diff options
Diffstat (limited to 'Master/texmf-dist')
12 files changed, 220 insertions, 1337 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/Changes b/Master/texmf-dist/doc/generic/pst-magneticfield/Changes index 2a27ada9221..38ac4bcbc41 100644 --- a/Master/texmf-dist/doc/generic/pst-magneticfield/Changes +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/Changes @@ -3,6 +3,8 @@ pst-magneticfield.sty -------- pst-magneticfield.tex -------- +1.15 2019-01-17 - added bar magnet +1.14 2011-05-01 - allow arrow definition for the current 1.13 2010-06-08 - fixed aspurious blank in \pstmageneticfield 1.12 2010-06-07 - allow density plots - move PS code into a pro file diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/README b/Master/texmf-dist/doc/generic/pst-magneticfield/README deleted file mode 100644 index f23740077a2..00000000000 --- a/Master/texmf-dist/doc/generic/pst-magneticfield/README +++ /dev/null @@ -1,23 +0,0 @@ -The files ---------------- -Save the files pst-magneticfield.sty|tex in a directory, which is part of your -local TeX tree. -Then do not forget to run texhash to update this tree. -For more information see the documentation of your LATEX distribution -on installing packages into your LATEX distribution or the -TeX Frequently Asked Questions: -(http://www.tex.ac.uk/cgi-bin/texfaq2html?label=instpackages). - - -The documentation ------------------- -To get a smaller size of the generated pdf file run the -Makefile or by hand -"pst2pdf <file> --Iext=.png --Iscale=0.5 --DPI=150". This will -create eps/pdf/png images in a subdirectory images/ and then -using only the png ones for the last _pdflatex_ run. The -file size can be reduced to about 20% of the one created with -ps2pdf. The pdf file is saved as yfile>-pdf.pdf. - -When running the documentation in a traditional way, then -uncomment the line (in the preamble) - -%\newenvironment{postscript}{}{} % uncomment, when running with latex diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/README.md b/Master/texmf-dist/doc/generic/pst-magneticfield/README.md new file mode 100644 index 00000000000..fcfa952ec8d --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/README.md @@ -0,0 +1,21 @@ +# pst-magnetiocfield: creating magnetic field lines in 2D and 3D + +Save the files pst-magneticfield.sty|pro|tex in a directory, which is part of your +local TeX tree. The pro file should go into $TEXMF/dvips/pstricks/ +Then do not forget to run texhash to update this tree. + +pst-magneticfield needs pstricks, which should +be part of your local TeX installation, otherwise get it from a +CTAN server, http://mirror.ctan.org + +PSTricks is PostScript Tricks, the documentation cannot be run +with pdftex, use the sequence latex->dvips->ps2pdf or +pdflatex with package auto-pst-pdf or xelatex. + +%% This program can be redistributed and/or modified under the terms +%% of the LaTeX Project Public License Distributed from CTAN archives +%% in directory macros/latex/base/lppl.txt. + + +%% $Id: README.md 912 2019-01-17 10:46:15Z herbert $ + diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.pdf b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.pdf Binary files differdeleted file mode 100644 index cf430cfddc0..00000000000 --- a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.pdf +++ /dev/null diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.tex b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.tex deleted file mode 100644 index 0a171359bbb..00000000000 --- a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.tex +++ /dev/null @@ -1,502 +0,0 @@ -%% $Id: pst-magneticfield-docDE.tex 343 2010-06-10 15:08:37Z herbert $ -\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings - headexclude,footexclude,oneside]{pst-doc} -\usepackage[latin1]{inputenc} -\usepackage{pst-magneticfield} -\let\pstMFfv\fileversion - -%\newenvironment{postscript}{}{} % uncomment, when running with latex - -\lstset{pos=t,language=PSTricks, - morekeywords={psmagneticfield,psmagneticfieldThreeD},basicstyle=\footnotesize\ttfamily} -\newcommand\Cadre[1]{\psframebox[fillstyle=solid,fillcolor=black,linestyle=none,framesep=0]{#1}} -\def\bgImage{} -% -\begin{document} - -\title{\texttt{pst-magneticfield}} -\subtitle{Magnetische Feldlinien einer langgestreckten Spule; v.\pstMFfv} -\author{J\"{u}rgen Gilg\\ Manuel Luque\\Herbert Vo\ss} -%\docauthor{J\"{u}rgen Gilg\\Manuel Luque\\Herbert Vo\ss} -\date{\today} -\maketitle - - -\clearpage% -\begin{abstract} -Das Paket \LPack{pst-magneticfield} zeichnet magnetische Feldlinien einer langgestreckten Spule. -Die physikalischen Gr\"{o}{\ss}en sind: Radius der Spule, ihre L\"{a}nge und die Anzahl ihrer -Windungen. Die voreingestellten Werte sind: - -\begin{enumerate} - \item Anzahl der Windungen: \LKeyset{N=6}; - \item Radius: \LKeyset{R=2}; - \item L\"{a}nge: \LKeyset{L=4}. -\end{enumerate} - -Die magnetischen Feldlinien wurden mit dem Runge-Kutta 2 Verfahren angen\"{a}hert, welches sich -nach einigen anderen Versuchen als der beste Kompromiss zwischen Re\-chen\-ge\-schwin\-dig\-keit und -Zeichengenauigkeit der Linien erwies. Die Berechnung der notwendigen elliptischen Integrale -wurden mit einer polynomialen N\"{a}herung aus dem "Handbook of Mathematical Functions -With Formulas, Graph, And Mathematical Tables" von Milton Abramowitz und Irene.\,A. Stegun -(\url{http://www.math.sfu.ca/~cbm/aands/})~\cite{abramowitz} realisiert. -\end{abstract} - -\clearpage -\tableofcontents - -\clearpage -\section{Einleitung} - -Im Folgenden stellen wir die Optionen mit ihren voreingestellten Werten vor: -\begin{enumerate} - \item Die Maximalzahl von Berechnungspunkten einer jeden Feldlinie um die gesamte Spule: \LKeyset{pointsB=500}; - \item die Maximalzahl von Berechnungspunkten einer jeden Feldlinie um die Windungen: \LKeyset{pointsS=1000}; - \item die Anzahl der Feldlinien um die gesamte Spule: \LKeyset{nL=8}; - \item Schrittweite f\"{u}r die Feldlinien um die gesamte Spule: \LKeyset{PasB=0.02}; - \item Schrittweite f\"{u}r die Feldlinien um die Windungen: \LKeyset{PasS=0.00275}; - \item nur Feldlinien um individuell ausgew\"{a}hlte Windungen: \LKeyset{numSpires=\{\}}, nach dem Gleichheitsszeichen "=" schreiben wir die Nummer(n) der Windung(en) \textsf{1 2 3 etc.} ausgehend von der obersten Windung. Voreingestellt ist, dass bei allen Windungen die Feldlinien gezeichnet werden. - \item Die Anzahl der Feldlinien um die gew\"{a}hlten Windungen: \LKeyset{nS=1}. - \item Falls wir die Spule selbst nicht zeichnen m\"{o}chten, erledigt dies die Option \LKeyset{drawSelf=false} (hilfreich bei 3D-Ansichten). - \item Die Optionen der Spule (Farbe, Linienst\"{a}rke, Pfeile) sind: - \begin{enumerate} - \item Die Farbe und Linienst\"{a}rke der Spule: \Lkeyset{styleSpire=styleSpire}; - \item die Stromst\"{a}rkepfeile: \Lkeyset{styleCourant=sensCourant}. - \end{enumerate} -\begin{verbatim} -\newpsstyle{styleSpire}{linecap=1,linecolor=red,linewidth=2\pslinewidth} -\newpsstyle{sensCourant}{linecolor=red,linewidth=2\pslinewidth,arrowinset=0.1} -\end{verbatim} - - \item Die Farbe und Linienst\"{a}rke der Feldlinien can mit den g\"{a}ngigen Parametern von \LPack{pstricks} eingestellt werden: \Lkeyword{linecolor} und \Lkeyword{linewidth} -\end{enumerate} - -Der Befehl \Lcs{psmagneticfieldThreeD} erlaubt eine 3D-Ansicht der Spule und der magnetischen Feldlinien. - -\clearpage -\section{Einfluss der physikalischen Gr\"{o}{\ss}en auf das Erscheinungsbild der Feldlinien} -\subsection{Die L\"{a}nge der Spule} - -\begin{center} -\begin{postscript} -\psset{unit=0.5cm} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=3,R=2,nS=1](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{L=4}},N=3,R=2,nS=1]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},L=8,N=3,R=2,nS=1,PasB=0.0025,pointsB=5500](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{L=8}},N=3,R=2,nS=1]} -\end{pspicture*} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.5cm} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=3,R=2,nS=1](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{L=4}},N=3,R=2,nS=1]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},L=8,N=3,R=2,nS=1,PasB=0.0025,pointsB=5500](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{L=8}},N=3,R=2,nS=1]} -\end{pspicture*} -\end{lstlisting} - - -\textbf{Anmerkung:} Um das Erscheinungsbild der zweiten Spule zu verbessern, mussten wir die Anzahl der Berechungspunkte erh\"{o}hen und die Schrittweite verkleinern, - \begin{postscript} -\Cadre{\textcolor{white}{pointsB=5500,PasB=0.0025}} -\end{postscript}, -was jedoch eine Erh\"{o}hung der Rechenzeit mit sich brachte. - - -\clearpage - -\subsection{Die Anzahl der Windungen} - - -\begin{center} -\begin{postscript} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=1,R=2,nS=0](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=1}},R=2,nS=0]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=2,R=2,L=2,PasS=0.003,nS=2](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,7)(7,8) -\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=2}},R=2,L=2,PasS=0.003,nS=2]} -\end{pspicture*} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=1,R=2,nS=0](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=1}},R=2,nS=0]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=2,R=2,L=2,PasS=0.003,nS=2](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,7)(7,8) -\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=2}},R=2,L=2,PasS=0.003,nS=2]} -\end{pspicture*} -\end{lstlisting} - - -\begin{center} -\begin{postscript} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=4,R=2,numSpires=2 3](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=4}},R=2,L=4]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,numSpires=2 3 4](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=5}},R=2,L=5]} -\end{pspicture*} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=4,R=2,numSpires=2 3](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=4}},R=2,L=4]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,numSpires=2 3 4](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=5}},R=2,L=5]} -\end{pspicture*} -\end{lstlisting} - - - -\clearpage -\section{Optionen f\"{u}r die Linien} -\subsection{Die Anzahl der Feldlinien} - -Auf Grund der Symmetrie des Problems ist die gew\"{a}hlte Anzahl der Feldlinien \Lkeyword{nL} nur die H\"{a}lfte der tats\"{a}chlich gezeichneten Feldlinien. Hinzu kommt noch eine Feldlinie, die in Richtung der Symmetrieachse der Spule zeigt. Die Anzahl der Feldlinien um die Windungen herum \Lkeyword{nS} kommen auch noch hinzu, diese k\"{o}nnen jedoch mit \Lkeyword{numSpires} individuell ausgew\"{a}hlt werden. - - - -\begin{center} -\begin{postscript} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=8}},N=1,R=2]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2,nL=12](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=12}},N=1,R=2]} -\end{pspicture*} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=8}},N=1,R=2]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2,nL=12](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=12}},N=1,R=2]} -\end{pspicture*} -\end{lstlisting} - -\clearpage -\subsection{Die Anzahl der Berechnungspunkte und die Schrittweite} - -Die Feldlinien wurden mit einem numerischen Verfahren (Runge-Kutta 2) berechnet und dementsprechend h\"{a}ngt die Genauigkeit der Linien entscheidend ab von der Schrittweite und der Anzahl der Berechnungspunkte, wie in den folgenden zwei Beispielen gezeigt wird: - -\begin{center} -\begin{postscript} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.1,nS=0,nL=7,pointsB=100](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) -\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} -\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{PasB=0.1,nL=4,pointsB=100}}]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.4,nS=0,nL=7,pointsB=100](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) -\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} -\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{PasS=0.4,pointsB=100}}]} -\end{pspicture*} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.1,nS=0,nL=7,pointsB=100](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) -\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} -\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{PasB=0.1,nL=4,pointsB=100}}]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.4,nS=0,nL=7,pointsB=100](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) -\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} -\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{PasS=0.4,pointsB=100}}]} -\end{pspicture*} -\end{lstlisting} - - -Sollten die voreingestellten Werte f\"{u}r eine individuelle Gestaltung nicht passen, dann muss man mit den Werten \Lkeyword{pasB}, \Lkeyword{pointsB} (bzw. \Lkeyword{pasS}, \Lkeyword{pointsS}) spielen, bis es passt. - - - - -\clearpage - -\section{Der Parameter \nxLkeyword{numSpires}} -\begin{center} -\begin{postscript} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-8,-10)(8,10) -\psset{linecolor=blue} -\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,nS=1,numSpires=1 3 6 8,PasB=0.075](-8,-10)(8,10) -\psframe*[linecolor={[HTML]{99FF66}}](-8,-10)(8,-9) -\rput(0,-9.5){[\Cadre{\textcolor{white}{numSpires=1 3 6 8}},R=2,L=14]} -\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} -\end{pspicture*}\quad -\begin{pspicture*}[showgrid](0,-10)(16,10) -\psset{linecolor=blue} -\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,numSpires=,nS=1,PasB=0.075](0,-10)(16,10) -\psframe*[linecolor={[HTML]{99FF66}}](0,-10)(16,-9) -\rput(8,-9.5){[\Cadre{\textcolor{white}{numSpires=all}},R=2,L=14]} -\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} -\end{pspicture*} -\end{postscript} -\end{center} - - -\begin{lstlisting} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-8,-10)(8,10) -\psset{linecolor=blue} -\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,nS=1,numSpires=1 3 6 8,PasB=0.075](-8,-10)(8,10) -\psframe*[linecolor={[HTML]{99FF66}}](-8,-10)(8,-9) -\rput(0,-9.5){[\Cadre{\textcolor{white}{numSpires=1 3 6 8}},R=2,L=14]} -\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} -\end{pspicture*}\quad -\begin{pspicture*}[showgrid](0,-10)(16,10) -\psset{linecolor=blue} -\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,numSpires=,nS=1,PasB=0.075](0,-10)(16,10) -\psframe*[linecolor={[HTML]{99FF66}}](0,-10)(16,-9) -\rput(8,-9.5){[\Cadre{\textcolor{white}{numSpires=all}},R=2,L=14]} -\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} -\end{pspicture*} -\end{lstlisting} - -\clearpage -\section{Der Parameter \nxLkeyword{AntiHelmholtz}} -\begin{center} -\begin{postscript} -\psset{unit=0.75,AntiHelmholtz,N=2, - R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10, - nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} -\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} -\newpsstyle{cadre}{linecolor=yellow!50} -\begin{pspicture*}[showgrid](-7,-6)(7,6) -\psframe*[linecolor={[HTML]{996666}}](-7,6)(7,6) -\psmagneticfield[linecolor={[HTML]{660066}}] -\end{pspicture*} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.75,AntiHelmholtz,N=2, - R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10, - nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} -\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} -\newpsstyle{cadre}{linecolor=yellow!50} -\begin{pspicture*}[showgrid](-7,-6)(7,6) -\psframe*[linecolor={[HTML]{996666}}](-7,6)(7,6) -\psmagneticfield[linecolor={[HTML]{660066}}] -\end{pspicture*} -\end{lstlisting} - - -\clearpage -\section{3D-Ansichten} -3D-Ansichten sind mit den zwei folgenden Makros m\"{o}glich - -\begin{BDef} -\Lcs{psmagneticfield}\OptArgs\coord1\coord2\\ -\Lcs{psmagneticfieldThreeD}\OptArgs\coord1\coord2 -\end{BDef} - -in denen die in den vorigen Abschnitten besprochenen Parameter die Optionen von \Lcs{psmagneticfield} darstellen und mit \verb+(x1,y1)(x2,y2)+ werden die -Koordinaten der linken unteren und rechten oberen Ecke des Gitternetzes festgelegt, welches das Feldlinienbild einrahmt wie mit \Lcs{psframe}. Wir k\"{o}nnen die Option \Lkeyword{viewpoint} des Pakets \LPack{pst-3d} nutzen, um den Ansichtspunkt zu w\"{a}hlen/\"{a}ndern. - Die voreingestellten Parameter f\"{u}r das Gitternetz sind: - -\begin{verbatim} -\newpsstyle{grille}{subgriddiv=0,gridcolor=lightgray,griddots=10} -\newpsstyle{cadre}{linecolor=green!20} -\end{verbatim} - -M\"{o}glichkeiten zur Gestaltung des Gitternetzes zeigen die folgenden zwei Beispiele: - - -\begin{center} -\begin{postscript} -\psset{unit=0.7cm} -\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} -\newpsstyle{cadre}{linecolor=yellow!50} -\begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=2000](-7,-6)(7,6) -\end{pspicture} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.7cm} -\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} -\newpsstyle{cadre}{linecolor=yellow!50} -\begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=2000](-7,-6)(7,6) -\end{pspicture} -\end{lstlisting} - - -\begin{center} -\begin{postscript} -\psset{unit=0.7cm} -\begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-6)(7,6) -\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}} -\end{pspicture} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.7cm} -\begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-6)(7,6) -\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}} -\end{pspicture} -\end{lstlisting} - -\begin{center} -\begin{postscript} -\psset{unit=0.75cm,AntiHelmholtz,N=2, - R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10, - nL=2,drawSelf,styleSpire=styleSpire,styleCourant=sensCourant} -\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} -\newpsstyle{cadre}{linecolor=yellow!50} -\begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[linecolor={[HTML]{660066}}](-7,-6)(7,6) -\end{pspicture} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.75cm,AntiHelmholtz,N=2, - R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10, - nL=2,drawSelf,styleSpire=styleSpire,styleCourant=sensCourant} -\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} -\newpsstyle{cadre}{linecolor=yellow!50} -\begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[linecolor={[HTML]{660066}}](-7,-6)(7,6) -\end{pspicture} -\end{lstlisting} - - - -\section{Feldst\"arkendichte} - -\begin{center} -\begin{postscript} -\begin{pspicture}(-6,-4)(6,4) -\psmagneticfield[N=3,R=2,L=2,StreamDensityPlot](-6,-4)(6,4) -\end{pspicture} -\end{postscript} -\end{center} - -\begin{lstlisting} -\begin{pspicture}(-6,-4)(6,4) -\psmagneticfield[N=3,R=2,L=2,StreamDensityPlot](-6,-4)(6,4) -\end{pspicture} -\end{lstlisting} - -\begin{center} -\begin{postscript} -\psset{unit=0.75} -\begin{pspicture}(-6,-5)(6,5) -\psmagneticfield[N=2,R=2,L=1,StreamDensityPlot,setgray](-6,-5)(6,5) -\end{pspicture} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.75} -\begin{pspicture}(-6,-5)(6,5) -\psmagneticfield[N=2,R=2,L=1,StreamDensityPlot,setgray](-6,-5)(6,5) -\end{pspicture} -\end{lstlisting} - - -\begin{center} -\begin{postscript} -\psset{unit=0.75,AntiHelmholtz, - R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10, - nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} -\begin{pspicture*}(-7,-6)(7,6) -\psmagneticfield[linecolor={[HTML]{660066}},StreamDensityPlot](-7,-6)(7,6) -\end{pspicture*} -\end{postscript} -\end{center} - - -\begin{lstlisting} -\psset{unit=0.75,AntiHelmholtz, - R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10, - nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} -\begin{pspicture*}(-7,-6)(7,6) -\psmagneticfield[linecolor={[HTML]{660066}},StreamDensityPlot](-7,-6)(7,6) -\end{pspicture*} -\end{lstlisting} - - -\clearpage -\section{Liste aller optionalen Parameter von \texttt{pst-magneticfield}} - -\xkvview{family=pst-magneticfield,columns={key,type,default}} - -\nocite{*} -\bgroup -\raggedright -\bibliographystyle{plain} -\bibliography{pst-magneticfield-doc} -\egroup - -\printindex -\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.pdf b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.pdf Binary files differindex b24d1f038e2..9f418f3c532 100644 --- a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.pdf +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.pdf diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex index 100a0253d56..7332ee4e06d 100644 --- a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex @@ -1,17 +1,19 @@ -%% $Id: pst-magneticfield-docEN.tex 343 2010-06-10 15:08:37Z herbert $ -\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings +%% $Id: pst-magneticfield-docEN.tex 912 2019-01-17 10:46:15Z herbert $ +\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings, headexclude,footexclude,oneside]{pst-doc} -\usepackage[latin1]{inputenc} \usepackage{pst-magneticfield} \let\pstMFfv\fileversion +\usepackage{graphicx} \lstset{pos=t,language=PSTricks, morekeywords={psmagneticfield,psmagneticfieldThreeD},basicstyle=\footnotesize\ttfamily} -%\newenvironment{postscript}{}{} % uncomment, when running with latex +\newenvironment{postscript}{}{} % uncomment, when running with latex \newcommand\Cadre[1]{\psframebox[fillstyle=solid,fillcolor=black,linestyle=none,framesep=0]{#1}} \def\bgImage{} -% + +\addbibresource{pst-magneticfield-doc.bib} + \begin{document} \title{\texttt{pst-magneticfield}} @@ -506,6 +508,126 @@ with setting the keyword \Lkeyword{setgray}. \clearpage +\section{Stream density} + + +\begin{center} +\begin{postscript} +\begin{pspicture}(-6,-4)(6,4) +\psmagneticfield[N=3,R=2,L=2,StreamDensityPlot](-6,-4)(6,4) +\end{pspicture} +\end{postscript} +\end{center} + +\begin{lstlisting} +\begin{pspicture}(-6,-4)(6,4) +\psmagneticfield[N=3,R=2,L=2,StreamDensityPlot](-6,-4)(6,4) +\end{pspicture} +\end{lstlisting} + +\begin{center} +\begin{postscript} +\psset{unit=0.75} +\begin{pspicture}(-6,-5)(6,5) +\psmagneticfield[N=2,R=2,L=1,StreamDensityPlot,setgray](-6,-5)(6,5) +\end{pspicture} +\end{postscript} +\end{center} + +\begin{lstlisting} +\psset{unit=0.75} +\begin{pspicture}(-6,-5)(6,5) +\psmagneticfield[N=2,R=2,L=1,StreamDensityPlot,setgray](-6,-5)(6,5) +\end{pspicture} +\end{lstlisting} + + +\begin{center} +\begin{postscript} +\psset{unit=0.75,AntiHelmholtz, + R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10, + nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} +\begin{pspicture*}(-7,-6)(7,6) +\psmagneticfield[linecolor={[HTML]{660066}},StreamDensityPlot](-7,-6)(7,6) +\end{pspicture*} +\end{postscript} +\end{center} + + +\begin{lstlisting} +\psset{unit=0.75,AntiHelmholtz, + R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10, + nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} +\begin{pspicture*}(-7,-6)(7,6) +\psmagneticfield[linecolor={[HTML]{660066}},StreamDensityPlot](-7,-6)(7,6) +\end{pspicture*} +\end{lstlisting} + + + +\section{Bar magnet} +The magnetic field of a bat magnet can be simulated. There is one macro for the bar magnet, which will be +put over one of the above created mnagnetic fields. + +\begin{BDef} +\Lcs{psBarMagnet}\OptArgs\OptArg{\Largr{$x,y$}} +\end{BDef} + +\begin{LTXexample} +\begin{pspicture}(-1,-2)(12,2) +\psBarMagnet% (0,0) is assumed +\psBarMagnet(2,0.5) +\psBarMagnet*(4,0) +\psBarMagnet[rot=90](7,0) +\psBarMagnet[rot=45](10,0) +\end{pspicture} +\end{LTXexample} + + +Bar magnet and field can be put of the other by single commands: + + +\begin{LTXexample} +\begin{pspicture*}[showgrid=false](-5,-8)(5,8) +\psset{linecolor=blue} +\psscalebox{0.8 1.2}{\psmagneticfield[R=1,L=5,N=5,pointsS=200,nL=9,nS=0,PasB=0.1,numSpires=0](-8,-10)(8,10)} +\rput(0,0){\psscalebox{2.2 3.0}{\psBarMagnet}} +\end{pspicture*} +\end{LTXexample} + + +or by using the optional argument \Lkeyword{showField}: + +\begin{LTXexample} +\begin{pspicture*}(-5,-8)(5,8) +\psBarMagnet[showField](0,0) +\end{pspicture*} +\end{LTXexample} + +A rotation has to be done with the command \Lcs{rotatebox} from package \LPack{graphicx}: + + +\begin{LTXexample} +\begin{pspicture*}(-5,-8)(5,8) +\rotatebox{180}{\psBarMagnet[showField](0,0)} +\end{pspicture*} +\end{LTXexample} + + +Scaling is possible with the optional argument \Lkeyword{magnetscale} and all options which +are valid for + + +\begin{LTXexample} +\begin{pspicture*}(-5,-8)(5,8) +\psBarMagnet[showField,nL=18,magnetScale=1 1.5](0,0) +\end{pspicture*} +\end{LTXexample} + + + + +\clearpage \section{List of all optional arguments for \texttt{pst-magneticfield}} \xkvview{family=pst-magneticfield,columns={key,type,default}} @@ -513,8 +635,7 @@ with setting the keyword \Lkeyword{setgray}. \nocite{*} \bgroup \raggedright -\bibliographystyle{plain} -\bibliography{pst-magneticfield-doc} +\printbibliography \egroup diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.pdf b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.pdf Binary files differdeleted file mode 100644 index 239b57cf325..00000000000 --- a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.pdf +++ /dev/null diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex deleted file mode 100644 index 38edd66a0d5..00000000000 --- a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex +++ /dev/null @@ -1,706 +0,0 @@ -%% $Id: pst-magneticfield-docFR.tex 343 2010-06-10 15:08:37Z herbert $ -\documentclass[11pt,english,french,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings - headexclude,footexclude,oneside]{pst-doc} -\usepackage[latin1]{inputenc} -\usepackage{pst-magneticfield} -\let\pstMFfv\fileversion - -%\newenvironment{postscript}{}{} % uncomment, when running with latex - -\lstset{pos=t,language=PSTricks, - morekeywords={psmagneticfield,psmagneticfieldThreeD},basicstyle=\footnotesize\ttfamily} -\newcommand\Cadre[1]{\psframebox[fillstyle=solid,fillcolor=black,linestyle=none,framesep=0]{#1}} -\def\bgImage{} -% -\begin{document} - -\title{\texttt{pst-magneticfield}} -\subtitle{Magnetic field lines of a solenoid; v.\pstMFfv} -\author{Juergen Gilg\\ Manuel Luque\\Herbert Vo\ss} -%\docauthor{Juergen Gilg\\Manuel Luque\\Herbert Vo\ss} -\date{\today} -\maketitle - - -\clearpage% -\begin{abstract} -Le package \LPack{pst-magneticfield} a pour objet de tracer l'allure des lignes de -champ d'un solénoïde. Les paramètres physiques du solénoïde sont le rayon, le nombre -de spires et la longueur, les valeurs par défaut sont données ci-dessous : -\begin{enumerate} - \item le nombre de spires : \LKeyset{N=6} ; - \item le rayon : \LKeyset{R=2} ; - \item la longueur : \LKeyset{L=4}. -\end{enumerate} -Le tracé a été modélisé avec la méthode de Runge-Kutta 2 qui, après plusieurs essais, -semble être le meilleur compromis entre rapidité des calculs et précision du tracé. -Le calcul des intégrales elliptiques nécessaires à l'évaluation du champ magnétique -a été réalisé par des approximations polynômiales tirées du ``\textit{Handbook of -Mathematical Functions With Formulas, Graph, And Mathematical Tables}'' de -Milton Abramowitz et Irene.A. Stegun \url{http://www.math.sfu.ca/~cbm/aands/}. -\end{abstract} - -\clearpage -\tableofcontents - - -\clearpage - -\section{Introduction} -Les options de tracé, avec les valeurs par défaut, sont les suivantes : -\begin{enumerate} - \item Le nombre de points maximum sur chaque ligne de l'ensemble de la bobine : \LKeyset{pointsB=500} ; - \item le nombre de points maximum sur des lignes autour de spires choisies : \LKeyset{pointsS=1000} ; - \item le nombre de lignes de l'ensemble de la bobine : \LKeyset{nL=8} ; - \item le pas du tracé pour les lignes de l'ensemble de la bobine : \LKeyset{PasB=0.02} ; - \item le pas du tracé pour les lignes autour de spires choisies : \LKeyset{PasS=0.00275} ; - \item la possibilité de choisir individuellement des spires pour améliorer le rendu - du tracé : \LKeyset{numSpires=\{\}} , on place à la suite du signe ``='' les numéros - des spires \textsf{1 2 3 etc.} en partant de la spire du haut. Par défaut, - toutes les spires sont ciblées. - \item Le nombre de lignes de champ autour des spires choisies : \LKeyset{nS=1}. - \item On peut décider de ne pas représenter le solénoïde avec l'option \LKeyset{drawSelf=false}, - c'est utile pour la représentation en 3D. - \item les options de tracé des spires (couleur, épaisseur, flèches) sont : - \begin{enumerate} - \item La couleur et l'épaisseur du trait des spires : \Lkeyset{styleSpire=styleSpire} ; - \item le fléchage du sens du courant : \Lkeyset{styleCourant=sensCourant}. - \end{enumerate} - -\begin{verbatim} -\newpsstyle{styleSpire}{linecap=1,linecolor=red,linewidth=2\pslinewidth} -\newpsstyle{sensCourant}{linecolor=red,linewidth=2\pslinewidth,arrowinset=0.1} -\end{verbatim} - - \item La couleur et l'épaisseur des lignes de champ se règlent avec les paramètres usuels - de \LPack{pstricks} : \Lkeyword{linecolor} et \Lkeyword{linewidth}. - \item On peut mettre en image de fond la carte de la densité de flux avec l'option \textsf{StreamDensityPlot}, celle-ci est par défaut en couleur, mais il est possible de l'afficher en niveaux de gris avec \textsf{setgray}. -\end{enumerate} -Une commande \Lcs{psmagneticfieldThreeD} permet la visualisation en 3D du solénoïde et -des lignes de champ. - -\clearpage -\section{Influence des paramètres physiques sur la carte du champ magnétique} -\subsection{La longueur du solénoïde} - -\begin{center} -\begin{postscript} -\psset{unit=0.5cm} -\begin{pspicture*}(-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=3,R=2,StreamDensityPlot](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{L=4}},N=3,R=2,StreamDensityPlot]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},L=8,N=3,R=2,nS=1,PasB=0.0025,pointsB=5500](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{L=8}},N=3,R=2,nS=1]} -\end{pspicture*} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.5cm} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=3,R=2,nS=1](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{L=4}},N=3,R=2,nS=1]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},L=8,N=3,R=2,nS=1,PasB=0.0025,pointsB=5500](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{L=8}},N=3,R=2,nS=1]} -\end{pspicture*} -\end{lstlisting} - - -\textbf{Remarque :} pour affiner le tracé du deuxième solénoïde, on a du augmenter -le nombre de points et diminuer le pas du tracé : -\begin{postscript} -\Cadre{\textcolor{white}{pointsB=5500,PasB=0.0025}} -\end{postscript}, -ce qui rallonge la durée des calculs. - - - -\clearpage - -\subsection{Le nombre de spires} -\begin{center} -\begin{postscript} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=1,R=2,nS=0](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=1}},R=2,nS=0]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=2,R=2,L=2,PasS=0.003,nS=2](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,7)(7,8) -\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=2}},R=2,L=2,PasS=0.003,nS=2]} -\end{pspicture*} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=1,R=2,nS=0](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=1}},R=2,nS=0]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=2,R=2,L=2,PasS=0.003,nS=2](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,7)(7,8) -\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=2}},R=2,L=2,PasS=0.003,nS=2]} -\end{pspicture*} -\end{lstlisting} - - -\begin{center} -\begin{postscript} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=4,R=2,numSpires=2 3](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=4}},R=2,L=4]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,numSpires=2 3 4](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=5}},R=2,L=5]} -\end{pspicture*} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=4,R=2,numSpires=2 3](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=4}},R=2,L=4]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,numSpires=2 3 4](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{N=5}},R=2,L=5]} -\end{pspicture*} -\end{lstlisting} - - -\clearpage -\section{Les options de tracé} -\subsection{Le nombre de lignes de champ} -En raison de la symétrie du phénomène le nombre de lignes de champ donné en option -\Lkeyword{nL} est la moitié du nombre réellement représenté auquel il faut ajouter -la ligne confondue avec l'axe de révolution. Il faut aussi rajouter les lignes -autour des spires \Lkeyword{nS}, ces spires pouvant être choisies individuellement -avec \Lkeyword{numSpires}. - - - -\begin{center} -\begin{postscript} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=8}},N=1,R=2]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2,nL=12](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=12}},N=1,R=2]} -\end{pspicture*} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=8}},N=1,R=2]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2,nL=12](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=12}},N=1,R=2]} -\end{pspicture*} -\end{lstlisting} - -\clearpage -\subsection{Le nombre de points et le pas du tracé} -Le tracé des lignes de champ est réalisé par une méthode numérique (RK2) et il s'ensuit -le pas du tracé et le nombre de points choisis influent sur la précision du tracé, -comme dans les deux exemples ci-dessous : - -\begin{center} -\begin{postscript} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.1,nS=0,nL=7,pointsB=100](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) -\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} -\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{PasB=0.1,nL=4,pointsB=100}}]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.4,nS=0,nL=7,pointsB=100](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) -\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} -\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{PasS=0.4,pointsB=100}}]} -\end{pspicture*} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.1,nS=0,nL=7,pointsB=100](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) -\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} -\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{PasB=0.1,nL=4,pointsB=100}}]} -\end{pspicture*} -\begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.4,nS=0,nL=7,pointsB=100](-7,-8)(7,8) -\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) -\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} -\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) -\rput(0,-7.5){[\Cadre{\textcolor{white}{PasS=0.4,pointsB=100}}]} -\end{pspicture*} -\end{lstlisting} - - -Si les valeurs par défaut ne conviennent pas il faut donc trouver par des -essais les valeurs qui donnent un tracé correct. - - -\clearpage - -\section{Le paramètre: numSpires} -\begin{center} -\begin{postscript} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-8,-10)(8,10) -\psset{linecolor=blue} -\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,nS=1,numSpires=1 3 6 8,PasB=0.075](-8,-10)(8,10) -\psframe*[linecolor={[HTML]{99FF66}}](-8,-10)(8,-9) -\rput(0,-9.5){[\Cadre{\textcolor{white}{numSpires=1 3 6 8}},R=2,L=14]} -\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} -\end{pspicture*}\quad -\begin{pspicture*}[showgrid](0,-10)(16,10) -\psset{linecolor=blue} -\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,numSpires=,nS=1,PasB=0.075](0,-10)(16,10) -\psframe*[linecolor={[HTML]{99FF66}}](0,-10)(16,-9) -\rput(8,-9.5){[\Cadre{\textcolor{white}{numSpires=all}},R=2,L=14]} -\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} -\end{pspicture*} -\end{postscript} -\end{center} - - -\begin{lstlisting} -\psset{unit=0.5} -\begin{pspicture*}[showgrid](-8,-10)(8,10) -\psset{linecolor=blue} -\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,nS=1,numSpires=1 3 6 8,PasB=0.075](-8,-10)(8,10) -\psframe*[linecolor={[HTML]{99FF66}}](-8,-10)(8,-9) -\rput(0,-9.5){[\Cadre{\textcolor{white}{numSpires=1 3 6 8}},R=2,L=14]} -\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} -\end{pspicture*}\quad -\begin{pspicture*}[showgrid](0,-10)(16,10) -\psset{linecolor=blue} -\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,numSpires=,nS=1,PasB=0.075](0,-10)(16,10) -\psframe*[linecolor={[HTML]{99FF66}}](0,-10)(16,-9) -\rput(8,-9.5){[\Cadre{\textcolor{white}{numSpires=all}},R=2,L=14]} -\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} -\end{pspicture*} -\end{lstlisting} - -\clearpage -\section{Le param\`etre \nxLkeyword{AntiHelmholtz}} -\begin{center} -\begin{postscript} -\psset{unit=0.75,AntiHelmholtz,N=2, - R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10, - nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} -\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} -\newpsstyle{cadre}{linecolor=yellow!50} -\begin{pspicture*}[showgrid](-7,-6)(7,6) -\psframe*[linecolor={[HTML]{996666}}](-7,6)(7,6) -\psmagneticfield[linecolor={[HTML]{660066}}] -\end{pspicture*} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.75,AntiHelmholtz,N=2, - R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10, - nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} -\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} -\newpsstyle{cadre}{linecolor=yellow!50} -\begin{pspicture*}[showgrid](-7,-6)(7,6) -\psframe*[linecolor={[HTML]{996666}}](-7,6)(7,6) -\psmagneticfield[linecolor={[HTML]{660066}}] -\end{pspicture*} -\end{lstlisting} - - -\clearpage -\section{La vue en 3D} -La vue en 3D utilise la commande - -\begin{BDef} -\Lcs{psmagneticfield}\OptArgs\coord1\coord2\\ -\Lcs{psmagneticfieldThreeD}\OptArgs\coord1\coord2 -\end{BDef} - -dans laquelle les options sont les paramètres de -\Lcs{psmagneticfield} et \verb+(x1,y1)(x2,y2)+ les coordonnées des coins -inférieur gauche et supérieur droit du cadre dans lequel est encapsulée -la carte du champ comme pour \Lcs{psframe}. On pourra utiliser l'option \Lkeyword{viewpoint} du -package \LPack{pst-3d} pour modifier le point de vue. - -Les options du cadre sont, par défaut, les suivantes : -\begin{verbatim} -\newpsstyle{grille}{subgriddiv=0,gridcolor=lightgray,griddots=10} -\newpsstyle{cadre}{linecolor=green!20} -\end{verbatim} - -Ce sont donc celles-ci qu'il faudra modifier si on souhaite en changer, comme dans l'exemple ci-dessous. - - -\begin{center} -\begin{postscript} -\psset{unit=0.7cm} -\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} -\newpsstyle{cadre}{linecolor=yellow!50} -\begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=2000](-7,-6)(7,6) -\end{pspicture} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.7cm} -\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} -\newpsstyle{cadre}{linecolor=yellow!50} -\begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=2000](-7,-6)(7,6) -\end{pspicture} -\end{lstlisting} - - -\begin{center} -\begin{postscript} -\psset{unit=0.7cm} -\begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-6)(7,6) -\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}} -\end{pspicture} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.7cm} -\begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-6)(7,6) -\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}} -\end{pspicture} -\end{lstlisting} - -\begin{center} -\begin{postscript} -\psset{unit=0.75cm,AntiHelmholtz,N=2, - R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10, - nL=2,drawSelf,styleSpire=styleSpire,styleCourant=sensCourant} -\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} -\newpsstyle{cadre}{linecolor=yellow!50} -\begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[linecolor={[HTML]{660066}}](-7,-6)(7,6) -\end{pspicture} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.75cm,AntiHelmholtz,N=2, - R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10, - nL=2,drawSelf,styleSpire=styleSpire,styleCourant=sensCourant} -\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} -\newpsstyle{cadre}{linecolor=yellow!50} -\begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[linecolor={[HTML]{660066}}](-7,-6)(7,6) -\end{pspicture} -\end{lstlisting} - - -\section{Density plots} -\begin{center} -\begin{postscript} -\begin{pspicture}(-6,-4)(6,4) -\psmagneticfield[N=3,R=2,L=2,StreamDensityPlot](-6,-4)(6,4) -\end{pspicture} -\end{postscript} -\end{center} - -\begin{lstlisting} -\begin{pspicture}(-6,-4)(6,4) -\psmagneticfield[N=3,R=2,L=2,StreamDensityPlot](-6,-4)(6,4) -\end{pspicture} -\end{lstlisting} - -\begin{center} -\begin{postscript} -\psset{unit=0.75} -\begin{pspicture}(-6,-5)(6,5) -\psmagneticfield[N=2,R=2,L=1,StreamDensityPlot,setgray](-6,-5)(6,5) -\end{pspicture} -\end{postscript} -\end{center} - -\begin{lstlisting} -\psset{unit=0.75} -\begin{pspicture}(-6,-5)(6,5) -\psmagneticfield[N=2,R=2,L=1,StreamDensityPlot,setgray](-6,-5)(6,5) -\end{pspicture} -\end{lstlisting} - - -\begin{center} -\begin{postscript} -\psset{unit=0.75,AntiHelmholtz, - R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10, - nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} -\begin{pspicture*}(-7,-6)(7,6) -\psmagneticfield[linecolor={[HTML]{660066}},StreamDensityPlot](-7,-6)(7,6) -\end{pspicture*} -\end{postscript} -\end{center} - - -\begin{lstlisting} -\psset{unit=0.75,AntiHelmholtz, - R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10, - nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} -\begin{pspicture*}(-7,-6)(7,6) -\psmagneticfield[linecolor={[HTML]{660066}},StreamDensityPlot](-7,-6)(7,6) -\end{pspicture*} -\end{lstlisting} - -\section{Un article très intéressant} -Il s'agit de celui paru dans le bulletin de l'union des physiciens \no{}918(2) de novembre 2009 : \textit{Intégrales elliptiques et champ magnétique créé par une spire circulaire}, dans lequel Thierry PRÉ démontre l'expression des composantes du champ magnétique de deux façons, à partir de la loi de Biot-Savart, puis à partir du potentiel vecteur ; il donne aussi différentes représentations des lignes de champ de plusieurs configurations de spires, obtenues à l'aide du logiciel \textit{Mathematica}. - -\url{http://www.udppc.asso.fr/bupdoc/textes/fichierjoint/918/0918D119.zip} - -Thierry met les sources \textsf{Mathematica} des figures illustrant son article à la disposition de ceux qui ont la chance de posséder ou de pouvoir utiliser ce logiciel : -\begin{verbatim} -Commandes à copier dans mathematica pour les figures de mon article ......... - -************************************************************************************************************** -bx[x_, y_, a_, R_, I_] := - I*(y - R)/x/ - Sqrt[(a + Abs[x])^2 + (y - R)^2]*(-EllipticK[ - 4*a*Abs[x]/((a + Abs[x])^2 + (y - R)^2)] + (a^2 + - Abs[x]^2 + (y - R)^2)/((a - Abs[x])^2 + (y - R)^2)* - EllipticE[4*a*Abs[x]/((a + Abs[x])^2 + (y - R)^2)]) -************************************************************************************************************** -by[x_, y_, a_, R_, I_] := - I/Sqrt[(a + Abs[x])^2 + (y - R)^2]*(EllipticK[ - 4*a*Abs[x]/((a + Abs[x])^2 + (y - R)^2)] + (a^2 - - Abs[x]^2 - (y - R)^2)/((a - Abs[x])^2 + (y - R)^2)* - EllipticE[4*a*Abs[x]/((a + Abs[x])^2 + (y - R)^2)]) -************************************************************************************************************** -StreamPlot[{bx[x, y, 1, 0, 1], by[x, y, 1, 0, 1]}, {x, -4, 4}, {y, -4, - 4}] - -************************************************************************************************************** - -StreamDensityPlot[{bx[x, y, 1, 0, 1], by[x, y, 1, 0, 1]}, {x, -4, - 4}, {y, -4, 4}, ImageSize -> Large, StreamStyle -> Black, - ColorFunction -> "Rainbow" , - StreamPoints -> Fine] -************************************************************************************************************** - -StreamDensityPlot[{bx[x, y, 1, 1, 1] + bx[x, y, 1, -1, 1], - by[x, y, 1, -1, 1] + by[x, y, 1, 1, 1]}, {x, -4, 4}, {y, -4, 4}, - ImageSize -> Large, StreamStyle -> Black, ColorFunction -> "Rainbow" , - StreamPoints -> Fine] -************************************************************************************************************** -StreamDensityPlot[{bx[x, y, 1, 1, 1] + bx[x, y, 1, -1, 1] + - bx[x, y, 1, 0, 1], - by[x, y, 1, -1, 1] + by[x, y, 1, 1, 1] + by[x, y, 1, 0, 1]}, {x, -4, - 4}, {y, -4, 4}, ImageSize -> Large, StreamStyle -> Black, - ColorFunction -> "Rainbow" , - StreamPoints -> Fine] -************************************************************************************************************** -StreamDensityPlot[{bx[x, y, 1, 0.5, 1] + bx[x, y, 1, -0.5, 1] + - bx[x, y, 1, 1.5, 1] + bx[x, y, 1, -1.5, 1], - by[x, y, 1, 0.5, 1] + by[x, y, 1, -0.5, 1] + by[x, y, 1, 1.5, 1] + - by[x, y, 1, -1.5, 1]}, {x, -4, 4}, {y, -4, 4}, ImageSize -> Large, - StreamStyle -> Black, ColorFunction -> "Rainbow" , - StreamPoints -> Fine] -************************************************************************************************************** - -StreamDensityPlot[{bx[x, y, 1, 1, 1] + bx[x, y, 1, -1, 1] + - bx[x, y, 1, 2, 1] + bx[x, y, 1, -2, 1] + bx[x, y, 1, 0, 1], - by[x, y, 1, 1, 1] + by[x, y, 1, -1, 1] + by[x, y, 1, 2, 1] + - by[x, y, 1, -2, 1] + by[x, y, 1, 0, 1]}, {x, -4, 4}, {y, -4, 4}, - ImageSize -> Large, StreamStyle -> Black, ColorFunction -> Hue , - StreamPoints -> Fine] -************************************************************************************************************** - -StreamDensityPlot[{bx[x, y, 1, 1.5, 1] + bx[x, y, 1, -1.5, 1], - by[x, y, 1, -1.5, 1] + by[x, y, 1, 1.5, 1]}, {x, -4, 4}, {y, -4, 4}, - ImageSize -> Large, StreamStyle -> Black, - ColorFunction -> "Rainbow" , - StreamPoints -> Fine] - -************************************************************************************************************** -StreamDensityPlot[{bx[x, y, 1, 1, 1] + bx[x, y, 1, -1, 1], - by[x, y, 1, -1, 1] + by[x, y, 1, 1, 1]}, {x, -4, 4}, {y, -4, 4}, - ImageSize -> Large, StreamStyle -> Black, ColorFunction -> "Rainbow" , - StreamPoints -> Fine] -************************************************************************************************************** -StreamDensityPlot[{bx[x, y, 1, 0.5, 1] + bx[x, y, 1, -0.5, 1], - by[x, y, 1, -0.5, 1] + by[x, y, 1, 0.5, 1]}, {x, -4, 4}, {y, -4, 4}, - ImageSize -> Large, StreamStyle -> Black, - ColorFunction -> "Rainbow" , - StreamPoints -> Fine] - -************************************************************************************************************** -StreamDensityPlot[{bx[x, y, 1, 0.25, 1] + bx[x, y, 1, -0.25, 1], - by[x, y, 1, -0.25, 1] + by[x, y, 1, 0.25, 1]}, {x, -4, 4}, {y, -4, - 4}, ImageSize -> Large, StreamStyle -> Black, - ColorFunction -> "Rainbow" , - StreamPoints -> Fine] -************************************************************************************************************** - -StreamDensityPlot[{bx[x, y, 1, 0.125, 5] + bx[x, y, 1, -0.125, 5], - by[x, y, 1, -0.125, 5] + by[x, y, 1, 0.125, 5]}, {x, -4, 4}, {y, -4, - 4}, ImageSize -> Large, StreamStyle -> Black, - ColorFunction -> "Rainbow" , - StreamPoints -> Fine] -************************************************************************************************************** -StreamDensityPlot[{bx[x, y, 1, 0.5, 1] + bx[x, y, 1, -0.5, -1], - by[x, y, 1, -0.5, -1] + by[x, y, 1, 0.5, 1]}, {x, -4, 4}, {y, -4, - 4}, ImageSize -> Large, StreamStyle -> Black, ColorFunction -> Hue , - StreamPoints -> Fine] - -************************************************************************************************************** -StreamDensityPlot[{bx[x, y, 1, 0.5, 4] + bx[x, y, 1, -0.5, 2] + - bx[x, y, 1, 1.5, 8] + bx[x, y, 1, -1.5, 1], - by[x, y, 1, 0.5, 4] + by[x, y, 1, -0.5, 2] + by[x, y, 1, 1.5, 8] + - by[x, y, 1, -1.5, 1]}, {x, -4, 4}, {y, -4, 4}, ImageSize -> Large, - StreamStyle -> Black, ColorFunction -> Hue , - StreamPoints -> Fine] - -************************************************************************************************************** -StreamDensityPlot[{bx[x, y, 1, 0.5, 1] + bx[x, y, 0.5, -0.5, 1] + - bx[x, y, 2, 1.5, 1] + bx[x, y, 0.25, -1.5, 1], - by[x, y, 1, 0.5, 1] + by[x, y, 0.5, -0.5, 1] + by[x, y, 2, 1.5, 1] + - by[x, y, 0.25, -1.5, 1]}, {x, -4, 4}, {y, -4, 4}, - ImageSize -> Large, StreamStyle -> Black, ColorFunction -> Hue , - StreamPoints -> Fine] -************************************************************************************************************** - -StreamDensityPlot[{ - bx[x - 2, y, 0.5, 0, 1] - - by[-y + 2, x, 0.5, 0, 1] - - bx[x + 2, y, 0.5, 0, 1] + - by[-y - 2, x, 0.5, 0, 1] - , - by[x - 2, y, 0.5, 0, 1] + - bx[-y + 2, x, 0.5, 0, 1] - - by[x + 2, y, 0.5, 0, 1] - - bx[-y - 2, x, 0.5, 0, 1] - }, {x, -4, 4}, {y, -4, 4}, ImageSize -> Large, StreamStyle -> Black, - ColorFunction -> Hue , - StreamPoints -> Fine] - -************************************************************************************************************** - -StreamDensityPlot[{ - bx[x - 2, y, 0.5, 0, 1] - - by[-y + 2, x, 0.5, 0, 1] - - bx[x + 2, y, 0.5, 0, 1] + - by[-y - 2, x, 0.5, 0, 1] + - bx[0.707*(x - 2*0.707) + 0.707*(y - 2*0.707), - 0.707*(y - 2*0.707) - 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 - - by[0.707*(x - 2*0.707) + 0.707*(y - 2*0.707), - 0.707*(y - 2*0.707) - 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 + - -bx[-0.707*(x + 2*0.707) + - 0.707*(y - 2*0.707), -0.707*(y - 2*0.707) - - 0.707*(x + 2*0.707), 0.5, 0, 1]*0.707 - - by[-0.707*(x + 2*0.707) + - 0.707*(y - 2*0.707), -0.707*(y - 2*0.707) - 0.707*(x + 2*0.707), - 0.5, 0, 1]*0.707 + - -bx[-0.707*(x + 2*0.707) - - 0.707*(y + 2*0.707), -0.707*(y + 2*0.707) + - 0.707*(x + 2*0.707), 0.5, 0, 1]*0.707 + - by[-0.707*(x + 2*0.707) - - 0.707*(y + 2*0.707), -0.707*(y + 2*0.707) + 0.707*(x + 2*0.707), - 0.5, 0, 1]*0.707 + - bx[0.707*(x - 2*0.707) - 0.707*(y + 2*0.707), - 0.707*(y + 2*0.707) + 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 + - by[0.707*(x - 2*0.707) - 0.707*(y + 2*0.707), - 0.707*(y + 2*0.707) + 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 - , - by[x - 2, y, 0.5, 0, 1] + - bx[-y + 2, x, 0.5, 0, 1] - - by[x + 2, y, 0.5, 0, 1] - - bx[-y - 2, x, 0.5, 0, 1] + - bx[0.707*(x - 2*0.707) + 0.707*(y - 2*0.707), - 0.707*(y - 2*0.707) - 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 + - by[0.707*(x - 2*0.707) + 0.707*(y - 2*0.707), - 0.707*(y - 2*0.707) - 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 + - bx[-0.707*(x + 2*0.707) + - 0.707*(y - 2*0.707), -0.707*(y - 2*0.707) - 0.707*(x + 2*0.707), - 0.5, 0, 1]*0.707 - - by[-0.707*(x + 2*0.707) + - 0.707*(y - 2*0.707), -0.707*(y - 2*0.707) - 0.707*(x + 2*0.707), - 0.5, 0, 1]*0.707 + - -bx[-0.707*(x + 2*0.707) - - 0.707*(y + 2*0.707), -0.707*(y + 2*0.707) + - 0.707*(x + 2*0.707), 0.5, 0, 1]*0.707 - - by[-0.707*(x + 2*0.707) - - 0.707*(y + 2*0.707), -0.707*(y + 2*0.707) + 0.707*(x + 2*0.707), - 0.5, 0, 1]*0.707 + - -bx[0.707*(x - 2*0.707) - 0.707*(y + 2*0.707), - 0.707*(y + 2*0.707) + 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 + - by[0.707*(x - 2*0.707) - 0.707*(y + 2*0.707), - 0.707*(y + 2*0.707) + 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 - }, {x, -4, 4}, {y, -4, 4}, ImageSize -> Large, StreamStyle -> Black, - ColorFunction -> Hue , - StreamPoints -> Fine - ] -************************************************************************************************************** -\end{verbatim} - - - -\clearpage -\section{Liste des arguments optionnels pour \texttt{pst-magneticfield}} - -\xkvview{family=pst-magneticfield,columns={key,type,default}} - -\nocite{*} -\bgroup -\raggedright -\bibliographystyle{plain} -\bibliography{pst-magneticfield-doc} -\egroup - - -\printindex - - - - -\end{document} diff --git a/Master/texmf-dist/dvips/pst-magneticfield/pst-magneticfield.pro b/Master/texmf-dist/dvips/pst-magneticfield/pst-magneticfield.pro index 1d3cab3a66f..1e558cca83c 100644 --- a/Master/texmf-dist/dvips/pst-magneticfield/pst-magneticfield.pro +++ b/Master/texmf-dist/dvips/pst-magneticfield/pst-magneticfield.pro @@ -1,10 +1,10 @@ %% $Id: pst-magneticfield.pro 346 2010-06-11 06:12:08Z herbert $ %% -%% This is file `pst-magneticfield.pro', +%% This is file pst-magneticfield.pro, %% %% IMPORTANT NOTICE: %% -%% Package `pst-magneticfield.tex' +%% Package pst-magneticfield.tex %% Jürgen Gilg %% Manuel Luque %% Herbert Voss diff --git a/Master/texmf-dist/source/generic/pst-magneticfield/Makefile b/Master/texmf-dist/source/generic/pst-magneticfield/Makefile deleted file mode 100644 index 05debd66904..00000000000 --- a/Master/texmf-dist/source/generic/pst-magneticfield/Makefile +++ /dev/null @@ -1,84 +0,0 @@ - -# `Makefile' for `pst-magneticfield.pdf', Rolf Niepraschk, 2010/05/21 - -.SUFFIXES : .tex .ltx .dvi .ps .pdf .eps .pro - -PACKAGE = pst-magneticfield -MAIN = $(PACKAGE)-doc -LANGUAGES = DE EN FR - -empty= -space=$(empty) $(empty) -DOC_SOURCES = $(addprefix $(PACKAGE)-doc,$(LANGUAGES)$(space)) -DOC_SOURCES := $(addsuffix .tex, $(DOC_SOURCES)) -DOCS = $(DOC_SOURCES:.tex=.pdf) - -TDS = ~/PSTricks/PSTricks-TDS - -LATEX = pst2pdf -PDFLATEX = pdflatex -OPTIONS= --Iext=.png --Iscale=0.5 --DPI=150 -#--noImages - -ARCHNAME = $(PACKAGE)-$(shell date +%Y%m%d) - -#PRO = foo.pro - -ARCHFILES = $(PACKAGE).sty $(PACKAGE).tex $(PACKAGE).pro $(DOC_SOURCES) \ - README Changes Makefile - -all : $(DOCS) clean - -%.pdf : %.tex - $(LATEX) $(basename $<) $(OPTIONS) -# makeindex -s gglo.ist -t $(basename $<)-pdf.glg -o $(basename $<)-pdf.gls $(basename $<)-pdf.glo - makeindex -s pst-doc.ist -t $(basename $<)-pdf.ilg -o $(basename $<)-pdf.ind $(basename $<)-pdf.idx - bibtex $(basename $<)-pdf - $(PDFLATEX) $(basename $<)-pdf - $(PDFLATEX) $(basename $<)-pdf - mv $(basename $<)-pdf.pdf $(basename $<).pdf - rm -f $(basename $<)-tmp.* $(basename $<)-pdf.* - -clean : - $(RM) $(foreach i,$(DOC_SOURCES:.tex=),$(addprefix $i, \ - .log .plog .preamble .aux .glg .glo .gls .ilg .idx .ind .tmp .toc .out .blg .bbl)) - -veryclean : clean - $(RM) $(foreach i,$(DOC_SOURCES:.tex=),$(addprefix $i, \ - .pdf .bbl .blg)) - -arch : - zip $(ARCHNAME).zip $(ARCHFILES) - -ifneq ($(strip $(PRO)),) -installPRO : - @echo "Installiere PRO-Dateien ($(PRO))..." - cp -u Changes $(TDS)/dvips/$(PACKAGE)/ - cp -u $(PACKAGE).pro $(TDS)/dvips/$(PACKAGE)/ - cp -u $(PACKAGE).pro ~/Links/dvips-local/ -else -installPRO : - @: -endif - -tds : installPRO - @echo "Installiere TeX-Zeug..." - cp -u Changes $(TDS)/doc/generic/$(PACKAGE)/ - cp -u README $(TDS)/doc/generic/$(PACKAGE)/ - cp -u *.pdf $(TDS)/doc/generic/$(PACKAGE)/ -# - cp -u Changes $(TDS)/tex/latex/$(PACKAGE)/ - cp -u $(PACKAGE).sty $(TDS)/tex/latex/$(PACKAGE)/ -# - cp -u Changes $(TDS)/tex/generic/$(PACKAGE)/ - cp -u $(PACKAGE).tex $(TDS)/tex/generic/$(PACKAGE)/ -# - cp -u Changes $(TDS)/source/$(PACKAGE)/ - cp -u *-doc??.tex $(TDS)/source/$(PACKAGE)/ - cp -u $(MAIN).bib $(TDS)/source/$(PACKAGE)/ - cp -u Makefile $(TDS)/source/$(PACKAGE)/ - -debug : - @echo $(DOC_SOURCES) - -# EOF diff --git a/Master/texmf-dist/tex/generic/pst-magneticfield/pst-magneticfield.tex b/Master/texmf-dist/tex/generic/pst-magneticfield/pst-magneticfield.tex index be716d75a51..cf548ae4367 100644 --- a/Master/texmf-dist/tex/generic/pst-magneticfield/pst-magneticfield.tex +++ b/Master/texmf-dist/tex/generic/pst-magneticfield/pst-magneticfield.tex @@ -17,11 +17,13 @@ % Requires some packages \ifx\PSTricksLoaded\endinput\else \input pstricks \fi \ifx\PSTthreeDLoaded\endinput\else\input pst-3d \fi +\ifx\PSTnodesLoaded\endinput\else \input pst-node \fi +\ifx\PSTarrowLoaded\endinput\else \input pst-arrow \fi \ifx\MultidoLoaded\endinput\else \input multido.tex\fi \ifx\PSTXKeyLoaded\endinput\else \input pst-xkey \fi % -\def\fileversion{1.13} -\def\filedate{2010/06/11} +\def\fileversion{1.15} +\def\filedate{2019/01/17} \message{`pst-magneticfield' v\fileversion, \filedate\space (ml,jg,hv)} % \edef\PstAtCode{\the\catcode`\@} \catcode`\@=11\relax @@ -55,10 +57,12 @@ \define@boolkey[psset]{pst-magneticfield}[Pst@]{AntiHelmholtz}[true]{} \define@boolkey[psset]{pst-magneticfield}[Pst@]{StreamDensityPlot}[true]{} \define@boolkey[psset]{pst-magneticfield}[Pst@]{setgray}[true]{} +\define@boolkey[psset]{pst-magneticfield}[Pst@]{changeNS}[true]{} % \psset[pst-magneticfield]{R=1,L=4,N=6,pointsB=500,pointsS=1000, PasB=0.02,PasS=0.00275,nS=1,nL=8,drawSelf,styleSpire=styleSpire, - styleCourant=sensCourant,AntiHelmholtz=false,StreamDensityPlot=false,setgray=false} + styleCourant=sensCourant,AntiHelmholtz=false,StreamDensityPlot=false,setgray=false, + changeNS=false} % \def\tx@MFieldDict{ tx@MFieldDict begin } % @@ -109,21 +113,34 @@ /StreamDensityPlot \ifPst@StreamDensityPlot true \else false \fi def /Setgray \ifPst@setgray true \else false \fi def }% - \addto@pscode{ \tx@MFieldDict MagneticField end }% + \addto@pscode{ \tx@MFieldDict %\pst@magnetrotate rotate + MagneticField end }% \ifPst@drawSelf \ifPst@AntiHelmholtz \psline[style=\psk@styleSpire](!Radius neg Radius 2 div)(!Radius Radius 2 div) - \psline[style=\psk@styleCourant]{<-}(!-0.2 Radius 2 div)(!0.2 Radius 2 div) \psline[style=\psk@styleSpire](!Radius neg Radius 2 div neg)(!Radius Radius 2 div neg) - \psline[style=\psk@styleCourant]{->}(!-0.2 Radius 2 div neg)(!0.2 Radius 2 div neg) + \ifPst@changeNS + \psline[style=\psk@styleCourant]{->}(!-0.2 Radius 2 div)(!0.2 Radius 2 div) + \psline[style=\psk@styleCourant]{<-}(!-0.2 Radius 2 div neg)(!0.2 Radius 2 div neg) + \else + \psline[style=\psk@styleCourant]{<-}(!-0.2 Radius 2 div)(!0.2 Radius 2 div) + \psline[style=\psk@styleCourant]{->}(!-0.2 Radius 2 div neg)(!0.2 Radius 2 div neg) + \fi \else - \multido{\i=1+1}{\psk@magneticfieldN}{% numero de la spire - \pst@Verb{ /Yspire yA \i\space 1 sub inter mul sub def } % position de la spire - \psline[style=\psk@styleSpire](! Radius neg Yspire)(! Radius Yspire) - \psline[style=\psk@styleCourant]{->}(! -0.2 Yspire)(! 0.2 Yspire)} - \fi% - \fi% - \end@SpecialObj% + \ifPst@changeNS + \multido{\i=1+1}{\psk@magneticfieldN}{% numero de la spire + \pst@Verb{ /Yspire yA \i\space 1 sub inter mul sub def } % position de la spire + \psline[style=\psk@styleSpire](! Radius neg Yspire)(! Radius Yspire) + \psline[style=\psk@styleCourant]{<-}(! -0.2 Yspire)(! 0.2 Yspire)}% + \else + \multido{\i=1+1}{\psk@magneticfieldN}{% numero de la spire + \pst@Verb{ /Yspire yA \i\space 1 sub inter mul sub def } % position de la spire + \psline[style=\psk@styleSpire](! Radius neg Yspire)(! Radius Yspire) + \psline[style=\psk@styleCourant]{->}(! -0.2 Yspire)(! 0.2 Yspire)}% + \fi + \fi + \fi + \end@SpecialObj \ignorespaces} % \newpsstyle{grille}{subgriddiv=0,gridcolor=lightgray,griddots=10} @@ -176,6 +193,43 @@ \fi \endgroup} % +\define@boolkey[psset]{pst-magneticfield}[Pst@]{showField}[true]{} +\define@boolkey[psset]{pst-magneticfield}[Pst@]{showPoleLabels}[true]{} +\define@key[psset]{pst-magneticfield}{fontstyle}[\large\bfseries\sffamily]{\def\psk@label@fontstyle{#1}} +\define@key[psset]{pst-magneticfield}{magnetScale}[1 1]{\pst@getscale{#1}\pst@magnetscale} +\psset[pst-magneticfield]{showPoleLabels,fontstyle=\large\bfseries\sffamily,showField=false, + magnetScale=1} + +\def\ps@Bar@Magnet{% + \psscalebox{\pst@magnetscale}{% + \psframe*[linecolor=Green](-0.5,-1.5)(0.5,0)% + \psframe*[linecolor=BrickRed](-0.5,0)(0.5,1.5)% + \ifPst@showPoleLabels + \rput{0}(0,1){\textcolor{white}{\psk@label@fontstyle N}}% + \rput{0}(0,-1){\textcolor{white}{\psk@label@fontstyle S}}% + \fi}% +}% + +\def\psBarMagnet{\pst@object{psBarMagnet}} +\def\psBarMagnet@i{\@ifnextchar(\psBarMagnet@ii{\psBarMagnet@ii(0,0)}}% +\def\psBarMagnet@ii(#1){% + \pst@killglue + \begingroup + \addbefore@par{R=0.8,L=3,N=4,pointsS=200,nL=9,nS=0,PasB=0.1,numSpires=0}% + \use@par + \ifPst@showField + \rput(#1){% + \psscalebox{0.4 0.7}{\psmagneticfield(-8,-10)(8,10)}% + \multido{\rA=0.3+0.3,\rB=0.8+0.1,\iA=-60+20,\iB=60+-20}{4}{% + \pccurve[ncurv=\rB,linewidth=0.1\pslinewidth,angleA=\iA,angleB=\iB,ArrowInside=->](0.5,\rA)(0.5,-\rA) + \psscalebox{-1 1}{\pccurve[ncurv=\rB,linewidth=0.1\pslinewidth,angleA=\iA,angleB=\iB,ArrowInside=->](0.5,\rA)(0.5,-\rA)}% + }}% + \fi + \rput(#1){\ps@Bar@Magnet}% + \endgroup + \ignorespaces +} +% \catcode`\@=\PstAtCode\relax % %% END |