diff options
Diffstat (limited to 'Master')
-rw-r--r-- | Master/texmf-dist/doc/latex/randomwalk/README | 6 | ||||
-rw-r--r-- | Master/texmf-dist/doc/latex/randomwalk/randomwalk.pdf | bin | 431500 -> 457902 bytes | |||
-rw-r--r-- | Master/texmf-dist/source/latex/randomwalk/randomwalk.dtx | 583 | ||||
-rw-r--r-- | Master/texmf-dist/tex/latex/randomwalk/randomwalk.sty | 376 |
4 files changed, 408 insertions, 557 deletions
diff --git a/Master/texmf-dist/doc/latex/randomwalk/README b/Master/texmf-dist/doc/latex/randomwalk/README index 834d1e34e41..a2d9741aeaa 100644 --- a/Master/texmf-dist/doc/latex/randomwalk/README +++ b/Master/texmf-dist/doc/latex/randomwalk/README @@ -1,6 +1,6 @@ ---------------------------------------------------------------- randomwalk --- cutomizable random walks using TikZ -E-mail: bruno@le-floch.fr +E-mail: blflatex@gmail.com Released under the LaTeX Project Public License v1.3c or later See http://www.latex-project.org/lppl.txt ---------------------------------------------------------------- @@ -9,9 +9,7 @@ The randomwalk package provides a user command, \RandomWalk, to draw random walks with a given number of steps. Lengths and angles of the steps can be customized in various ways. -This package uses TikZ. It also uses the expl3 and xpackages bundles -(it is an overkill in this case, but more people should use these, -to test them and get them to improve even more). +This package uses TikZ. It also uses the expl3 and xpackages bundles. This is work in progress, all suggestions/comments/bug reports are welcome! diff --git a/Master/texmf-dist/doc/latex/randomwalk/randomwalk.pdf b/Master/texmf-dist/doc/latex/randomwalk/randomwalk.pdf Binary files differindex 5030285f908..8ad6e1ed658 100644 --- a/Master/texmf-dist/doc/latex/randomwalk/randomwalk.pdf +++ b/Master/texmf-dist/doc/latex/randomwalk/randomwalk.pdf diff --git a/Master/texmf-dist/source/latex/randomwalk/randomwalk.dtx b/Master/texmf-dist/source/latex/randomwalk/randomwalk.dtx index bfa4327d28e..1e38dd7d3bf 100644 --- a/Master/texmf-dist/source/latex/randomwalk/randomwalk.dtx +++ b/Master/texmf-dist/source/latex/randomwalk/randomwalk.dtx @@ -14,13 +14,13 @@ \RequirePackage{l3names} %</driver|package> %\fi -\GetIdInfo$Id: randomwalk.dtx 1 2011-01-09 10:15:31Z blefloch $ +\GetIdInfo$Id: randomwalk.dtx 0.2 2011-09-09 10:15:31Z blefloch $ {Customizable Random Walks using TikZ}% %\iffalse %<*driver> %\fi -\ProvidesFile{\filename.\filenameext} - [\filedate\space v\fileversion\space\filedescription] +\ProvidesFile{\ExplFileName.dtx} + [\ExplFileDate\space v\ExplFileVersion\space\ExplFileDescription] %\iffalse \documentclass[full]{l3doc} \usepackage{randomwalk} @@ -30,21 +30,21 @@ \end{document} %</driver> % \fi -% -% +% +% % \title{The \textsf{randomwalk} package: \\ % customizable random walks using TikZ\thanks{This file has version -% number \fileversion, last revised \filedate.}} +% number \ExplFileVersion, last revised \ExplFileDate.}} % \author{Bruno Le Floch} -% \date{\filedate} +% \date{\ExplFileDate} % % \maketitle % \tableofcontents -% +% % \begin{documentation} % % \begin{abstract} -% +% % The |randomwalk| package draws random walks using TikZ. The following % parameters can be customized: % \begin{itemize} @@ -55,17 +55,17 @@ % uniformly distributed. % \end{itemize} % -% \end{abstract} -% -% +% \end{abstract} +% +% % \section{How to use it} -% +% % The |randomwalk| package has exactly one user command: |\RandomWalk|, % which takes a list of key-value pairs as its argument. A few examples: % \begin{verbatim} % \RandomWalk {number = 100, length = {4pt, 10pt}} % \RandomWalk {number = 100, angles = {0,60,120,180,240,300}, degree} -% \RandomWalk {number = 100, length = 2em, +% \RandomWalk {number = 100, length = 2em, % angles = {0,10,20,-10,-20}, degree, angles-relative} % \end{verbatim} % The simplest is to give a list of all the keys, and their meaning: @@ -78,20 +78,20 @@ % default |10pt|. The length of each step is a random element in this set % of possible dimensions. % -% \item |angles|: the polar angle for each step: a comma-separated list of +% \item |angles|: the polar angle for each step: a comma-separated list of % angles, and each step takes a random angle among the list. If this is not specified, then the angle is uniformly distributed along the circle. % % \item |degree|(|s|): specifies that the angles are given in degrees. % % \item |angles-relative|: instead of being absolute, the angles are relative % to the direction of the previous step. -% +% % \end{itemize} % % \begin{figure} % \begin{center} % \framebox{\RandomWalk {number = 400, length = {4pt, 10pt}}} -% \caption{The result of \texttt{RandomWalk\{number\ =\ +% \caption{The result of \texttt{RandomWalk\{number\ =\ % 400,\ length\ =\ \{4pt,\ 10pt\}\}}: a \(400\) steps long walk, % where each step has one of two lengths.} % \end{center} @@ -99,9 +99,9 @@ % % \begin{figure} % \begin{center} -% \framebox{\RandomWalk{number = 100, +% \framebox{\RandomWalk{number = 100, % angles = {0,60,120,180,240,300}, degrees}} -% \caption{The result of \texttt{\string\RandomWalk\{number\ =\ +% \caption{The result of \texttt{\string\RandomWalk\{number\ =\ % 100,\ angles\ =\ \{0,60,120,180,240,300\}, degrees\}}: angles % are constrained.} % \end{center} @@ -109,14 +109,14 @@ % % \begin{figure} % \begin{center} -% \framebox{\RandomWalk {number = 40, length = 1em, +% \framebox{\RandomWalk {number = 40, length = 1em, % angles = {0,15,30,-15,-30}, degree, angles-relative}} -% \caption{A last example: \texttt{\string\RandomWalk\ \{number\ =\ 100,\ -% length\ =\ 2em,\ angles\ =\ \{0,10,20,-10,-20\},\ +% \caption{A last example: \texttt{\string\RandomWalk\ \{number\ =\ 100,\ +% length\ =\ 2em,\ angles\ =\ \{0,10,20,-10,-20\},\ % degree,\ angles-relative\}}} % \end{center} % \end{figure} -% +% % \end{documentation} % % \begin{implementation} @@ -124,44 +124,45 @@ % \section{\pkg{randomwalk} implementation} % % \subsection{Packages} -% +% % The whole |expl3| bundle is loaded first, including Joseph Wright's % very useful package |l3fp.sty| for floating point calculations. -% +% %<*package> % \begin{macrocode} \ProvidesExplPackage - {\filename}{\filedate}{\fileversion}{\filedescription} + {\ExplFileName}{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription} \RequirePackage{expl3} \RequirePackage{xparse} % \end{macrocode} -% +% % I use some LaTeX2e packages: TikZ, for figures, and lcg for % random numbers. % \begin{macrocode} -\RequirePackage{tikz} +\RequirePackage{tikz} % \end{macrocode} % -% |lcg| needs to know the smallest and biggest random numbers that it -% should produce, |\c_rw_lcg_first| and |_last|. It will then store them in -% |\c@lcg@rand|: the |\c@| is there because of how \LaTeXe\ defines +% |lcg| needs to know the smallest and biggest random numbers that it +% should produce, |\c_rw_lcg_first| and |_last|. It will then store them in +% |\c@lcg@rand|: the |\c@| is there because of how \LaTeXe\ defines % counters. To make it clear that |\c| has a very special meaning here, % I do not follow \LaTeX3 naming conventions. % % The |lcg| package would support a range of \( 2^{31} - 1 \), but % |l3fp| constrains us to \(9\) digit numbers, so we take the closest % available power of \(2\), namely \( 536870911 = 2^{29} - 1 \). -% +% % \begin{macrocode} \int_const:Nn \c_rw_lcg_first_int {0} \int_const:Nn \c_rw_lcg_last_int {536870911} -\int_const:Nn \c_rw_lcg_range_int { - \c_rw_lcg_last_int - \c_rw_lcg_first_int -} -\RequirePackage [ - first= \c_rw_lcg_first_int, - last = \c_rw_lcg_last_int, - counter = lcg@rand ] +\int_const:Nn \c_rw_lcg_range_int + { \c_rw_lcg_last_int - \c_rw_lcg_first_int } +\RequirePackage + [ + first= \c_rw_lcg_first_int, + last = \c_rw_lcg_last_int, + counter = lcg@rand + ] { lcg } \rand % This \rand avoids some very odd bug. % \end{macrocode} @@ -170,385 +171,293 @@ % \begin{macrocode} \fp_const:Nn \c_rw_one_degree_fp {+1.74532925e-2} % \end{macrocode} -% +% % % \subsection{How the key-value list is treated} % -%\begin{macro}{\RandomWalk} -% The only user command is |\RandomWalk|: it simply does the setup, and -% calls the internal macro |\rw_walk:|. +% \begin{macro}{\RandomWalk} +% The only user command is |\RandomWalk|: it simply does the setup, and +% calls the internal macro |\rw_walk:|. % \begin{macrocode} -\DeclareDocumentCommand \RandomWalk { m } { - \rw_set_defaults: - \keys_set:nn { randomwalk } { #1 } - \rw_walk: -} +\DeclareDocumentCommand \RandomWalk { m } + { + \rw_set_defaults: + \keys_set:nn { randomwalk } { #1 } + \rw_walk: + } % \end{macrocode} -%\end{macro} -% -% -%\begin{macro}{\rw_Atype} -%\begin{macro}{\rw_Ltype} -%\begin{macro}{\l_rw_Aargs_tl} -%\begin{macro}{\l_rw_Largs_tl} -%\begin{macro}{\rw_set_defaults:} -% Currently, the package treats the length of steps, and the angle, -% completely independently. Later, we build a control sequence from some -% constant text and the content of the token list \cs{rw_Atype:}, and apply -% it to |\l_rw_Aargs_tl|. Same for \cs{rw_Ltype:}, applied to -% |\l_rw_Largs_tl| (why are \cs{rw_Atype:} and \cs{rw_Ltype:} implemented as -% control sequences and not token lists?). -% -% \cs{rw_set_defaults:} sets the default values before processing the user's -% key-value input. -% +% \end{macro} +% +% +% \begin{macro}{\g_rw_Ado_tl} +% \begin{macro}{\g_rw_Ldo_tl} +% \begin{macro}{\rw_set_defaults:} +% Currently, the package treats the length of steps, and the angle, +% completely independently. The token list \cs{g_rw_Ldo_tl} contains +% the action that should be done to decide the length of the next step, +% while the token list \cs{g_rw_Ado_tl} pertains to the angle. +% +% \cs{rw_set_defaults:} sets the default values before processing the user's +% key-value input. % \begin{macrocode} -\cs_new:Nn \rw_Atype: {} -\cs_new:Nn \rw_Ltype: {} -\tl_new:Nn \l_rw_Aargs_tl {} -\tl_new:Nn \l_rw_Largs_tl {} +\tl_new:N \g_rw_Ado_tl +\tl_new:N \g_rw_Ldo_tl +\bool_new:N \l_rw_A_relative_bool \bool_new:N \l_rw_revert_random_bool - -\cs_new:Nn \rw_set_defaults: -{ - \fp_set:Nn \l_rw_step_length_fp {10} - \int_set:Nn \l_rw_step_number_int {10} - \cs_set:Nn \rw_Atype: {interval:nn} - \tl_set:Nn \l_rw_Aargs_tl { {-\c_pi_fp} {\c_pi_fp} } - \cs_set:Nn \rw_Ltype: {fixed:n} - \tl_set:Nn \l_rw_Largs_tl {\l_rw_step_length_fp} - \bool_set_false:N \l_rw_revert_random_bool -} +\cs_new:Npn \rw_set_defaults: + { + \fp_set:Nn \l_rw_step_length_fp {10} + \int_set:Nn \l_rw_step_number_int {10} + \tl_gset:Nn \g_rw_Ado_tl { \rw_Ainterval:nn {-\c_pi_fp} {\c_pi_fp} } + \tl_gset:Nn \g_rw_Ldo_tl { \rw_Lfixed:n \l_rw_step_length_fp } %^^A bug? + \bool_set_false:N \l_rw_revert_random_bool + \bool_set_false:N \l_rw_A_relative_bool + } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} -% \end{macro} -% \end{macro} -% +% % \begin{macro}{\keys_define:nn} -% We introduce the keys for our package. +% We introduce the keys for the package. % \begin{macrocode} -\keys_define:nn { randomwalk } { - number .value_required:, - length .value_required:, - angles .value_required:, - number .code:n = {\int_set:Nn \l_rw_step_number_int {#1}}, - length .code:n = { - \clist_clear:N \l_rw_lengths_clist - \clist_put_right:Nn \l_rw_lengths_clist {#1} - \tl_set:Nn \l_rw_Largs_tl {\l_rw_lengths_clist} - \rw_clist_fp_from_dim:N \l_rw_lengths_clist - \rw_clist_count:NN \l_rw_tmpa_int \l_rw_lengths_clist - \int_compare:nNnTF {\l_rw_tmpa_int}={1} - { - \cs_gset:Nn \rw_Ltype: {fixed:n} - } - { - \cs_gset:Nn \rw_Ltype: {list:N} - } - }, - angles .code:n = { - \clist_clear:N \l_rw_angles_clist - \clist_put_right:Nn \l_rw_angles_clist {#1} - \cs_gset:Nn \rw_Atype: {list:N} - \tl_set:Nn \l_rw_Aargs_tl {\l_rw_angles_clist} - }, - degree .code:n = {\rw_radians_from_degrees:N \l_rw_angles_clist}, - degrees .code:n = {\rw_radians_from_degrees:N \l_rw_angles_clist}, - angles-relative .code:n = {\cs_gset:Nx \rw_Atype: {rel_\rw_Atype:}}, - revert-random .bool_set:N = \l_rw_revert_random_bool, -} +\keys_define:nn { randomwalk } + { + number .value_required:, + length .value_required:, + angles .value_required:, + number .code:n = {\int_set:Nn \l_rw_step_number_int {#1}}, + length .code:n = + { + \clist_set:Nn \l_rw_lengths_clist {#1} + \rw_clist_fp_from_dim:N \l_rw_lengths_clist + \int_compare:nNnTF { \clist_length:N \l_rw_lengths_clist } = {1} + { \tl_gset:Nn \g_rw_Ldo_tl { \rw_Lfixed:n \l_rw_lengths_clist } } + { \tl_gset:Nn \g_rw_Ldo_tl { \rw_Llist:N \l_rw_lengths_clist } } + }, + angles .code:n = + { + \clist_set:Nn \l_rw_angles_clist {#1} + \tl_gset:Nn \g_rw_Ado_tl { \rw_Alist:N \l_rw_angles_clist } + }, + degree .code:n = { \rw_radians_from_degrees:N \l_rw_angles_clist }, + degrees .code:n = { \rw_radians_from_degrees:N \l_rw_angles_clist }, + angles-relative .code:n = { \bool_set_true:N \l_rw_A_relative_bool }, + revert-random .bool_set:N = \l_rw_revert_random_bool, + } % \end{macrocode} % \end{macro} % % % \subsection{Drawing} % -% \begin{macro}{\rw_walk:} -% We are ready to define |\rw_walk:|, which draws a TikZ picture of -% a random walk with the parameters set up by the |keys|. -% -% We reset all the coordinates to 0 originally. Then we draw the relevant -% TikZ picture by repeatedly calling |\rw_draw_step:|. -% +% \begin{macro}{\rw_walk:} +% We are ready to define |\rw_walk:|, which draws a TikZ picture of +% a random walk with the parameters set up by the |keys|. +% We reset all the coordinates to zero originally. Then we draw the relevant +% TikZ picture by repeatedly calling |\rw_step_draw:|. % \begin{macrocode} -\cs_new:Nn \rw_walk: -{ - \fp_set:Nn \l_rw_old_x_fp {0} - \fp_set:Nn \l_rw_old_y_fp {0} - \fp_set:Nn \l_rw_new_x_fp {0} - \fp_set:Nn \l_rw_new_y_fp {0} - \begin{tikzpicture} - \prg_stepwise_inline:nnnn {1}{1}{\l_rw_step_number_int} - { - \rw_step_draw: - } - \bool_if:NF \l_rw_revert_random_bool { - \global \cr@nd \cr@nd - } - \end{tikzpicture} -} +\cs_new:Npn \rw_walk: + { + \fp_zero:N \l_rw_old_x_fp + \fp_zero:N \l_rw_old_y_fp + \fp_zero:N \l_rw_new_x_fp + \fp_zero:N \l_rw_new_y_fp + \begin{tikzpicture} + \prg_replicate:nn { \l_rw_step_number_int } { \rw_step_draw: } + \bool_if:NF \l_rw_revert_random_bool + { \int_gset_eq:NN \cr@nd \cr@nd } + \end{tikzpicture} + } % \end{macrocode} -% \cs{cr@nd} is internal to the lcg package -% +% \cs{cr@nd} is internal to the lcg package. % \end{macro} -% +% % \begin{macro}{\rw_step_draw:} -% |\rw_step_draw:| passes its second argument \emph{with one level of -% braces removed} to its first argument, responsible for making a random -% step. Then, |\rw_step_draw:| draws the random step. -% \begin{macrocode} -\cs_new:Nn \rw_step_draw: -{ - \rw_step_random_generic:VV \l_rw_Largs_tl \l_rw_Aargs_tl - \fp_add:Nn \l_rw_new_x_fp {\l_rw_step_x_fp} - \fp_add:Nn \l_rw_new_y_fp {\l_rw_step_y_fp} - \draw (\fp_to_dim:N \l_rw_old_x_fp, \fp_to_dim:N \l_rw_old_y_fp) - -- (\fp_to_dim:N \l_rw_new_x_fp, \fp_to_dim:N \l_rw_new_y_fp); - \fp_set:Nn \l_rw_old_x_fp {\l_rw_new_x_fp} - \fp_set:Nn \l_rw_old_y_fp {\l_rw_new_y_fp} -} -% \end{macrocode} -% \end{macro} -% -% \begin{macro}{\rw_step_random_generic:nn} -% It is better to write a function that produces one random step. +% |\rw_step_draw:| passes its second argument \emph{with one level of +% braces removed} to its first argument, responsible for making a random +% step. Then, |\rw_step_draw:| draws the random step. % \begin{macrocode} -\cs_new:Nn \rw_step_random_generic:nn -{ - \cs:w rw_L \rw_Ltype: \cs_end: #1 - \cs:w rw_A \rw_Atype: \cs_end: #2 - \rw_step_build: -} -\cs_generate_variant:Nn \rw_step_random_generic:nn {VV} +\cs_new:Npn \rw_step_draw: + { + \g_rw_Ldo_tl + \g_rw_Ado_tl + \rw_cartesian_from_polar:NNNN + \l_rw_step_x_fp \l_rw_step_y_fp + \l_rw_radius_fp \l_rw_angle_fp + \fp_add:Nn \l_rw_new_x_fp { \l_rw_step_x_fp } + \fp_add:Nn \l_rw_new_y_fp { \l_rw_step_y_fp } + \draw ( \fp_to_dim:N \l_rw_old_x_fp, \fp_to_dim:N \l_rw_old_y_fp ) + -- ( \fp_to_dim:N \l_rw_new_x_fp, \fp_to_dim:N \l_rw_new_y_fp ); + \fp_set_eq:NN \l_rw_old_x_fp \l_rw_new_x_fp + \fp_set_eq:NN \l_rw_old_y_fp \l_rw_new_y_fp + } % \end{macrocode} % \end{macro} -% -% -% The next couple of macros store a random floating point in +% +% The next couple of macros store a random floating point in % |\l_rw_length_fp| or |\l_rw_angle_fp|. % % \begin{macro}{\rw_L..:.} -% First for the length of steps. +% First for the length of steps. % \begin{macrocode} -\cs_new:Nn \rw_Lfixed:n { - \fp_set:Nn \l_rw_radius_fp {#1} } -\cs_new:Nn \rw_Llist:N { - \rw_set_to_random_clist_element:NN \l_rw_radius_fp #1 } -\cs_new:Nn \rw_Linterval:nn { - \rw_set_to_random_fp:Nnn \l_rw_radius_fp {#1} {#2} } +\cs_new:Npn \rw_Lfixed:n #1 + { \fp_set:Nn \l_rw_radius_fp {#1} } +\cs_new:Npn \rw_Llist:N #1 + { \rw_set_to_random_clist_element:NN \l_rw_radius_fp #1 } +\cs_new:Npn \rw_Linterval:nn #1#2 + { \rw_set_to_random_fp:Nnn \l_rw_radius_fp {#1} {#2} } % \end{macrocode} % \end{macro} -% -% \begin{macro}{\rw_L..:.} -% Then for angles. -% \begin{macrocode} -\cs_new:Nn \rw_Ainterval:nn { - \rw_set_to_random_fp:Nnn \l_rw_angle_fp {#1} {#2} } -\cs_new:Nn \rw_Alist:N { - \rw_set_to_random_clist_element:NN \l_rw_angle_fp #1 } -\cs_new:Nn \rw_Arel_interval:nn { - \rw_add_to_random_fp:Nnn \l_rw_angle_fp {#1} {#2} } -\cs_new:Nn \rw_Arel_list:N { - \rw_add_to_random_clist_element:NN \l_rw_angle_fp #1 } -% \end{macrocode} -% \end{macro} -% % -% \begin{macro}{\rw_step_build:} -% And the operation to build the step from the random polar coordinates -% (these, we obtain via the |\rw_A...| and |\rw_L...| commands): -% +% \begin{macro}{\rw_A..:.} +% Then for angles. % \begin{macrocode} -\cs_new:Nn \rw_step_build: -{ - \rw_cartesian_from_polar:NNNN \l_rw_step_x_fp \l_rw_step_y_fp - \l_rw_radius_fp \l_rw_angle_fp -} +\cs_new:Npn \rw_Ainterval:nn #1#2 + { + \bool_if:NTF \l_rw_A_relative_bool + { \rw_add_to_random_fp:Nnn } + { \rw_set_to_random_fp:Nnn } + \l_rw_angle_fp {#1} {#2} + } +\cs_new:Npn \rw_Alist:N #1 + { + \bool_if:NTF \l_rw_A_relative_bool + { \rw_add_to_random_clist_element:NN } + { \rw_set_to_random_clist_element:NN } + \l_rw_angle_fp #1 + } % \end{macrocode} % \end{macro} -% -% \begin{macro}{\rw_cartesian_from_polar:NNNN} -% -% The four arguments of |\rw_cartesian_from_polar:NNNN| are -% \( (x, y, r, \theta) \): it sets \( (x, y) \) equal to the cartesian -% coordinates corresponding to a radius \(r\) and an angle \( \theta \). -% We also give a version with global assignments. % +% \begin{macro}{\rw_cartesian_from_polar:NNNN} +% The four arguments of |\rw_cartesian_from_polar:NNNN| are +% \( (x, y, r, \theta) \): it sets \( (x, y) \) equal to the cartesian +% coordinates corresponding to a radius \(r\) and an angle \( \theta \). +% We also give a version with global assignments. % \begin{macrocode} -\cs_new_protected:Nn \rw_cartesian_from_polar:NNNN -{ - \fp_cos:Nn #1 {\fp_use:N #4} - \fp_sin:Nn #2 {\fp_use:N #4} - \fp_mul:Nn #1 {\fp_use:N #3} - \fp_mul:Nn #2 {\fp_use:N #3} -} -\cs_new_protected:Nn \rw_gcartesian_from_polar:NNNN -{ - \fp_gcos:Nn #1 {\fp_use:N #4} - \fp_gsin:Nn #2 {\fp_use:N #4} - \fp_gmul:Nn #1 {\fp_use:N #3} - \fp_gmul:Nn #2 {\fp_use:N #3} -} +\cs_new_protected:Npn \rw_cartesian_from_polar:NNNN #1#2#3#4 + { + \fp_cos:Nn #1 {\fp_use:N #4} + \fp_sin:Nn #2 {\fp_use:N #4} + \fp_mul:Nn #1 {\fp_use:N #3} + \fp_mul:Nn #2 {\fp_use:N #3} + } +\cs_new_protected:Npn \rw_gcartesian_from_polar:NNNN #1#2#3#4 + { + \fp_gcos:Nn #1 {\fp_use:N #4} + \fp_gsin:Nn #2 {\fp_use:N #4} + \fp_gmul:Nn #1 {\fp_use:N #3} + \fp_gmul:Nn #2 {\fp_use:N #3} + } % \end{macrocode} % \end{macro} % % We cannot yet do the conversion in the other direction: |l3fp.dtx| does % not yet provide inverse trigonometric functions. But in fact, we do not % need this conversion, so let's stop worrying. -% +% % \subsection{On random numbers etc.} % % For random numbers, the interface of |lcg| is not quite enough, so we % provide our own \LaTeX3y functions. Also, this will allow us to change % quite easily our source of random numbers. -% +% % \begin{macrocode} -\cs_new:Nn \rw_set_to_random_int:Nnn -{ - \rand - \int_set:Nn #1 +\cs_new:Npn \rw_set_to_random_int:Nnn #1#2#3 { - \int_mod:nn {\c@lcg@rand} { (#3) - (#2) } + \rand + \int_set:Nn #1 { \int_mod:nn {\c@lcg@rand} { #3 - (#2) } } } -} % \end{macrocode} % We also need floating point random numbers. % \begin{macrocode} -\cs_new:Nn \rw_set_to_random_fp:Nnn -{ - \fp_set:Nn \l_rw_tmpa_fp {#3} - \fp_sub:Nn \l_rw_tmpa_fp {#2} - \rand - \fp_set:Nn \l_rw_tmpb_fp {\int_use:N \c@lcg@rand} - \fp_div:Nn \l_rw_tmpb_fp {\int_use:N \c_rw_lcg_range_int} - \fp_mul:Nn \l_rw_tmpa_fp {\l_rw_tmpb_fp} - \fp_add:Nn \l_rw_tmpa_fp {#2} - \fp_set:Nn #1 { \l_rw_tmpa_fp } -} -\cs_new:Nn \rw_add_to_random_fp:Nnn -{ - \fp_set:Nn \l_rw_tmpa_fp {#3} - \fp_sub:Nn \l_rw_tmpa_fp {#2} - \rand - \fp_set:Nn \l_rw_tmpb_fp {\int_use:N \c@lcg@rand} - \fp_div:Nn \l_rw_tmpb_fp {\int_use:N \c_rw_lcg_range_int} - \fp_mul:Nn \l_rw_tmpa_fp {\l_rw_tmpb_fp} - \fp_add:Nn \l_rw_tmpa_fp {#2} - \fp_add:Nn #1 { \l_rw_tmpa_fp } %here: mod? -} -% \end{macrocode} -% -% There does not seem to be any |clist|-counting implemented in \LaTeX3, so -% we do it ourselves. -% \begin{macrocode} -\cs_new:Nn \rw_clist_count:NN -{ - \int_set:Nn \l_rw_tmpa_int {0} - \clist_set_eq:NN \l_rw_tmpa_clist #2 - \bool_until_do:nn +\cs_new:Npn \rw_set_to_random_fp:Nnn #1#2#3 { - \clist_if_empty_p:N \l_rw_tmpa_clist - }{ - \clist_pop:NN \l_rw_tmpa_clist \l_rw_tmpa_toks - \int_add:Nn \l_rw_tmpa_int {1} + \fp_set:Nn \l_rw_tmpa_fp {#3} + \fp_sub:Nn \l_rw_tmpa_fp {#2} + \rand + \fp_set:Nn \l_rw_tmpb_fp { \int_use:N \c@lcg@rand } + \fp_div:Nn \l_rw_tmpb_fp { \int_use:N \c_rw_lcg_range_int } + \fp_mul:Nn \l_rw_tmpa_fp { \l_rw_tmpb_fp } + \fp_add:Nn \l_rw_tmpa_fp {#2} + \fp_set:Nn #1 { \l_rw_tmpa_fp } } - \int_set_eq:NN #1 \l_rw_tmpa_int -} -% \end{macrocode} -% -% We also pick the |n|-th element of a |clist|.\footnote{Is -% \textbackslash\texttt{l\_rw\_tmpa\_toks} a complete misnomer?} -% \begin{macrocode} -\cs_new:Nn \rw_clist_nth:NNn { - \int_set:Nn \l_rw_tmpa_int {#3} - \clist_set_eq:NN \l_rw_tmpa_clist #2 - \bool_until_do:nn +\cs_new:Npn \rw_add_to_random_fp:Nnn #1#2#3 { - \int_compare_p:nNn {\l_rw_tmpa_int}<{0} - }{ - \clist_pop:NN \l_rw_tmpa_clist \l_rw_tmpc_fp - \int_add:Nn \l_rw_tmpa_int {-1} + \fp_set:Nn \l_rw_tmpa_fp {#3} + \fp_sub:Nn \l_rw_tmpa_fp {#2} + \rand + \fp_set:Nn \l_rw_tmpb_fp { \int_use:N \c@lcg@rand } + \fp_div:Nn \l_rw_tmpb_fp { \int_use:N \c_rw_lcg_range_int } + \fp_mul:Nn \l_rw_tmpa_fp { \l_rw_tmpb_fp } + \fp_add:Nn \l_rw_tmpa_fp {#2} + \fp_add:Nn #1 { \l_rw_tmpa_fp } %here: mod? } - \fp_set:Nn #1 {\l_rw_tmpc_fp} -} % \end{macrocode} % % We can now pick an element at random from a comma-separated list % \begin{macrocode} -\cs_new:Nn \rw_set_to_random_clist_element:NN -{ - \rw_clist_count:NN \l_rw_tmpa_int #2 - \rw_set_to_random_int:Nnn \l_rw_tmpb_int {0} {\l_rw_tmpa_int} - \rw_clist_nth:NNn #1 #2 {\l_rw_tmpb_int} -} -\cs_new:Nn \rw_add_to_random_clist_element:NN -{ - \rw_clist_count:NN \l_rw_tmpa_int #2 - \rw_set_to_random_int:Nnn \l_rw_tmpb_int {0} {\l_rw_tmpa_int} - \rw_clist_nth:NNn \l_rw_tmpb_fp #2 {\l_rw_tmpb_int} - \fp_add:Nn #1 {\l_rw_tmpb_fp} -} +\cs_new:Npn \rw_set_to_random_clist_element:NN #1#2 + { + \rw_set_to_random_int:Nnn \l_rw_tmpb_int {0} { \clist_length:N #2 } + \fp_set:Nn #1 { \clist_item:Nn #2 { \l_rw_tmpb_int } } + } +\cs_new:Npn \rw_add_to_random_clist_element:NN #1#2 + { + \rw_set_to_random_int:Nnn \l_rw_tmpb_int {0} { \clist_length:N #2 } + \fp_add:Nn #1 { \clist_item:Nn #2 { \l_rw_tmpb_int } } + } % \end{macrocode} % +% \subsection{Other comma list operations} % More stuff on |clist|s. % \begin{macrocode} -\cs_new:Nn \rw_radians_from_degrees:N -{ - \clist_clear:N \l_rw_tmpa_clist - \bool_until_do:nn +\cs_new:Npn \rw_radians_from_degrees:N #1 { - \clist_if_empty_p:N #1 - }{ - \clist_pop:NN #1 \l_rw_tmpa_toks - \fp_set:Nn \l_rw_tmpa_fp {\l_rw_tmpa_toks} - \fp_mul:Nn \l_rw_tmpa_fp {\c_rw_one_degree_fp} - \clist_push:NV \l_rw_tmpa_clist \l_rw_tmpa_fp - } - \clist_put_right:NV #1 \l_rw_tmpa_clist -} - -\cs_new:Nn \rw_clist_fp_from_dim:N -{ - \clist_clear:N \l_rw_tmpa_clist - \bool_until_do:nn + \clist_clear:N \l_rw_tmpa_clist + \clist_map_inline:Nn #1 + { + \fp_set:Nn \l_rw_tmpa_fp {##1} + \fp_mul:Nn \l_rw_tmpa_fp { \c_rw_one_degree_fp } + \clist_push:NV \l_rw_tmpa_clist \l_rw_tmpa_fp + } + \clist_set_eq:NN #1 \l_rw_tmpa_clist + } +\cs_new:Npn \rw_clist_fp_from_dim:N #1 { - \clist_if_empty_p:N #1 - }{ - \clist_pop:NN #1 \l_rw_tmpa_toks - \fp_set_from_dim:Nn \l_rw_tmpa_fp {\l_rw_tmpa_toks} - \clist_push:NV \l_rw_tmpa_clist \l_rw_tmpa_fp - } - \clist_put_right:NV #1 \l_rw_tmpa_clist -} -% \end{macrocode} -% + \clist_clear:N \l_rw_tmpa_clist + \clist_map_inline:Nn #1 + { + \fp_set_from_dim:Nn \l_rw_tmpa_fp {##1} + \clist_push:NV \l_rw_tmpa_clist \l_rw_tmpa_fp + } + \clist_set_eq:NN #1 \l_rw_tmpa_clist + } +% \end{macrocode} +% +% \subsection{Variables} +% % We need a bunch of floating point numbers: each step line goes from the % |_old| point to the |_new| point. The coordinates |_add| are those of the -% vector from one to the next, so that |_new = _old + _add|. +% vector from one to the next, so that |_new = _old + _add|. % \begin{macrocode} -\fp_new:N \l_rw_old_x_fp -\fp_new:N \l_rw_old_y_fp -\fp_new:N \l_rw_step_x_fp -\fp_new:N \l_rw_step_y_fp -\fp_new:N \l_rw_new_x_fp -\fp_new:N \l_rw_new_y_fp +\fp_new:N \l_rw_old_x_fp +\fp_new:N \l_rw_old_y_fp +\fp_new:N \l_rw_step_x_fp +\fp_new:N \l_rw_step_y_fp +\fp_new:N \l_rw_new_x_fp +\fp_new:N \l_rw_new_y_fp \fp_new:N \l_rw_angle_fp \int_new:N \l_rw_step_number_int \clist_new:N \l_rw_angles_clist \clist_new:N \l_rw_lengths_clist - \fp_new:N \l_rw_tmpa_fp \fp_new:N \l_rw_tmpb_fp -\fp_new:N \l_rw_tmpc_fp \clist_new:N \l_rw_tmpa_clist -\clist_new:N \l_rw_tmpb_clist -\int_new:N \l_rw_tmpa_int \int_new:N \l_rw_tmpb_int -\int_new:N \l_rw_tmpc_int % \end{macrocode} -%</package> +%</package> % % \end{implementation} % diff --git a/Master/texmf-dist/tex/latex/randomwalk/randomwalk.sty b/Master/texmf-dist/tex/latex/randomwalk/randomwalk.sty index 2cfe747b6f5..be8fe93766d 100644 --- a/Master/texmf-dist/tex/latex/randomwalk/randomwalk.sty +++ b/Master/texmf-dist/tex/latex/randomwalk/randomwalk.sty @@ -23,238 +23,187 @@ %% %% ----------------------------------------------------------------------- \RequirePackage{l3names} -\GetIdInfo$Id: randomwalk.dtx 1 2011-01-09 10:15:31Z blefloch $ +\GetIdInfo$Id: randomwalk.dtx 0.2 2011-09-09 10:15:31Z blefloch $ {Customizable Random Walks using TikZ}% \ProvidesExplPackage - {\filename}{\filedate}{\fileversion}{\filedescription} + {\ExplFileName}{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription} \RequirePackage{expl3} \RequirePackage{xparse} \RequirePackage{tikz} \int_const:Nn \c_rw_lcg_first_int {0} \int_const:Nn \c_rw_lcg_last_int {536870911} -\int_const:Nn \c_rw_lcg_range_int { - \c_rw_lcg_last_int - \c_rw_lcg_first_int -} -\RequirePackage [ - first= \c_rw_lcg_first_int, - last = \c_rw_lcg_last_int, - counter = lcg@rand ] +\int_const:Nn \c_rw_lcg_range_int + { \c_rw_lcg_last_int - \c_rw_lcg_first_int } +\RequirePackage + [ + first= \c_rw_lcg_first_int, + last = \c_rw_lcg_last_int, + counter = lcg@rand + ] { lcg } \rand % This \rand avoids some very odd bug. \fp_const:Nn \c_rw_one_degree_fp {+1.74532925e-2} -\DeclareDocumentCommand \RandomWalk { m } { - \rw_set_defaults: - \keys_set:nn { randomwalk } { #1 } - \rw_walk: -} -\cs_new:Nn \rw_Atype: {} -\cs_new:Nn \rw_Ltype: {} -\tl_new:Nn \l_rw_Aargs_tl {} -\tl_new:Nn \l_rw_Largs_tl {} +\DeclareDocumentCommand \RandomWalk { m } + { + \rw_set_defaults: + \keys_set:nn { randomwalk } { #1 } + \rw_walk: + } +\tl_new:N \g_rw_Ado_tl +\tl_new:N \g_rw_Ldo_tl +\bool_new:N \l_rw_A_relative_bool \bool_new:N \l_rw_revert_random_bool - -\cs_new:Nn \rw_set_defaults: -{ - \fp_set:Nn \l_rw_step_length_fp {10} - \int_set:Nn \l_rw_step_number_int {10} - \cs_set:Nn \rw_Atype: {interval:nn} - \tl_set:Nn \l_rw_Aargs_tl { {-\c_pi_fp} {\c_pi_fp} } - \cs_set:Nn \rw_Ltype: {fixed:n} - \tl_set:Nn \l_rw_Largs_tl {\l_rw_step_length_fp} - \bool_set_false:N \l_rw_revert_random_bool -} -\keys_define:nn { randomwalk } { - number .value_required:, - length .value_required:, - angles .value_required:, - number .code:n = {\int_set:Nn \l_rw_step_number_int {#1}}, - length .code:n = { - \clist_clear:N \l_rw_lengths_clist - \clist_put_right:Nn \l_rw_lengths_clist {#1} - \tl_set:Nn \l_rw_Largs_tl {\l_rw_lengths_clist} - \rw_clist_fp_from_dim:N \l_rw_lengths_clist - \rw_clist_count:NN \l_rw_tmpa_int \l_rw_lengths_clist - \int_compare:nNnTF {\l_rw_tmpa_int}={1} - { - \cs_gset:Nn \rw_Ltype: {fixed:n} - } - { - \cs_gset:Nn \rw_Ltype: {list:N} - } - }, - angles .code:n = { - \clist_clear:N \l_rw_angles_clist - \clist_put_right:Nn \l_rw_angles_clist {#1} - \cs_gset:Nn \rw_Atype: {list:N} - \tl_set:Nn \l_rw_Aargs_tl {\l_rw_angles_clist} - }, - degree .code:n = {\rw_radians_from_degrees:N \l_rw_angles_clist}, - degrees .code:n = {\rw_radians_from_degrees:N \l_rw_angles_clist}, - angles-relative .code:n = {\cs_gset:Nx \rw_Atype: {rel_\rw_Atype:}}, - revert-random .bool_set:N = \l_rw_revert_random_bool, -} -\cs_new:Nn \rw_walk: -{ - \fp_set:Nn \l_rw_old_x_fp {0} - \fp_set:Nn \l_rw_old_y_fp {0} - \fp_set:Nn \l_rw_new_x_fp {0} - \fp_set:Nn \l_rw_new_y_fp {0} - \begin{tikzpicture} - \prg_stepwise_inline:nnnn {1}{1}{\l_rw_step_number_int} - { - \rw_step_draw: - } - \bool_if:NF \l_rw_revert_random_bool { - \global \cr@nd \cr@nd - } - \end{tikzpicture} -} -\cs_new:Nn \rw_step_draw: -{ - \rw_step_random_generic:VV \l_rw_Largs_tl \l_rw_Aargs_tl - \fp_add:Nn \l_rw_new_x_fp {\l_rw_step_x_fp} - \fp_add:Nn \l_rw_new_y_fp {\l_rw_step_y_fp} - \draw (\fp_to_dim:N \l_rw_old_x_fp, \fp_to_dim:N \l_rw_old_y_fp) - -- (\fp_to_dim:N \l_rw_new_x_fp, \fp_to_dim:N \l_rw_new_y_fp); - \fp_set:Nn \l_rw_old_x_fp {\l_rw_new_x_fp} - \fp_set:Nn \l_rw_old_y_fp {\l_rw_new_y_fp} -} -\cs_new:Nn \rw_step_random_generic:nn -{ - \cs:w rw_L \rw_Ltype: \cs_end: #1 - \cs:w rw_A \rw_Atype: \cs_end: #2 - \rw_step_build: -} -\cs_generate_variant:Nn \rw_step_random_generic:nn {VV} -\cs_new:Nn \rw_Lfixed:n { - \fp_set:Nn \l_rw_radius_fp {#1} } -\cs_new:Nn \rw_Llist:N { - \rw_set_to_random_clist_element:NN \l_rw_radius_fp #1 } -\cs_new:Nn \rw_Linterval:nn { - \rw_set_to_random_fp:Nnn \l_rw_radius_fp {#1} {#2} } -\cs_new:Nn \rw_Ainterval:nn { - \rw_set_to_random_fp:Nnn \l_rw_angle_fp {#1} {#2} } -\cs_new:Nn \rw_Alist:N { - \rw_set_to_random_clist_element:NN \l_rw_angle_fp #1 } -\cs_new:Nn \rw_Arel_interval:nn { - \rw_add_to_random_fp:Nnn \l_rw_angle_fp {#1} {#2} } -\cs_new:Nn \rw_Arel_list:N { - \rw_add_to_random_clist_element:NN \l_rw_angle_fp #1 } -\cs_new:Nn \rw_step_build: -{ - \rw_cartesian_from_polar:NNNN \l_rw_step_x_fp \l_rw_step_y_fp - \l_rw_radius_fp \l_rw_angle_fp -} -\cs_new_protected:Nn \rw_cartesian_from_polar:NNNN -{ - \fp_cos:Nn #1 {\fp_use:N #4} - \fp_sin:Nn #2 {\fp_use:N #4} - \fp_mul:Nn #1 {\fp_use:N #3} - \fp_mul:Nn #2 {\fp_use:N #3} -} -\cs_new_protected:Nn \rw_gcartesian_from_polar:NNNN -{ - \fp_gcos:Nn #1 {\fp_use:N #4} - \fp_gsin:Nn #2 {\fp_use:N #4} - \fp_gmul:Nn #1 {\fp_use:N #3} - \fp_gmul:Nn #2 {\fp_use:N #3} -} -\cs_new:Nn \rw_set_to_random_int:Nnn -{ - \rand - \int_set:Nn #1 +\cs_new:Npn \rw_set_defaults: + { + \fp_set:Nn \l_rw_step_length_fp {10} + \int_set:Nn \l_rw_step_number_int {10} + \tl_gset:Nn \g_rw_Ado_tl { \rw_Ainterval:nn {-\c_pi_fp} {\c_pi_fp} } + \tl_gset:Nn \g_rw_Ldo_tl { \rw_Lfixed:n \l_rw_step_length_fp } %^^A bug? + \bool_set_false:N \l_rw_revert_random_bool + \bool_set_false:N \l_rw_A_relative_bool + } +\keys_define:nn { randomwalk } + { + number .value_required:, + length .value_required:, + angles .value_required:, + number .code:n = {\int_set:Nn \l_rw_step_number_int {#1}}, + length .code:n = + { + \clist_set:Nn \l_rw_lengths_clist {#1} + \rw_clist_fp_from_dim:N \l_rw_lengths_clist + \int_compare:nNnTF { \clist_length:N \l_rw_lengths_clist } = {1} + { \tl_gset:Nn \g_rw_Ldo_tl { \rw_Lfixed:n \l_rw_lengths_clist } } + { \tl_gset:Nn \g_rw_Ldo_tl { \rw_Llist:N \l_rw_lengths_clist } } + }, + angles .code:n = + { + \clist_set:Nn \l_rw_angles_clist {#1} + \tl_gset:Nn \g_rw_Ado_tl { \rw_Alist:N \l_rw_angles_clist } + }, + degree .code:n = { \rw_radians_from_degrees:N \l_rw_angles_clist }, + degrees .code:n = { \rw_radians_from_degrees:N \l_rw_angles_clist }, + angles-relative .code:n = { \bool_set_true:N \l_rw_A_relative_bool }, + revert-random .bool_set:N = \l_rw_revert_random_bool, + } +\cs_new:Npn \rw_walk: + { + \fp_zero:N \l_rw_old_x_fp + \fp_zero:N \l_rw_old_y_fp + \fp_zero:N \l_rw_new_x_fp + \fp_zero:N \l_rw_new_y_fp + \begin{tikzpicture} + \prg_replicate:nn { \l_rw_step_number_int } { \rw_step_draw: } + \bool_if:NF \l_rw_revert_random_bool + { \int_gset_eq:NN \cr@nd \cr@nd } + \end{tikzpicture} + } +\cs_new:Npn \rw_step_draw: + { + \g_rw_Ldo_tl + \g_rw_Ado_tl + \rw_cartesian_from_polar:NNNN + \l_rw_step_x_fp \l_rw_step_y_fp + \l_rw_radius_fp \l_rw_angle_fp + \fp_add:Nn \l_rw_new_x_fp { \l_rw_step_x_fp } + \fp_add:Nn \l_rw_new_y_fp { \l_rw_step_y_fp } + \draw ( \fp_to_dim:N \l_rw_old_x_fp, \fp_to_dim:N \l_rw_old_y_fp ) + -- ( \fp_to_dim:N \l_rw_new_x_fp, \fp_to_dim:N \l_rw_new_y_fp ); + \fp_set_eq:NN \l_rw_old_x_fp \l_rw_new_x_fp + \fp_set_eq:NN \l_rw_old_y_fp \l_rw_new_y_fp + } +\cs_new:Npn \rw_Lfixed:n #1 + { \fp_set:Nn \l_rw_radius_fp {#1} } +\cs_new:Npn \rw_Llist:N #1 + { \rw_set_to_random_clist_element:NN \l_rw_radius_fp #1 } +\cs_new:Npn \rw_Linterval:nn #1#2 + { \rw_set_to_random_fp:Nnn \l_rw_radius_fp {#1} {#2} } +\cs_new:Npn \rw_Ainterval:nn #1#2 + { + \bool_if:NTF \l_rw_A_relative_bool + { \rw_add_to_random_fp:Nnn } + { \rw_set_to_random_fp:Nnn } + \l_rw_angle_fp {#1} {#2} + } +\cs_new:Npn \rw_Alist:N #1 + { + \bool_if:NTF \l_rw_A_relative_bool + { \rw_add_to_random_clist_element:NN } + { \rw_set_to_random_clist_element:NN } + \l_rw_angle_fp #1 + } +\cs_new_protected:Npn \rw_cartesian_from_polar:NNNN #1#2#3#4 + { + \fp_cos:Nn #1 {\fp_use:N #4} + \fp_sin:Nn #2 {\fp_use:N #4} + \fp_mul:Nn #1 {\fp_use:N #3} + \fp_mul:Nn #2 {\fp_use:N #3} + } +\cs_new_protected:Npn \rw_gcartesian_from_polar:NNNN #1#2#3#4 + { + \fp_gcos:Nn #1 {\fp_use:N #4} + \fp_gsin:Nn #2 {\fp_use:N #4} + \fp_gmul:Nn #1 {\fp_use:N #3} + \fp_gmul:Nn #2 {\fp_use:N #3} + } +\cs_new:Npn \rw_set_to_random_int:Nnn #1#2#3 + { + \rand + \int_set:Nn #1 { \int_mod:nn {\c@lcg@rand} { #3 - (#2) } } + } +\cs_new:Npn \rw_set_to_random_fp:Nnn #1#2#3 + { + \fp_set:Nn \l_rw_tmpa_fp {#3} + \fp_sub:Nn \l_rw_tmpa_fp {#2} + \rand + \fp_set:Nn \l_rw_tmpb_fp { \int_use:N \c@lcg@rand } + \fp_div:Nn \l_rw_tmpb_fp { \int_use:N \c_rw_lcg_range_int } + \fp_mul:Nn \l_rw_tmpa_fp { \l_rw_tmpb_fp } + \fp_add:Nn \l_rw_tmpa_fp {#2} + \fp_set:Nn #1 { \l_rw_tmpa_fp } + } +\cs_new:Npn \rw_add_to_random_fp:Nnn #1#2#3 { - \int_mod:nn {\c@lcg@rand} { (#3) - (#2) } + \fp_set:Nn \l_rw_tmpa_fp {#3} + \fp_sub:Nn \l_rw_tmpa_fp {#2} + \rand + \fp_set:Nn \l_rw_tmpb_fp { \int_use:N \c@lcg@rand } + \fp_div:Nn \l_rw_tmpb_fp { \int_use:N \c_rw_lcg_range_int } + \fp_mul:Nn \l_rw_tmpa_fp { \l_rw_tmpb_fp } + \fp_add:Nn \l_rw_tmpa_fp {#2} + \fp_add:Nn #1 { \l_rw_tmpa_fp } %here: mod? } -} -\cs_new:Nn \rw_set_to_random_fp:Nnn -{ - \fp_set:Nn \l_rw_tmpa_fp {#3} - \fp_sub:Nn \l_rw_tmpa_fp {#2} - \rand - \fp_set:Nn \l_rw_tmpb_fp {\int_use:N \c@lcg@rand} - \fp_div:Nn \l_rw_tmpb_fp {\int_use:N \c_rw_lcg_range_int} - \fp_mul:Nn \l_rw_tmpa_fp {\l_rw_tmpb_fp} - \fp_add:Nn \l_rw_tmpa_fp {#2} - \fp_set:Nn #1 { \l_rw_tmpa_fp } -} -\cs_new:Nn \rw_add_to_random_fp:Nnn -{ - \fp_set:Nn \l_rw_tmpa_fp {#3} - \fp_sub:Nn \l_rw_tmpa_fp {#2} - \rand - \fp_set:Nn \l_rw_tmpb_fp {\int_use:N \c@lcg@rand} - \fp_div:Nn \l_rw_tmpb_fp {\int_use:N \c_rw_lcg_range_int} - \fp_mul:Nn \l_rw_tmpa_fp {\l_rw_tmpb_fp} - \fp_add:Nn \l_rw_tmpa_fp {#2} - \fp_add:Nn #1 { \l_rw_tmpa_fp } %here: mod? -} -\cs_new:Nn \rw_clist_count:NN -{ - \int_set:Nn \l_rw_tmpa_int {0} - \clist_set_eq:NN \l_rw_tmpa_clist #2 - \bool_until_do:nn +\cs_new:Npn \rw_set_to_random_clist_element:NN #1#2 { - \clist_if_empty_p:N \l_rw_tmpa_clist - }{ - \clist_pop:NN \l_rw_tmpa_clist \l_rw_tmpa_toks - \int_add:Nn \l_rw_tmpa_int {1} + \rw_set_to_random_int:Nnn \l_rw_tmpb_int {0} { \clist_length:N #2 } + \fp_set:Nn #1 { \clist_item:Nn #2 { \l_rw_tmpb_int } } } - \int_set_eq:NN #1 \l_rw_tmpa_int -} -\cs_new:Nn \rw_clist_nth:NNn { - \int_set:Nn \l_rw_tmpa_int {#3} - \clist_set_eq:NN \l_rw_tmpa_clist #2 - \bool_until_do:nn +\cs_new:Npn \rw_add_to_random_clist_element:NN #1#2 { - \int_compare_p:nNn {\l_rw_tmpa_int}<{0} - }{ - \clist_pop:NN \l_rw_tmpa_clist \l_rw_tmpc_fp - \int_add:Nn \l_rw_tmpa_int {-1} + \rw_set_to_random_int:Nnn \l_rw_tmpb_int {0} { \clist_length:N #2 } + \fp_add:Nn #1 { \clist_item:Nn #2 { \l_rw_tmpb_int } } } - \fp_set:Nn #1 {\l_rw_tmpc_fp} -} -\cs_new:Nn \rw_set_to_random_clist_element:NN -{ - \rw_clist_count:NN \l_rw_tmpa_int #2 - \rw_set_to_random_int:Nnn \l_rw_tmpb_int {0} {\l_rw_tmpa_int} - \rw_clist_nth:NNn #1 #2 {\l_rw_tmpb_int} -} -\cs_new:Nn \rw_add_to_random_clist_element:NN -{ - \rw_clist_count:NN \l_rw_tmpa_int #2 - \rw_set_to_random_int:Nnn \l_rw_tmpb_int {0} {\l_rw_tmpa_int} - \rw_clist_nth:NNn \l_rw_tmpb_fp #2 {\l_rw_tmpb_int} - \fp_add:Nn #1 {\l_rw_tmpb_fp} -} -\cs_new:Nn \rw_radians_from_degrees:N -{ - \clist_clear:N \l_rw_tmpa_clist - \bool_until_do:nn +\cs_new:Npn \rw_radians_from_degrees:N #1 { - \clist_if_empty_p:N #1 - }{ - \clist_pop:NN #1 \l_rw_tmpa_toks - \fp_set:Nn \l_rw_tmpa_fp {\l_rw_tmpa_toks} - \fp_mul:Nn \l_rw_tmpa_fp {\c_rw_one_degree_fp} - \clist_push:NV \l_rw_tmpa_clist \l_rw_tmpa_fp + \clist_clear:N \l_rw_tmpa_clist + \clist_map_inline:Nn #1 + { + \fp_set:Nn \l_rw_tmpa_fp {##1} + \fp_mul:Nn \l_rw_tmpa_fp { \c_rw_one_degree_fp } + \clist_push:NV \l_rw_tmpa_clist \l_rw_tmpa_fp + } + \clist_set_eq:NN #1 \l_rw_tmpa_clist } - \clist_put_right:NV #1 \l_rw_tmpa_clist -} - -\cs_new:Nn \rw_clist_fp_from_dim:N -{ - \clist_clear:N \l_rw_tmpa_clist - \bool_until_do:nn +\cs_new:Npn \rw_clist_fp_from_dim:N #1 { - \clist_if_empty_p:N #1 - }{ - \clist_pop:NN #1 \l_rw_tmpa_toks - \fp_set_from_dim:Nn \l_rw_tmpa_fp {\l_rw_tmpa_toks} - \clist_push:NV \l_rw_tmpa_clist \l_rw_tmpa_fp + \clist_clear:N \l_rw_tmpa_clist + \clist_map_inline:Nn #1 + { + \fp_set_from_dim:Nn \l_rw_tmpa_fp {##1} + \clist_push:NV \l_rw_tmpa_clist \l_rw_tmpa_fp + } + \clist_set_eq:NN #1 \l_rw_tmpa_clist } - \clist_put_right:NV #1 \l_rw_tmpa_clist -} \fp_new:N \l_rw_old_x_fp \fp_new:N \l_rw_old_y_fp \fp_new:N \l_rw_step_x_fp @@ -265,15 +214,10 @@ \int_new:N \l_rw_step_number_int \clist_new:N \l_rw_angles_clist \clist_new:N \l_rw_lengths_clist - \fp_new:N \l_rw_tmpa_fp \fp_new:N \l_rw_tmpb_fp -\fp_new:N \l_rw_tmpc_fp \clist_new:N \l_rw_tmpa_clist -\clist_new:N \l_rw_tmpb_clist -\int_new:N \l_rw_tmpa_int \int_new:N \l_rw_tmpb_int -\int_new:N \l_rw_tmpc_int %% %% %% End of file `randomwalk.sty'. |