diff options
Diffstat (limited to 'Master/tlpkg/tlperl/lib/Math/Complex.pm')
-rwxr-xr-x | Master/tlpkg/tlperl/lib/Math/Complex.pm | 2093 |
1 files changed, 2093 insertions, 0 deletions
diff --git a/Master/tlpkg/tlperl/lib/Math/Complex.pm b/Master/tlpkg/tlperl/lib/Math/Complex.pm new file mode 100755 index 00000000000..8475a2b5d09 --- /dev/null +++ b/Master/tlpkg/tlperl/lib/Math/Complex.pm @@ -0,0 +1,2093 @@ +# +# Complex numbers and associated mathematical functions +# -- Raphael Manfredi Since Sep 1996 +# -- Jarkko Hietaniemi Since Mar 1997 +# -- Daniel S. Lewart Since Sep 1997 +# + +package Math::Complex; + +use strict; + +use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS $Inf $ExpInf); + +$VERSION = 1.56; + +use Config; + +BEGIN { + my %DBL_MAX = + ( + 4 => '1.70141183460469229e+38', + 8 => '1.7976931348623157e+308', + # AFAICT the 10, 12, and 16-byte long doubles + # all have the same maximum. + 10 => '1.1897314953572317650857593266280070162E+4932', + 12 => '1.1897314953572317650857593266280070162E+4932', + 16 => '1.1897314953572317650857593266280070162E+4932', + ); + my $nvsize = $Config{nvsize} || + ($Config{uselongdouble} && $Config{longdblsize}) || + $Config{doublesize}; + die "Math::Complex: Could not figure out nvsize\n" + unless defined $nvsize; + die "Math::Complex: Cannot not figure out max nv (nvsize = $nvsize)\n" + unless defined $DBL_MAX{$nvsize}; + my $DBL_MAX = eval $DBL_MAX{$nvsize}; + die "Math::Complex: Could not figure out max nv (nvsize = $nvsize)\n" + unless defined $DBL_MAX; + my $BIGGER_THAN_THIS = 1e30; # Must find something bigger than this. + if ($^O eq 'unicosmk') { + $Inf = $DBL_MAX; + } else { + local $SIG{FPE} = { }; + local $!; + # We do want an arithmetic overflow, Inf INF inf Infinity. + for my $t ( + 'exp(99999)', # Enough even with 128-bit long doubles. + 'inf', + 'Inf', + 'INF', + 'infinity', + 'Infinity', + 'INFINITY', + '1e99999', + ) { + local $^W = 0; + my $i = eval "$t+1.0"; + if (defined $i && $i > $BIGGER_THAN_THIS) { + $Inf = $i; + last; + } + } + $Inf = $DBL_MAX unless defined $Inf; # Oh well, close enough. + die "Math::Complex: Could not get Infinity" + unless $Inf > $BIGGER_THAN_THIS; + $ExpInf = exp(99999); + } + # print "# On this machine, Inf = '$Inf'\n"; +} + +use Scalar::Util qw(set_prototype); + +use warnings; +no warnings 'syntax'; # To avoid the (_) warnings. + +BEGIN { + # For certain functions that we override, in 5.10 or better + # we can set a smarter prototype that will handle the lexical $_ + # (also a 5.10+ feature). + if ($] >= 5.010000) { + set_prototype \&abs, '_'; + set_prototype \&cos, '_'; + set_prototype \&exp, '_'; + set_prototype \&log, '_'; + set_prototype \&sin, '_'; + set_prototype \&sqrt, '_'; + } +} + +my $i; +my %LOGN; + +# Regular expression for floating point numbers. +# These days we could use Scalar::Util::lln(), I guess. +my $gre = qr'\s*([\+\-]?(?:(?:(?:\d+(?:_\d+)*(?:\.\d*(?:_\d+)*)?|\.\d+(?:_\d+)*)(?:[eE][\+\-]?\d+(?:_\d+)*)?))|inf)'i; + +require Exporter; + +@ISA = qw(Exporter); + +my @trig = qw( + pi + tan + csc cosec sec cot cotan + asin acos atan + acsc acosec asec acot acotan + sinh cosh tanh + csch cosech sech coth cotanh + asinh acosh atanh + acsch acosech asech acoth acotanh + ); + +@EXPORT = (qw( + i Re Im rho theta arg + sqrt log ln + log10 logn cbrt root + cplx cplxe + atan2 + ), + @trig); + +my @pi = qw(pi pi2 pi4 pip2 pip4 Inf); + +@EXPORT_OK = @pi; + +%EXPORT_TAGS = ( + 'trig' => [@trig], + 'pi' => [@pi], +); + +use overload + '+' => \&_plus, + '-' => \&_minus, + '*' => \&_multiply, + '/' => \&_divide, + '**' => \&_power, + '==' => \&_numeq, + '<=>' => \&_spaceship, + 'neg' => \&_negate, + '~' => \&_conjugate, + 'abs' => \&abs, + 'sqrt' => \&sqrt, + 'exp' => \&exp, + 'log' => \&log, + 'sin' => \&sin, + 'cos' => \&cos, + 'tan' => \&tan, + 'atan2' => \&atan2, + '""' => \&_stringify; + +# +# Package "privates" +# + +my %DISPLAY_FORMAT = ('style' => 'cartesian', + 'polar_pretty_print' => 1); +my $eps = 1e-14; # Epsilon + +# +# Object attributes (internal): +# cartesian [real, imaginary] -- cartesian form +# polar [rho, theta] -- polar form +# c_dirty cartesian form not up-to-date +# p_dirty polar form not up-to-date +# display display format (package's global when not set) +# + +# Die on bad *make() arguments. + +sub _cannot_make { + die "@{[(caller(1))[3]]}: Cannot take $_[0] of '$_[1]'.\n"; +} + +sub _make { + my $arg = shift; + my ($p, $q); + + if ($arg =~ /^$gre$/) { + ($p, $q) = ($1, 0); + } elsif ($arg =~ /^(?:$gre)?$gre\s*i\s*$/) { + ($p, $q) = ($1 || 0, $2); + } elsif ($arg =~ /^\s*\(\s*$gre\s*(?:,\s*$gre\s*)?\)\s*$/) { + ($p, $q) = ($1, $2 || 0); + } + + if (defined $p) { + $p =~ s/^\+//; + $p =~ s/^(-?)inf$/"${1}9**9**9"/e; + $q =~ s/^\+//; + $q =~ s/^(-?)inf$/"${1}9**9**9"/e; + } + + return ($p, $q); +} + +sub _emake { + my $arg = shift; + my ($p, $q); + + if ($arg =~ /^\s*\[\s*$gre\s*(?:,\s*$gre\s*)?\]\s*$/) { + ($p, $q) = ($1, $2 || 0); + } elsif ($arg =~ m!^\s*\[\s*$gre\s*(?:,\s*([-+]?\d*\s*)?pi(?:/\s*(\d+))?\s*)?\]\s*$!) { + ($p, $q) = ($1, ($2 eq '-' ? -1 : ($2 || 1)) * pi() / ($3 || 1)); + } elsif ($arg =~ /^\s*\[\s*$gre\s*\]\s*$/) { + ($p, $q) = ($1, 0); + } elsif ($arg =~ /^\s*$gre\s*$/) { + ($p, $q) = ($1, 0); + } + + if (defined $p) { + $p =~ s/^\+//; + $q =~ s/^\+//; + $p =~ s/^(-?)inf$/"${1}9**9**9"/e; + $q =~ s/^(-?)inf$/"${1}9**9**9"/e; + } + + return ($p, $q); +} + +# +# ->make +# +# Create a new complex number (cartesian form) +# +sub make { + my $self = bless {}, shift; + my ($re, $im); + if (@_ == 0) { + ($re, $im) = (0, 0); + } elsif (@_ == 1) { + return (ref $self)->emake($_[0]) + if ($_[0] =~ /^\s*\[/); + ($re, $im) = _make($_[0]); + } elsif (@_ == 2) { + ($re, $im) = @_; + } + if (defined $re) { + _cannot_make("real part", $re) unless $re =~ /^$gre$/; + } + $im ||= 0; + _cannot_make("imaginary part", $im) unless $im =~ /^$gre$/; + $self->_set_cartesian([$re, $im ]); + $self->display_format('cartesian'); + + return $self; +} + +# +# ->emake +# +# Create a new complex number (exponential form) +# +sub emake { + my $self = bless {}, shift; + my ($rho, $theta); + if (@_ == 0) { + ($rho, $theta) = (0, 0); + } elsif (@_ == 1) { + return (ref $self)->make($_[0]) + if ($_[0] =~ /^\s*\(/ || $_[0] =~ /i\s*$/); + ($rho, $theta) = _emake($_[0]); + } elsif (@_ == 2) { + ($rho, $theta) = @_; + } + if (defined $rho && defined $theta) { + if ($rho < 0) { + $rho = -$rho; + $theta = ($theta <= 0) ? $theta + pi() : $theta - pi(); + } + } + if (defined $rho) { + _cannot_make("rho", $rho) unless $rho =~ /^$gre$/; + } + $theta ||= 0; + _cannot_make("theta", $theta) unless $theta =~ /^$gre$/; + $self->_set_polar([$rho, $theta]); + $self->display_format('polar'); + + return $self; +} + +sub new { &make } # For backward compatibility only. + +# +# cplx +# +# Creates a complex number from a (re, im) tuple. +# This avoids the burden of writing Math::Complex->make(re, im). +# +sub cplx { + return __PACKAGE__->make(@_); +} + +# +# cplxe +# +# Creates a complex number from a (rho, theta) tuple. +# This avoids the burden of writing Math::Complex->emake(rho, theta). +# +sub cplxe { + return __PACKAGE__->emake(@_); +} + +# +# pi +# +# The number defined as pi = 180 degrees +# +sub pi () { 4 * CORE::atan2(1, 1) } + +# +# pi2 +# +# The full circle +# +sub pi2 () { 2 * pi } + +# +# pi4 +# +# The full circle twice. +# +sub pi4 () { 4 * pi } + +# +# pip2 +# +# The quarter circle +# +sub pip2 () { pi / 2 } + +# +# pip4 +# +# The eighth circle. +# +sub pip4 () { pi / 4 } + +# +# _uplog10 +# +# Used in log10(). +# +sub _uplog10 () { 1 / CORE::log(10) } + +# +# i +# +# The number defined as i*i = -1; +# +sub i () { + return $i if ($i); + $i = bless {}; + $i->{'cartesian'} = [0, 1]; + $i->{'polar'} = [1, pip2]; + $i->{c_dirty} = 0; + $i->{p_dirty} = 0; + return $i; +} + +# +# _ip2 +# +# Half of i. +# +sub _ip2 () { i / 2 } + +# +# Attribute access/set routines +# + +sub _cartesian {$_[0]->{c_dirty} ? + $_[0]->_update_cartesian : $_[0]->{'cartesian'}} +sub _polar {$_[0]->{p_dirty} ? + $_[0]->_update_polar : $_[0]->{'polar'}} + +sub _set_cartesian { $_[0]->{p_dirty}++; $_[0]->{c_dirty} = 0; + $_[0]->{'cartesian'} = $_[1] } +sub _set_polar { $_[0]->{c_dirty}++; $_[0]->{p_dirty} = 0; + $_[0]->{'polar'} = $_[1] } + +# +# ->_update_cartesian +# +# Recompute and return the cartesian form, given accurate polar form. +# +sub _update_cartesian { + my $self = shift; + my ($r, $t) = @{$self->{'polar'}}; + $self->{c_dirty} = 0; + return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)]; +} + +# +# +# ->_update_polar +# +# Recompute and return the polar form, given accurate cartesian form. +# +sub _update_polar { + my $self = shift; + my ($x, $y) = @{$self->{'cartesian'}}; + $self->{p_dirty} = 0; + return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0; + return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y), + CORE::atan2($y, $x)]; +} + +# +# (_plus) +# +# Computes z1+z2. +# +sub _plus { + my ($z1, $z2, $regular) = @_; + my ($re1, $im1) = @{$z1->_cartesian}; + $z2 = cplx($z2) unless ref $z2; + my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); + unless (defined $regular) { + $z1->_set_cartesian([$re1 + $re2, $im1 + $im2]); + return $z1; + } + return (ref $z1)->make($re1 + $re2, $im1 + $im2); +} + +# +# (_minus) +# +# Computes z1-z2. +# +sub _minus { + my ($z1, $z2, $inverted) = @_; + my ($re1, $im1) = @{$z1->_cartesian}; + $z2 = cplx($z2) unless ref $z2; + my ($re2, $im2) = @{$z2->_cartesian}; + unless (defined $inverted) { + $z1->_set_cartesian([$re1 - $re2, $im1 - $im2]); + return $z1; + } + return $inverted ? + (ref $z1)->make($re2 - $re1, $im2 - $im1) : + (ref $z1)->make($re1 - $re2, $im1 - $im2); + +} + +# +# (_multiply) +# +# Computes z1*z2. +# +sub _multiply { + my ($z1, $z2, $regular) = @_; + if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { + # if both polar better use polar to avoid rounding errors + my ($r1, $t1) = @{$z1->_polar}; + my ($r2, $t2) = @{$z2->_polar}; + my $t = $t1 + $t2; + if ($t > pi()) { $t -= pi2 } + elsif ($t <= -pi()) { $t += pi2 } + unless (defined $regular) { + $z1->_set_polar([$r1 * $r2, $t]); + return $z1; + } + return (ref $z1)->emake($r1 * $r2, $t); + } else { + my ($x1, $y1) = @{$z1->_cartesian}; + if (ref $z2) { + my ($x2, $y2) = @{$z2->_cartesian}; + return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2); + } else { + return (ref $z1)->make($x1*$z2, $y1*$z2); + } + } +} + +# +# _divbyzero +# +# Die on division by zero. +# +sub _divbyzero { + my $mess = "$_[0]: Division by zero.\n"; + + if (defined $_[1]) { + $mess .= "(Because in the definition of $_[0], the divisor "; + $mess .= "$_[1] " unless ("$_[1]" eq '0'); + $mess .= "is 0)\n"; + } + + my @up = caller(1); + + $mess .= "Died at $up[1] line $up[2].\n"; + + die $mess; +} + +# +# (_divide) +# +# Computes z1/z2. +# +sub _divide { + my ($z1, $z2, $inverted) = @_; + if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { + # if both polar better use polar to avoid rounding errors + my ($r1, $t1) = @{$z1->_polar}; + my ($r2, $t2) = @{$z2->_polar}; + my $t; + if ($inverted) { + _divbyzero "$z2/0" if ($r1 == 0); + $t = $t2 - $t1; + if ($t > pi()) { $t -= pi2 } + elsif ($t <= -pi()) { $t += pi2 } + return (ref $z1)->emake($r2 / $r1, $t); + } else { + _divbyzero "$z1/0" if ($r2 == 0); + $t = $t1 - $t2; + if ($t > pi()) { $t -= pi2 } + elsif ($t <= -pi()) { $t += pi2 } + return (ref $z1)->emake($r1 / $r2, $t); + } + } else { + my ($d, $x2, $y2); + if ($inverted) { + ($x2, $y2) = @{$z1->_cartesian}; + $d = $x2*$x2 + $y2*$y2; + _divbyzero "$z2/0" if $d == 0; + return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d); + } else { + my ($x1, $y1) = @{$z1->_cartesian}; + if (ref $z2) { + ($x2, $y2) = @{$z2->_cartesian}; + $d = $x2*$x2 + $y2*$y2; + _divbyzero "$z1/0" if $d == 0; + my $u = ($x1*$x2 + $y1*$y2)/$d; + my $v = ($y1*$x2 - $x1*$y2)/$d; + return (ref $z1)->make($u, $v); + } else { + _divbyzero "$z1/0" if $z2 == 0; + return (ref $z1)->make($x1/$z2, $y1/$z2); + } + } + } +} + +# +# (_power) +# +# Computes z1**z2 = exp(z2 * log z1)). +# +sub _power { + my ($z1, $z2, $inverted) = @_; + if ($inverted) { + return 1 if $z1 == 0 || $z2 == 1; + return 0 if $z2 == 0 && Re($z1) > 0; + } else { + return 1 if $z2 == 0 || $z1 == 1; + return 0 if $z1 == 0 && Re($z2) > 0; + } + my $w = $inverted ? &exp($z1 * &log($z2)) + : &exp($z2 * &log($z1)); + # If both arguments cartesian, return cartesian, else polar. + return $z1->{c_dirty} == 0 && + (not ref $z2 or $z2->{c_dirty} == 0) ? + cplx(@{$w->_cartesian}) : $w; +} + +# +# (_spaceship) +# +# Computes z1 <=> z2. +# Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i. +# +sub _spaceship { + my ($z1, $z2, $inverted) = @_; + my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); + my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); + my $sgn = $inverted ? -1 : 1; + return $sgn * ($re1 <=> $re2) if $re1 != $re2; + return $sgn * ($im1 <=> $im2); +} + +# +# (_numeq) +# +# Computes z1 == z2. +# +# (Required in addition to _spaceship() because of NaNs.) +sub _numeq { + my ($z1, $z2, $inverted) = @_; + my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); + my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); + return $re1 == $re2 && $im1 == $im2 ? 1 : 0; +} + +# +# (_negate) +# +# Computes -z. +# +sub _negate { + my ($z) = @_; + if ($z->{c_dirty}) { + my ($r, $t) = @{$z->_polar}; + $t = ($t <= 0) ? $t + pi : $t - pi; + return (ref $z)->emake($r, $t); + } + my ($re, $im) = @{$z->_cartesian}; + return (ref $z)->make(-$re, -$im); +} + +# +# (_conjugate) +# +# Compute complex's _conjugate. +# +sub _conjugate { + my ($z) = @_; + if ($z->{c_dirty}) { + my ($r, $t) = @{$z->_polar}; + return (ref $z)->emake($r, -$t); + } + my ($re, $im) = @{$z->_cartesian}; + return (ref $z)->make($re, -$im); +} + +# +# (abs) +# +# Compute or set complex's norm (rho). +# +sub abs { + my ($z, $rho) = @_ ? @_ : $_; + unless (ref $z) { + if (@_ == 2) { + $_[0] = $_[1]; + } else { + return CORE::abs($z); + } + } + if (defined $rho) { + $z->{'polar'} = [ $rho, ${$z->_polar}[1] ]; + $z->{p_dirty} = 0; + $z->{c_dirty} = 1; + return $rho; + } else { + return ${$z->_polar}[0]; + } +} + +sub _theta { + my $theta = $_[0]; + + if ($$theta > pi()) { $$theta -= pi2 } + elsif ($$theta <= -pi()) { $$theta += pi2 } +} + +# +# arg +# +# Compute or set complex's argument (theta). +# +sub arg { + my ($z, $theta) = @_; + return $z unless ref $z; + if (defined $theta) { + _theta(\$theta); + $z->{'polar'} = [ ${$z->_polar}[0], $theta ]; + $z->{p_dirty} = 0; + $z->{c_dirty} = 1; + } else { + $theta = ${$z->_polar}[1]; + _theta(\$theta); + } + return $theta; +} + +# +# (sqrt) +# +# Compute sqrt(z). +# +# It is quite tempting to use wantarray here so that in list context +# sqrt() would return the two solutions. This, however, would +# break things like +# +# print "sqrt(z) = ", sqrt($z), "\n"; +# +# The two values would be printed side by side without no intervening +# whitespace, quite confusing. +# Therefore if you want the two solutions use the root(). +# +sub sqrt { + my ($z) = @_ ? $_[0] : $_; + my ($re, $im) = ref $z ? @{$z->_cartesian} : ($z, 0); + return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re) + if $im == 0; + my ($r, $t) = @{$z->_polar}; + return (ref $z)->emake(CORE::sqrt($r), $t/2); +} + +# +# cbrt +# +# Compute cbrt(z) (cubic root). +# +# Why are we not returning three values? The same answer as for sqrt(). +# +sub cbrt { + my ($z) = @_; + return $z < 0 ? + -CORE::exp(CORE::log(-$z)/3) : + ($z > 0 ? CORE::exp(CORE::log($z)/3): 0) + unless ref $z; + my ($r, $t) = @{$z->_polar}; + return 0 if $r == 0; + return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3); +} + +# +# _rootbad +# +# Die on bad root. +# +sub _rootbad { + my $mess = "Root '$_[0]' illegal, root rank must be positive integer.\n"; + + my @up = caller(1); + + $mess .= "Died at $up[1] line $up[2].\n"; + + die $mess; +} + +# +# root +# +# Computes all nth root for z, returning an array whose size is n. +# `n' must be a positive integer. +# +# The roots are given by (for k = 0..n-1): +# +# z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n)) +# +sub root { + my ($z, $n, $k) = @_; + _rootbad($n) if ($n < 1 or int($n) != $n); + my ($r, $t) = ref $z ? + @{$z->_polar} : (CORE::abs($z), $z >= 0 ? 0 : pi); + my $theta_inc = pi2 / $n; + my $rho = $r ** (1/$n); + my $cartesian = ref $z && $z->{c_dirty} == 0; + if (@_ == 2) { + my @root; + for (my $i = 0, my $theta = $t / $n; + $i < $n; + $i++, $theta += $theta_inc) { + my $w = cplxe($rho, $theta); + # Yes, $cartesian is loop invariant. + push @root, $cartesian ? cplx(@{$w->_cartesian}) : $w; + } + return @root; + } elsif (@_ == 3) { + my $w = cplxe($rho, $t / $n + $k * $theta_inc); + return $cartesian ? cplx(@{$w->_cartesian}) : $w; + } +} + +# +# Re +# +# Return or set Re(z). +# +sub Re { + my ($z, $Re) = @_; + return $z unless ref $z; + if (defined $Re) { + $z->{'cartesian'} = [ $Re, ${$z->_cartesian}[1] ]; + $z->{c_dirty} = 0; + $z->{p_dirty} = 1; + } else { + return ${$z->_cartesian}[0]; + } +} + +# +# Im +# +# Return or set Im(z). +# +sub Im { + my ($z, $Im) = @_; + return 0 unless ref $z; + if (defined $Im) { + $z->{'cartesian'} = [ ${$z->_cartesian}[0], $Im ]; + $z->{c_dirty} = 0; + $z->{p_dirty} = 1; + } else { + return ${$z->_cartesian}[1]; + } +} + +# +# rho +# +# Return or set rho(w). +# +sub rho { + Math::Complex::abs(@_); +} + +# +# theta +# +# Return or set theta(w). +# +sub theta { + Math::Complex::arg(@_); +} + +# +# (exp) +# +# Computes exp(z). +# +sub exp { + my ($z) = @_ ? @_ : $_; + return CORE::exp($z) unless ref $z; + my ($x, $y) = @{$z->_cartesian}; + return (ref $z)->emake(CORE::exp($x), $y); +} + +# +# _logofzero +# +# Die on logarithm of zero. +# +sub _logofzero { + my $mess = "$_[0]: Logarithm of zero.\n"; + + if (defined $_[1]) { + $mess .= "(Because in the definition of $_[0], the argument "; + $mess .= "$_[1] " unless ($_[1] eq '0'); + $mess .= "is 0)\n"; + } + + my @up = caller(1); + + $mess .= "Died at $up[1] line $up[2].\n"; + + die $mess; +} + +# +# (log) +# +# Compute log(z). +# +sub log { + my ($z) = @_ ? @_ : $_; + unless (ref $z) { + _logofzero("log") if $z == 0; + return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi); + } + my ($r, $t) = @{$z->_polar}; + _logofzero("log") if $r == 0; + if ($t > pi()) { $t -= pi2 } + elsif ($t <= -pi()) { $t += pi2 } + return (ref $z)->make(CORE::log($r), $t); +} + +# +# ln +# +# Alias for log(). +# +sub ln { Math::Complex::log(@_) } + +# +# log10 +# +# Compute log10(z). +# + +sub log10 { + return Math::Complex::log($_[0]) * _uplog10; +} + +# +# logn +# +# Compute logn(z,n) = log(z) / log(n) +# +sub logn { + my ($z, $n) = @_; + $z = cplx($z, 0) unless ref $z; + my $logn = $LOGN{$n}; + $logn = $LOGN{$n} = CORE::log($n) unless defined $logn; # Cache log(n) + return &log($z) / $logn; +} + +# +# (cos) +# +# Compute cos(z) = (exp(iz) + exp(-iz))/2. +# +sub cos { + my ($z) = @_ ? @_ : $_; + return CORE::cos($z) unless ref $z; + my ($x, $y) = @{$z->_cartesian}; + my $ey = CORE::exp($y); + my $sx = CORE::sin($x); + my $cx = CORE::cos($x); + my $ey_1 = $ey ? 1 / $ey : Inf(); + return (ref $z)->make($cx * ($ey + $ey_1)/2, + $sx * ($ey_1 - $ey)/2); +} + +# +# (sin) +# +# Compute sin(z) = (exp(iz) - exp(-iz))/2. +# +sub sin { + my ($z) = @_ ? @_ : $_; + return CORE::sin($z) unless ref $z; + my ($x, $y) = @{$z->_cartesian}; + my $ey = CORE::exp($y); + my $sx = CORE::sin($x); + my $cx = CORE::cos($x); + my $ey_1 = $ey ? 1 / $ey : Inf(); + return (ref $z)->make($sx * ($ey + $ey_1)/2, + $cx * ($ey - $ey_1)/2); +} + +# +# tan +# +# Compute tan(z) = sin(z) / cos(z). +# +sub tan { + my ($z) = @_; + my $cz = &cos($z); + _divbyzero "tan($z)", "cos($z)" if $cz == 0; + return &sin($z) / $cz; +} + +# +# sec +# +# Computes the secant sec(z) = 1 / cos(z). +# +sub sec { + my ($z) = @_; + my $cz = &cos($z); + _divbyzero "sec($z)", "cos($z)" if ($cz == 0); + return 1 / $cz; +} + +# +# csc +# +# Computes the cosecant csc(z) = 1 / sin(z). +# +sub csc { + my ($z) = @_; + my $sz = &sin($z); + _divbyzero "csc($z)", "sin($z)" if ($sz == 0); + return 1 / $sz; +} + +# +# cosec +# +# Alias for csc(). +# +sub cosec { Math::Complex::csc(@_) } + +# +# cot +# +# Computes cot(z) = cos(z) / sin(z). +# +sub cot { + my ($z) = @_; + my $sz = &sin($z); + _divbyzero "cot($z)", "sin($z)" if ($sz == 0); + return &cos($z) / $sz; +} + +# +# cotan +# +# Alias for cot(). +# +sub cotan { Math::Complex::cot(@_) } + +# +# acos +# +# Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). +# +sub acos { + my $z = $_[0]; + return CORE::atan2(CORE::sqrt(1-$z*$z), $z) + if (! ref $z) && CORE::abs($z) <= 1; + $z = cplx($z, 0) unless ref $z; + my ($x, $y) = @{$z->_cartesian}; + return 0 if $x == 1 && $y == 0; + my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); + my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); + my $alpha = ($t1 + $t2)/2; + my $beta = ($t1 - $t2)/2; + $alpha = 1 if $alpha < 1; + if ($beta > 1) { $beta = 1 } + elsif ($beta < -1) { $beta = -1 } + my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta); + my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); + $v = -$v if $y > 0 || ($y == 0 && $x < -1); + return (ref $z)->make($u, $v); +} + +# +# asin +# +# Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). +# +sub asin { + my $z = $_[0]; + return CORE::atan2($z, CORE::sqrt(1-$z*$z)) + if (! ref $z) && CORE::abs($z) <= 1; + $z = cplx($z, 0) unless ref $z; + my ($x, $y) = @{$z->_cartesian}; + return 0 if $x == 0 && $y == 0; + my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); + my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); + my $alpha = ($t1 + $t2)/2; + my $beta = ($t1 - $t2)/2; + $alpha = 1 if $alpha < 1; + if ($beta > 1) { $beta = 1 } + elsif ($beta < -1) { $beta = -1 } + my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta)); + my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); + $v = -$v if $y > 0 || ($y == 0 && $x < -1); + return (ref $z)->make($u, $v); +} + +# +# atan +# +# Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)). +# +sub atan { + my ($z) = @_; + return CORE::atan2($z, 1) unless ref $z; + my ($x, $y) = ref $z ? @{$z->_cartesian} : ($z, 0); + return 0 if $x == 0 && $y == 0; + _divbyzero "atan(i)" if ( $z == i); + _logofzero "atan(-i)" if (-$z == i); # -i is a bad file test... + my $log = &log((i + $z) / (i - $z)); + return _ip2 * $log; +} + +# +# asec +# +# Computes the arc secant asec(z) = acos(1 / z). +# +sub asec { + my ($z) = @_; + _divbyzero "asec($z)", $z if ($z == 0); + return acos(1 / $z); +} + +# +# acsc +# +# Computes the arc cosecant acsc(z) = asin(1 / z). +# +sub acsc { + my ($z) = @_; + _divbyzero "acsc($z)", $z if ($z == 0); + return asin(1 / $z); +} + +# +# acosec +# +# Alias for acsc(). +# +sub acosec { Math::Complex::acsc(@_) } + +# +# acot +# +# Computes the arc cotangent acot(z) = atan(1 / z) +# +sub acot { + my ($z) = @_; + _divbyzero "acot(0)" if $z == 0; + return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z) + unless ref $z; + _divbyzero "acot(i)" if ($z - i == 0); + _logofzero "acot(-i)" if ($z + i == 0); + return atan(1 / $z); +} + +# +# acotan +# +# Alias for acot(). +# +sub acotan { Math::Complex::acot(@_) } + +# +# cosh +# +# Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2. +# +sub cosh { + my ($z) = @_; + my $ex; + unless (ref $z) { + $ex = CORE::exp($z); + return $ex ? ($ex == $ExpInf ? Inf() : ($ex + 1/$ex)/2) : Inf(); + } + my ($x, $y) = @{$z->_cartesian}; + $ex = CORE::exp($x); + my $ex_1 = $ex ? 1 / $ex : Inf(); + return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2, + CORE::sin($y) * ($ex - $ex_1)/2); +} + +# +# sinh +# +# Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2. +# +sub sinh { + my ($z) = @_; + my $ex; + unless (ref $z) { + return 0 if $z == 0; + $ex = CORE::exp($z); + return $ex ? ($ex == $ExpInf ? Inf() : ($ex - 1/$ex)/2) : -Inf(); + } + my ($x, $y) = @{$z->_cartesian}; + my $cy = CORE::cos($y); + my $sy = CORE::sin($y); + $ex = CORE::exp($x); + my $ex_1 = $ex ? 1 / $ex : Inf(); + return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2, + CORE::sin($y) * ($ex + $ex_1)/2); +} + +# +# tanh +# +# Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z). +# +sub tanh { + my ($z) = @_; + my $cz = cosh($z); + _divbyzero "tanh($z)", "cosh($z)" if ($cz == 0); + my $sz = sinh($z); + return 1 if $cz == $sz; + return -1 if $cz == -$sz; + return $sz / $cz; +} + +# +# sech +# +# Computes the hyperbolic secant sech(z) = 1 / cosh(z). +# +sub sech { + my ($z) = @_; + my $cz = cosh($z); + _divbyzero "sech($z)", "cosh($z)" if ($cz == 0); + return 1 / $cz; +} + +# +# csch +# +# Computes the hyperbolic cosecant csch(z) = 1 / sinh(z). +# +sub csch { + my ($z) = @_; + my $sz = sinh($z); + _divbyzero "csch($z)", "sinh($z)" if ($sz == 0); + return 1 / $sz; +} + +# +# cosech +# +# Alias for csch(). +# +sub cosech { Math::Complex::csch(@_) } + +# +# coth +# +# Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z). +# +sub coth { + my ($z) = @_; + my $sz = sinh($z); + _divbyzero "coth($z)", "sinh($z)" if $sz == 0; + my $cz = cosh($z); + return 1 if $cz == $sz; + return -1 if $cz == -$sz; + return $cz / $sz; +} + +# +# cotanh +# +# Alias for coth(). +# +sub cotanh { Math::Complex::coth(@_) } + +# +# acosh +# +# Computes the area/inverse hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). +# +sub acosh { + my ($z) = @_; + unless (ref $z) { + $z = cplx($z, 0); + } + my ($re, $im) = @{$z->_cartesian}; + if ($im == 0) { + return CORE::log($re + CORE::sqrt($re*$re - 1)) + if $re >= 1; + return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re)) + if CORE::abs($re) < 1; + } + my $t = &sqrt($z * $z - 1) + $z; + # Try Taylor if looking bad (this usually means that + # $z was large negative, therefore the sqrt is really + # close to abs(z), summing that with z...) + $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) + if $t == 0; + my $u = &log($t); + $u->Im(-$u->Im) if $re < 0 && $im == 0; + return $re < 0 ? -$u : $u; +} + +# +# asinh +# +# Computes the area/inverse hyperbolic sine asinh(z) = log(z + sqrt(z*z+1)) +# +sub asinh { + my ($z) = @_; + unless (ref $z) { + my $t = $z + CORE::sqrt($z*$z + 1); + return CORE::log($t) if $t; + } + my $t = &sqrt($z * $z + 1) + $z; + # Try Taylor if looking bad (this usually means that + # $z was large negative, therefore the sqrt is really + # close to abs(z), summing that with z...) + $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) + if $t == 0; + return &log($t); +} + +# +# atanh +# +# Computes the area/inverse hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)). +# +sub atanh { + my ($z) = @_; + unless (ref $z) { + return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1; + $z = cplx($z, 0); + } + _divbyzero 'atanh(1)', "1 - $z" if (1 - $z == 0); + _logofzero 'atanh(-1)' if (1 + $z == 0); + return 0.5 * &log((1 + $z) / (1 - $z)); +} + +# +# asech +# +# Computes the area/inverse hyperbolic secant asech(z) = acosh(1 / z). +# +sub asech { + my ($z) = @_; + _divbyzero 'asech(0)', "$z" if ($z == 0); + return acosh(1 / $z); +} + +# +# acsch +# +# Computes the area/inverse hyperbolic cosecant acsch(z) = asinh(1 / z). +# +sub acsch { + my ($z) = @_; + _divbyzero 'acsch(0)', $z if ($z == 0); + return asinh(1 / $z); +} + +# +# acosech +# +# Alias for acosh(). +# +sub acosech { Math::Complex::acsch(@_) } + +# +# acoth +# +# Computes the area/inverse hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)). +# +sub acoth { + my ($z) = @_; + _divbyzero 'acoth(0)' if ($z == 0); + unless (ref $z) { + return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1; + $z = cplx($z, 0); + } + _divbyzero 'acoth(1)', "$z - 1" if ($z - 1 == 0); + _logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0); + return &log((1 + $z) / ($z - 1)) / 2; +} + +# +# acotanh +# +# Alias for acot(). +# +sub acotanh { Math::Complex::acoth(@_) } + +# +# (atan2) +# +# Compute atan(z1/z2), minding the right quadrant. +# +sub atan2 { + my ($z1, $z2, $inverted) = @_; + my ($re1, $im1, $re2, $im2); + if ($inverted) { + ($re1, $im1) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); + ($re2, $im2) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); + } else { + ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); + ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); + } + if ($im1 || $im2) { + # In MATLAB the imaginary parts are ignored. + # warn "atan2: Imaginary parts ignored"; + # http://documents.wolfram.com/mathematica/functions/ArcTan + # NOTE: Mathematica ArcTan[x,y] while atan2(y,x) + my $s = $z1 * $z1 + $z2 * $z2; + _divbyzero("atan2") if $s == 0; + my $i = &i; + my $r = $z2 + $z1 * $i; + return -$i * &log($r / &sqrt( $s )); + } + return CORE::atan2($re1, $re2); +} + +# +# display_format +# ->display_format +# +# Set (get if no argument) the display format for all complex numbers that +# don't happen to have overridden it via ->display_format +# +# When called as an object method, this actually sets the display format for +# the current object. +# +# Valid object formats are 'c' and 'p' for cartesian and polar. The first +# letter is used actually, so the type can be fully spelled out for clarity. +# +sub display_format { + my $self = shift; + my %display_format = %DISPLAY_FORMAT; + + if (ref $self) { # Called as an object method + if (exists $self->{display_format}) { + my %obj = %{$self->{display_format}}; + @display_format{keys %obj} = values %obj; + } + } + if (@_ == 1) { + $display_format{style} = shift; + } else { + my %new = @_; + @display_format{keys %new} = values %new; + } + + if (ref $self) { # Called as an object method + $self->{display_format} = { %display_format }; + return + wantarray ? + %{$self->{display_format}} : + $self->{display_format}->{style}; + } + + # Called as a class method + %DISPLAY_FORMAT = %display_format; + return + wantarray ? + %DISPLAY_FORMAT : + $DISPLAY_FORMAT{style}; +} + +# +# (_stringify) +# +# Show nicely formatted complex number under its cartesian or polar form, +# depending on the current display format: +# +# . If a specific display format has been recorded for this object, use it. +# . Otherwise, use the generic current default for all complex numbers, +# which is a package global variable. +# +sub _stringify { + my ($z) = shift; + + my $style = $z->display_format; + + $style = $DISPLAY_FORMAT{style} unless defined $style; + + return $z->_stringify_polar if $style =~ /^p/i; + return $z->_stringify_cartesian; +} + +# +# ->_stringify_cartesian +# +# Stringify as a cartesian representation 'a+bi'. +# +sub _stringify_cartesian { + my $z = shift; + my ($x, $y) = @{$z->_cartesian}; + my ($re, $im); + + my %format = $z->display_format; + my $format = $format{format}; + + if ($x) { + if ($x =~ /^NaN[QS]?$/i) { + $re = $x; + } else { + if ($x =~ /^-?\Q$Inf\E$/oi) { + $re = $x; + } else { + $re = defined $format ? sprintf($format, $x) : $x; + } + } + } else { + undef $re; + } + + if ($y) { + if ($y =~ /^(NaN[QS]?)$/i) { + $im = $y; + } else { + if ($y =~ /^-?\Q$Inf\E$/oi) { + $im = $y; + } else { + $im = + defined $format ? + sprintf($format, $y) : + ($y == 1 ? "" : ($y == -1 ? "-" : $y)); + } + } + $im .= "i"; + } else { + undef $im; + } + + my $str = $re; + + if (defined $im) { + if ($y < 0) { + $str .= $im; + } elsif ($y > 0 || $im =~ /^NaN[QS]?i$/i) { + $str .= "+" if defined $re; + $str .= $im; + } + } elsif (!defined $re) { + $str = "0"; + } + + return $str; +} + + +# +# ->_stringify_polar +# +# Stringify as a polar representation '[r,t]'. +# +sub _stringify_polar { + my $z = shift; + my ($r, $t) = @{$z->_polar}; + my $theta; + + my %format = $z->display_format; + my $format = $format{format}; + + if ($t =~ /^NaN[QS]?$/i || $t =~ /^-?\Q$Inf\E$/oi) { + $theta = $t; + } elsif ($t == pi) { + $theta = "pi"; + } elsif ($r == 0 || $t == 0) { + $theta = defined $format ? sprintf($format, $t) : $t; + } + + return "[$r,$theta]" if defined $theta; + + # + # Try to identify pi/n and friends. + # + + $t -= int(CORE::abs($t) / pi2) * pi2; + + if ($format{polar_pretty_print} && $t) { + my ($a, $b); + for $a (2..9) { + $b = $t * $a / pi; + if ($b =~ /^-?\d+$/) { + $b = $b < 0 ? "-" : "" if CORE::abs($b) == 1; + $theta = "${b}pi/$a"; + last; + } + } + } + + if (defined $format) { + $r = sprintf($format, $r); + $theta = sprintf($format, $theta) unless defined $theta; + } else { + $theta = $t unless defined $theta; + } + + return "[$r,$theta]"; +} + +sub Inf { + return $Inf; +} + +1; +__END__ + +=pod + +=head1 NAME + +Math::Complex - complex numbers and associated mathematical functions + +=head1 SYNOPSIS + + use Math::Complex; + + $z = Math::Complex->make(5, 6); + $t = 4 - 3*i + $z; + $j = cplxe(1, 2*pi/3); + +=head1 DESCRIPTION + +This package lets you create and manipulate complex numbers. By default, +I<Perl> limits itself to real numbers, but an extra C<use> statement brings +full complex support, along with a full set of mathematical functions +typically associated with and/or extended to complex numbers. + +If you wonder what complex numbers are, they were invented to be able to solve +the following equation: + + x*x = -1 + +and by definition, the solution is noted I<i> (engineers use I<j> instead since +I<i> usually denotes an intensity, but the name does not matter). The number +I<i> is a pure I<imaginary> number. + +The arithmetics with pure imaginary numbers works just like you would expect +it with real numbers... you just have to remember that + + i*i = -1 + +so you have: + + 5i + 7i = i * (5 + 7) = 12i + 4i - 3i = i * (4 - 3) = i + 4i * 2i = -8 + 6i / 2i = 3 + 1 / i = -i + +Complex numbers are numbers that have both a real part and an imaginary +part, and are usually noted: + + a + bi + +where C<a> is the I<real> part and C<b> is the I<imaginary> part. The +arithmetic with complex numbers is straightforward. You have to +keep track of the real and the imaginary parts, but otherwise the +rules used for real numbers just apply: + + (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i + (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i + +A graphical representation of complex numbers is possible in a plane +(also called the I<complex plane>, but it's really a 2D plane). +The number + + z = a + bi + +is the point whose coordinates are (a, b). Actually, it would +be the vector originating from (0, 0) to (a, b). It follows that the addition +of two complex numbers is a vectorial addition. + +Since there is a bijection between a point in the 2D plane and a complex +number (i.e. the mapping is unique and reciprocal), a complex number +can also be uniquely identified with polar coordinates: + + [rho, theta] + +where C<rho> is the distance to the origin, and C<theta> the angle between +the vector and the I<x> axis. There is a notation for this using the +exponential form, which is: + + rho * exp(i * theta) + +where I<i> is the famous imaginary number introduced above. Conversion +between this form and the cartesian form C<a + bi> is immediate: + + a = rho * cos(theta) + b = rho * sin(theta) + +which is also expressed by this formula: + + z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) + +In other words, it's the projection of the vector onto the I<x> and I<y> +axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta> +the I<argument> of the complex number. The I<norm> of C<z> is +marked here as C<abs(z)>. + +The polar notation (also known as the trigonometric representation) is +much more handy for performing multiplications and divisions of +complex numbers, whilst the cartesian notation is better suited for +additions and subtractions. Real numbers are on the I<x> axis, and +therefore I<y> or I<theta> is zero or I<pi>. + +All the common operations that can be performed on a real number have +been defined to work on complex numbers as well, and are merely +I<extensions> of the operations defined on real numbers. This means +they keep their natural meaning when there is no imaginary part, provided +the number is within their definition set. + +For instance, the C<sqrt> routine which computes the square root of +its argument is only defined for non-negative real numbers and yields a +non-negative real number (it is an application from B<R+> to B<R+>). +If we allow it to return a complex number, then it can be extended to +negative real numbers to become an application from B<R> to B<C> (the +set of complex numbers): + + sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i + +It can also be extended to be an application from B<C> to B<C>, +whilst its restriction to B<R> behaves as defined above by using +the following definition: + + sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) + +Indeed, a negative real number can be noted C<[x,pi]> (the modulus +I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative +number) and the above definition states that + + sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i + +which is exactly what we had defined for negative real numbers above. +The C<sqrt> returns only one of the solutions: if you want the both, +use the C<root> function. + +All the common mathematical functions defined on real numbers that +are extended to complex numbers share that same property of working +I<as usual> when the imaginary part is zero (otherwise, it would not +be called an extension, would it?). + +A I<new> operation possible on a complex number that is +the identity for real numbers is called the I<conjugate>, and is noted +with a horizontal bar above the number, or C<~z> here. + + z = a + bi + ~z = a - bi + +Simple... Now look: + + z * ~z = (a + bi) * (a - bi) = a*a + b*b + +We saw that the norm of C<z> was noted C<abs(z)> and was defined as the +distance to the origin, also known as: + + rho = abs(z) = sqrt(a*a + b*b) + +so + + z * ~z = abs(z) ** 2 + +If z is a pure real number (i.e. C<b == 0>), then the above yields: + + a * a = abs(a) ** 2 + +which is true (C<abs> has the regular meaning for real number, i.e. stands +for the absolute value). This example explains why the norm of C<z> is +noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet +is the regular C<abs> we know when the complex number actually has no +imaginary part... This justifies I<a posteriori> our use of the C<abs> +notation for the norm. + +=head1 OPERATIONS + +Given the following notations: + + z1 = a + bi = r1 * exp(i * t1) + z2 = c + di = r2 * exp(i * t2) + z = <any complex or real number> + +the following (overloaded) operations are supported on complex numbers: + + z1 + z2 = (a + c) + i(b + d) + z1 - z2 = (a - c) + i(b - d) + z1 * z2 = (r1 * r2) * exp(i * (t1 + t2)) + z1 / z2 = (r1 / r2) * exp(i * (t1 - t2)) + z1 ** z2 = exp(z2 * log z1) + ~z = a - bi + abs(z) = r1 = sqrt(a*a + b*b) + sqrt(z) = sqrt(r1) * exp(i * t/2) + exp(z) = exp(a) * exp(i * b) + log(z) = log(r1) + i*t + sin(z) = 1/2i (exp(i * z1) - exp(-i * z)) + cos(z) = 1/2 (exp(i * z1) + exp(-i * z)) + atan2(y, x) = atan(y / x) # Minding the right quadrant, note the order. + +The definition used for complex arguments of atan2() is + + -i log((x + iy)/sqrt(x*x+y*y)) + +Note that atan2(0, 0) is not well-defined. + +The following extra operations are supported on both real and complex +numbers: + + Re(z) = a + Im(z) = b + arg(z) = t + abs(z) = r + + cbrt(z) = z ** (1/3) + log10(z) = log(z) / log(10) + logn(z, n) = log(z) / log(n) + + tan(z) = sin(z) / cos(z) + + csc(z) = 1 / sin(z) + sec(z) = 1 / cos(z) + cot(z) = 1 / tan(z) + + asin(z) = -i * log(i*z + sqrt(1-z*z)) + acos(z) = -i * log(z + i*sqrt(1-z*z)) + atan(z) = i/2 * log((i+z) / (i-z)) + + acsc(z) = asin(1 / z) + asec(z) = acos(1 / z) + acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i)) + + sinh(z) = 1/2 (exp(z) - exp(-z)) + cosh(z) = 1/2 (exp(z) + exp(-z)) + tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z)) + + csch(z) = 1 / sinh(z) + sech(z) = 1 / cosh(z) + coth(z) = 1 / tanh(z) + + asinh(z) = log(z + sqrt(z*z+1)) + acosh(z) = log(z + sqrt(z*z-1)) + atanh(z) = 1/2 * log((1+z) / (1-z)) + + acsch(z) = asinh(1 / z) + asech(z) = acosh(1 / z) + acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1)) + +I<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>, +I<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>, +I<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>, +I<acosech>, I<acotanh>, respectively. C<Re>, C<Im>, C<arg>, C<abs>, +C<rho>, and C<theta> can be used also as mutators. The C<cbrt> +returns only one of the solutions: if you want all three, use the +C<root> function. + +The I<root> function is available to compute all the I<n> +roots of some complex, where I<n> is a strictly positive integer. +There are exactly I<n> such roots, returned as a list. Getting the +number mathematicians call C<j> such that: + + 1 + j + j*j = 0; + +is a simple matter of writing: + + $j = ((root(1, 3))[1]; + +The I<k>th root for C<z = [r,t]> is given by: + + (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n) + +You can return the I<k>th root directly by C<root(z, n, k)>, +indexing starting from I<zero> and ending at I<n - 1>. + +The I<spaceship> numeric comparison operator, E<lt>=E<gt>, is also +defined. In order to ensure its restriction to real numbers is conform +to what you would expect, the comparison is run on the real part of +the complex number first, and imaginary parts are compared only when +the real parts match. + +=head1 CREATION + +To create a complex number, use either: + + $z = Math::Complex->make(3, 4); + $z = cplx(3, 4); + +if you know the cartesian form of the number, or + + $z = 3 + 4*i; + +if you like. To create a number using the polar form, use either: + + $z = Math::Complex->emake(5, pi/3); + $x = cplxe(5, pi/3); + +instead. The first argument is the modulus, the second is the angle +(in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a +notation for complex numbers in the polar form). + +It is possible to write: + + $x = cplxe(-3, pi/4); + +but that will be silently converted into C<[3,-3pi/4]>, since the +modulus must be non-negative (it represents the distance to the origin +in the complex plane). + +It is also possible to have a complex number as either argument of the +C<make>, C<emake>, C<cplx>, and C<cplxe>: the appropriate component of +the argument will be used. + + $z1 = cplx(-2, 1); + $z2 = cplx($z1, 4); + +The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also +understand a single (string) argument of the forms + + 2-3i + -3i + [2,3] + [2,-3pi/4] + [2] + +in which case the appropriate cartesian and exponential components +will be parsed from the string and used to create new complex numbers. +The imaginary component and the theta, respectively, will default to zero. + +The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also +understand the case of no arguments: this means plain zero or (0, 0). + +=head1 DISPLAYING + +When printed, a complex number is usually shown under its cartesian +style I<a+bi>, but there are legitimate cases where the polar style +I<[r,t]> is more appropriate. The process of converting the complex +number into a string that can be displayed is known as I<stringification>. + +By calling the class method C<Math::Complex::display_format> and +supplying either C<"polar"> or C<"cartesian"> as an argument, you +override the default display style, which is C<"cartesian">. Not +supplying any argument returns the current settings. + +This default can be overridden on a per-number basis by calling the +C<display_format> method instead. As before, not supplying any argument +returns the current display style for this number. Otherwise whatever you +specify will be the new display style for I<this> particular number. + +For instance: + + use Math::Complex; + + Math::Complex::display_format('polar'); + $j = (root(1, 3))[1]; + print "j = $j\n"; # Prints "j = [1,2pi/3]" + $j->display_format('cartesian'); + print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i" + +The polar style attempts to emphasize arguments like I<k*pi/n> +(where I<n> is a positive integer and I<k> an integer within [-9, +9]), +this is called I<polar pretty-printing>. + +For the reverse of stringifying, see the C<make> and C<emake>. + +=head2 CHANGED IN PERL 5.6 + +The C<display_format> class method and the corresponding +C<display_format> object method can now be called using +a parameter hash instead of just a one parameter. + +The old display format style, which can have values C<"cartesian"> or +C<"polar">, can be changed using the C<"style"> parameter. + + $j->display_format(style => "polar"); + +The one parameter calling convention also still works. + + $j->display_format("polar"); + +There are two new display parameters. + +The first one is C<"format">, which is a sprintf()-style format string +to be used for both numeric parts of the complex number(s). The is +somewhat system-dependent but most often it corresponds to C<"%.15g">. +You can revert to the default by setting the C<format> to C<undef>. + + # the $j from the above example + + $j->display_format('format' => '%.5f'); + print "j = $j\n"; # Prints "j = -0.50000+0.86603i" + $j->display_format('format' => undef); + print "j = $j\n"; # Prints "j = -0.5+0.86603i" + +Notice that this affects also the return values of the +C<display_format> methods: in list context the whole parameter hash +will be returned, as opposed to only the style parameter value. +This is a potential incompatibility with earlier versions if you +have been calling the C<display_format> method in list context. + +The second new display parameter is C<"polar_pretty_print">, which can +be set to true or false, the default being true. See the previous +section for what this means. + +=head1 USAGE + +Thanks to overloading, the handling of arithmetics with complex numbers +is simple and almost transparent. + +Here are some examples: + + use Math::Complex; + + $j = cplxe(1, 2*pi/3); # $j ** 3 == 1 + print "j = $j, j**3 = ", $j ** 3, "\n"; + print "1 + j + j**2 = ", 1 + $j + $j**2, "\n"; + + $z = -16 + 0*i; # Force it to be a complex + print "sqrt($z) = ", sqrt($z), "\n"; + + $k = exp(i * 2*pi/3); + print "$j - $k = ", $j - $k, "\n"; + + $z->Re(3); # Re, Im, arg, abs, + $j->arg(2); # (the last two aka rho, theta) + # can be used also as mutators. + +=head1 CONSTANTS + +=head2 PI + +The constant C<pi> and some handy multiples of it (pi2, pi4, +and pip2 (pi/2) and pip4 (pi/4)) are also available if separately +exported: + + use Math::Complex ':pi'; + $third_of_circle = pi2 / 3; + +=head2 Inf + +The floating point infinity can be exported as a subroutine Inf(): + + use Math::Complex qw(Inf sinh); + my $AlsoInf = Inf() + 42; + my $AnotherInf = sinh(1e42); + print "$AlsoInf is $AnotherInf\n" if $AlsoInf == $AnotherInf; + +Note that the stringified form of infinity varies between platforms: +it can be for example any of + + inf + infinity + INF + 1.#INF + +or it can be something else. + +Also note that in some platforms trying to use the infinity in +arithmetic operations may result in Perl crashing because using +an infinity causes SIGFPE or its moral equivalent to be sent. +The way to ignore this is + + local $SIG{FPE} = sub { }; + +=head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO + +The division (/) and the following functions + + log ln log10 logn + tan sec csc cot + atan asec acsc acot + tanh sech csch coth + atanh asech acsch acoth + +cannot be computed for all arguments because that would mean dividing +by zero or taking logarithm of zero. These situations cause fatal +runtime errors looking like this + + cot(0): Division by zero. + (Because in the definition of cot(0), the divisor sin(0) is 0) + Died at ... + +or + + atanh(-1): Logarithm of zero. + Died at... + +For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>, +C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the +logarithmic functions and the C<atanh>, C<acoth>, the argument cannot +be C<1> (one). For the C<atanh>, C<acoth>, the argument cannot be +C<-1> (minus one). For the C<atan>, C<acot>, the argument cannot be +C<i> (the imaginary unit). For the C<atan>, C<acoth>, the argument +cannot be C<-i> (the negative imaginary unit). For the C<tan>, +C<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k> +is any integer. atan2(0, 0) is undefined, and if the complex arguments +are used for atan2(), a division by zero will happen if z1**2+z2**2 == 0. + +Note that because we are operating on approximations of real numbers, +these errors can happen when merely `too close' to the singularities +listed above. + +=head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS + +The C<make> and C<emake> accept both real and complex arguments. +When they cannot recognize the arguments they will die with error +messages like the following + + Math::Complex::make: Cannot take real part of ... + Math::Complex::make: Cannot take real part of ... + Math::Complex::emake: Cannot take rho of ... + Math::Complex::emake: Cannot take theta of ... + +=head1 BUGS + +Saying C<use Math::Complex;> exports many mathematical routines in the +caller environment and even overrides some (C<sqrt>, C<log>, C<atan2>). +This is construed as a feature by the Authors, actually... ;-) + +All routines expect to be given real or complex numbers. Don't attempt to +use BigFloat, since Perl has currently no rule to disambiguate a '+' +operation (for instance) between two overloaded entities. + +In Cray UNICOS there is some strange numerical instability that results +in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast. Beware. +The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex. +Whatever it is, it does not manifest itself anywhere else where Perl runs. + +=head1 SEE ALSO + +L<Math::Trig> + +=head1 AUTHORS + +Daniel S. Lewart <F<lewart!at!uiuc.edu>> +Jarkko Hietaniemi <F<jhi!at!iki.fi>> +Raphael Manfredi <F<Raphael_Manfredi!at!pobox.com>> + +=head1 LICENSE + +This library is free software; you can redistribute it and/or modify +it under the same terms as Perl itself. + +=cut + +1; + +# eof |