summaryrefslogtreecommitdiff
path: root/Master/tlpkg/tlperl0/lib/bigrat.pl
diff options
context:
space:
mode:
Diffstat (limited to 'Master/tlpkg/tlperl0/lib/bigrat.pl')
-rwxr-xr-xMaster/tlpkg/tlperl0/lib/bigrat.pl155
1 files changed, 155 insertions, 0 deletions
diff --git a/Master/tlpkg/tlperl0/lib/bigrat.pl b/Master/tlpkg/tlperl0/lib/bigrat.pl
new file mode 100755
index 00000000000..2d3738f805b
--- /dev/null
+++ b/Master/tlpkg/tlperl0/lib/bigrat.pl
@@ -0,0 +1,155 @@
+package bigrat;
+require "bigint.pl";
+#
+# This library is no longer being maintained, and is included for backward
+# compatibility with Perl 4 programs which may require it.
+#
+# In particular, this should not be used as an example of modern Perl
+# programming techniques.
+#
+# Arbitrary size rational math package
+#
+# by Mark Biggar
+#
+# Input values to these routines consist of strings of the form
+# m|^\s*[+-]?[\d\s]+(/[\d\s]+)?$|.
+# Examples:
+# "+0/1" canonical zero value
+# "3" canonical value "+3/1"
+# " -123/123 123" canonical value "-1/1001"
+# "123 456/7890" canonical value "+20576/1315"
+# Output values always include a sign and no leading zeros or
+# white space.
+# This package makes use of the bigint package.
+# The string 'NaN' is used to represent the result when input arguments
+# that are not numbers, as well as the result of dividing by zero and
+# the sqrt of a negative number.
+# Extreamly naive algorthims are used.
+#
+# Routines provided are:
+#
+# rneg(RAT) return RAT negation
+# rabs(RAT) return RAT absolute value
+# rcmp(RAT,RAT) return CODE compare numbers (undef,<0,=0,>0)
+# radd(RAT,RAT) return RAT addition
+# rsub(RAT,RAT) return RAT subtraction
+# rmul(RAT,RAT) return RAT multiplication
+# rdiv(RAT,RAT) return RAT division
+# rmod(RAT) return (RAT,RAT) integer and fractional parts
+# rnorm(RAT) return RAT normalization
+# rsqrt(RAT, cycles) return RAT square root
+
+# Convert a number to the canonical string form m|^[+-]\d+/\d+|.
+sub main'rnorm { #(string) return rat_num
+ local($_) = @_;
+ s/\s+//g;
+ if (m#^([+-]?\d+)(/(\d*[1-9]0*))?$#) {
+ &norm($1, $3 ? $3 : '+1');
+ } else {
+ 'NaN';
+ }
+}
+
+# Normalize by reducing to lowest terms
+sub norm { #(bint, bint) return rat_num
+ local($num,$dom) = @_;
+ if ($num eq 'NaN') {
+ 'NaN';
+ } elsif ($dom eq 'NaN') {
+ 'NaN';
+ } elsif ($dom =~ /^[+-]?0+$/) {
+ 'NaN';
+ } else {
+ local($gcd) = &'bgcd($num,$dom);
+ $gcd =~ s/^-/+/;
+ if ($gcd ne '+1') {
+ $num = &'bdiv($num,$gcd);
+ $dom = &'bdiv($dom,$gcd);
+ } else {
+ $num = &'bnorm($num);
+ $dom = &'bnorm($dom);
+ }
+ substr($dom,$[,1) = '';
+ "$num/$dom";
+ }
+}
+
+# negation
+sub main'rneg { #(rat_num) return rat_num
+ local($_) = &'rnorm(@_);
+ tr/-+/+-/ if ($_ ne '+0/1');
+ $_;
+}
+
+# absolute value
+sub main'rabs { #(rat_num) return $rat_num
+ local($_) = &'rnorm(@_);
+ substr($_,$[,1) = '+' unless $_ eq 'NaN';
+ $_;
+}
+
+# multipication
+sub main'rmul { #(rat_num, rat_num) return rat_num
+ local($xn,$xd) = split('/',&'rnorm($_[$[]));
+ local($yn,$yd) = split('/',&'rnorm($_[$[+1]));
+ &norm(&'bmul($xn,$yn),&'bmul($xd,$yd));
+}
+
+# division
+sub main'rdiv { #(rat_num, rat_num) return rat_num
+ local($xn,$xd) = split('/',&'rnorm($_[$[]));
+ local($yn,$yd) = split('/',&'rnorm($_[$[+1]));
+ &norm(&'bmul($xn,$yd),&'bmul($xd,$yn));
+}
+
+# addition
+sub main'radd { #(rat_num, rat_num) return rat_num
+ local($xn,$xd) = split('/',&'rnorm($_[$[]));
+ local($yn,$yd) = split('/',&'rnorm($_[$[+1]));
+ &norm(&'badd(&'bmul($xn,$yd),&'bmul($yn,$xd)),&'bmul($xd,$yd));
+}
+
+# subtraction
+sub main'rsub { #(rat_num, rat_num) return rat_num
+ local($xn,$xd) = split('/',&'rnorm($_[$[]));
+ local($yn,$yd) = split('/',&'rnorm($_[$[+1]));
+ &norm(&'bsub(&'bmul($xn,$yd),&'bmul($yn,$xd)),&'bmul($xd,$yd));
+}
+
+# comparison
+sub main'rcmp { #(rat_num, rat_num) return cond_code
+ local($xn,$xd) = split('/',&'rnorm($_[$[]));
+ local($yn,$yd) = split('/',&'rnorm($_[$[+1]));
+ &bigint'cmp(&'bmul($xn,$yd),&'bmul($yn,$xd));
+}
+
+# int and frac parts
+sub main'rmod { #(rat_num) return (rat_num,rat_num)
+ local($xn,$xd) = split('/',&'rnorm(@_));
+ local($i,$f) = &'bdiv($xn,$xd);
+ if (wantarray) {
+ ("$i/1", "$f/$xd");
+ } else {
+ "$i/1";
+ }
+}
+
+# square root by Newtons method.
+# cycles specifies the number of iterations default: 5
+sub main'rsqrt { #(fnum_str[, cycles]) return fnum_str
+ local($x, $scale) = (&'rnorm($_[$[]), $_[$[+1]);
+ if ($x eq 'NaN') {
+ 'NaN';
+ } elsif ($x =~ /^-/) {
+ 'NaN';
+ } else {
+ local($gscale, $guess) = (0, '+1/1');
+ $scale = 5 if (!$scale);
+ while ($gscale++ < $scale) {
+ $guess = &'rmul(&'radd($guess,&'rdiv($x,$guess)),"+1/2");
+ }
+ "$guess"; # quotes necessary due to perl bug
+ }
+}
+
+1;