summaryrefslogtreecommitdiff
path: root/Master/texmf/doc/asymptote/examples/intro.asy
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf/doc/asymptote/examples/intro.asy')
-rw-r--r--Master/texmf/doc/asymptote/examples/intro.asy833
1 files changed, 441 insertions, 392 deletions
diff --git a/Master/texmf/doc/asymptote/examples/intro.asy b/Master/texmf/doc/asymptote/examples/intro.asy
index 4234b8cee8e..20b03c578dc 100644
--- a/Master/texmf/doc/asymptote/examples/intro.asy
+++ b/Master/texmf/doc/asymptote/examples/intro.asy
@@ -1,5 +1,3 @@
-// Introduction to Asymptote
-
orientation=Landscape;
settings.tex="pdflatex";
@@ -8,6 +6,10 @@ import slide;
import three;
import animate;
+bool long=true;
+
+usepackage("mflogo");
+
usersetting();
viewportsize=pagewidth-2pagemargin;
@@ -18,23 +20,39 @@ viewportsize=pagewidth-2pagemargin;
bibliographystyle("alpha");
itempen=fontsize(22pt);
-
-titlepage("Asymptote: The Vector Graphics Language",
- "Andy Hammerlindl and John Bowman",
- "University of Toronto and University of Alberta","August 16, 2007",
- "http://asymptote.sf.net");
+defaultpen(itempen);
+viewportmargin=(2,2);
+
+titlepage(long ? "Asymptote: The Vector Graphics Language" :
+ "Interactive TeX-Aware 3D Vector Graphics",
+ "John Bowman and Andy Hammerlindl",
+"Department of Mathematical and Statistical Sciences\\
+ University of Alberta\\
+%and Instituto Nacional de Matem\'atica Pura e Aplicada (IMPA)
+\medskip\Green{Collaborators: Orest Shardt, Michail Vidiassov}",
+"June 30, 2010",
+"http://asymptote.sf.net/intro.pdf");
title("History");
-item("\TeX\ and METAFONT (Knuth, 1979)");
-item("MetaPost (Hobby, 1989): 2D Bezier Control Point Selection");
-item("Asymptote (Hammerlindl, Bowman, Prince, 2004): 2D \& 3D Graphics");
-
-title("Statistics (as of April, 2007)");
-item("Runs on Windows, Mac OS X, Linux, etc.");
-item("1800 downloads a month from {\tt asymptote.sourceforge.net}.");
-item("33\ 000 lines of C++ code.");
-item("18\ 000 lines of Asymptote code.");
-
+item("1979: \TeX\ and \MF\ (Knuth)");
+item("1986: 2D B\'ezier control point selection (Hobby)");
+item("1989: MetaPost (Hobby)");
+item("2004: Asymptote");
+subitem("2004: initial public release (Hammerlindl, Bowman, \& Prince)");
+subitem("2005: 3D B\'ezier control point selection (Bowman)");
+subitem("2008: 3D interactive \TeX\ within PDF files (Shardt \& Bowman)");
+subitem("2009: 3D billboard labels that always face camera (Bowman)");
+subitem("2010: 3D PDF enhancements (Vidiassov \& Bowman)");
+
+title("Statistics (as of June, 2010)");
+item("Runs under Linux/UNIX, Mac OS X, Microsoft Windows.");
+item("4000 downloads/month from primary\hfill\\
+ {\tt asymptote.sourceforge.net} site alone.");
+item("80\ 000 lines of low-level C++ code.");
+item("36\ 000 lines of high-level Asymptote code.");
+item("Latest stable release: Version 2.00 (LGPL).");
+
+if(long) {
title("Vector Graphics");
item("Raster graphics assign colors to a grid of pixels.");
figure("pixel.pdf");
@@ -61,17 +79,24 @@ add(zoom(100), (0,0));
add(zoom(10), (200,0));
add(zoom(1), (400,0));
"));
+}
title("Cartesian Coordinates");
+
+item("Asymptote's graphical capabilities are based on four primitive
+ commands: {\tt draw}, {\tt label}, {\tt fill}, {\tt clip} \cite{Bowman08}");
+
asyfilecode("diagonal");
item("units are {\tt PostScript} {\it big points\/} (1 {\tt bp} =
1/72 {\tt inch})");
item("{\tt --} means join the points with a linear segment to create
a {\it path}");
-item("cyclic path:");
+item("{\it cyclic\/} path:");
-asyfilecode("square");
+asycode("
+draw((0,0)--(100,0)--(100,100)--(0,100)--cycle);
+");
title("Scaling to a Given Size");
@@ -79,11 +104,7 @@ item("{\tt PostScript} units are often inconvenient.");
item("Instead, scale user coordinates to a specified final size:");
-code("
-size(101,101);
-draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);
-");
-asyfigure("square");
+asyfilecode("square");
item("One can also specify the size in {\tt cm}:");
@@ -96,18 +117,36 @@ title("Labels");
item("Adding and aligning \LaTeX\ labels is easy:");
-asyfilecode("labelsquare","height=6cm");
-
+asycode(preamble="defaultpen(fontsize("+string(fontsize(itempen))+"));",
+"size(6cm);
+draw(unitsquare);
+label(\"$A$\",(0,0),SW);
+label(\"$B$\",(1,0),SE);
+label(\"$C$\",(1,1),NE);
+label(\"$D$\",(0,1),NW);
+");
-title("2D Bezier Splines");
+title("2D B\'ezier Splines");
-item("Using {\tt ..} instead of {\tt --} specifies a {\it Bezier cubic
+item("Using {\tt ..} instead of {\tt --} specifies a {\it B\'ezier cubic
spline}:");
code("
draw(z0 .. controls c0 and c1 .. z1,blue);
");
-asyfigure("beziercurve","height=7cm");
+asyfigure(asywrite("defaultpen(fontsize("+string(fontsize(itempen))+"));
+size(0,7cm);
+pair z0=(0,0);
+pair c0=(1,1);
+pair c1=(2,1);
+pair z1=(3,0);
+draw(z0..controls c0 and c1 .. z1,blue);
+draw(z0--c0--c1--z1,dashed);
+dot(\"$z_0$\",z0,W,red);
+dot(\"$c_0$\",c0,NW,red);
+dot(\"$c_1$\",c1,NE,red);
+dot(\"$z_1$\",z1,red);
+"));
equation("(1-t)^3 z_0+3t(1-t)^2 c_0+3t^2(1-t) c_1+t^3 z_1, \qquad t\in [0,1].");
@@ -139,7 +178,7 @@ dot(z);
picture output;
save();
-for (int i=0; i<length(p); ++i) {
+for(int i=0; i<length(p); ++i) {
pair z=point(p,i), dir=dir(p,i);
draw((z-0.3dir)--(z+0.3dir), Arrow);
}
@@ -148,7 +187,7 @@ restore();
save();
guide g;
-for (int i=0; i<length(p); ++i) {
+for(int i=0; i<length(p); ++i) {
dot(precontrol(p,i));
dot(postcontrol(p,i));
g=g--precontrol(p,i)--point(p,i)--postcontrol(p,i);
@@ -161,16 +200,18 @@ shipout(output);
"));
title("Filling");
-item("Use {\tt fill} to fill the inside of a path:");
+item("The {\tt fill} primitive to fill the inside of a path:");
asycode(preamble="size(0,200);","
path star;
-for (int i=0; i<5; ++i)
+for(int i=0; i < 5; ++i)
star=star--dir(90+144i);
star=star--cycle;
-fill(shift(-1,0)*star,orange+zerowinding);
-draw(shift(-1,0)*star,linewidth(3));
-fill(shift(1,0)*star,blue+evenodd);
-draw(shift(1,0)*star,linewidth(3));
+
+fill(star,orange+zerowinding);
+draw(star,linewidth(3));
+
+fill(shift(2,0)*star,blue+evenodd);
+draw(shift(2,0)*star,linewidth(3));
");
title("Filling");
@@ -181,29 +222,23 @@ fill(p,green+zerowinding);
");
title("Clipping");
-item("Pictures can be clipped to lie inside a path:");
+item("Pictures can be clipped to a path:");
asycode(preamble="
size(0,200);
guide star;
-for (int i=0; i<5; ++i)
+for(int i=0; i<5; ++i)
star=star--dir(90+144i);
star=star--cycle;","
fill(star,orange+zerowinding);
clip(scale(0.7)*unitcircle);
draw(scale(0.7)*unitcircle);
");
-item("All of Asymptote's graphical capabilities are based on four primitive
- commands: {\tt draw}, {\tt fill}, {\tt clip}, and {\tt label}.");
title("Affine Transforms");
-item("Affine transformations: shifts, rotations, reflections, and scalings.");
-code("
-transform t=rotate(90);
-write(t*(1,0)); // Writes (0,1).
-");
+item("Affine transformations: shifts, rotations, reflections, and scalings
+ can be applied to pairs, paths, pens, strings, and even whole pictures:");
-item("Pairs, paths, pens, strings, and whole pictures can be transformed.");
code("
fill(P,blue);
fill(shift(2,0)*reflect((0,0),(0,1))*P, red);
@@ -231,6 +266,7 @@ fill(shift(4,0)*rotate(30)*P, yellow);
fill(shift(6,0)*yscale(0.7)*xscale(2)*P, green);
"));
+if(long) {
title("C++/Java-like Programming Syntax");
code("// Declaration: Declare x to be real:
@@ -250,287 +286,11 @@ if(x == 1.0) {
for(int i=0; i < 10; ++i) {
write(i);
}");
-
-title("Helpful Math Notation");
-
-item("Integer division returns a {\tt real}. Use {\tt quotient} for an integer
- result:");
-code("3/4==0.75 quotient(3,4)==0");
-
-item("Caret for real and integer exponentiation:");
-code("2^3 2.7^3 2.7^3.2");
-
-item("Many expressions can be implicitly scaled by a numeric constant:");
-code("2pi 10cm 2x^2 3sin(x) 2(a+b)");
-
-item("Pairs are complex numbers:");
-code("(0,1)*(0,1)==(-1,0)");
-
-title("Function Calls");
-
-item("Functions can take default arguments in any position. Arguments are
- matched to the first possible location:");
-string unitsize="unitsize(0.65cm);";
-string preamble="void drawEllipse(real xsize=1, real ysize=xsize, pen p=blue) {
- draw(xscale(xsize)*yscale(ysize)*unitcircle, p);
-}
-";
-
-asycode(preamble=unitsize,preamble+"
-drawEllipse(2);
-drawEllipse(red);
-");
-
-item("Arguments can be given by name:");
-asycode(preamble=unitsize+preamble,"
-drawEllipse(xsize=2, ysize=1);
-drawEllipse(ysize=2, xsize=3, green);
-");
-
-title("Rest Arguments");
-item("Rest arguments allow one to write a function that takes an arbitrary
- number of arguments:");
-code("
-int sum(... int[] nums) {
- int total=0;
- for (int i=0; i < nums.length; ++i)
- total += nums[i];
- return total;
-}
-
-sum(1,2,3,4); // returns 10
-sum(); // returns 0
-sum(1,2,3 ... new int[] {4,5,6}); // returns 21
-
-int subtract(int start ... int[] subs) {
- return start - sum(... subs);
-}
-");
-
-title("Higher-Order Functions");
-
-item("Functions are first-class values. They can be passed to other
- functions:");
-code("real f(real x) {
- return x*sin(10x);
-}
-draw(graph(f,-3,3,300),red);");
-asyfigure(asywrite("
-import graph;
-size(300,0);
-real f(real x) {
- return x*sin(10x);
-}
-draw(graph(f,-3,3,300),red);
-"));
-
-title("Higher-Order Functions");
-item("Functions can return functions:");
-equation("f_n(x)=n\sin\left(\frac{x}{n}\right).");
-skip();
-string preamble="
-import graph;
-size(300,0);
-";
-string graphfunc2="
-typedef real func(real);
-func f(int n) {
- real fn(real x) {
- return n*sin(x/n);
- }
- return fn;
-}
-
-func f1=f(1);
-real y=f1(pi);
-
-for (int i=1; i<=5; ++i)
- draw(graph(f(i),-10,10),red);
-";
-code(graphfunc2);
-string name=asywrite(graphfunc2,preamble=preamble);
-asy(nativeformat(),name+".asy");
-label(graphic(name+"."+nativeformat()),(0.5,0),
- Fill(figureborder,figuremattpen));
-
-title("Anonymous Functions");
-
-item("Create new functions with {\tt new}:");
-code("
-path p=graph(new real (real x) { return x*sin(10x); },-3,3,red);
-
-func f(int n) {
- return new real (real x) { return n*sin(x/n); };
-}");
-
-item("Function definitions are just syntactic sugar for assigning function
-objects to variables.");
-code("
-real square(real x) {
- return x^2;
-}
-");
-
-remark("is equivalent to");
-code("
-real square(real x);
-square=new real (real x) {
- return x^2;
-};
-");
-
-title("Structures");
-
-item("As in other languages, structures group together data.");
-code("
-struct Person {
- string firstname, lastname;
- int age;
-}
-Person bob=new Person;
-bob.firstname=\"Bob\";
-bob.lastname=\"Chesterton\";
-bob.age=24;
-");
-
-item("Any code in the structure body will be executed every time a new structure
- is allocated...");
-code("
-struct Person {
- write(\"Making a person.\");
- string firstname, lastname;
- int age=18;
-}
-Person eve=new Person; // Writes \"Making a person.\"
-write(eve.age); // Writes 18.
-");
-
-title("Object-Oriented Programming");
-item("Functions are defined for each instance of a structure.");
-code("
-struct Quadratic {
- real a,b,c;
- real discriminant() {
- return b^2-4*a*c;
- }
- real eval(real x) {
- return a*x^2 + b*x + c;
- }
-}
-");
-
-item("This allows us to construct ``methods'' which are just normal functions
- declared in the environment of a particular object:");
-code("
-Quadratic poly=new Quadratic;
-poly.a=-1; poly.b=1; poly.c=2;
-
-real f(real x)=poly.eval;
-real y=f(2);
-draw(graph(poly.eval, -5, 5));
-");
-
-title("Specialization");
-
-item("Can create specialized objects just by redefining methods:");
-code("
-struct Shape {
- void draw();
- real area();
-}
-
-Shape rectangle(real w, real h) {
- Shape s=new Shape;
- s.draw = new void () {
- fill((0,0)--(w,0)--(w,h)--(0,h)--cycle); };
- s.area = new real () { return w*h; };
- return s;
-}
-
-Shape circle(real radius) {
- Shape s=new Shape;
- s.draw = new void () { fill(scale(radius)*unitcircle); };
- s.area = new real () { return pi*radius^2; }
- return s;
-}
-");
-
-title("Overloading");
-item("Consider the code:");
-code("
-int x1=2;
-int x2() {
- return 7;
-}
-int x3(int y) {
- return 2y;
-}
-
-write(x1+x2()); // Writes 9.
-write(x3(x1)+x2()); // Writes 11.
-");
-
-title("Overloading");
-item("{\tt x1}, {\tt x2}, and {\tt x3} are never used in the same context, so
- they can all be renamed {\tt x} without ambiguity:");
-code("
-int x=2;
-int x() {
- return 7;
-}
-int x(int y) {
- return 2y;
}
-write(x+x()); // Writes 9.
-write(x(x)+x()); // Writes 11.
-");
-
-item("Function definitions are just variable definitions, but variables are
- distinguished by their signatures to allow overloading.");
-
-title("Operators");
-item("Operators are just syntactic sugar for functions, and can be addressed or
- defined as functions with the {\tt operator} keyword.");
-code("
-int add(int x, int y)=operator +;
-write(add(2,3)); // Writes 5.
-
-// Don't try this at home.
-int operator +(int x, int y) {
- return add(2x,y);
-}
-write(2+3); // Writes 7.
-");
-item("This allows operators to be defined for new types.");
-
-title("Operators");
-item("Operators for constructing paths are also functions:");
-code("a.. controls b and c .. d--e");
-remark("is equivalent to");
-code(
- "operator --(operator ..(a, operator controls(b,c), d), e)");
-item("This allowed us to redefine all of the path operators for 3D paths.");
-asyfigure("helix","height=10cm");
-
-title("Packages");
-
-item("Function and structure definitions can be grouped into packages:");
-code("
-// powers.asy
-real square(real x) { return x^2; }
-real cube(real x) { return x^3; }
-");
-remark("and imported:");
-code("
-import powers;
-real eight=cube(2.0);
-draw(graph(powers.square, -1, 1));
-");
-
-title("Packages");
+title("Modules");
-item("There are packages for Feynman diagrams,");
+item("There are modules for Feynman diagrams,");
asyfigure("eetomumu","height=6cm");
remark("data structures,");
asyfigure(asywrite("
@@ -547,6 +307,7 @@ equations("\Phi\Phi(x_1,x_2,x_3,x_4,x_5)
+ &\rho_{4a}(x_1,x_2+x_3,x_4,x_5) - \rho_{4b}(x_1,x_2,x_3,x_4+x_5) \\
- &\rho_{4a}(x_1+x_2,x_3,x_4,x_5) - \rho_{4a}(x_1,x_2,x_4,x_5).");
+if(long) {
title("Textbook Graph");
asy(nativeformat(),"exp");
filecode("exp.asy");
@@ -564,18 +325,20 @@ asyfilecode("filegraph","height=15cm",newslide=true);
title("Logarithmic Graph");
asyfilecode("loggraph","height=15cm",newslide=true);
-
title("Secondary Axis");
+} else
+title("Scientific Graph");
+
asyfigure("secondaryaxis","height=15cm");
-title("Images");
+title("Images and Contours");
asyfigure("imagecontour","height=17cm");
title("Multiple Graphs");
asyfigure("diatom","height=17cm");
title("Hobby's 2D Direction Algorithm");
-item("A tridiagonal system of linear equations is solved to determine any unspecified directions $\theta_k$ and $\phi_k$ through each knot $z_k$:");
+item("A tridiagonal system of linear equations is solved to determine any unspecified directions $\phi_k$ and $\theta_k$ through each knot $z_k$:");
equation("\frac{\theta_{k-1}-2\phi_k}{\ell_k}=
\frac{\phi_{k+1}-2\theta_k}{\ell_{k+1}}.");
@@ -584,39 +347,43 @@ asyfigure("Hobbydir","height=9cm");
item("The resulting shape may be adjusted by modifying optional {\it tension\/} parameters and {\it curl\/} boundary conditions.");
-//involving the curvature
-
title("Hobby's 2D Control Point Algorithm");
item("Having prescribed outgoing and incoming path directions $e^{i\theta}$
at node~$z_0$ and $e^{i\phi}$ at node $z_1$ relative to the
vector $z_1-z_0$, the control points are determined as:");
+skip(-3);
+
equations("u&=&z_0+e^{i\theta}(z_1-z_0)f(\theta,-\phi),\nonumber\\
v&=&z_1-e^{i\phi}(z_1-z_0)f(-\phi,\theta),");
+skip(-3);
+
remark("where the relative distance function $f(\theta,\phi)$ is given by Hobby [1986].");
asyfigure("Hobbycontrol","height=9cm");
-title("Bezier Curves in 3D");
+if(long) {
+title("B\'ezier Curves in 3D");
item("Apply an affine transformation");
equation("x'_i=A_{ij} x_j+C_i");
-remark("to a Bezier curve:");
+remark("to a B\'ezier curve:");
-equation("x(t)=\sum_{k=0}^3 B_k(t) P_k, \qquad t\in [0,1].");
+equation("\displaystyle x(t)=\sum_{k=0}^3 B_k(t) P_k, \qquad t\in [0,1].");
-item("The resulting curve is also a Bezier curve:");
+item("The resulting curve is also a B\'ezier curve:");
equations("x'_i(t)&=&\sum_{k=0}^3 B_k(t) A_{ij}(P_k)_j+C_i\nonumber\\
&=&\sum_{k=0}^3 B_k(t) P'_k,");
remark("where $P'_k$ is the transformed $k^{\rm th}$ control point, noting
$\displaystyle\sum_{k=0}^3 B_k(t)=1.$");
+}
-title("3D Generalization of Hobby's algorithm");
+title("3D Generalization of Direction Algorithm");
item("Must reduce to 2D algorithm in planar case.");
@@ -625,12 +392,12 @@ item("Determine directions by applying Hobby's algorithm in the plane containing
// Reformulate Hobby's equations in terms of the angle $\psi_k=$
item("The only ambiguity that can arise is the overall sign of the angles, which relates to viewing each 2D plane from opposing normal directions.");
-item("A reference vector based on the mean unit normal of successive segments can be used to resolve such ambiguities.");
+item("A reference vector based on the mean unit normal of successive segments can be used to resolve such ambiguities \cite{Bowman07,Bowman09}");
title("3D Control Point Algorithm");
-item("Hobby's control point algorithm can be generalized to 3D by expressing it in terms of the absolute directions $\omega_0$ and $\omega_1$:");
-
+item("Express Hobby's algorithm in terms of the absolute directions $\omega_0$ and~$\omega_1$:");
+skip(-1);
equation("u=z_0+\omega_0\left|z_1-z_0\right|f(\theta,-\phi),");
equation("v=z_1-\omega_1\left|z_1-z_0\right|f(-\phi,\theta),");
@@ -638,29 +405,46 @@ asyfigure("Hobbycontrol");
remark("interpreting $\theta$ and $\phi$ as the angle between the corresponding path direction vector and $z_1-z_0$.");
-item("In this case there is an unambiguous reference vector for determining the relative sign of the angles $\phi$ and $\theta$.");
+item("Here there is an unambiguous reference vector for determining the relative sign of the angles $\phi$ and $\theta$.");
-viewportmargin=(0,0.5cm);
-defaultpen(1.0);
+viewportmargin=(2,0.5cm);
+//defaultpen(1.0);
title("Interactive 3D Saddle");
-item("A unit circle in the $X$--$Y$ plane may be filled and drawn with:
-(1,0,0)..(0,1,0)..(-1,0,0)..(0,-1,0)..cycle");
+item("A unit circle in the $X$--$Y$ plane may be constructed with:
+{\tt (1,0,0)..(0,1,0)..(-1,0,0)..(0,-1,0)..cycle}:");
asyinclude("unitcircle3",8cm);
-remark("and then distorted into a saddle:\\ (1,0,0)..(0,1,1)..(-1,0,0)..(0,-1,1)..cycle");
+remark("and then distorted into the saddle\\
+{\tt (1,0,0)..(0,1,1)..(-1,0,0)..(0,-1,1)..cycle}:");
asyinclude("saddle",8cm);
+//defaultpen(0.5);
+
+title("Lifting TeX to 3D");
+item("Glyphs are first split into simply connected regions and then decomposed into planar B\'ezier surface patches \cite{Bowman09,Shardt10}:");
+asyfigure("../examples/partitionExample");
+
+viewportmargin=(2,1cm);
+title("Label Manipulation");
+item("They can then be extruded and/or arbitrarily transformed:");
+asyinclude("../examples/label3solid");
+
+title("Billboard Labels");
+defaultpen(fontsize(36pt));
+asyinclude("../examples/billboard",15cm);
+defaultpen(itempen);
-viewportmargin=(0,2cm);
title("Smooth 3D surfaces");
-asyinclude("GaussianSurface",15cm);
-defaultpen(0.5);
+asyinclude("../examples/sinc",25cm);
+
+title("Curved 3D Arrows");
+asyinclude("../examples/arrows3",20cm);
title("Slide Presentations");
-item("Asymptote has a package for preparing slides.");
+item("Asymptote has a module for preparing slides.");
item("It even supports embedded high-resolution PDF movies.");
code('
title("Slide Presentations");
-item("Asymptote has a package for preparing slides.");
+item("Asymptote has a module for preparing slides.");
item("It even supports embedded high-resolution PDF movies.");
');
remark("\quad\ldots");
@@ -729,8 +513,8 @@ frame cardsize(real w=0, real h=0, bool keepAspect=Aspect) {
guide g=polargraph(f,0,2pi,operator ..)--cycle;
filldraw(pic,g,pink);
- xaxis(pic,\"$x$\");
- yaxis(pic,\"$y$\");
+ xaxis(pic,\"$x$\",above=true);
+ yaxis(pic,\"$y$\",above=true);
dot(pic,\"$(a,0)$\",(1,0),N);
dot(pic,\"$(2a,0)$\",(2,0),N+E);
@@ -748,7 +532,7 @@ add(cardsize(0,200), (540,0));
title("Deferred Drawing");
item("We can't draw a graphical object until we know the scaling
factors for the user coordinates.");
-item("Instead, store a function that when given the scaling information, draws
+item("Instead, store a function that, given the scaling information, draws
the scaled object.");
code("
void draw(picture pic=currentpicture, path g, pen p=currentpen) {
@@ -791,7 +575,7 @@ pic.addPoint(max(g),max(p));");
item("Filling ignores the pen width:");
code("pic.addPoint(min(g),(0,0));
pic.addPoint(max(g),(0,0));");
-item("Communicate with \LaTeX\ to determine label sizes:");
+item("Communicate with \LaTeX\ {\it via\/} a pipe to determine label sizes:");
asyfigure(asywrite("
size(0,100);
@@ -807,14 +591,16 @@ title("Sizing");
item("When scaling the final figure to a given size $S$, we first need to
determine a scaling factor $a>0$ and a shift $b$ so that all of the
- coordinates when transformed will lie in the interval $[0,S]$. That is, if
- $u$ and $t$ are the user and truesize components:");
+ coordinates when transformed will lie in the interval $[0,S]$.");
+
+item("That is, if $u$ and $t$ are the user and truesize components:");
equation("0\le au+t+b \le S.");
-item("We are maximizing the variable $a$ subject to a number of inequalities.
- This is a linear programming problem that can be solved by the simplex
- method.");
+item("Maximize the variable $a$ subject to a number of inequalities.");
+item("Use the simplex method to solve the resulting linear programming problem.");
+
+if(long) {
title("Sizing");
item("Every addition of a coordinate $(t,u)$ adds two restrictions");
equation("au+t+b\ge 0,");
@@ -829,7 +615,7 @@ asyfigure(asywrite("
import palette;
size(160,0);
pen[] p=Rainbow(NColors=11);
-for (int i=1; i<10; ++i) {
+for(int i=1; i<10; ++i) {
draw(scale(i)*unitcircle, p[i]+linewidth(2));
}
"));
@@ -845,6 +631,7 @@ item("This defines a partial ordering on coordinates. When sizing a picture,
item("In practice, the linear programming problem will have less than a dozen
restraints.");
item("All picture sizing is implemented in Asymptote code.");
+}
title("Infinite Lines");
item("Deferred drawing allows us to draw infinite lines.");
@@ -852,59 +639,321 @@ code("drawline(P, Q);");
asyfigure("elliptic","height=12cm");
-title("A Final Example: Quilting");
+title("Helpful Math Notation");
+
+item("Integer division returns a {\tt real}. Use {\tt quotient} for an integer
+ result:");
+code("3/4 == 0.75 quotient(3,4) == 0");
+
+item("Caret for real and integer exponentiation:");
+code("2^3 2.7^3 2.7^3.2");
+
+item("Many expressions can be implicitly scaled by a numeric constant:");
+code("2pi 10cm 2x^2 3sin(x) 2(a+b)");
+
+item("Pairs are complex numbers:");
+code("(0,1)*(0,1) == (-1,0)");
+
+title("Function Calls");
+
+item("Functions can take default arguments in any position. Arguments are
+ matched to the first possible location:");
+string unitsize="unitsize(0.65cm);";
+string preamble="void drawEllipse(real xsize=1, real ysize=xsize, pen p=blue) {
+ draw(xscale(xsize)*yscale(ysize)*unitcircle, p);
+}
+";
+
+asycode(preamble=unitsize,preamble+"
+drawEllipse(2);
+drawEllipse(red);
+");
+
+item("Arguments can be given by name:");
+asycode(preamble=unitsize+preamble,"
+drawEllipse(xsize=2, ysize=1);
+drawEllipse(ysize=2, xsize=3, green);
+");
+
+if(long) {
+title("Rest Arguments");
+item("Rest arguments allow one to write a function that takes an arbitrary
+ number of arguments:");
+code("
+int sum(... int[] nums) {
+ int total=0;
+ for(int i=0; i < nums.length; ++i)
+ total += nums[i];
+ return total;
+}
+
+sum(1,2,3,4); // returns 10
+sum(); // returns 0
+sum(1,2,3 ... new int[] {4,5,6}); // returns 21
+
+int subtract(int start ... int[] subs) {
+ return start - sum(... subs);
+}
+");
+}
+
+title("High-Order Functions");
+
+item("Functions are first-class values. They can be passed to other
+ functions:");
+code("import graph;
+real f(real x) {
+ return x*sin(10x);
+}
+draw(graph(f,-3,3,300),red);");
asyfigure(asywrite("
-import math;
+import graph;
+size(300,0);
+real f(real x) {
+ return x*sin(10x);
+}
+draw(graph(f,-3,3,300),red);
+"));
-int n=8, skip=3;
+if(long) {
+title("Higher-Order Functions");
+item("Functions can return functions:");
+equation("f_n(x)=n\sin\left(\frac{x}{n}\right).");
+skip();
+string preamble="
+import graph;
+size(300,0);
+";
+string graphfunc2="
+typedef real func(real);
+func f(int n) {
+ real fn(real x) {
+ return n*sin(x/n);
+ }
+ return fn;
+}
-pair r(int k) { return unityroot(n,k); }
+func f1=f(1);
+real y=f1(pi);
+
+for(int i=1; i<=5; ++i)
+ draw(graph(f(i),-10,10),red);
+";
+code(graphfunc2);
+string name=asywrite(graphfunc2,preamble=preamble);
+asy(nativeformat(),name+".asy");
+label(graphic(name+"."+nativeformat()),(0.5,0),
+ Fill(figureborder,figuremattpen));
-pen col=blue, col2=purple;
+title("Anonymous Functions");
-guide square=box((1,1),(-1,-1));
+item("Create new functions with {\tt new}:");
+code("
+path p=graph(new real (real x) { return x*sin(10x); },-3,3,red);
-guide step(int mult)
-{
- guide g;
- for (int k=0; k<n; ++k)
- g=g--r(mult*k);
- g=g--cycle;
- return g;
+func f(int n) {
+ return new real (real x) { return n*sin(x/n); };
+}");
+
+item("Function definitions are just syntactic sugar for assigning function
+objects to variables.");
+code("
+real square(real x) {
+ return x^2;
}
+");
-guide oct=step(1), star=step(skip);
+remark("is equivalent to");
+code("
+real square(real x);
+square=new real (real x) {
+ return x^2;
+};
+");
-guide wedge(pair z, pair v, real r, real a)
-{
- pair w=expi(a/2.0);
- v=unit(v)*r;
- return shift(z)*((0,0)--v*w--v*conj(w)--cycle);
+title("Structures");
+
+item("As in other languages, structures group together data.");
+code("
+struct Person {
+ string firstname, lastname;
+ int age;
}
+Person bob=new Person;
+bob.firstname=\"Bob\";
+bob.lastname=\"Chesterton\";
+bob.age=24;
+");
-filldraw(square, col);
-filldraw(oct, yellow);
+item("Any code in the structure body will be executed every time a new structure
+ is allocated...");
+code("
+struct Person {
+ write(\"Making a person.\");
+ string firstname, lastname;
+ int age=18;
+}
+Person eve=new Person; // Writes \"Making a person.\"
+write(eve.age); // Writes 18.
+");
-// The interior angle of the points of the star.
-real intang=pi*(1-((real)2skip)/((real)n));
+title("Modules");
-for (int k=0; k<n; ++k) {
- pair z=midpoint(r(k)--r(k+1));
- guide g=wedge(z,-z,1,intang);
- filldraw(g,col2);
+item("Function and structure definitions can be grouped into modules:");
+code("
+// powers.asy
+real square(real x) { return x^2; }
+real cube(real x) { return x^3; }
+");
+remark("and imported:");
+code("
+import powers;
+real eight=cube(2.0);
+draw(graph(powers.square, -1, 1));
+");
}
-fill(star,yellow);
-filldraw(star,evenodd+col);
+title("Object-Oriented Programming");
+item("Functions are defined for each instance of a structure.");
+code("
+struct Quadratic {
+ real a,b,c;
+ real discriminant() {
+ return b^2-4*a*c;
+ }
+ real eval(real x) {
+ return a*x^2 + b*x + c;
+ }
+}
+");
-size(5inch,0);
-"));
+item("This allows us to construct ``methods'' which are just normal functions
+ declared in the environment of a particular object:");
+code("
+Quadratic poly=new Quadratic;
+poly.a=-1; poly.b=1; poly.c=2;
+
+real f(real x)=poly.eval;
+real y=f(2);
+draw(graph(poly.eval, -5, 5));
+");
+
+title("Specialization");
+
+item("Can create specialized objects just by redefining methods:");
+code("
+struct Shape {
+ void draw();
+ real area();
+}
+
+Shape rectangle(real w, real h) {
+ Shape s=new Shape;
+ s.draw = new void () {
+ fill((0,0)--(w,0)--(w,h)--(0,h)--cycle); };
+ s.area = new real () { return w*h; };
+ return s;
+}
+
+Shape circle(real radius) {
+ Shape s=new Shape;
+ s.draw = new void () { fill(scale(radius)*unitcircle); };
+ s.area = new real () { return pi*radius^2; }
+ return s;
+}
+");
+
+title("Overloading");
+item("Consider the code:");
+code("
+int x1=2;
+int x2() {
+ return 7;
+}
+int x3(int y) {
+ return 2y;
+}
+
+write(x1+x2()); // Writes 9.
+write(x3(x1)+x2()); // Writes 11.
+");
+
+title("Overloading");
+item("{\tt x1}, {\tt x2}, and {\tt x3} are never used in the same context, so
+ they can all be renamed {\tt x} without ambiguity:");
+code("
+int x=2;
+int x() {
+ return 7;
+}
+int x(int y) {
+ return 2y;
+}
+
+write(x+x()); // Writes 9.
+write(x(x)+x()); // Writes 11.
+");
+
+item("Function definitions are just variable definitions, but variables are
+ distinguished by their signatures to allow overloading.");
+
+title("Operators");
+item("Operators are just syntactic sugar for functions, and can be addressed or
+ defined as functions with the {\tt operator} keyword.");
+code("
+int add(int x, int y)=operator +;
+write(add(2,3)); // Writes 5.
+
+// Don't try this at home.
+int operator +(int x, int y) {
+ return add(2x,y);
+}
+write(2+3); // Writes 7.
+");
+item("This allows operators to be defined for new types.");
+
+title("Operators");
+item("Operators for constructing paths are also functions:");
+code("a.. controls b and c .. d--e");
+remark("is equivalent to");
+code(
+ "operator --(operator ..(a, operator controls(b,c), d), e)");
+item("This allowed us to redefine all of the path operators for 3D paths.");
+
+title("Summary");
+
+item("Asymptote:");
+subitem("uses IEEE floating point numerics;");
+subitem("uses C++/Java-like syntax;");
+subitem("supports deferred drawing for automatic picture sizing;");
+subitem("supports Grayscale, RGB, CMYK, and HSV colour spaces;");
+subitem("supports PostScript shading, pattern fills, and function shading;");
+subitem("can fill nonsimply connected regions;");
+subitem("generalizes MetaPost path construction algorithms to 3D;");
+subitem("lifts \TeX\ to 3D;");
+subitem("supports 3D billboard labels and PDF grouping.");
bibliography("refs");
-viewportsize=viewportmargin=0;
+viewportmargin=(2,2);
+viewportsize=0;
+defaultpen(0.5);
title("\mbox{Asymptote: 2D \& 3D Vector Graphics Language}");
asyinclude("../examples/logo3");
skip();
center("\tt http://asymptote.sf.net");
-center("(freely available under the GNU public license)");
+center("(freely available under the LGPL license)");
+
+// LocalWords: pdflatex mflogo viewportsize pagewidth pagemargin goysr bibtex
+// LocalWords: itempen defaultrender medskip Orest Shardt Vidiassov MF ezier
+// LocalWords: Hammerlindl MetaPost PDF hfill LGPL pdf asywrite zoombox LaTeX
+// LocalWords: asyfilecode PostScript asycode unitsquare beziercurve grey bw
+// LocalWords: lightgrey zerowinding evenodd sw unitsize drawEllipse nums fn
+// LocalWords: frac graphfunc func nativeformat figureborder figuremattpen bt
+// LocalWords: firstname lastname eval eetomumu binarytree filecode datagraph
+// LocalWords: lineargraph filegraph loggraph secondaryaxis imagecontour ij
+// LocalWords: tridiagonal Hobbydir nonumber Hobbycontrol th viewportmargin
+// LocalWords: asyinclude dotpen wheelpoint yequals xaxis yaxis cardsize mc
+// LocalWords: polargraph filldraw addPoint lightblue truesize le au NColors
+// LocalWords: drawline unityroot mult oct intang IEEE numerics HSV colour
+// LocalWords: nonsimply