end{pspicture} @@ -2150,12 +2154,12 @@ Just appreciate the difference between the normal behavior and the plotting with \begin{lstlisting} \psset{unit=2.5} \begin{pspicture}[showgrid=true](-1,-1)(1,1) -\parametricplot[algebraic=true,linecolor=red,VarStep=true, showpoints=true, +\parametricplot[algebraic,linecolor=red,VarStep=true, showpoints=true, VarStepEpsilon=.0001] {0}{47.115}{cos(5*t)|sin(3*t)} \end{pspicture} \begin{pspicture}[showgrid=true](-1,-1)(1,1) -\parametricplot[algebraic=true,linecolor=blue,VarStep=true, showpoints=false, +\parametricplot[algebraic,linecolor=blue,VarStep=true, showpoints=false, VarStepEpsilon=.0001] {0}{47.115}{cos(5*t)|sin(3*t)} \end{pspicture} @@ -2166,12 +2170,12 @@ Just appreciate the difference between the normal behavior and the plotting with \bgroup \psset{xunit=.5} \begin{pspicture}[showgrid=true](0,0)(12.566,2) -\parametricplot[algebraic=true,linecolor=red,VarStep, showpoints=true, +\parametricplot[algebraic,linecolor=red,VarStep, showpoints=true, VarStepEpsilon=.01]{0}{12.566}{t+cos(-t-Pi/2)|1+sin(-t-Pi/2)} \end{pspicture} % \begin{pspicture}[showgrid=true](0,0)(12.566,2) -\parametricplot[algebraic=true,linecolor=blue,VarStep, showpoints=false, +\parametricplot[algebraic,linecolor=blue,VarStep, showpoints=false, VarStepEpsilon=.001]{0}{12.566}{t+cos(-t-Pi/2)|1+sin(-t-Pi/2)} \end{pspicture} \egroup @@ -2180,12 +2184,12 @@ Just appreciate the difference between the normal behavior and the plotting with \begin{lstlisting} \psset{xunit=.5} \begin{pspicture}[showgrid=true](0,0)(12.566,2) -\parametricplot[algebraic=true,linecolor=red,VarStep, showpoints=true, +\parametricplot[algebraic,linecolor=red,VarStep, showpoints=true, VarStepEpsilon=.01]{0}{12.566}{t+cos(-t-Pi/2)|1+sin(-t-Pi/2)} \end{pspicture} % \begin{pspicture}[showgrid=true](0,0)(12.566,2) -\parametricplot[algebraic=true,linecolor=blue,VarStep, showpoints=false, +\parametricplot[algebraic,linecolor=blue,VarStep, showpoints=false, VarStepEpsilon=.001]{0}{12.566}{t+cos(-t-Pi/2)|1+sin(-t-Pi/2)} \end{pspicture} \end{lstlisting} @@ -2199,7 +2203,7 @@ Just appreciate the difference between the normal behavior and the plotting with \bgroup \psset{unit=1.5} \begin{pspicture}[showgrid=true](-1,-2)(1,2) - \psplot[linecolor=blue,algebraic=true]{-1}{1}{asin(x)} + \psplot[linecolor=blue,algebraic]{-1}{1}{asin(x)} \end{pspicture} \hspace{1em} \psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true} @@ -2211,7 +2215,7 @@ Just appreciate the difference between the normal behavior and the plotting with \psplot[linecolor=blue]{-.97}{.97}{Derive(1,asin(x))} \end{pspicture} \hspace{1em} -\psset{algebraic=true, VarStep, VarStepEpsilon=.0001, showpoints=true} +\psset{algebraic, VarStep, VarStepEpsilon=.0001, showpoints=true} \begin{pspicture}[showgrid=true](-1,0)(1,4) \psplot[linecolor=blue]{-.97}{.97}{Derive(1,asin(x))} \end{pspicture} @@ -2221,10 +2225,10 @@ Just appreciate the difference between the normal behavior and the plotting with \begin{lstlisting} \psset{unit=1.5} \begin{pspicture}[showgrid=true](-1,-2)(1,2) - \psplot[linecolor=blue,algebraic=true]{-1}{1}{asin(x)} + \psplot[linecolor=blue,algebraic]{-1}{1}{asin(x)} \end{pspicture} \hspace{1em} -\psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true} +\psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true} \begin{pspicture}[showgrid=true](-1,-2)(1,2) \psplot[linecolor=blue]{-.999}{.999}{asin(x)} \end{pspicture} @@ -2233,7 +2237,7 @@ Just appreciate the difference between the normal behavior and the plotting with \psplot[linecolor=red]{-.97}{.97}{Derive(1,asin(x))} \end{pspicture} \hspace{1em} -\psset{algebraic=true, VarStep, VarStepEpsilon=.0001, showpoints=true} +\psset{algebraic, VarStep, VarStepEpsilon=.0001, showpoints=true} \begin{pspicture}[showgrid=true](-1,0)(1,4) \psplot[linecolor=red]{-.97}{.97}{Derive(1,asin(x))} \end{pspicture} @@ -2246,10 +2250,10 @@ Just appreciate the difference between the normal behavior and the plotting with \bgroup \psset{unit=1.5} \begin{pspicture}[showgrid=true](-1,0)(1,3) - \psplot[linecolor=blue,algebraic=true]{-1}{1}{acos(x)} + \psplot[linecolor=blue,algebraic]{-1}{1}{acos(x)} \end{pspicture} \hspace{1em} -\psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true} +\psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true} \begin{pspicture}[showgrid=true](-1,0)(1,3) \psplot[linecolor=blue]{-.999}{.999}{acos(x)} \end{pspicture} @@ -2258,7 +2262,7 @@ Just appreciate the difference between the normal behavior and the plotting with \psplot[linecolor=blue]{-.97}{.97}{Derive(1,acos(x))} \end{pspicture} \hspace{1em} -\psset{algebraic=true, VarStep, VarStepEpsilon=.0001, showpoints=true} +\psset{algebraic, VarStep, VarStepEpsilon=.0001, showpoints=true} \begin{pspicture}[showgrid=true](-1,-4)(1,-1) \psplot[linecolor=blue]{-.97}{.97}{Derive(1,acos(x))} \end{pspicture} @@ -2268,10 +2272,10 @@ Just appreciate the difference between the normal behavior and the plotting with \begin{lstlisting} \psset{unit=1.5} \begin{pspicture}[showgrid=true](-1,0)(1,3) - \psplot[linecolor=blue,algebraic=true]{-1}{1}{acos(x)} + \psplot[linecolor=blue,algebraic]{-1}{1}{acos(x)} \end{pspicture} \hspace{1em} -\psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true} +\psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true} \begin{pspicture}[showgrid=true](-1,0)(1,3) \psplot[linecolor=blue]{-.999}{.999}{acos(x)} \end{pspicture} @@ -2280,7 +2284,7 @@ Just appreciate the difference between the normal behavior and the plotting with \psplot[linecolor=red]{-.97}{.97}{Derive(1,acos(x))} \end{pspicture} \hspace{1em} -\psset{algebraic=true, VarStep, VarStepEpsilon=.0001, showpoints=true} +\psset{algebraic, VarStep, VarStepEpsilon=.0001, showpoints=true} \begin{pspicture}[showgrid=true](-1,-4)(1,-1) \psplot[linecolor=red]{-.97}{.97}{Derive(1,acos(x))} \end{pspicture} @@ -2293,13 +2297,13 @@ Just appreciate the difference between the normal behavior and the plotting with \begin{center} \bgroup \begin{pspicture}[showgrid=true](-4,-2)(4,2) -\psset{algebraic=true} +\psset{algebraic} \psplot[linecolor=blue,linewidth=1pt]{-4}{4}{atg(x)} \psplot[linecolor=red,VarStep, VarStepEpsilon=.0001, showpoints=true]{-4}{4}{Derive(1,atg(x))} \end{pspicture} \hspace{1em} \begin{pspicture}[showgrid=true](-4,-2)(4,2) -\psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true} +\psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true} \psplot[linecolor=blue]{-4}{4}{atg(x)} \psplot[linecolor=red]{-4}{4}{Derive(1,atg(x))} \end{pspicture} @@ -2308,13 +2312,13 @@ Just appreciate the difference between the normal behavior and the plotting with \begin{lstlisting} \begin{pspicture}[showgrid=true](-4,-2)(4,2) -\psset{algebraic=true} +\psset{algebraic} \psplot[linecolor=blue,linewidth=1pt]{-4}{4}{atg(x)} \psplot[linecolor=red,VarStep, VarStepEpsilon=.0001, showpoints=true]{-4}{4}{Derive(1,atg(x))} \end{pspicture} \hspace{1em} \begin{pspicture}[showgrid=true](-4,-2)(4,2) -\psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true} +\psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true} \psplot[linecolor=blue]{-4}{4}{atg(x)} \psplot[linecolor=red]{-4}{4}{Derive(1,atg(x))} \end{pspicture} @@ -2325,7 +2329,7 @@ Just appreciate the difference between the normal behavior and the plotting with \begin{center} \bgroup \begin{pspicture}(-3,-4)(3,4) -\psset{algebraic=true} +\psset{algebraic} \psplot[linecolor=red,linewidth=1pt]{-2}{2}{sh(x)} \psplot[linecolor=blue,linewidth=1pt]{-2}{2}{ch(x)} \psplot[linecolor=green,linewidth=1pt]{-3}{3}{th(x)} @@ -2333,7 +2337,7 @@ Just appreciate the difference between the normal behavior and the plotting with \end{pspicture} \hspace{1em} \begin{pspicture}(-3,-4)(3,4) -\psset{algebraic=true, VarStep=true, VarStepEpsilon=.001, showpoints=true} +\psset{algebraic, VarStep=true, VarStepEpsilon=.001, showpoints=true} \psplot[linecolor=red,linewidth=1pt]{-2}{2}{sh(x)} \psplot[linecolor=blue,linewidth=1pt]{-2}{2}{ch(x)} \psplot[linecolor=green,linewidth=1pt]{-3}{3}{th(x)} @@ -2344,7 +2348,7 @@ Just appreciate the difference between the normal behavior and the plotting with \begin{lstlisting} \begin{pspicture}(-3,-4)(3,4) -\psset{algebraic=true} +\psset{algebraic} \psplot[linecolor=red,linewidth=1pt]{-2}{2}{sh(x)} \psplot[linecolor=blue,linewidth=1pt]{-2}{2}{ch(x)} \psplot[linecolor=green,linewidth=1pt]{-3}{3}{th(x)} @@ -2352,7 +2356,7 @@ Just appreciate the difference between the normal behavior and the plotting with \end{pspicture} \hspace{1em} \begin{pspicture}(-3,-4)(3,4) -\psset{algebraic=true, VarStep=true, VarStepEpsilon=.001, showpoints=true} +\psset{algebraic, VarStep=true, VarStepEpsilon=.001, showpoints=true} \psplot[linecolor=red,linewidth=1pt]{-2}{2}{sh(x)} \psplot[linecolor=blue,linewidth=1pt]{-2}{2}{ch(x)} \psplot[linecolor=green,linewidth=1pt]{-3}{3}{th(x)} @@ -2365,7 +2369,7 @@ Just appreciate the difference between the normal behavior and the plotting with \begin{center} \bgroup \begin{pspicture}(-3,-4)(3,4) -\psset{algebraic=true} +\psset{algebraic} \psplot[linecolor=red,linewidth=1pt]{-2}{2}{Derive(1,sh(x))} \psplot[linecolor=blue,linewidth=1pt]{-2}{2}{Derive(1,ch(x))} \psplot[linecolor=green,linewidth=1pt]{-3}{3}{Derive(1,th(x))} @@ -2373,7 +2377,7 @@ Just appreciate the difference between the normal behavior and the plotting with \end{pspicture} \hspace{1em} \begin{pspicture}(-3,-4)(3,4) -\psset{algebraic=true, VarStep=true, VarStepEpsilon=.001, showpoints=true} +\psset{algebraic, VarStep=true, VarStepEpsilon=.001, showpoints=true} \psplot[linecolor=red,linewidth=1pt]{-2}{2}{Derive(1,sh(x))} \psplot[linecolor=blue,linewidth=1pt]{-2}{2}{Derive(1,ch(x))} \psplot[linecolor=green,linewidth=1pt]{-3}{3}{Derive(1,th(x))} @@ -2384,7 +2388,7 @@ Just appreciate the difference between the normal behavior and the plotting with \begin{lstlisting} \begin{pspicture}(-3,-4)(3,4) -\psset{algebraic=true,linewidth=1pt} +\psset{algebraic,linewidth=1pt} \psplot[linecolor=red,linewidth=1pt]{-2}{2}{Derive(1,sh(x))} \psplot[linecolor=blue,linewidth=1pt]{-2}{2}{Derive(1,ch(x))} \psplot[linecolor=green,linewidth=1pt]{-3}{3}{Derive(1,th(x))} @@ -2392,7 +2396,7 @@ Just appreciate the difference between the normal behavior and the plotting with \end{pspicture} \hspace{1em} \begin{pspicture}(-3,-4)(3,4) -\psset{algebraic=true, VarStep=true, VarStepEpsilon=.001, showpoints=true} +\psset{algebraic, VarStep=true, VarStepEpsilon=.001, showpoints=true} \psplot[linecolor=red,linewidth=1pt]{-2}{2}{Derive(1,sh(x))} \psplot[linecolor=blue,linewidth=1pt]{-2}{2}{Derive(1,ch(x))} \psplot[linecolor=green,linewidth=1pt]{-3}{3}{Derive(1,th(x))} @@ -2405,14 +2409,14 @@ Just appreciate the difference between the normal behavior and the plotting with \begin{center} \bgroup \begin{pspicture}(-7,-3)(7,3) -\psset{algebraic=true} +\psset{algebraic} \psplot[linecolor=red,linewidth=1pt]{-7}{7}{Argsh(x)} \psplot[linecolor=blue,linewidth=1pt]{1}{7}{Argch(x)} \psplot[linecolor=green,linewidth=1pt]{-.99}{.99}{Argth(x)} \psaxes{->}(0,0)(-7,-3)(7,3) \end{pspicture}\\[\baselineskip] \begin{pspicture}(-7,-3)(7,3) - \psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true} + \psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true} \psplot[linecolor=red,linewidth=1pt]{-7}{7}{Argsh(x)} \psplot[linecolor=blue,linewidth=1pt]{1.001}{7}{Argch(x)} \psplot[linecolor=green,linewidth=1pt]{-.99}{.99}{Argth(x)} @@ -2423,14 +2427,14 @@ Just appreciate the difference between the normal behavior and the plotting with \begin{lstlisting} \begin{pspicture}(-7,-3)(7,3) -\psset{algebraic=true} +\psset{algebraic} \psplot[linecolor=red,linewidth=1pt]{-7}{7}{Argsh(x)} \psplot[linecolor=blue,linewidth=1pt]{1}{7}{Argch(x)} \psplot[linecolor=green,linewidth=1pt]{-.99}{.99}{Argth(x)} \psaxes{->}(0,0)(-7,-3)(7,3) \end{pspicture}\\[\baselineskip] \begin{pspicture}(-7,-3)(7,3) - \psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true} + \psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true} \psplot[linecolor=red,linewidth=1pt]{-7}{7}{Argsh(x)} \psplot[linecolor=blue,linewidth=1pt]{1.001}{7}{Argch(x)} \psplot[linecolor=green,linewidth=1pt]{-.99}{.99}{Argth(x)} @@ -2443,15 +2447,15 @@ Just appreciate the difference between the normal behavior and the plotting with \begin{center} \bgroup \begin{pspicture}(-7,-0.5)(7,6) -\psset{algebraic=true} +\psset{algebraic} \psplot[linecolor=red,linewidth=1pt]{-7}{7}{Derive(1,Argsh(x))} \psplot[linecolor=blue,linewidth=1pt]{1.014}{7}{Derive(1,Argch(x))} \psplot[linecolor=green,linewidth=1pt]{-.9}{.9}{Derive(1,Argth(x))} \psaxes{->}(0,0)(-7,0)(7,6) \end{pspicture}\\[\baselineskip] \begin{pspicture}(-7,-0.5)(7,6) -\psset{algebraic=true} - \psset{algebraic=true, VarStep=true, VarStepEpsilon=.001, showpoints=true} +\psset{algebraic} + \psset{algebraic, VarStep=true, VarStepEpsilon=.001, showpoints=true} \psplot[linecolor=red,linewidth=1pt]{-7}{7}{Derive(1,Argsh(x))} \psplot[linecolor=blue,linewidth=1pt]{1.014}{7}{Derive(1,Argch(x))} \psplot[linecolor=green,linewidth=1pt]{-.9}{.9}{Derive(1,Argth(x))} @@ -2462,15 +2466,15 @@ Just appreciate the difference between the normal behavior and the plotting with \begin{lstlisting} \begin{pspicture}(-7,-0.5)(7,6) -\psset{algebraic=true} +\psset{algebraic} \psplot[linecolor=red,linewidth=1pt]{-7}{7}{Derive(1,Argsh(x))} \psplot[linecolor=blue,linewidth=1pt]{1.014}{7}{Derive(1,Argch(x))} \psplot[linecolor=green,linewidth=1pt]{-.9}{.9}{Derive(1,Argth(x))} \psaxes{->}(0,0)(-7,0)(7,6) \end{pspicture}\\[\baselineskip] \begin{pspicture}(-7,-0.5)(7,6) -\psset{algebraic=true} - \psset{algebraic=true, VarStep=true, VarStepEpsilon=.001, showpoints=true} +\psset{algebraic} + \psset{algebraic, VarStep=true, VarStepEpsilon=.001, showpoints=true} \psplot[linecolor=red,linewidth=1pt]{-7}{7}{Derive(1,Argsh(x))} \psplot[linecolor=blue,linewidth=1pt]{1.014}{7}{Derive(1,Argch(x))} \psplot[linecolor=green,linewidth=1pt]{-.9}{.9}{Derive(1,Argth(x))} @@ -2532,7 +2536,7 @@ The new options are: in the same way; \end{description} -\item \Lkeyword{algebraic=true}: algebraic=true description for $f$, \Lkeyword{buildvector} +\item \Lkeyword{algebraic}: algebraic description for $f$, \Lkeyword{buildvector} parameter is useless when activating this option. \end{itemize} @@ -2606,7 +2610,7 @@ the algortihm. \def\quatrepi{12.5663706144} \begin{pspicture}(0,-1)(10,1.3) \psaxes{->}(0,0)(0,-1)(10,1.3) - \psplot[linewidth=4\pslinewidth, linecolor=green, algebraic=true]{0}{10}{cos(x)} + \psplot[linewidth=4\pslinewidth, linecolor=green, algebraic]{0}{10}{cos(x)} \rput(0,.0){\psplotDiffEqn[linecolor=magenta, plotpoints=7, varsteptol=.1]{0}{10}{1 0}{\Funct}} \rput(0,.0){\psplotDiffEqn[linecolor=blue, plotpoints=201, varsteptol=.01]{0}{10}{1 0}{\Funct}} \rput(0,.1){\psplotDiffEqn[linewidth=2\pslinewidth, linecolor=red, varsteptol=.001]{0}{10}{1 0}{\Funct}} @@ -2636,7 +2640,7 @@ the algortihm. \def\quatrepi{12.5663706144} \begin{pspicture}(0,-1)(10,1.3) \psaxes{->}(0,0)(0,-1)(10,1.3) - \psplot[linewidth=4\pslinewidth, linecolor=green, algebraic=true]{0}{10}{cos(x)} + \psplot[linewidth=4\pslinewidth, linecolor=green, algebraic]{0}{10}{cos(x)} \rput(0,.0){\psplotDiffEqn[linecolor=magenta, plotpoints=7, varsteptol=.1]{0}{10}{1 0}{\Funct}} \rput(0,.0){\psplotDiffEqn[linecolor=blue, plotpoints=201, varsteptol=.01]{0}{10}{1 0}{\Funct}} \rput(0,.1){\psplotDiffEqn[linewidth=2\pslinewidth, linecolor=red, varsteptol=.001]{0}{10}{1 0}{\Funct}} @@ -2668,7 +2672,7 @@ the algortihm. \def\quatrepi{12.5663706144} \begin{pspicture}(0,-0.5)(3,11) \psaxes{->}(0,0)(3,11) - \psplot[linewidth=4\pslinewidth, linecolor=green, algebraic=true]{0}{3}{ch(x)} + \psplot[linewidth=4\pslinewidth, linecolor=green, algebraic]{0}{3}{ch(x)} \rput(0,.0){\psplotDiffEqn[linecolor=magenta, varsteptol=.1]{0}{3}{1 0}{\Funct}} \rput(0,.3){\psplotDiffEqn[linecolor=blue, varsteptol=.01]{0}{3}{1 0}{\Funct}} \rput(0,.6){\psplotDiffEqn[linecolor=red, varsteptol=.001]{0}{3}{1 0}{\Funct}} @@ -2698,7 +2702,7 @@ the algortihm. \def\quatrepi{12.5663706144} \begin{pspicture}(0,-0.5)(3,11) \psaxes{->}(0,0)(3,11) - \psplot[linewidth=4\pslinewidth, linecolor=green, algebraic=true]{0}{3}{ch(x)} + \psplot[linewidth=4\pslinewidth, linecolor=green, algebraic]{0}{3}{ch(x)} \rput(0,.0){\psplotDiffEqn[linecolor=magenta, varsteptol=.1]{0}{3}{1 0}{\Funct}} \rput(0,.3){\psplotDiffEqn[linecolor=blue, varsteptol=.01]{0}{3}{1 0}{\Funct}} \rput(0,.6){\psplotDiffEqn[linecolor=red, varsteptol=.001]{0}{3}{1 0}{\Funct}} @@ -2883,7 +2887,7 @@ stars} \egroup %-------------------------------------------------------------------------------------- For the initial value $y(0)=1$ we have the solution $y(x)=e^x$. $y$ is always -on the stack, so we have to do nothing. Using the \Lkeyword{algebraic=true} option, we write it +on the stack, so we have to do nothing. Using the \Lkeyword{algebraic} option, we write it as \verb$y[0]$. The following example shows different solutions depending to the number of plotpoints with $y_0=1$: @@ -2893,7 +2897,7 @@ with $y_0=1$: \psset{xunit=4, yunit=.4} \begin{pspicture}(3,19)\psgrid[subgriddiv=1] \psplot[linewidth=6\pslinewidth, linecolor=green]{0}{3}{Euler x exp} - \psplotDiffEqn[linecolor=magenta,plotpoints=16,algebraic=true]{0}{3}{1}{y[0]} + \psplotDiffEqn[linecolor=magenta,plotpoints=16,algebraic]{0}{3}{1}{y[0]} \psplotDiffEqn[linecolor=blue,plotpoints=151]{0}{3}{1}{} \psplotDiffEqn[linecolor=red,method=rk4,plotpoints=15]{0}{3}{1}{} \psplotDiffEqn[linecolor=Orange,method=rk4,plotpoints=4]{0}{3}{1}{} @@ -2916,7 +2920,7 @@ with $y_0=1$: \psset{xunit=4, yunit=.4} \begin{pspicture}(3,19)\psgrid[subgriddiv=1] \psplot[linewidth=6\pslinewidth, linecolor=green]{0}{3}{Euler x exp} - \psplotDiffEqn[linecolor=magenta,plotpoints=16,algebraic=true]{0}{3}{1}{y[0]} + \psplotDiffEqn[linecolor=magenta,plotpoints=16,algebraic]{0}{3}{1}{y[0]} \psplotDiffEqn[linecolor=blue,plotpoints=151]{0}{3}{1}{} \psplotDiffEqn[linecolor=red,method=rk4,plotpoints=15]{0}{3}{1}{} \psplotDiffEqn[linecolor=Orange,method=rk4,plotpoints=4]{0}{3}{1}{} @@ -2971,9 +2975,9 @@ The following example uses $y_0=1$. \psplotDiffEqn[linecolor=magenta, plotpoints=20]{0}{1.9}{\InitCond}{\Func} \psplotDiffEqn[linecolor=blue, plotpoints=191]{0}{1.9}{\InitCond}{\Func} \psplotDiffEqn[linecolor=red, method=rk4, plotpoints=11,% - algebraic=true]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)} + algebraic]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)} \psplotDiffEqn[linecolor=Orange, method=rk4, plotpoints=21,% - algebraic=true]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)} + algebraic]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)} \psset{linewidth=4\pslinewidth}\small \rput*(0,1.4){\psline[linecolor=magenta](-.75cm,0)}\rput*[l](0,1.4){Euler order 1 $h=0{,}1$} \rput*(0,1.35){\psline[linecolor=blue](-.75cm,0)}\rput*[l](0,1.35){Euler order 1 $h=0{,}01$} @@ -2995,9 +2999,9 @@ The following example uses $y_0=1$. \psplotDiffEqn[linecolor=magenta, plotpoints=20]{0}{1.9}{\InitCond}{\Func} \psplotDiffEqn[linecolor=blue, plotpoints=191]{0}{1.9}{\InitCond}{\Func} \psplotDiffEqn[linecolor=red, method=rk4, plotpoints=11,% - algebraic=true]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)} + algebraic]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)} \psplotDiffEqn[linecolor=Orange, method=rk4, plotpoints=21,% - algebraic=true]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)} + algebraic]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)} \psset{linewidth=4\pslinewidth} \rput*(0.3,1.6){\psline[linecolor=magenta](-.75cm,0)}\rput*[l](0.3,1.6){\small Euler order 1 $h=0{,}1$} \rput*(0.3,1.55){\psline[linecolor=blue](-.75cm,0)}\rput*[l](0.3,1.55){\small Euler order 1 $h=0{,}01$} @@ -3075,7 +3079,7 @@ The integrals of \Index{Fresnel}: \begin{lstlisting} \psset{unit=8} \begin{pspicture}(1,1)\psgrid[subgriddiv=5] - \psplotDiffEqn[whichabs=0,whichord=1,linecolor=red,method=rk4,algebraic=true,% + \psplotDiffEqn[whichabs=0,whichord=1,linecolor=red,method=rk4,algebraic,% plotpoints=500,showpoints=true]{0}{10}{0 0}{cos(Pi*x^2/2)|sin(Pi*x^2/2)} \end{pspicture} \end{lstlisting} @@ -3085,7 +3089,7 @@ The integrals of \Index{Fresnel}: \bgroup \psset{unit=8} \begin{pspicture}(1,1)\psgrid[subgriddiv=5] - \psplotDiffEqn[whichabs=0,whichord=1,linecolor=red,method=rk4,algebraic=true,% + \psplotDiffEqn[whichabs=0,whichord=1,linecolor=red,method=rk4,algebraic,% plotpoints=500,showpoints=true]{0}{10}{0 0}{cos(Pi*x^2/2)|sin(Pi*x^2/2)} \end{pspicture} \egroup @@ -3134,7 +3138,7 @@ converters and many connectors. -\Vaigle*y[1]/sqrt(y[1]^2+(y[2]-y[0])^2)|% -\Vlapin} \def\Vlapin{1} \def\Vaigle{1.6} -\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic=true,% +\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic,% plotpoints=20,showpoints=true} \begin{pspicture}[showgrid=true](-3,-3)(10,10) \psplotDiffEqn[plotfuncy=pop 0,whichabs=2,linecolor=red]{0}{10}{\InitCond}{\Faiglelapin} @@ -3149,7 +3153,7 @@ converters and many connectors. -\Vaigle*y[1]/sqrt(y[1]^2+(y[2]-y[0])^2)|% -\Vlapin} \def\Vlapin{1} \def\Vaigle{1.6} -\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic=true,% +\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic,% plotpoints=20,showpoints=true} \begin{pspicture}[showgrid=true](-3,-3)(10,10) \psplotDiffEqn[plotfuncy=pop 0,whichabs=2,linecolor=red]{0}{10}{\InitCond}{\Faiglelapin} @@ -3165,7 +3169,7 @@ converters and many connectors. -\Vaigle*y[1]/sqrt(y[1]^2+(y[2]-y[0])^2)|% -\Vlapin} \def\Vlapin{1} \def\Vaigle{1.6} -\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic=true,% +\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic,% plotpoints=20,showpoints=true} \begin{pspicture}[showgrid=true](0,-0.25)(10,14) \psplotDiffEqn[plotfuncy=dup 1 get dup mul exch dup 0 get exch 2 get sub dup @@ -3184,7 +3188,7 @@ converters and many connectors. -\Vaigle*y[1]/sqrt(y[1]^2+(y[2]-y[0])^2)|% -\Vlapin} \def\Vlapin{1} \def\Vaigle{1.6} -\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic=true,% +\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic,% plotpoints=20,showpoints=true} \begin{pspicture}[showgrid=true](10,12) \psplotDiffEqn[plotfuncy=dup 1 get dup mul exch dup 0 get exch 2 get sub dup @@ -3314,7 +3318,7 @@ exch RadtoDeg sin -9.8 mul %% y' -gsin(y) \begin{center} \bgroup \def\Func{y[1]|-9.8*sin(y[0])} -\psset{yunit=2,xunit=4,algebraic=true,linewidth=1.5pt} +\psset{yunit=2,xunit=4,algebraic,linewidth=1.5pt} \begin{pspicture}(0,-2.25)(3,2.25) \psaxes{->}(0,0)(0,-2)(3,2) \psplot[linewidth=3\pslinewidth, linecolor=Orange]{0}{3}{.1*cos(sqrt(9.8)*x)} @@ -3331,7 +3335,7 @@ exch RadtoDeg sin -9.8 mul %% y' -gsin(y) \begin{lstlisting}[label=fig:second] \def\Func{y[1]|-9.8*sin(y[0])} -\psset{yunit=2,xunit=4,algebraic=true,linewidth=1.5pt} +\psset{yunit=2,xunit=4,algebraic,linewidth=1.5pt} \begin{pspicture}(0,-2.25)(3,2.25) \psaxes{->}(0,0)(0,-2)(3,2) \psplot[linewidth=3\pslinewidth, linecolor=Orange]{0}{3}{.1*cos(sqrt(9.8)*x)} @@ -3366,11 +3370,11 @@ For $y_0=5$ and $y'_0=0$ the solution is: Euler x -8 div exp x 127 sqrt 8 div mul RadtoDeg dup cos 5 mul exch sin 127 sqrt div 5 mul add mul} \psplotDiffEqn[linecolor=red,linewidth=5\pslinewidth]{0}{26}{5 0} {dup 3 1 roll -4 div exch 2 mul sub} - \psplotDiffEqn[linecolor=black,algebraic=true]{0}{26}{5 0} {y[1]|-y[1]/4-2*y[0]} + \psplotDiffEqn[linecolor=black,algebraic]{0}{26}{5 0} {y[1]|-y[1]/4-2*y[0]} \psset{method=rk4, plotpoints=50} \psplotDiffEqn[linecolor=blue,linewidth=5\pslinewidth]{0}{26}{5 0}{% dup 3 1 roll -4 div exch 2 mul sub} - \psplotDiffEqn[linecolor=black,algebraic=true]{0}{26}{5 0}{y[1]|-y[1]/4-2*y[0]} + \psplotDiffEqn[linecolor=black,algebraic]{0}{26}{5 0}{y[1]|-y[1]/4-2*y[0]} \end{pspicture} \egroup \end{center} @@ -3383,11 +3387,11 @@ For $y_0=5$ and $y'_0=0$ the solution is: Euler x -8 div exp x 127 sqrt 8 div mul RadtoDeg dup cos 5 mul exch sin 127 sqrt div 5 mul add mul} \psplotDiffEqn[linecolor=red,linewidth=5\pslinewidth]{0}{26}{5 0} {dup 3 1 roll -4 div exch 2 mul sub} - \psplotDiffEqn[linecolor=black,algebraic=true]{0}{26}{5 0} {y[1]|-y[1]/4-2*y[0]} + \psplotDiffEqn[linecolor=black,algebraic]{0}{26}{5 0} {y[1]|-y[1]/4-2*y[0]} \psset{method=rk4, plotpoints=50} \psplotDiffEqn[linecolor=blue,linewidth=5\pslinewidth]{0}{26}{5 0}{% dup 3 1 roll -4 div exch 2 mul sub} - \psplotDiffEqn[linecolor=black,algebraic=true]{0}{26}{5 0}{y[1]|-y[1]/4-2*y[0]} + \psplotDiffEqn[linecolor=black,algebraic]{0}{26}{5 0}{y[1]|-y[1]/4-2*y[0]} \end{pspicture} \end{lstlisting} diff --git a/Master/texmf-dist/tex/generic/pstricks-add/pstricks-add.tex b/Master/texmf-dist/tex/generic/pstricks-add/pstricks-add.tex index 3c2a480e948..37c0a3ccd0c 100644 --- a/Master/texmf-dist/tex/generic/pstricks-add/pstricks-add.tex +++ b/Master/texmf-dist/tex/generic/pstricks-add/pstricks-add.tex @@ -1,4 +1,4 @@ -%% $Id: pstricks-add.tex 825 2013-09-18 12:10:17Z herbert $ +%% $Id: pstricks-add.tex 847 2013-11-13 18:44:15Z herbert $ %% %% %% This is file `pstricks-add.tex', @@ -31,8 +31,8 @@ \ifx\PSTXKeyLoaded\endinput\else \input pst-xkey \fi \ifx\PSTmathLoaded\endinput\else \input pst-math \fi % -\def\fileversion{3.61} -\def\filedate{2013/09/18} +\def\fileversion{3.62} +\def\filedate{2013/11/13} \message{`pstricks-add' v\fileversion, \filedate\space (dr,hv)} % \edef\PstAtCode{\the\catcode`\@} \catcode`\@=11\relax @@ -1277,6 +1277,8 @@ a add \else\ifx#1s\let\psk@StepType\f@ur \else\let\psk@StepType\tw@\fi\fi\fi\fi} \psset{StepType=lower} % alternative StepType=upper/inf/sup/Riemann +\define@boolkey[psset]{pstricks-add}[Pst@]{noVerticalLines}[true]{}% +\psset{noVerticalLines=false} % \def\psStep{\def\pst@par{}\pst@object{psStep}} \def\psStep@i(#1,#2)#3#4{% @@ -1290,16 +1292,20 @@ a add \ifcase\psk@StepType % 0->lower, height is always f(x) x scx 0 moveto #3 { - \ifPst@algebraic Func \else #4 \fi scy dup x scx exch lineto + \ifPst@algebraic Func \else #4 \fi + scy dup x scx exch \ifPst@noVerticalLines moveto \else lineto \fi /x x dx add def - x scx exch lineto x scx 0 lineto + x scx exch lineto + x scx 0 \ifPst@noVerticalLines moveto \else lineto \fi } repeat \or % 1-> upper, height is always f(x+dx) x scx 0 moveto #3 { /x x dx add def - \ifPst@algebraic Func \else #4 \fi scy dup x dx sub scx exch lineto - x scx exch lineto x scx 0 lineto + \ifPst@algebraic Func \else #4 \fi scy dup x dx sub scx exch + \ifPst@noVerticalLines moveto \else lineto \fi + x scx exch lineto + x scx 0 \ifPst@noVerticalLines moveto \else lineto \fi } repeat \or % 2-> Riemann /eps3 100 def @@ -1324,8 +1330,12 @@ a add /dx dx scx def xMinMax aload length 3 div cvi { /yMax ED /yMin ED /x ED - x yMin moveto dx 0 rlineto x dx add yMax lineto - dx neg 0 rlineto x yMin lineto } repeat + x yMin moveto + dx 0 \ifPst@noVerticalLines rmoveto \else rlineto \fi + x dx add yMax lineto + dx neg 0 \ifPst@noVerticalLines rmoveto \else rlineto \fi + x yMin \ifPst@noVerticalLines moveto \else lineto \fi + } repeat \or % 3->inf(imum) x scx 0 moveto #3 { @@ -1334,8 +1344,9 @@ a add /x x dx add def \ifPst@algebraic Func \else #4 \fi /y1 ED % right value f(x+dx) y0 y1 lt { y0 }{ y1 } ifelse % use infimum - scy dup xOld scx exch lineto - x scx exch lineto x scx 0 lineto + scy dup xOld scx exch \ifPst@noVerticalLines moveto \else lineto \fi + x scx exch lineto + x scx 0 \ifPst@noVerticalLines moveto \else lineto \fi } repeat \or % 4-> sup(remum) x scx 0 moveto @@ -1344,8 +1355,9 @@ a add /x x dx add def \ifPst@algebraic Func \else #4 \fi /y1 ED % right value f(x+dx) y0 y1 gt { y0 }{ y1 } ifelse % use supremum - scy dup x dx sub scx exch lineto - x scx exch lineto x scx 0 lineto + scy dup x dx sub scx exch \ifPst@noVerticalLines moveto \else lineto \fi + x scx exch lineto + x scx 0 \ifPst@noVerticalLines moveto \else lineto \fi } repeat \fi }% |