diff options
Diffstat (limited to 'Master/tlpkg/tlperl/lib/Benchmark.pm')
-rw-r--r-- | Master/tlpkg/tlperl/lib/Benchmark.pm | 1044 |
1 files changed, 1044 insertions, 0 deletions
diff --git a/Master/tlpkg/tlperl/lib/Benchmark.pm b/Master/tlpkg/tlperl/lib/Benchmark.pm new file mode 100644 index 00000000000..269674cfda5 --- /dev/null +++ b/Master/tlpkg/tlperl/lib/Benchmark.pm @@ -0,0 +1,1044 @@ +package Benchmark; + +use strict; + + +=head1 NAME + +Benchmark - benchmark running times of Perl code + +=head1 SYNOPSIS + + use Benchmark qw(:all) ; + + timethis ($count, "code"); + + # Use Perl code in strings... + timethese($count, { + 'Name1' => '...code1...', + 'Name2' => '...code2...', + }); + + # ... or use subroutine references. + timethese($count, { + 'Name1' => sub { ...code1... }, + 'Name2' => sub { ...code2... }, + }); + + # cmpthese can be used both ways as well + cmpthese($count, { + 'Name1' => '...code1...', + 'Name2' => '...code2...', + }); + + cmpthese($count, { + 'Name1' => sub { ...code1... }, + 'Name2' => sub { ...code2... }, + }); + + # ...or in two stages + $results = timethese($count, + { + 'Name1' => sub { ...code1... }, + 'Name2' => sub { ...code2... }, + }, + 'none' + ); + cmpthese( $results ) ; + + $t = timeit($count, '...other code...') + print "$count loops of other code took:",timestr($t),"\n"; + + $t = countit($time, '...other code...') + $count = $t->iters ; + print "$count loops of other code took:",timestr($t),"\n"; + + # enable hires wallclock timing if possible + use Benchmark ':hireswallclock'; + +=head1 DESCRIPTION + +The Benchmark module encapsulates a number of routines to help you +figure out how long it takes to execute some code. + +timethis - run a chunk of code several times + +timethese - run several chunks of code several times + +cmpthese - print results of timethese as a comparison chart + +timeit - run a chunk of code and see how long it goes + +countit - see how many times a chunk of code runs in a given time + + +=head2 Methods + +=over 10 + +=item new + +Returns the current time. Example: + + use Benchmark; + $t0 = Benchmark->new; + # ... your code here ... + $t1 = Benchmark->new; + $td = timediff($t1, $t0); + print "the code took:",timestr($td),"\n"; + +=item debug + +Enables or disable debugging by setting the C<$Benchmark::Debug> flag: + + Benchmark->debug(1); + $t = timeit(10, ' 5 ** $Global '); + Benchmark->debug(0); + +=item iters + +Returns the number of iterations. + +=back + +=head2 Standard Exports + +The following routines will be exported into your namespace +if you use the Benchmark module: + +=over 10 + +=item timeit(COUNT, CODE) + +Arguments: COUNT is the number of times to run the loop, and CODE is +the code to run. CODE may be either a code reference or a string to +be eval'd; either way it will be run in the caller's package. + +Returns: a Benchmark object. + +=item timethis ( COUNT, CODE, [ TITLE, [ STYLE ]] ) + +Time COUNT iterations of CODE. CODE may be a string to eval or a +code reference; either way the CODE will run in the caller's package. +Results will be printed to STDOUT as TITLE followed by the times. +TITLE defaults to "timethis COUNT" if none is provided. STYLE +determines the format of the output, as described for timestr() below. + +The COUNT can be zero or negative: this means the I<minimum number of +CPU seconds> to run. A zero signifies the default of 3 seconds. For +example to run at least for 10 seconds: + + timethis(-10, $code) + +or to run two pieces of code tests for at least 3 seconds: + + timethese(0, { test1 => '...', test2 => '...'}) + +CPU seconds is, in UNIX terms, the user time plus the system time of +the process itself, as opposed to the real (wallclock) time and the +time spent by the child processes. Less than 0.1 seconds is not +accepted (-0.01 as the count, for example, will cause a fatal runtime +exception). + +Note that the CPU seconds is the B<minimum> time: CPU scheduling and +other operating system factors may complicate the attempt so that a +little bit more time is spent. The benchmark output will, however, +also tell the number of C<$code> runs/second, which should be a more +interesting number than the actually spent seconds. + +Returns a Benchmark object. + +=item timethese ( COUNT, CODEHASHREF, [ STYLE ] ) + +The CODEHASHREF is a reference to a hash containing names as keys +and either a string to eval or a code reference for each value. +For each (KEY, VALUE) pair in the CODEHASHREF, this routine will +call + + timethis(COUNT, VALUE, KEY, STYLE) + +The routines are called in string comparison order of KEY. + +The COUNT can be zero or negative, see timethis(). + +Returns a hash reference of Benchmark objects, keyed by name. + +=item timediff ( T1, T2 ) + +Returns the difference between two Benchmark times as a Benchmark +object suitable for passing to timestr(). + +=item timestr ( TIMEDIFF, [ STYLE, [ FORMAT ] ] ) + +Returns a string that formats the times in the TIMEDIFF object in +the requested STYLE. TIMEDIFF is expected to be a Benchmark object +similar to that returned by timediff(). + +STYLE can be any of 'all', 'none', 'noc', 'nop' or 'auto'. 'all' shows +each of the 5 times available ('wallclock' time, user time, system time, +user time of children, and system time of children). 'noc' shows all +except the two children times. 'nop' shows only wallclock and the +two children times. 'auto' (the default) will act as 'all' unless +the children times are both zero, in which case it acts as 'noc'. +'none' prevents output. + +FORMAT is the L<printf(3)>-style format specifier (without the +leading '%') to use to print the times. It defaults to '5.2f'. + +=back + +=head2 Optional Exports + +The following routines will be exported into your namespace +if you specifically ask that they be imported: + +=over 10 + +=item clearcache ( COUNT ) + +Clear the cached time for COUNT rounds of the null loop. + +=item clearallcache ( ) + +Clear all cached times. + +=item cmpthese ( COUNT, CODEHASHREF, [ STYLE ] ) + +=item cmpthese ( RESULTSHASHREF, [ STYLE ] ) + +Optionally calls timethese(), then outputs comparison chart. This: + + cmpthese( -1, { a => "++\$i", b => "\$i *= 2" } ) ; + +outputs a chart like: + + Rate b a + b 2831802/s -- -61% + a 7208959/s 155% -- + +This chart is sorted from slowest to fastest, and shows the percent speed +difference between each pair of tests. + +C<cmpthese> can also be passed the data structure that timethese() returns: + + $results = timethese( -1, { a => "++\$i", b => "\$i *= 2" } ) ; + cmpthese( $results ); + +in case you want to see both sets of results. +If the first argument is an unblessed hash reference, +that is RESULTSHASHREF; otherwise that is COUNT. + +Returns a reference to an ARRAY of rows, each row is an ARRAY of cells from the +above chart, including labels. This: + + my $rows = cmpthese( -1, { a => '++$i', b => '$i *= 2' }, "none" ); + +returns a data structure like: + + [ + [ '', 'Rate', 'b', 'a' ], + [ 'b', '2885232/s', '--', '-59%' ], + [ 'a', '7099126/s', '146%', '--' ], + ] + +B<NOTE>: This result value differs from previous versions, which returned +the C<timethese()> result structure. If you want that, just use the two +statement C<timethese>...C<cmpthese> idiom shown above. + +Incidently, note the variance in the result values between the two examples; +this is typical of benchmarking. If this were a real benchmark, you would +probably want to run a lot more iterations. + +=item countit(TIME, CODE) + +Arguments: TIME is the minimum length of time to run CODE for, and CODE is +the code to run. CODE may be either a code reference or a string to +be eval'd; either way it will be run in the caller's package. + +TIME is I<not> negative. countit() will run the loop many times to +calculate the speed of CODE before running it for TIME. The actual +time run for will usually be greater than TIME due to system clock +resolution, so it's best to look at the number of iterations divided +by the times that you are concerned with, not just the iterations. + +Returns: a Benchmark object. + +=item disablecache ( ) + +Disable caching of timings for the null loop. This will force Benchmark +to recalculate these timings for each new piece of code timed. + +=item enablecache ( ) + +Enable caching of timings for the null loop. The time taken for COUNT +rounds of the null loop will be calculated only once for each +different COUNT used. + +=item timesum ( T1, T2 ) + +Returns the sum of two Benchmark times as a Benchmark object suitable +for passing to timestr(). + +=back + +=head2 :hireswallclock + +If the Time::HiRes module has been installed, you can specify the +special tag C<:hireswallclock> for Benchmark (if Time::HiRes is not +available, the tag will be silently ignored). This tag will cause the +wallclock time to be measured in microseconds, instead of integer +seconds. Note though that the speed computations are still conducted +in CPU time, not wallclock time. + +=head1 NOTES + +The data is stored as a list of values from the time and times +functions: + + ($real, $user, $system, $children_user, $children_system, $iters) + +in seconds for the whole loop (not divided by the number of rounds). + +The timing is done using time(3) and times(3). + +Code is executed in the caller's package. + +The time of the null loop (a loop with the same +number of rounds but empty loop body) is subtracted +from the time of the real loop. + +The null loop times can be cached, the key being the +number of rounds. The caching can be controlled using +calls like these: + + clearcache($key); + clearallcache(); + + disablecache(); + enablecache(); + +Caching is off by default, as it can (usually slightly) decrease +accuracy and does not usually noticably affect runtimes. + +=head1 EXAMPLES + +For example, + + use Benchmark qw( cmpthese ) ; + $x = 3; + cmpthese( -5, { + a => sub{$x*$x}, + b => sub{$x**2}, + } ); + +outputs something like this: + + Benchmark: running a, b, each for at least 5 CPU seconds... + Rate b a + b 1559428/s -- -62% + a 4152037/s 166% -- + + +while + + use Benchmark qw( timethese cmpthese ) ; + $x = 3; + $r = timethese( -5, { + a => sub{$x*$x}, + b => sub{$x**2}, + } ); + cmpthese $r; + +outputs something like this: + + Benchmark: running a, b, each for at least 5 CPU seconds... + a: 10 wallclock secs ( 5.14 usr + 0.13 sys = 5.27 CPU) @ 3835055.60/s (n=20210743) + b: 5 wallclock secs ( 5.41 usr + 0.00 sys = 5.41 CPU) @ 1574944.92/s (n=8520452) + Rate b a + b 1574945/s -- -59% + a 3835056/s 144% -- + + +=head1 INHERITANCE + +Benchmark inherits from no other class, except of course +for Exporter. + +=head1 CAVEATS + +Comparing eval'd strings with code references will give you +inaccurate results: a code reference will show a slightly slower +execution time than the equivalent eval'd string. + +The real time timing is done using time(2) and +the granularity is therefore only one second. + +Short tests may produce negative figures because perl +can appear to take longer to execute the empty loop +than a short test; try: + + timethis(100,'1'); + +The system time of the null loop might be slightly +more than the system time of the loop with the actual +code and therefore the difference might end up being E<lt> 0. + +=head1 SEE ALSO + +L<Devel::DProf> - a Perl code profiler + +=head1 AUTHORS + +Jarkko Hietaniemi <F<jhi@iki.fi>>, Tim Bunce <F<Tim.Bunce@ig.co.uk>> + +=head1 MODIFICATION HISTORY + +September 8th, 1994; by Tim Bunce. + +March 28th, 1997; by Hugo van der Sanden: added support for code +references and the already documented 'debug' method; revamped +documentation. + +April 04-07th, 1997: by Jarkko Hietaniemi, added the run-for-some-time +functionality. + +September, 1999; by Barrie Slaymaker: math fixes and accuracy and +efficiency tweaks. Added cmpthese(). A result is now returned from +timethese(). Exposed countit() (was runfor()). + +December, 2001; by Nicholas Clark: make timestr() recognise the style 'none' +and return an empty string. If cmpthese is calling timethese, make it pass the +style in. (so that 'none' will suppress output). Make sub new dump its +debugging output to STDERR, to be consistent with everything else. +All bugs found while writing a regression test. + +September, 2002; by Jarkko Hietaniemi: add ':hireswallclock' special tag. + +February, 2004; by Chia-liang Kao: make cmpthese and timestr use time +statistics for children instead of parent when the style is 'nop'. + +November, 2007; by Christophe Grosjean: make cmpthese and timestr compute +time consistently with style argument, default is 'all' not 'noc' any more. + +=cut + +# evaluate something in a clean lexical environment +sub _doeval { no strict; eval shift } + +# +# put any lexicals at file scope AFTER here +# + +use Carp; +use Exporter; + +our(@ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS, $VERSION); + +@ISA=qw(Exporter); +@EXPORT=qw(timeit timethis timethese timediff timestr); +@EXPORT_OK=qw(timesum cmpthese countit + clearcache clearallcache disablecache enablecache); +%EXPORT_TAGS=( all => [ @EXPORT, @EXPORT_OK ] ) ; + +$VERSION = 1.11; + +# --- ':hireswallclock' special handling + +my $hirestime; + +sub mytime () { time } + +init(); + +sub BEGIN { + if (eval 'require Time::HiRes') { + import Time::HiRes qw(time); + $hirestime = \&Time::HiRes::time; + } +} + +sub import { + my $class = shift; + if (grep { $_ eq ":hireswallclock" } @_) { + @_ = grep { $_ ne ":hireswallclock" } @_; + local $^W=0; + *mytime = $hirestime if defined $hirestime; + } + Benchmark->export_to_level(1, $class, @_); +} + +our($Debug, $Min_Count, $Min_CPU, $Default_Format, $Default_Style, + %_Usage, %Cache, $Do_Cache); + +sub init { + $Debug = 0; + $Min_Count = 4; + $Min_CPU = 0.4; + $Default_Format = '5.2f'; + $Default_Style = 'auto'; + # The cache can cause a slight loss of sys time accuracy. If a + # user does many tests (>10) with *very* large counts (>10000) + # or works on a very slow machine the cache may be useful. + disablecache(); + clearallcache(); +} + +sub debug { $Debug = ($_[1] != 0); } + +sub usage { + my $calling_sub = (caller(1))[3]; + $calling_sub =~ s/^Benchmark:://; + return $_Usage{$calling_sub} || ''; +} + +# The cache needs two branches: 's' for strings and 'c' for code. The +# empty loop is different in these two cases. + +$_Usage{clearcache} = <<'USAGE'; +usage: clearcache($count); +USAGE + +sub clearcache { + die usage unless @_ == 1; + delete $Cache{"$_[0]c"}; delete $Cache{"$_[0]s"}; +} + +$_Usage{clearallcache} = <<'USAGE'; +usage: clearallcache(); +USAGE + +sub clearallcache { + die usage if @_; + %Cache = (); +} + +$_Usage{enablecache} = <<'USAGE'; +usage: enablecache(); +USAGE + +sub enablecache { + die usage if @_; + $Do_Cache = 1; +} + +$_Usage{disablecache} = <<'USAGE'; +usage: disablecache(); +USAGE + +sub disablecache { + die usage if @_; + $Do_Cache = 0; +} + + +# --- Functions to process the 'time' data type + +sub new { my @t = (mytime, times, @_ == 2 ? $_[1] : 0); + print STDERR "new=@t\n" if $Debug; + bless \@t; } + +sub cpu_p { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $pu+$ps ; } +sub cpu_c { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $cu+$cs ; } +sub cpu_a { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $pu+$ps+$cu+$cs ; } +sub real { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $r ; } +sub iters { $_[0]->[5] ; } + + +$_Usage{timediff} = <<'USAGE'; +usage: $result_diff = timediff($result1, $result2); +USAGE + +sub timediff { + my($a, $b) = @_; + + die usage unless ref $a and ref $b; + + my @r; + for (my $i=0; $i < @$a; ++$i) { + push(@r, $a->[$i] - $b->[$i]); + } + #die "Bad timediff(): ($r[1] + $r[2]) <= 0 (@$a[1,2]|@$b[1,2])\n" + # if ($r[1] + $r[2]) < 0; + bless \@r; +} + +$_Usage{timesum} = <<'USAGE'; +usage: $sum = timesum($result1, $result2); +USAGE + +sub timesum { + my($a, $b) = @_; + + die usage unless ref $a and ref $b; + + my @r; + for (my $i=0; $i < @$a; ++$i) { + push(@r, $a->[$i] + $b->[$i]); + } + bless \@r; +} + + +$_Usage{timestr} = <<'USAGE'; +usage: $formatted_result = timestr($result1); +USAGE + +sub timestr { + my($tr, $style, $f) = @_; + + die usage unless ref $tr; + + my @t = @$tr; + warn "bad time value (@t)" unless @t==6; + my($r, $pu, $ps, $cu, $cs, $n) = @t; + my($pt, $ct, $tt) = ($tr->cpu_p, $tr->cpu_c, $tr->cpu_a); + $f = $Default_Format unless defined $f; + # format a time in the required style, other formats may be added here + $style ||= $Default_Style; + return '' if $style eq 'none'; + $style = ($ct>0) ? 'all' : 'noc' if $style eq 'auto'; + my $s = "@t $style"; # default for unknown style + my $w = $hirestime ? "%2g" : "%2d"; + $s = sprintf("$w wallclock secs (%$f usr %$f sys + %$f cusr %$f csys = %$f CPU)", + $r,$pu,$ps,$cu,$cs,$tt) if $style eq 'all'; + $s = sprintf("$w wallclock secs (%$f usr + %$f sys = %$f CPU)", + $r,$pu,$ps,$pt) if $style eq 'noc'; + $s = sprintf("$w wallclock secs (%$f cusr + %$f csys = %$f CPU)", + $r,$cu,$cs,$ct) if $style eq 'nop'; + my $elapsed = do { + if ($style eq 'nop') {$cu+$cs} + elsif ($style eq 'noc') {$pu+$ps} + else {$cu+$cs+$pu+$ps} + }; + $s .= sprintf(" @ %$f/s (n=$n)",$n/($elapsed)) if $n && $elapsed; + $s; +} + +sub timedebug { + my($msg, $t) = @_; + print STDERR "$msg",timestr($t),"\n" if $Debug; +} + +# --- Functions implementing low-level support for timing loops + +$_Usage{runloop} = <<'USAGE'; +usage: runloop($number, [$string | $coderef]) +USAGE + +sub runloop { + my($n, $c) = @_; + + $n+=0; # force numeric now, so garbage won't creep into the eval + croak "negative loopcount $n" if $n<0; + confess usage unless defined $c; + my($t0, $t1, $td); # before, after, difference + + # find package of caller so we can execute code there + my($curpack) = caller(0); + my($i, $pack)= 0; + while (($pack) = caller(++$i)) { + last if $pack ne $curpack; + } + + my ($subcode, $subref); + if (ref $c eq 'CODE') { + $subcode = "sub { for (1 .. $n) { local \$_; package $pack; &\$c; } }"; + $subref = eval $subcode; + } + else { + $subcode = "sub { for (1 .. $n) { local \$_; package $pack; $c;} }"; + $subref = _doeval($subcode); + } + croak "runloop unable to compile '$c': $@\ncode: $subcode\n" if $@; + print STDERR "runloop $n '$subcode'\n" if $Debug; + + # Wait for the user timer to tick. This makes the error range more like + # -0.01, +0. If we don't wait, then it's more like -0.01, +0.01. This + # may not seem important, but it significantly reduces the chances of + # getting a too low initial $n in the initial, 'find the minimum' loop + # in &countit. This, in turn, can reduce the number of calls to + # &runloop a lot, and thus reduce additive errors. + my $tbase = Benchmark->new(0)->[1]; + while ( ( $t0 = Benchmark->new(0) )->[1] == $tbase ) {} ; + $subref->(); + $t1 = Benchmark->new($n); + $td = &timediff($t1, $t0); + timedebug("runloop:",$td); + $td; +} + +$_Usage{timeit} = <<'USAGE'; +usage: $result = timeit($count, 'code' ); or + $result = timeit($count, sub { code } ); +USAGE + +sub timeit { + my($n, $code) = @_; + my($wn, $wc, $wd); + + die usage unless defined $code and + (!ref $code or ref $code eq 'CODE'); + + printf STDERR "timeit $n $code\n" if $Debug; + my $cache_key = $n . ( ref( $code ) ? 'c' : 's' ); + if ($Do_Cache && exists $Cache{$cache_key} ) { + $wn = $Cache{$cache_key}; + } else { + $wn = &runloop($n, ref( $code ) ? sub { } : '' ); + # Can't let our baseline have any iterations, or they get subtracted + # out of the result. + $wn->[5] = 0; + $Cache{$cache_key} = $wn; + } + + $wc = &runloop($n, $code); + + $wd = timediff($wc, $wn); + timedebug("timeit: ",$wc); + timedebug(" - ",$wn); + timedebug(" = ",$wd); + + $wd; +} + + +my $default_for = 3; +my $min_for = 0.1; + + +$_Usage{countit} = <<'USAGE'; +usage: $result = countit($time, 'code' ); or + $result = countit($time, sub { code } ); +USAGE + +sub countit { + my ( $tmax, $code ) = @_; + + die usage unless @_; + + if ( not defined $tmax or $tmax == 0 ) { + $tmax = $default_for; + } elsif ( $tmax < 0 ) { + $tmax = -$tmax; + } + + die "countit($tmax, ...): timelimit cannot be less than $min_for.\n" + if $tmax < $min_for; + + my ($n, $tc); + + # First find the minimum $n that gives a significant timing. + my $zeros=0; + for ($n = 1; ; $n *= 2 ) { + my $td = timeit($n, $code); + $tc = $td->[1] + $td->[2]; + if ( $tc <= 0 and $n > 1024 ) { + ++$zeros > 16 + and die "Timing is consistently zero in estimation loop, cannot benchmark. N=$n\n"; + } else { + $zeros = 0; + } + last if $tc > 0.1; + } + + my $nmin = $n; + + # Get $n high enough that we can guess the final $n with some accuracy. + my $tpra = 0.1 * $tmax; # Target/time practice. + while ( $tc < $tpra ) { + # The 5% fudge is to keep us from iterating again all + # that often (this speeds overall responsiveness when $tmax is big + # and we guess a little low). This does not noticably affect + # accuracy since we're not couting these times. + $n = int( $tpra * 1.05 * $n / $tc ); # Linear approximation. + my $td = timeit($n, $code); + my $new_tc = $td->[1] + $td->[2]; + # Make sure we are making progress. + $tc = $new_tc > 1.2 * $tc ? $new_tc : 1.2 * $tc; + } + + # Now, do the 'for real' timing(s), repeating until we exceed + # the max. + my $ntot = 0; + my $rtot = 0; + my $utot = 0.0; + my $stot = 0.0; + my $cutot = 0.0; + my $cstot = 0.0; + my $ttot = 0.0; + + # The 5% fudge is because $n is often a few % low even for routines + # with stable times and avoiding extra timeit()s is nice for + # accuracy's sake. + $n = int( $n * ( 1.05 * $tmax / $tc ) ); + $zeros=0; + while () { + my $td = timeit($n, $code); + $ntot += $n; + $rtot += $td->[0]; + $utot += $td->[1]; + $stot += $td->[2]; + $cutot += $td->[3]; + $cstot += $td->[4]; + $ttot = $utot + $stot; + last if $ttot >= $tmax; + if ( $ttot <= 0 ) { + ++$zeros > 16 + and die "Timing is consistently zero, cannot benchmark. N=$n\n"; + } else { + $zeros = 0; + } + $ttot = 0.01 if $ttot < 0.01; + my $r = $tmax / $ttot - 1; # Linear approximation. + $n = int( $r * $ntot ); + $n = $nmin if $n < $nmin; + } + + return bless [ $rtot, $utot, $stot, $cutot, $cstot, $ntot ]; +} + +# --- Functions implementing high-level time-then-print utilities + +sub n_to_for { + my $n = shift; + return $n == 0 ? $default_for : $n < 0 ? -$n : undef; +} + +$_Usage{timethis} = <<'USAGE'; +usage: $result = timethis($time, 'code' ); or + $result = timethis($time, sub { code } ); +USAGE + +sub timethis{ + my($n, $code, $title, $style) = @_; + my($t, $forn); + + die usage unless defined $code and + (!ref $code or ref $code eq 'CODE'); + + if ( $n > 0 ) { + croak "non-integer loopcount $n, stopped" if int($n)<$n; + $t = timeit($n, $code); + $title = "timethis $n" unless defined $title; + } else { + my $fort = n_to_for( $n ); + $t = countit( $fort, $code ); + $title = "timethis for $fort" unless defined $title; + $forn = $t->[-1]; + } + local $| = 1; + $style = "" unless defined $style; + printf("%10s: ", $title) unless $style eq 'none'; + print timestr($t, $style, $Default_Format),"\n" unless $style eq 'none'; + + $n = $forn if defined $forn; + + # A conservative warning to spot very silly tests. + # Don't assume that your benchmark is ok simply because + # you don't get this warning! + print " (warning: too few iterations for a reliable count)\n" + if $n < $Min_Count + || ($t->real < 1 && $n < 1000) + || $t->cpu_a < $Min_CPU; + $t; +} + + +$_Usage{timethese} = <<'USAGE'; +usage: timethese($count, { Name1 => 'code1', ... }); or + timethese($count, { Name1 => sub { code1 }, ... }); +USAGE + +sub timethese{ + my($n, $alt, $style) = @_; + die usage unless ref $alt eq 'HASH'; + + my @names = sort keys %$alt; + $style = "" unless defined $style; + print "Benchmark: " unless $style eq 'none'; + if ( $n > 0 ) { + croak "non-integer loopcount $n, stopped" if int($n)<$n; + print "timing $n iterations of" unless $style eq 'none'; + } else { + print "running" unless $style eq 'none'; + } + print " ", join(', ',@names) unless $style eq 'none'; + unless ( $n > 0 ) { + my $for = n_to_for( $n ); + print ", each" if $n > 1 && $style ne 'none'; + print " for at least $for CPU seconds" unless $style eq 'none'; + } + print "...\n" unless $style eq 'none'; + + # we could save the results in an array and produce a summary here + # sum, min, max, avg etc etc + my %results; + foreach my $name (@names) { + $results{$name} = timethis ($n, $alt -> {$name}, $name, $style); + } + + return \%results; +} + + +$_Usage{cmpthese} = <<'USAGE'; +usage: cmpthese($count, { Name1 => 'code1', ... }); or + cmpthese($count, { Name1 => sub { code1 }, ... }); or + cmpthese($result, $style); +USAGE + +sub cmpthese{ + my ($results, $style); + + # $count can be a blessed object. + if ( ref $_[0] eq 'HASH' ) { + ($results, $style) = @_; + } + else { + my($count, $code) = @_[0,1]; + $style = $_[2] if defined $_[2]; + + die usage unless ref $code eq 'HASH'; + + $results = timethese($count, $code, ($style || "none")); + } + + $style = "" unless defined $style; + + # Flatten in to an array of arrays with the name as the first field + my @vals = map{ [ $_, @{$results->{$_}} ] } keys %$results; + + for (@vals) { + # The epsilon fudge here is to prevent div by 0. Since clock + # resolutions are much larger, it's below the noise floor. + my $elapsed = do { + if ($style eq 'nop') {$_->[4]+$_->[5]} + elsif ($style eq 'noc') {$_->[2]+$_->[3]} + else {$_->[2]+$_->[3]+$_->[4]+$_->[5]} + }; + my $rate = $_->[6]/(($elapsed)+0.000000000000001); + $_->[7] = $rate; + } + + # Sort by rate + @vals = sort { $a->[7] <=> $b->[7] } @vals; + + # If more than half of the rates are greater than one... + my $display_as_rate = @vals ? ($vals[$#vals>>1]->[7] > 1) : 0; + + my @rows; + my @col_widths; + + my @top_row = ( + '', + $display_as_rate ? 'Rate' : 's/iter', + map { $_->[0] } @vals + ); + + push @rows, \@top_row; + @col_widths = map { length( $_ ) } @top_row; + + # Build the data rows + # We leave the last column in even though it never has any data. Perhaps + # it should go away. Also, perhaps a style for a single column of + # percentages might be nice. + for my $row_val ( @vals ) { + my @row; + + # Column 0 = test name + push @row, $row_val->[0]; + $col_widths[0] = length( $row_val->[0] ) + if length( $row_val->[0] ) > $col_widths[0]; + + # Column 1 = performance + my $row_rate = $row_val->[7]; + + # We assume that we'll never get a 0 rate. + my $rate = $display_as_rate ? $row_rate : 1 / $row_rate; + + # Only give a few decimal places before switching to sci. notation, + # since the results aren't usually that accurate anyway. + my $format = + $rate >= 100 ? + "%0.0f" : + $rate >= 10 ? + "%0.1f" : + $rate >= 1 ? + "%0.2f" : + $rate >= 0.1 ? + "%0.3f" : + "%0.2e"; + + $format .= "/s" + if $display_as_rate; + + my $formatted_rate = sprintf( $format, $rate ); + push @row, $formatted_rate; + $col_widths[1] = length( $formatted_rate ) + if length( $formatted_rate ) > $col_widths[1]; + + # Columns 2..N = performance ratios + my $skip_rest = 0; + for ( my $col_num = 0 ; $col_num < @vals ; ++$col_num ) { + my $col_val = $vals[$col_num]; + my $out; + if ( $skip_rest ) { + $out = ''; + } + elsif ( $col_val->[0] eq $row_val->[0] ) { + $out = "--"; + # $skip_rest = 1; + } + else { + my $col_rate = $col_val->[7]; + $out = sprintf( "%.0f%%", 100*$row_rate/$col_rate - 100 ); + } + push @row, $out; + $col_widths[$col_num+2] = length( $out ) + if length( $out ) > $col_widths[$col_num+2]; + + # A little wierdness to set the first column width properly + $col_widths[$col_num+2] = length( $col_val->[0] ) + if length( $col_val->[0] ) > $col_widths[$col_num+2]; + } + push @rows, \@row; + } + + return \@rows if $style eq "none"; + + # Equalize column widths in the chart as much as possible without + # exceeding 80 characters. This does not use or affect cols 0 or 1. + my @sorted_width_refs = + sort { $$a <=> $$b } map { \$_ } @col_widths[2..$#col_widths]; + my $max_width = ${$sorted_width_refs[-1]}; + + my $total = @col_widths - 1 ; + for ( @col_widths ) { $total += $_ } + + STRETCHER: + while ( $total < 80 ) { + my $min_width = ${$sorted_width_refs[0]}; + last + if $min_width == $max_width; + for ( @sorted_width_refs ) { + last + if $$_ > $min_width; + ++$$_; + ++$total; + last STRETCHER + if $total >= 80; + } + } + + # Dump the output + my $format = join( ' ', map { "%${_}s" } @col_widths ) . "\n"; + substr( $format, 1, 0 ) = '-'; + for ( @rows ) { + printf $format, @$_; + } + + return \@rows ; +} + + +1; |