diff options
Diffstat (limited to 'Master/texmf-dist/tex')
-rw-r--r-- | Master/texmf-dist/tex/latex/sa-tikz/sa-tikz.sty | 1043 | ||||
-rw-r--r-- | Master/texmf-dist/tex/latex/sa-tikz/tikzlibraryswitching-architectures.code.tex | 1045 |
2 files changed, 2088 insertions, 0 deletions
diff --git a/Master/texmf-dist/tex/latex/sa-tikz/sa-tikz.sty b/Master/texmf-dist/tex/latex/sa-tikz/sa-tikz.sty new file mode 100644 index 00000000000..8ddb5185519 --- /dev/null +++ b/Master/texmf-dist/tex/latex/sa-tikz/sa-tikz.sty @@ -0,0 +1,1043 @@ +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +% +% Sa-TikZ package v0.5 * * (C) Claudio Fiandrino 2012 +% +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +\NeedsTeXFormat{LaTeX2e} +\ProvidesPackage{sa-tikz}[2013/1/3 v0.5 Switching architectures design library.] +\RequirePackage{tikz} +\usetikzlibrary{calc,positioning,decorations.pathreplacing} + +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +% UTILITY +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + +% PGFMATHISODD: 1 = true, 0 = false +% +% #1: number to be checked +% #2: output macro +% +% example: +%% \pgfmathisodd{32}{output} +%% \ifnum\output=1 +%% \node{\output}; +%% \fi +\newcommand*{\pgfmathisodd}[2]{ + \pgfmathparse{mod(#1,2)} + \pgfmathtruncatemacro\res\pgfmathresult + \global\expandafter\edef\csname #2\endcsname{\res} +} + +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +% KEY DEFINITION - Design choices +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + +% * * * * * * * * * * * * * * * * * * +% CLOS +% * * * * * * * * * * * * * * * * * * + +% N is the key representing the number of inputs x number of modules first stage +\pgfkeys{/tikz/.cd,% + N/.initial=10,% + N/.get=\N,% + N/.store in=\N,% +}% + +% N label +\pgfkeys{/tikz/.cd,% + N label/.initial=N,% + N label/.store in=\Nlabel,% + N label/.get=\Nlabel,% +}% + +% r1 is the number of modules first stage +% m1 is the number of inputs first stage per module + +\pgfkeys{/tikz/.cd,% + r1/.initial=5,% + r1/.store in=\rone,% + r1/.get=\rone,% +}% + +% r1 label +\pgfkeys{/tikz/.cd,% + r1 label/.initial={r\ensuremath{_1}},% + r1 label/.store in=\ronelabel,% + r1 label/.get=\ronelabel,% +}% + +% m1 label +\pgfkeys{/tikz/.cd, + m1 label/.initial={m\ensuremath{_1}},% + m1 label/.store in=\monelabel,% + m1 label/.get=\monelabel,% +}% + +% r2 label +\pgfkeys{/tikz/.cd,% + r2 label/.initial={r\ensuremath{_2}},% + r2 label/.store in=\rtwolabel,% + r2 label/.get=\rtwolabel,% +}% + +% M is the key representing the number of inputs x number of modules last stage +\pgfkeys{/tikz/.cd,% + M/.initial=10,% + M/.get=\M,% + M/.store in=\M,% +}% + +% M label +\pgfkeys{/tikz/.cd,% + M label/.initial=M,% + M label/.store in=\Mlabel,% + M label/.get=\Mlabel,% +}% + +% r3 is the number of modules last stage +% m3 is the number of inputs last stage per module +\pgfmathtruncatemacro\rthree{5}% +\pgfkeys{/tikz/.cd, r3/.initial=5}% +\pgfkeys{/tikz/.cd, r3/.store in=\rthree}% + +% r3 label +\pgfkeys{/tikz/.cd,% + r3 label/.initial={r\ensuremath{_3}},% + r3 label/.store in=\rthreelabel,% + r3 label/.get=\rthreelabel,% +}% + +% m3 label +\pgfkeys{/tikz/.cd, + m3 label/.initial={m\ensuremath{_3}},% + m3 label/.store in=\mthreelabel,% + m3 label/.get=\mthreelabel,% +}% + +% * * * * * * * * * * * * * * * * * * +% BENES +% * * * * * * * * * * * * * * * * * * + +% P is the number of input/output ports +\pgfkeys{/tikz/.cd,% + P/.initial=8,% + P/.get=\P,% + P/.store in=\P,% +}% + +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +% GENERAL SETTINGS - Keys and styles +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + +% module customization +\pgfkeys{/tikz/.cd,% + module size/.initial={1cm},% + module size/.get=\modulesize,% + module size/.store in=\modulesize,% +}% + +\pgfkeys{/tikz/.cd,% + module ysep/.initial={1.5},% + module ysep/.get=\moduleysep,% + module ysep/.store in=\moduleysep,% +}% + +\pgfkeys{/tikz/.cd,% + module xsep/.initial={3},% + module xsep/.get=\modulexsep,% + module xsep/.store in=\modulexsep,% +}% + +\pgfkeys{/tikz/.cd,% + module font/.initial=\normalfont,% + module font/.get=\modulefont,% + module font/.store in=\modulefont,% +}% + +\tikzset{module/.style={% + draw,rectangle, minimum size=\modulesize, + font=\modulefont, + } +} + +\tikzset{module extensible/.style={% + draw,rectangle, minimum size=#1, + }, + module extensible/.default={\modulesize} +} + +\pgfkeys{/tikz/.cd,% + module label opacity/.initial={1},% + module label opacity/.get=\modulelabelopacity,% + module label opacity/.store in=\modulelabelopacity,% +}% + +\tikzset{module opacity/.style={ + text opacity=\modulelabelopacity, + } +} + +\pgfkeys{/tikz/.cd,% + pin length factor/.initial={1},% + pin length factor/.get=\pinlength,% + pin length factor/.store in=\pinlength,% +}% + +% setting labels in math mode + +\tikzset{math mode labels/.style={% + execute at begin node=$,% + execute at end node=$,% + } +} +\pgfkeys{/tikz/.cd,% + use math mode labels/.is choice,% + use math mode labels/true/.style={math mode labels},% + use math mode labels/false/.style={},% +}% + +\tikzset{set math mode labels/.style={% + use math mode labels=#1,% + },% + set math mode labels/.default=false,% +} + +% disable the connections +\newif\ifconnectiondisabled% +\pgfkeys{/tikz/.cd, connections disabled/.is if=connectiondisabled}% +\pgfkeys{/tikz/.cd, connections disabled/.default=false}% + +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +% CODE +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + +% CLOS SNB +\tikzset{clos snb/.code={ + + % Number of ports per module + \pgfmathtruncatemacro{\mone}{\N/\rone} + \pgfmathtruncatemacro{\mthree}{\M/\rthree} + + % COMPUTATION SNB CONDITION + \pgfmathtruncatemacro\rtwo{\mone+\mthree-1} + + % MODULE 1 + \foreach \i in {1,...,\rone}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r1-\i) at +(0,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 1 + % the number of inputs module one is exactly \mone + \pgfmathsetmacro\roneintervalspace{1/(\mone+1)} + \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] + in {1,...,\mone} + \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; + + % OUTPUTS MODULE 1 + % the number of outputs of module one is the number of modules stage 2 \rtwo + \pgfmathsetmacro\roneintervalspace{1/(\rtwo+1)} + \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] + in {1,...,\rtwo} + \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; + } + + % MODULE 2 + \foreach \i in {1,...,\rtwo}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r2-\i) at +(\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 2 + % the number of inputs of module two is the number of modules stage 1 \rone + \pgfmathsetmacro\rtwointervalspace{1/(\rone+1)} + \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput] + in {1,...,\rone} + \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {}; + + % OUTPUTS MODULE 2 + % the number of outputs module two is exactly \rthree + \pgfmathsetmacro\rtwointervalspace{1/(\rthree+1)} + \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput] + in {1,...,\rthree} + \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {}; + + } + + % MODULE 3 + \foreach \i in {1,...,\rthree}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r3-\i) at +(2*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 3 + % the number of inputs of module three is the number of modules stage 2 \rtwo + \pgfmathsetmacro\rthreeintervalspace{1/(\rtwo+1)} + \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput] + in {1,...,\rtwo} + \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {}; + + % OUTPUTS MODULE 3 + % the number of outputs module three is exactly \mthree + \pgfmathsetmacro\rthreeintervalspace{1/(\mthree+1)} + \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput] + in {1,...,\mthree} + \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {}; + + } + + % Test if connections should be removed + \ifconnectiondisabled + \relax + \else + % DRAWING CONNECTIONS + %% from r1 to r2 + \foreach \startmodule in {1,...,\rone}{ + \foreach \conn in {1,...,\rtwo} + \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule); + } + %% from r2 to r3 + \foreach \startmodule in {1,...,\rthree}{ + \foreach \conn in {1,...,\rtwo} + \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule); + } + \fi + }, +} + +\tikzset{clos snb example/.code={ + + % Number of ports per module + \pgfmathtruncatemacro{\mone}{\N/\rone} + \pgfmathtruncatemacro{\mthree}{\M/\rthree} + + % COMPUTATION SNB CONDITION + \pgfmathtruncatemacro\rtwo{\mone+\mthree-1} + + % MODULE 1 + \node[module,#1,module opacity](r1-1) at (0,0) {1}; + \node[below of=r1-1,yshift=0.75ex](r1-dots) {\vdots}; + \node[module,#1,module opacity,below of=r1-dots](r1-2) {\rone}; + + \foreach \i in {1,2}{ + % INPUTS MODULE 1 + % just two modules + \pgfmathsetmacro\roneintervalspace{1/(2+1)} + \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] + in {1,2} + \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; + + % OUTPUTS MODULE 1 + % just two modules + \pgfmathsetmacro\roneintervalspace{1/(2+1)} + \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] + in {1,2} + \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; + } + + % MODULE 2 + \node[module,#1,module opacity](r2-1) at (\modulexsep,0) {1}; + \node[below of=r2-1,yshift=0.75ex](r2-dots) {\vdots}; + \node[module,#1,module opacity,below of=r2-dots](r2-2) {\rtwo}; + + \foreach \i in {1,2}{ + % INPUTS MODULE 2 + % just two modules + \pgfmathsetmacro\rtwointervalspace{1/(2+1)} + \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput] + in {1,2} + \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {}; + + % OUTPUTS MODULE 2 + % just two modules + \pgfmathsetmacro\rtwointervalspace{1/(2+1)} + \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput] + in {1,2} + \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {}; + } + + % MODULE 3 + \node[module,#1,module opacity](r3-1) at (2*\modulexsep,0) {1}; + \node[below of=r3-1,yshift=0.75ex](r3-dots) {\vdots}; + \node[module,#1,module opacity,below of=r3-dots](r3-2) {\rthree}; + + \foreach \i in {1,2}{ + % INPUTS MODULE 3 + % just two modules + \pgfmathsetmacro\rthreeintervalspace{1/(2+1)} + \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput] + in {1,2} + \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {}; + + % OUTPUTS MODULE 3 + % just two modules + \pgfmathsetmacro\rthreeintervalspace{1/(2+1)} + \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput] + in {1,2} + \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {}; + } + + % DRAWING CONNECTIONS + %% from r1 to r2 + \foreach \startmodule in {1,2}{ + \foreach \conn in {1,2} + \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule); + } + %% from r2 to r3 + \foreach \startmodule in {1,2}{ + \foreach \conn in {1,2} + \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule); + } + + % SETTING LABELS + \node[below of=r1-2,set math mode labels] {\mone~\ensuremath{\times}~\rtwo}; + \node[below of=r2-2,set math mode labels] {\rone~\ensuremath{\times}~\rthree}; + \node[below of=r3-2,set math mode labels] {\rtwo~\ensuremath{\times}~\mthree}; + \draw[decorate,decoration={brace}]($(r1-2-front input-2)-(0.1,0)$)--($(r1-1-front input-1)-(0.1,0)$) node[midway,left=0.1cm,set math mode labels]{\N}; + \draw[decorate,decoration={brace}]($(r3-1-front output-1)+(0.1,0)$)--($(r3-2-front output-2)+(0.1,0)$) node[midway,right=0.1cm,set math mode labels]{\M}; + }, +} + +% CLOS REAR + +\tikzset{clos rear/.code={ + + % Number of ports per module + \pgfmathtruncatemacro{\mone}{\N/\rone} + \pgfmathtruncatemacro{\mthree}{\M/\rthree} + + % COMPUTATION REAR CONDITION + \pgfmathtruncatemacro\rtwo{max(\mone,\mthree)} + + % MODULE 1 + \foreach \i in {1,...,\rone}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r1-\i) at +(0,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 1 + % the number of inputs module one is exactly \mone + \pgfmathsetmacro\roneintervalspace{1/(\mone+1)} + \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] + in {1,...,\mone} + \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; + + % OUTPUTS MODULE 1 + % the number of outputs of module one is the number of modules stage 2 \rtwo + \pgfmathsetmacro\roneintervalspace{1/(\rtwo+1)} + \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] + in {1,...,\rtwo} + \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; + } + + % MODULE 2 + \foreach \i in {1,...,\rtwo}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r2-\i) at +(\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 2 + % the number of inputs of module two is the number of modules stage 1 \rone + \pgfmathsetmacro\rtwointervalspace{1/(\rone+1)} + \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput] + in {1,...,\rone} + \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {}; + + % OUTPUTS MODULE 2 + % the number of outputs module two is exactly \rthree + \pgfmathsetmacro\rtwointervalspace{1/(\rthree+1)} + \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput] + in {1,...,\rthree} + \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {}; + + } + + % MODULE 3 + \foreach \i in {1,...,\rthree}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r3-\i) at +(2*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 3 + % the number of inputs of module three is the number of modules stage 2 \rtwo + \pgfmathsetmacro\rthreeintervalspace{1/(\rtwo+1)} + \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput] + in {1,...,\rtwo} + \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {}; + + % OUTPUTS MODULE 3 + % the number of outputs module three is exactly \mthree + \pgfmathsetmacro\rthreeintervalspace{1/(\mthree+1)} + \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput] + in {1,...,\mthree} + \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {}; + } + + % Test if connections should be removed + \ifconnectiondisabled + \relax + \else + % DRAWING CONNECTIONS + %% from r1 to r2 + \foreach \startmodule in {1,...,\rone}{ + \foreach \conn in {1,...,\rtwo} + \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule); + } + %% from r2 to r3 + \foreach \startmodule in {1,...,\rthree}{ + \foreach \conn in {1,...,\rtwo} + \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule); + } + \fi + } +} + +\tikzset{clos rear example/.code={ + + % Number of ports per module + \pgfmathtruncatemacro{\mone}{\N/\rone} + \pgfmathtruncatemacro{\mthree}{\M/\rthree} + + % COMPUTATION REAR CONDITION + \pgfmathtruncatemacro\rtwo{max(\mone,\mthree)} + + % MODULE 1 + \node[module,#1,module opacity](r1-1) at (0,0) {1}; + \node[below of=r1-1,yshift=0.75ex](r1-dots) {\vdots}; + \node[module,#1,module opacity,below of=r1-dots](r1-2) {\rone}; + + \foreach \i in {1,2}{ + % INPUTS MODULE 1 + % just two modules + \pgfmathsetmacro\roneintervalspace{1/(2+1)} + \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] + in {1,2} + \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; + + % OUTPUTS MODULE 1 + % just two modules + \pgfmathsetmacro\roneintervalspace{1/(2+1)} + \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] + in {1,2} + \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; + } + + % MODULE 2 + \node[module,#1,module opacity](r2-1) at (\modulexsep,0) {1}; + \node[below of=r2-1,yshift=0.75ex](r2-dots) {\vdots}; + \node[module,#1,module opacity,below of=r2-dots](r2-2) {\rtwo}; + + \foreach \i in {1,2}{ + % INPUTS MODULE 2 + % just two modules + \pgfmathsetmacro\rtwointervalspace{1/(2+1)} + \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput] + in {1,2} + \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {}; + + % OUTPUTS MODULE 2 + % just two modules + \pgfmathsetmacro\rtwointervalspace{1/(2+1)} + \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput] + in {1,2} + \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {}; + } + + % MODULE 3 + \node[module,#1,module opacity](r3-1) at (2*\modulexsep,0) {1}; + \node[below of=r3-1,yshift=0.75ex](r3-dots) {\vdots}; + \node[module,#1,module opacity,below of=r3-dots](r3-2) {\rthree}; + + \foreach \i in {1,2}{ + % INPUTS MODULE 3 + % just two modules + \pgfmathsetmacro\rthreeintervalspace{1/(2+1)} + \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput] + in {1,2} + \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {}; + + % OUTPUTS MODULE 3 + % just two modules + \pgfmathsetmacro\rthreeintervalspace{1/(2+1)} + \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput] + in {1,2} + \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {}; + } + + % DRAWING CONNECTIONS + %% from r1 to r2 + \foreach \startmodule in {1,2}{ + \foreach \conn in {1,2} + \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule); + } + %% from r2 to r3 + \foreach \startmodule in {1,2}{ + \foreach \conn in {1,2} + \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule); + } + + % SETTING LABELS + \node[below of=r1-2, set math mode labels] {\mone~\ensuremath{\times}~\rtwo}; + \node[below of=r2-2, set math mode labels] {\rone~\ensuremath{\times}~\rthree}; + \node[below of=r3-2, set math mode labels] {\rtwo~\ensuremath{\times}~\mthree}; + \draw[decorate,decoration={brace}]($(r1-2-front input-2)-(0.1,0)$)--($(r1-1-front input-1)-(0.1,0)$) node[midway,left=0.1cm, set math mode labels]{\N}; + \draw[decorate,decoration={brace}]($(r3-1-front output-1)+(0.1,0)$)--($(r3-2-front output-2)+(0.1,0)$) node[midway,right=0.1cm, set math mode labels]{\M}; + }, +} + +% CLOS EXAMPLE WITH LABELS + +\tikzset{clos example with labels/.code={ + + % Number of ports per module + \pgfmathtruncatemacro{\mone}{\N/\rone} + \pgfmathtruncatemacro{\mthree}{\M/\rthree} + + % COMPUTATION REAR CONDITION + \pgfmathtruncatemacro\rtwo{max(\mone,\mthree)} + + % MODULE 1 + \node[module,#1,module opacity](r1-1) at (0,0) {1}; + \node[below of=r1-1,yshift=0.75ex](r1-dots) {\vdots}; + \node[module,#1,module opacity,below of=r1-dots](r1-2) {\ronelabel}; + + \foreach \i in {1,2}{ + % INPUTS MODULE 1 + % just two modules + \pgfmathsetmacro\roneintervalspace{1/(2+1)} + \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] + in {1,2} + \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; + + % OUTPUTS MODULE 1 + % just two modules + \pgfmathsetmacro\roneintervalspace{1/(2+1)} + \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] + in {1,2} + \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; + } + + % MODULE 2 + \node[module,#1,module opacity](r2-1) at (\modulexsep,0) {1}; + \node[below of=r2-1,yshift=0.75ex](r2-dots) {\vdots}; + \node[module,#1,module opacity,below of=r2-dots](r2-2) {\rtwolabel}; + + \foreach \i in {1,2}{ + % INPUTS MODULE 2 + % just two modules + \pgfmathsetmacro\rtwointervalspace{1/(2+1)} + \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput] + in {1,2} + \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {}; + + % OUTPUTS MODULE 2 + % just two modules + \pgfmathsetmacro\rtwointervalspace{1/(2+1)} + \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput] + in {1,2} + \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {}; + } + + % MODULE 3 + \node[module,#1,module opacity](r3-1) at (2*\modulexsep,0) {1}; + \node[below of=r3-1,yshift=0.75ex](r3-dots) {\vdots}; + \node[module,#1,module opacity,below of=r3-dots](r3-2) {\rthreelabel}; + + \foreach \i in {1,2}{ + % INPUTS MODULE 3 + % just two modules + \pgfmathsetmacro\rthreeintervalspace{1/(2+1)} + \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput] + in {1,2} + \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {}; + + % OUTPUTS MODULE 3 + % just two modules + \pgfmathsetmacro\rthreeintervalspace{1/(2+1)} + \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput] + in {1,2} + \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {}; + } + + % DRAWING CONNECTIONS + %% from r1 to r2 + \foreach \startmodule in {1,2}{ + \foreach \conn in {1,2} + \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule); + } + %% from r2 to r3 + \foreach \startmodule in {1,2}{ + \foreach \conn in {1,2} + \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule); + } + + % SETTING LABELS + \node[below of=r1-2,set math mode labels] {\monelabel~\ensuremath{\times}~\rtwolabel}; + \node[below of=r2-2,set math mode labels] {\ronelabel~\ensuremath{\times}~\rthreelabel}; + \node[below of=r3-2,set math mode labels] {\rtwolabel~\ensuremath{\times}~\mthreelabel}; + \draw[decorate,decoration={brace}]($(r1-2-front input-2)-(0.1,0)$)--($(r1-1-front input-1)-(0.1,0)$) node[midway,left=0.1cm,set math mode labels]{\Nlabel}; + \draw[decorate,decoration={brace}]($(r3-1-front output-1)+(0.1,0)$)--($(r3-2-front output-2)+(0.1,0)$) node[midway,right=0.1cm,set math mode labels]{\Mlabel}; + }, +} + +% BENES +% uses modules 2x2 + +\tikzset{benes/.code={ + + % Number of ports per module + \pgfmathtruncatemacro{\m}{2} + + % Numbers of modules in the second stage + \pgfmathtruncatemacro\rtwo{\m} + + % Number of modules in the first/third stage + \pgfmathtruncatemacro{\r}{\P/\m} + + \ifnum\P=4 + \def\increment{0-\i*0.5*\r*\moduleysep} + \def\xincrement{\r*0.25*\modulexsep} + \else + \def\increment{0-\i*0.39*\r*\moduleysep} + \def\xincrement{\r*0.2*\modulexsep} + \fi + + % MODULE 1 + \foreach \i in {1,...,\r}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r1-\i) at +(0,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 1 + % the number of inputs module one is exactly \mone + \pgfmathsetmacro\roneintervalspace{1/(\m+1)} + \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] + in {1,...,\m} + \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; + + % OUTPUTS MODULE 1 + % the number of outputs of module one is the number of modules stage 2 \rtwo + \pgfmathsetmacro\roneintervalspace{1/(\rtwo+1)} + \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] + in {1,...,\rtwo} + \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; + } + + % MODULE 2 + \foreach \i in {1,...,\rtwo}{ + + \path let \n1 = {int(0-\i)}, \n2={\increment} + in + node[module extensible={\r*0.5*\modulesize},#1,module opacity,yshift=1cm] (r2-\i) at +(\xincrement,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 2 + % the number of inputs of module two is the number of modules stage 1 \rone + \pgfmathsetmacro\rtwointervalspace{1/(\r+1)} + \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput] + in {1,...,\r} + \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {}; + + % OUTPUTS MODULE 2 + % the number of outputs module two is exactly \rthree + \pgfmathsetmacro\rtwointervalspace{1/(\r+1)} + \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput] + in {1,...,\r} + \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {}; + + } + + % MODULE 3 + \foreach \i in {1,...,\r}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r3-\i) at +(2*\xincrement,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 3 + % the number of inputs of module three is the number of modules stage 2 \rtwo + \pgfmathsetmacro\rthreeintervalspace{1/(\rtwo+1)} + \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput] + in {1,...,\rtwo} + \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {}; + + % OUTPUTS MODULE 3 + % the number of outputs module three is exactly \m + \pgfmathsetmacro\rthreeintervalspace{1/(\m+1)} + \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput] + in {1,...,\m} + \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {}; + } + + % Test if connections should be removed + \ifconnectiondisabled + \relax + \else + % DRAWING CONNECTIONS + %% from r1 to r2 + \foreach \startmodule in {1,...,\r}{ + \foreach \conn in {1,...,\rtwo} + \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule); + } + %% from r2 to r3 + \foreach \startmodule in {1,...,\r}{ + \foreach \conn in {1,...,\rtwo} + \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule); + } + \fi + } +} + +% BENES COMPLETE + +\tikzset{benes complete/.code={ + + % Number of ports per module + \pgfmathtruncatemacro{\m}{2} + + % Number of modules in the first/third stage + \pgfmathtruncatemacro{\r}{\P/\m} + + % Number of stages + \pgfmathtruncatemacro{\stages}{2*round(log2(\P))-1} + + % MODULES for all stages + \foreach \s [evaluate=\s as \numstage using int(\s-1)] in {1,...,\stages}{ + \ifnum\s=1 + % FIRST MODULE + \foreach \i in {1,...,\r}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r\s-\i) at +(0,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 1 + % the number of inputs module one is exactly \mone + \pgfmathsetmacro\roneintervalspace{1/(\m+1)} + \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] + in {1,...,\m} + \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; + + % OUTPUTS MODULE 1 + % the number of outputs of module one is the number of modules stage 2 + \pgfmathsetmacro\roneintervalspace{1/(\m+1)} + \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] + in {1,...,\m} + \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; + } + \fi + \ifnum\s=\stages + % FINAL MODULE + \foreach \i in {1,...,\r}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r\s-\i) at +(\numstage*0.6*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE \s + % the number of inputs of module three is the number of modules stage 2 \rtwo + \pgfmathsetmacro\rintervalspace{1/(\m+1)} + \foreach \rinput[evaluate=\rinput as \rinterval using \rintervalspace*\rinput] + in {1,...,\m} + \node[circle,draw,scale=0.1] (r\s-\i-input-\rinput)at($(r\s-\i.north west)!\rinterval!(r\s-\i.south west)$) {}; + + % OUTPUTS MODULE \s + % the number of outputs module three is exactly \mthree + \pgfmathsetmacro\rintervalspace{1/(\m+1)} + \foreach \routput[evaluate=\routput as \rinterval using \rintervalspace*\routput] + in {1,...,\m} + \draw ($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r\s-\i-front output-\routput){}--($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)$) node[circle,draw,scale=0.1] (r\s-\i-output-\routput) {}; + } + \fi + \pgfmathparse{and(\s>1,\s<\stages)} + \let\cond\pgfmathresult + \ifnum\cond=1 + % INTERMEDIATE MODULEs + \foreach \i in {1,...,\r}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r\s-\i) at +(\numstage*0.6*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE \s + % the number of inputs of module three is the number of modules stage 2 \rtwo + \pgfmathsetmacro\rintervalspace{1/(\m+1)} + \foreach \rinput[evaluate=\rinput as \rinterval using \rintervalspace*\rinput] + in {1,...,\m} + \node[circle,draw,scale=0.1] (r\s-\i-input-\rinput)at($(r\s-\i.north west)!\rinterval!(r\s-\i.south west)$) {}; + + % OUTPUTS MODULE \s + % the number of outputs module three is exactly \mthree + \pgfmathsetmacro\rintervalspace{1/(\m+1)} + \foreach \routput[evaluate=\routput as \rinterval using \rintervalspace*\routput] + in {1,...,\m} + \node[circle,draw,scale=0.1] (r\s-\i-output-\routput) at($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)$) {}; + } + \fi + } + % end modules + + + % Test if connections should be removed + \ifconnectiondisabled + \relax + \else + % CONNECTIONS + + % the algorithm works for all the stages a part from the two in the middle + \ifnum\P>4 % in this case there are just two stages, thus the algorithm fails: treat it separately + % Compute \stages/2: they are the stages from left to the middle or from right to the middle + \pgfmathparse{floor(divide(\stages,2))} + \pgfmathtruncatemacro\stagesondirection{\pgfmathresult-1} + + % on left + \foreach \stg[evaluate=\stg as \nextstg using int(\stg+1)] in {1,...,\stagesondirection}{ + \pgfmathtruncatemacro\applicationon{\P/(2^\stg)}% number of modules over which the algorithm is applied + \pgfmathtruncatemacro\repetition{int(2^(\stg-1))}% the algorithm should be repeated for \repetition times + \foreach \t in {1,...,\repetition}{ + \pgfmathtruncatemacro\startingpoint{1+((\t-1)*\applicationon)} + \pgfmathtruncatemacro\endingpoint{(\startingpoint+\applicationon)-1} + \foreach \startmodule in {\startingpoint,...,\endingpoint}{ + \pgfmathisodd{\startmodule}{initmodule} + \ifnum\t=1 + \ifnum\initmodule=1 + % if odd + \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2)} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2)} + \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-1); + \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-1); + \else + % if even + \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2)} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2)} + \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-2); + \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-2); + \fi + \fi + \ifnum\t=2 + \ifnum\initmodule=1 + % if odd + \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2+(\applicationon/2))} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2+(\applicationon/2))} + \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-1); + \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-1); + \else + % if even + \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2+(\applicationon/2))} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2+(\applicationon/2))} + \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-2); + \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-2); + \fi + \fi + \ifnum\t>2 + \ifnum\initmodule=1 + % if odd + \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} + \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-1); + \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-1); + \else + % if even + \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} + \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-2); + \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-2); + \fi + \fi + } + } + } + + % on the right + + \foreach \stg[evaluate=\stg as \currstg using int(\stages-(\stg-1)), + evaluate=\stg as \nextstg using int(\currstg-1)] in {1,...,\stagesondirection}{ + \pgfmathtruncatemacro\applicationon{\P/(2^\stg)}% number of modules over which the algorithm is applied + \pgfmathtruncatemacro\repetition{int(2^(\stg-1))}% the algorithm should be repeated for \repetition times + \foreach \t in {1,...,\repetition}{ + \pgfmathtruncatemacro\startingpoint{1+((\t-1)*\applicationon)} + \pgfmathtruncatemacro\endingpoint{(\startingpoint+\applicationon)-1} + \foreach \startmodule in {\startingpoint,...,\endingpoint}{ + \pgfmathisodd{\startmodule}{initmodule} + \ifnum\t=1 + \ifnum\initmodule=1 + % if odd + \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2)} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2)} + \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-1); + \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-1); + \else + % if even + \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2)} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2)} + \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-2); + \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-2); + \fi + \fi + \ifnum\t=2 + \ifnum\initmodule=1 + % if odd + \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2+(\applicationon/2))} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2+(\applicationon/2))} + \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-1); + \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-1); + \else + % if even + \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2+(\applicationon/2))} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2+(\applicationon/2))} + \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-2); + \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-2); + \fi + \fi + \ifnum\t>2 + \ifnum\initmodule=1 + % if odd + \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} + \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-1); + \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-1); + \else + % if even + \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} + \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-2); + \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-2); + \fi + \fi + } + } + } + + \fi + + + % * * * * + % 2 Intermediate stages + + % Compute \stages/2 + \pgfmathparse{floor(divide(\stages,2))} + \pgfmathtruncatemacro\middlestage{\pgfmathresult} + \pgfmathtruncatemacro\middlestagei{int(\middlestage+1)} + \pgfmathtruncatemacro\middlestageii{int(\middlestagei+1)} + + % Drawing + \foreach \startmodule in {1,...,\r}{ + \pgfmathisodd{\startmodule}{initmodule} + \ifnum\initmodule=1 + % if odd + \pgfmathtruncatemacro\endmodule{int(\startmodule+1)} + \draw(r\middlestage-\startmodule-output-1)--(r\middlestagei-\startmodule-input-1); + \draw(r\middlestage-\startmodule-output-2)--(r\middlestagei-\endmodule-input-1); + \draw(r\middlestagei-\startmodule-output-1)--(r\middlestageii-\startmodule-input-1); + \draw(r\middlestagei-\startmodule-output-2)--(r\middlestageii-\endmodule-input-1); + \else + % if even + \pgfmathtruncatemacro\endmodule{int(\startmodule-1)} + \draw(r\middlestage-\startmodule-output-1)--(r\middlestagei-\endmodule-input-2); + \draw(r\middlestage-\startmodule-output-2)--(r\middlestagei-\startmodule-input-2); + \draw(r\middlestagei-\startmodule-output-1)--(r\middlestageii-\endmodule-input-2); + \draw(r\middlestagei-\startmodule-output-2)--(r\middlestageii-\startmodule-input-2); + \fi + } + % end connections + \fi % disable connections + } +} + + +\endinput diff --git a/Master/texmf-dist/tex/latex/sa-tikz/tikzlibraryswitching-architectures.code.tex b/Master/texmf-dist/tex/latex/sa-tikz/tikzlibraryswitching-architectures.code.tex new file mode 100644 index 00000000000..2be4187b89a --- /dev/null +++ b/Master/texmf-dist/tex/latex/sa-tikz/tikzlibraryswitching-architectures.code.tex @@ -0,0 +1,1045 @@ +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +% +% Sa-TikZ package v0.5 * * (C) Claudio Fiandrino 2012 +% +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +% LOADING NECESSARY LIBRARIES +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + +\usetikzlibrary{backgrounds,calc,positioning,decorations.pathreplacing} + +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +% UTILITY +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + +% PGFMATHISODD: 1 = true, 0 = false +% +% #1: number to be checked +% #2: output macro +% +% example: +%% \pgfmathisodd{32}{output} +%% \ifnum\output=1 +%% \node{\output}; +%% \fi +\newcommand*{\pgfmathisodd}[2]{ + \pgfmathparse{mod(#1,2)} + \pgfmathtruncatemacro\res\pgfmathresult + \global\expandafter\edef\csname #2\endcsname{\res} +} + +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +% KEY DEFINITION - Design choices +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + +% * * * * * * * * * * * * * * * * * * +% CLOS +% * * * * * * * * * * * * * * * * * * + +% N is the key representing the number of inputs x number of modules first stage +\pgfkeys{/tikz/.cd,% + N/.initial=10,% + N/.get=\N,% + N/.store in=\N,% +}% + +% N label +\pgfkeys{/tikz/.cd,% + N label/.initial=N,% + N label/.store in=\Nlabel,% + N label/.get=\Nlabel,% +}% + +% r1 is the number of modules first stage +% m1 is the number of inputs first stage per module + +\pgfkeys{/tikz/.cd,% + r1/.initial=5,% + r1/.store in=\rone,% + r1/.get=\rone,% +}% + +% r1 label +\pgfkeys{/tikz/.cd,% + r1 label/.initial={r\ensuremath{_1}},% + r1 label/.store in=\ronelabel,% + r1 label/.get=\ronelabel,% +}% + +% m1 label +\pgfkeys{/tikz/.cd, + m1 label/.initial={m\ensuremath{_1}},% + m1 label/.store in=\monelabel,% + m1 label/.get=\monelabel,% +}% + +% r2 label +\pgfkeys{/tikz/.cd,% + r2 label/.initial={r\ensuremath{_2}},% + r2 label/.store in=\rtwolabel,% + r2 label/.get=\rtwolabel,% +}% + +% M is the key representing the number of inputs x number of modules last stage +\pgfkeys{/tikz/.cd,% + M/.initial=10,% + M/.get=\M,% + M/.store in=\M,% +}% + +% M label +\pgfkeys{/tikz/.cd,% + M label/.initial=M,% + M label/.store in=\Mlabel,% + M label/.get=\Mlabel,% +}% + +% r3 is the number of modules last stage +% m3 is the number of inputs last stage per module +\pgfmathtruncatemacro\rthree{5}% +\pgfkeys{/tikz/.cd, r3/.initial=5}% +\pgfkeys{/tikz/.cd, r3/.store in=\rthree}% + +% r3 label +\pgfkeys{/tikz/.cd,% + r3 label/.initial={r\ensuremath{_3}},% + r3 label/.store in=\rthreelabel,% + r3 label/.get=\rthreelabel,% +}% + +% m3 label +\pgfkeys{/tikz/.cd, + m3 label/.initial={m\ensuremath{_3}},% + m3 label/.store in=\mthreelabel,% + m3 label/.get=\mthreelabel,% +}% + +% * * * * * * * * * * * * * * * * * * +% BENES +% * * * * * * * * * * * * * * * * * * + +% P is the number of input/output ports +\pgfkeys{/tikz/.cd,% + P/.initial=8,% + P/.get=\P,% + P/.store in=\P,% +}% + +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +% GENERAL SETTINGS - Keys and styles +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + +% module customization +\pgfkeys{/tikz/.cd,% + module size/.initial={1cm},% + module size/.get=\modulesize,% + module size/.store in=\modulesize,% +}% + +\pgfkeys{/tikz/.cd,% + module ysep/.initial={1.5},% + module ysep/.get=\moduleysep,% + module ysep/.store in=\moduleysep,% +}% + +\pgfkeys{/tikz/.cd,% + module xsep/.initial={3},% + module xsep/.get=\modulexsep,% + module xsep/.store in=\modulexsep,% +}% + +\pgfkeys{/tikz/.cd,% + module font/.initial=\normalfont,% + module font/.get=\modulefont,% + module font/.store in=\modulefont,% +}% + +\tikzset{module/.style={% + draw,rectangle, minimum size=\modulesize, + font=\modulefont, + } +} + +\tikzset{module extensible/.style={% + draw,rectangle, minimum size=#1, + }, + module extensible/.default={\modulesize} +} + +\pgfkeys{/tikz/.cd,% + module label opacity/.initial={1},% + module label opacity/.get=\modulelabelopacity,% + module label opacity/.store in=\modulelabelopacity,% +}% + +\tikzset{module opacity/.style={ + text opacity=\modulelabelopacity, + } +} + +\pgfkeys{/tikz/.cd,% + pin length factor/.initial={1},% + pin length factor/.get=\pinlength,% + pin length factor/.store in=\pinlength,% +}% + +% setting labels in math mode + +\tikzset{math mode labels/.style={% + execute at begin node=$,% + execute at end node=$,% + } +} +\pgfkeys{/tikz/.cd,% + use math mode labels/.is choice,% + use math mode labels/true/.style={math mode labels},% + use math mode labels/false/.style={},% +}% + +\tikzset{set math mode labels/.style={% + use math mode labels=#1,% + },% + set math mode labels/.default=false,% +} + +% disable the connections +\newif\ifconnectiondisabled% +\pgfkeys{/tikz/.cd, connections disabled/.is if=connectiondisabled}% +\pgfkeys{/tikz/.cd, connections disabled/.default=false}% + +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * +% CODE +% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + +% CLOS SNB +\tikzset{clos snb/.code={ + + % Number of ports per module + \pgfmathtruncatemacro{\mone}{\N/\rone} + \pgfmathtruncatemacro{\mthree}{\M/\rthree} + + % COMPUTATION SNB CONDITION + \pgfmathtruncatemacro\rtwo{\mone+\mthree-1} + + % MODULE 1 + \foreach \i in {1,...,\rone}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r1-\i) at +(0,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 1 + % the number of inputs module one is exactly \mone + \pgfmathsetmacro\roneintervalspace{1/(\mone+1)} + \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] + in {1,...,\mone} + \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; + + % OUTPUTS MODULE 1 + % the number of outputs of module one is the number of modules stage 2 \rtwo + \pgfmathsetmacro\roneintervalspace{1/(\rtwo+1)} + \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] + in {1,...,\rtwo} + \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; + } + + % MODULE 2 + \foreach \i in {1,...,\rtwo}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r2-\i) at +(\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 2 + % the number of inputs of module two is the number of modules stage 1 \rone + \pgfmathsetmacro\rtwointervalspace{1/(\rone+1)} + \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput] + in {1,...,\rone} + \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {}; + + % OUTPUTS MODULE 2 + % the number of outputs module two is exactly \rthree + \pgfmathsetmacro\rtwointervalspace{1/(\rthree+1)} + \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput] + in {1,...,\rthree} + \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {}; + + } + + % MODULE 3 + \foreach \i in {1,...,\rthree}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r3-\i) at +(2*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 3 + % the number of inputs of module three is the number of modules stage 2 \rtwo + \pgfmathsetmacro\rthreeintervalspace{1/(\rtwo+1)} + \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput] + in {1,...,\rtwo} + \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {}; + + % OUTPUTS MODULE 3 + % the number of outputs module three is exactly \mthree + \pgfmathsetmacro\rthreeintervalspace{1/(\mthree+1)} + \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput] + in {1,...,\mthree} + \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {}; + + } + + % Test if connections should be removed + \ifconnectiondisabled + \relax + \else + % DRAWING CONNECTIONS + %% from r1 to r2 + \foreach \startmodule in {1,...,\rone}{ + \foreach \conn in {1,...,\rtwo} + \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule); + } + %% from r2 to r3 + \foreach \startmodule in {1,...,\rthree}{ + \foreach \conn in {1,...,\rtwo} + \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule); + } + \fi + }, +} + +\tikzset{clos snb example/.code={ + + % Number of ports per module + \pgfmathtruncatemacro{\mone}{\N/\rone} + \pgfmathtruncatemacro{\mthree}{\M/\rthree} + + % COMPUTATION SNB CONDITION + \pgfmathtruncatemacro\rtwo{\mone+\mthree-1} + + % MODULE 1 + \node[module,#1,module opacity](r1-1) at (0,0) {1}; + \node[below of=r1-1,yshift=0.75ex](r1-dots) {\vdots}; + \node[module,#1,module opacity,below of=r1-dots](r1-2) {\rone}; + + \foreach \i in {1,2}{ + % INPUTS MODULE 1 + % just two modules + \pgfmathsetmacro\roneintervalspace{1/(2+1)} + \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] + in {1,2} + \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; + + % OUTPUTS MODULE 1 + % just two modules + \pgfmathsetmacro\roneintervalspace{1/(2+1)} + \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] + in {1,2} + \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; + } + + % MODULE 2 + \node[module,#1,module opacity](r2-1) at (\modulexsep,0) {1}; + \node[below of=r2-1,yshift=0.75ex](r2-dots) {\vdots}; + \node[module,#1,module opacity,below of=r2-dots](r2-2) {\rtwo}; + + \foreach \i in {1,2}{ + % INPUTS MODULE 2 + % just two modules + \pgfmathsetmacro\rtwointervalspace{1/(2+1)} + \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput] + in {1,2} + \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {}; + + % OUTPUTS MODULE 2 + % just two modules + \pgfmathsetmacro\rtwointervalspace{1/(2+1)} + \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput] + in {1,2} + \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {}; + } + + % MODULE 3 + \node[module,#1,module opacity](r3-1) at (2*\modulexsep,0) {1}; + \node[below of=r3-1,yshift=0.75ex](r3-dots) {\vdots}; + \node[module,#1,module opacity,below of=r3-dots](r3-2) {\rthree}; + + \foreach \i in {1,2}{ + % INPUTS MODULE 3 + % just two modules + \pgfmathsetmacro\rthreeintervalspace{1/(2+1)} + \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput] + in {1,2} + \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {}; + + % OUTPUTS MODULE 3 + % just two modules + \pgfmathsetmacro\rthreeintervalspace{1/(2+1)} + \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput] + in {1,2} + \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {}; + } + + % DRAWING CONNECTIONS + %% from r1 to r2 + \foreach \startmodule in {1,2}{ + \foreach \conn in {1,2} + \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule); + } + %% from r2 to r3 + \foreach \startmodule in {1,2}{ + \foreach \conn in {1,2} + \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule); + } + + % SETTING LABELS + \node[below of=r1-2,set math mode labels] {\mone~\ensuremath{\times}~\rtwo}; + \node[below of=r2-2,set math mode labels] {\rone~\ensuremath{\times}~\rthree}; + \node[below of=r3-2,set math mode labels] {\rtwo~\ensuremath{\times}~\mthree}; + \draw[decorate,decoration={brace}]($(r1-2-front input-2)-(0.1,0)$)--($(r1-1-front input-1)-(0.1,0)$) node[midway,left=0.1cm,set math mode labels]{\N}; + \draw[decorate,decoration={brace}]($(r3-1-front output-1)+(0.1,0)$)--($(r3-2-front output-2)+(0.1,0)$) node[midway,right=0.1cm,set math mode labels]{\M}; + }, +} + +% CLOS REAR + +\tikzset{clos rear/.code={ + + % Number of ports per module + \pgfmathtruncatemacro{\mone}{\N/\rone} + \pgfmathtruncatemacro{\mthree}{\M/\rthree} + + % COMPUTATION REAR CONDITION + \pgfmathtruncatemacro\rtwo{max(\mone,\mthree)} + + % MODULE 1 + \foreach \i in {1,...,\rone}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r1-\i) at +(0,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 1 + % the number of inputs module one is exactly \mone + \pgfmathsetmacro\roneintervalspace{1/(\mone+1)} + \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] + in {1,...,\mone} + \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; + + % OUTPUTS MODULE 1 + % the number of outputs of module one is the number of modules stage 2 \rtwo + \pgfmathsetmacro\roneintervalspace{1/(\rtwo+1)} + \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] + in {1,...,\rtwo} + \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; + } + + % MODULE 2 + \foreach \i in {1,...,\rtwo}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r2-\i) at +(\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 2 + % the number of inputs of module two is the number of modules stage 1 \rone + \pgfmathsetmacro\rtwointervalspace{1/(\rone+1)} + \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput] + in {1,...,\rone} + \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {}; + + % OUTPUTS MODULE 2 + % the number of outputs module two is exactly \rthree + \pgfmathsetmacro\rtwointervalspace{1/(\rthree+1)} + \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput] + in {1,...,\rthree} + \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {}; + + } + + % MODULE 3 + \foreach \i in {1,...,\rthree}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r3-\i) at +(2*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 3 + % the number of inputs of module three is the number of modules stage 2 \rtwo + \pgfmathsetmacro\rthreeintervalspace{1/(\rtwo+1)} + \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput] + in {1,...,\rtwo} + \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {}; + + % OUTPUTS MODULE 3 + % the number of outputs module three is exactly \mthree + \pgfmathsetmacro\rthreeintervalspace{1/(\mthree+1)} + \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput] + in {1,...,\mthree} + \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {}; + } + + % Test if connections should be removed + \ifconnectiondisabled + \relax + \else + % DRAWING CONNECTIONS + %% from r1 to r2 + \foreach \startmodule in {1,...,\rone}{ + \foreach \conn in {1,...,\rtwo} + \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule); + } + %% from r2 to r3 + \foreach \startmodule in {1,...,\rthree}{ + \foreach \conn in {1,...,\rtwo} + \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule); + } + \fi + } +} + +\tikzset{clos rear example/.code={ + + % Number of ports per module + \pgfmathtruncatemacro{\mone}{\N/\rone} + \pgfmathtruncatemacro{\mthree}{\M/\rthree} + + % COMPUTATION REAR CONDITION + \pgfmathtruncatemacro\rtwo{max(\mone,\mthree)} + + % MODULE 1 + \node[module,#1,module opacity](r1-1) at (0,0) {1}; + \node[below of=r1-1,yshift=0.75ex](r1-dots) {\vdots}; + \node[module,#1,module opacity,below of=r1-dots](r1-2) {\rone}; + + \foreach \i in {1,2}{ + % INPUTS MODULE 1 + % just two modules + \pgfmathsetmacro\roneintervalspace{1/(2+1)} + \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] + in {1,2} + \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; + + % OUTPUTS MODULE 1 + % just two modules + \pgfmathsetmacro\roneintervalspace{1/(2+1)} + \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] + in {1,2} + \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; + } + + % MODULE 2 + \node[module,#1,module opacity](r2-1) at (\modulexsep,0) {1}; + \node[below of=r2-1,yshift=0.75ex](r2-dots) {\vdots}; + \node[module,#1,module opacity,below of=r2-dots](r2-2) {\rtwo}; + + \foreach \i in {1,2}{ + % INPUTS MODULE 2 + % just two modules + \pgfmathsetmacro\rtwointervalspace{1/(2+1)} + \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput] + in {1,2} + \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {}; + + % OUTPUTS MODULE 2 + % just two modules + \pgfmathsetmacro\rtwointervalspace{1/(2+1)} + \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput] + in {1,2} + \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {}; + } + + % MODULE 3 + \node[module,#1,module opacity](r3-1) at (2*\modulexsep,0) {1}; + \node[below of=r3-1,yshift=0.75ex](r3-dots) {\vdots}; + \node[module,#1,module opacity,below of=r3-dots](r3-2) {\rthree}; + + \foreach \i in {1,2}{ + % INPUTS MODULE 3 + % just two modules + \pgfmathsetmacro\rthreeintervalspace{1/(2+1)} + \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput] + in {1,2} + \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {}; + + % OUTPUTS MODULE 3 + % just two modules + \pgfmathsetmacro\rthreeintervalspace{1/(2+1)} + \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput] + in {1,2} + \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {}; + } + + % DRAWING CONNECTIONS + %% from r1 to r2 + \foreach \startmodule in {1,2}{ + \foreach \conn in {1,2} + \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule); + } + %% from r2 to r3 + \foreach \startmodule in {1,2}{ + \foreach \conn in {1,2} + \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule); + } + + % SETTING LABELS + \node[below of=r1-2, set math mode labels] {\mone~\ensuremath{\times}~\rtwo}; + \node[below of=r2-2, set math mode labels] {\rone~\ensuremath{\times}~\rthree}; + \node[below of=r3-2, set math mode labels] {\rtwo~\ensuremath{\times}~\mthree}; + \draw[decorate,decoration={brace}]($(r1-2-front input-2)-(0.1,0)$)--($(r1-1-front input-1)-(0.1,0)$) node[midway,left=0.1cm, set math mode labels]{\N}; + \draw[decorate,decoration={brace}]($(r3-1-front output-1)+(0.1,0)$)--($(r3-2-front output-2)+(0.1,0)$) node[midway,right=0.1cm, set math mode labels]{\M}; + }, +} + +% CLOS EXAMPLE WITH LABELS + +\tikzset{clos example with labels/.code={ + + % Number of ports per module + \pgfmathtruncatemacro{\mone}{\N/\rone} + \pgfmathtruncatemacro{\mthree}{\M/\rthree} + + % COMPUTATION REAR CONDITION + \pgfmathtruncatemacro\rtwo{max(\mone,\mthree)} + + % MODULE 1 + \node[module,#1,module opacity](r1-1) at (0,0) {1}; + \node[below of=r1-1,yshift=0.75ex](r1-dots) {\vdots}; + \node[module,#1,module opacity,below of=r1-dots](r1-2) {\ronelabel}; + + \foreach \i in {1,2}{ + % INPUTS MODULE 1 + % just two modules + \pgfmathsetmacro\roneintervalspace{1/(2+1)} + \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] + in {1,2} + \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; + + % OUTPUTS MODULE 1 + % just two modules + \pgfmathsetmacro\roneintervalspace{1/(2+1)} + \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] + in {1,2} + \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; + } + + % MODULE 2 + \node[module,#1,module opacity](r2-1) at (\modulexsep,0) {1}; + \node[below of=r2-1,yshift=0.75ex](r2-dots) {\vdots}; + \node[module,#1,module opacity,below of=r2-dots](r2-2) {\rtwolabel}; + + \foreach \i in {1,2}{ + % INPUTS MODULE 2 + % just two modules + \pgfmathsetmacro\rtwointervalspace{1/(2+1)} + \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput] + in {1,2} + \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {}; + + % OUTPUTS MODULE 2 + % just two modules + \pgfmathsetmacro\rtwointervalspace{1/(2+1)} + \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput] + in {1,2} + \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {}; + } + + % MODULE 3 + \node[module,#1,module opacity](r3-1) at (2*\modulexsep,0) {1}; + \node[below of=r3-1,yshift=0.75ex](r3-dots) {\vdots}; + \node[module,#1,module opacity,below of=r3-dots](r3-2) {\rthreelabel}; + + \foreach \i in {1,2}{ + % INPUTS MODULE 3 + % just two modules + \pgfmathsetmacro\rthreeintervalspace{1/(2+1)} + \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput] + in {1,2} + \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {}; + + % OUTPUTS MODULE 3 + % just two modules + \pgfmathsetmacro\rthreeintervalspace{1/(2+1)} + \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput] + in {1,2} + \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {}; + } + + % DRAWING CONNECTIONS + %% from r1 to r2 + \foreach \startmodule in {1,2}{ + \foreach \conn in {1,2} + \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule); + } + %% from r2 to r3 + \foreach \startmodule in {1,2}{ + \foreach \conn in {1,2} + \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule); + } + + % SETTING LABELS + \node[below of=r1-2,set math mode labels] {\monelabel~\ensuremath{\times}~\rtwolabel}; + \node[below of=r2-2,set math mode labels] {\ronelabel~\ensuremath{\times}~\rthreelabel}; + \node[below of=r3-2,set math mode labels] {\rtwolabel~\ensuremath{\times}~\mthreelabel}; + \draw[decorate,decoration={brace}]($(r1-2-front input-2)-(0.1,0)$)--($(r1-1-front input-1)-(0.1,0)$) node[midway,left=0.1cm,set math mode labels]{\Nlabel}; + \draw[decorate,decoration={brace}]($(r3-1-front output-1)+(0.1,0)$)--($(r3-2-front output-2)+(0.1,0)$) node[midway,right=0.1cm,set math mode labels]{\Mlabel}; + }, +} + +% BENES +% uses modules 2x2 + +\tikzset{benes/.code={ + + % Number of ports per module + \pgfmathtruncatemacro{\m}{2} + + % Numbers of modules in the second stage + \pgfmathtruncatemacro\rtwo{\m} + + % Number of modules in the first/third stage + \pgfmathtruncatemacro{\r}{\P/\m} + + \ifnum\P=4 + \def\increment{0-\i*0.5*\r*\moduleysep} + \def\xincrement{\r*0.25*\modulexsep} + \else + \def\increment{0-\i*0.39*\r*\moduleysep} + \def\xincrement{\r*0.2*\modulexsep} + \fi + + % MODULE 1 + \foreach \i in {1,...,\r}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r1-\i) at +(0,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 1 + % the number of inputs module one is exactly \mone + \pgfmathsetmacro\roneintervalspace{1/(\m+1)} + \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] + in {1,...,\m} + \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; + + % OUTPUTS MODULE 1 + % the number of outputs of module one is the number of modules stage 2 \rtwo + \pgfmathsetmacro\roneintervalspace{1/(\rtwo+1)} + \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] + in {1,...,\rtwo} + \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; + } + + % MODULE 2 + \foreach \i in {1,...,\rtwo}{ + + \path let \n1 = {int(0-\i)}, \n2={\increment} + in + node[module extensible={\r*0.5*\modulesize},#1,module opacity,yshift=1cm] (r2-\i) at +(\xincrement,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 2 + % the number of inputs of module two is the number of modules stage 1 \rone + \pgfmathsetmacro\rtwointervalspace{1/(\r+1)} + \foreach \rtwoinput[evaluate=\rtwoinput as \rtwointerval using \rtwointervalspace*\rtwoinput] + in {1,...,\r} + \node[circle,draw,scale=0.1] (r2-\i-input-\rtwoinput)at($(r2-\i.north west)!\rtwointerval!(r2-\i.south west)$) {}; + + % OUTPUTS MODULE 2 + % the number of outputs module two is exactly \rthree + \pgfmathsetmacro\rtwointervalspace{1/(\r+1)} + \foreach \rtwooutput[evaluate=\rtwooutput as \rtwointerval using \rtwointervalspace*\rtwooutput] + in {1,...,\r} + \node[circle,draw,scale=0.1] (r2-\i-output-\rtwooutput)at ($(r2-\i.north east)!\rtwointerval!(r2-\i.south east)$) {}; + + } + + % MODULE 3 + \foreach \i in {1,...,\r}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r3-\i) at +(2*\xincrement,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 3 + % the number of inputs of module three is the number of modules stage 2 \rtwo + \pgfmathsetmacro\rthreeintervalspace{1/(\rtwo+1)} + \foreach \rthreeinput[evaluate=\rthreeinput as \rthreeinterval using \rthreeintervalspace*\rthreeinput] + in {1,...,\rtwo} + \node[circle,draw,scale=0.1] (r3-\i-input-\rthreeinput)at($(r3-\i.north west)!\rthreeinterval!(r3-\i.south west)$) {}; + + % OUTPUTS MODULE 3 + % the number of outputs module three is exactly \m + \pgfmathsetmacro\rthreeintervalspace{1/(\m+1)} + \foreach \rthreeoutput[evaluate=\rthreeoutput as \rthreeinterval using \rthreeintervalspace*\rthreeoutput] + in {1,...,\m} + \draw ($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r3-\i-front output-\rthreeoutput){}--($(r3-\i.north east)!\rthreeinterval!(r3-\i.south east)$) node[circle,draw,scale=0.1] (r3-\i-output-\rthreeoutput) {}; + } + + % Test if connections should be removed + \ifconnectiondisabled + \relax + \else + % DRAWING CONNECTIONS + %% from r1 to r2 + \foreach \startmodule in {1,...,\r}{ + \foreach \conn in {1,...,\rtwo} + \draw(r1-\startmodule-output-\conn)--(r2-\conn-input-\startmodule); + } + %% from r2 to r3 + \foreach \startmodule in {1,...,\r}{ + \foreach \conn in {1,...,\rtwo} + \draw(r3-\startmodule-input-\conn)--(r2-\conn-output-\startmodule); + } + \fi + } +} + +% BENES COMPLETE + +\tikzset{benes complete/.code={ + + % Number of ports per module + \pgfmathtruncatemacro{\m}{2} + + % Number of modules in the first/third stage + \pgfmathtruncatemacro{\r}{\P/\m} + + % Number of stages + \pgfmathtruncatemacro{\stages}{2*round(log2(\P))-1} + + % MODULES for all stages + \foreach \s [evaluate=\s as \numstage using int(\s-1)] in {1,...,\stages}{ + \ifnum\s=1 + % FIRST MODULE + \foreach \i in {1,...,\r}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r\s-\i) at +(0,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE 1 + % the number of inputs module one is exactly \mone + \pgfmathsetmacro\roneintervalspace{1/(\m+1)} + \foreach \roneinput[evaluate=\roneinput as \roneinterval using \roneintervalspace*\roneinput] + in {1,...,\m} + \draw ($(r1-\i.north west)!\roneinterval!(r1-\i.south west)-(0.5*\pinlength,0)$)node[scale=0.1](r1-\i-front input-\roneinput){}--($(r1-\i.north west)!\roneinterval!(r1-\i.south west)$) node[circle,draw,scale=0.1] (r1-\i-input-\roneinput) {}; + + % OUTPUTS MODULE 1 + % the number of outputs of module one is the number of modules stage 2 + \pgfmathsetmacro\roneintervalspace{1/(\m+1)} + \foreach \roneoutput[evaluate=\roneoutput as \roneinterval using \roneintervalspace*\roneoutput] + in {1,...,\m} + \node[circle,draw,scale=0.1] (r1-\i-output-\roneoutput)at($(r1-\i.north east)!\roneinterval!(r1-\i.south east)$) {}; + } + \fi + \ifnum\s=\stages + % FINAL MODULE + \foreach \i in {1,...,\r}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r\s-\i) at +(\numstage*0.6*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE \s + % the number of inputs of module three is the number of modules stage 2 \rtwo + \pgfmathsetmacro\rintervalspace{1/(\m+1)} + \foreach \rinput[evaluate=\rinput as \rinterval using \rintervalspace*\rinput] + in {1,...,\m} + \node[circle,draw,scale=0.1] (r\s-\i-input-\rinput)at($(r\s-\i.north west)!\rinterval!(r\s-\i.south west)$) {}; + + % OUTPUTS MODULE \s + % the number of outputs module three is exactly \mthree + \pgfmathsetmacro\rintervalspace{1/(\m+1)} + \foreach \routput[evaluate=\routput as \rinterval using \rintervalspace*\routput] + in {1,...,\m} + \draw ($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)+(0.5*\pinlength,0)$)node[scale=0.1](r\s-\i-front output-\routput){}--($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)$) node[circle,draw,scale=0.1] (r\s-\i-output-\routput) {}; + } + \fi + \pgfmathparse{and(\s>1,\s<\stages)} + \let\cond\pgfmathresult + \ifnum\cond=1 + % INTERMEDIATE MODULEs + \foreach \i in {1,...,\r}{ + \path let \n1 = {int(0-\i)}, \n2={0-\i*\moduleysep} + in + node[module,#1,module opacity,yshift=1cm] (r\s-\i) at +(\numstage*0.6*\modulexsep,\n2) {\pgfmathparse{int(multiply(\n1,-1))}\pgfmathresult}; + + % INPUTS MODULE \s + % the number of inputs of module three is the number of modules stage 2 \rtwo + \pgfmathsetmacro\rintervalspace{1/(\m+1)} + \foreach \rinput[evaluate=\rinput as \rinterval using \rintervalspace*\rinput] + in {1,...,\m} + \node[circle,draw,scale=0.1] (r\s-\i-input-\rinput)at($(r\s-\i.north west)!\rinterval!(r\s-\i.south west)$) {}; + + % OUTPUTS MODULE \s + % the number of outputs module three is exactly \mthree + \pgfmathsetmacro\rintervalspace{1/(\m+1)} + \foreach \routput[evaluate=\routput as \rinterval using \rintervalspace*\routput] + in {1,...,\m} + \node[circle,draw,scale=0.1] (r\s-\i-output-\routput) at($(r\s-\i.north east)!\rinterval!(r\s-\i.south east)$) {}; + } + \fi + } + % end modules + + + % Test if connections should be removed + \ifconnectiondisabled + \relax + \else + % CONNECTIONS + + % the algorithm works for all the stages a part from the two in the middle + \ifnum\P>4 % in this case there are just two stages, thus the algorithm fails: treat it separately + % Compute \stages/2: they are the stages from left to the middle or from right to the middle + \pgfmathparse{floor(divide(\stages,2))} + \pgfmathtruncatemacro\stagesondirection{\pgfmathresult-1} + + % on left + \foreach \stg[evaluate=\stg as \nextstg using int(\stg+1)] in {1,...,\stagesondirection}{ + \pgfmathtruncatemacro\applicationon{\P/(2^\stg)}% number of modules over which the algorithm is applied + \pgfmathtruncatemacro\repetition{int(2^(\stg-1))}% the algorithm should be repeated for \repetition times + \foreach \t in {1,...,\repetition}{ + \pgfmathtruncatemacro\startingpoint{1+((\t-1)*\applicationon)} + \pgfmathtruncatemacro\endingpoint{(\startingpoint+\applicationon)-1} + \foreach \startmodule in {\startingpoint,...,\endingpoint}{ + \pgfmathisodd{\startmodule}{initmodule} + \ifnum\t=1 + \ifnum\initmodule=1 + % if odd + \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2)} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2)} + \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-1); + \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-1); + \else + % if even + \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2)} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2)} + \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-2); + \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-2); + \fi + \fi + \ifnum\t=2 + \ifnum\initmodule=1 + % if odd + \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2+(\applicationon/2))} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2+(\applicationon/2))} + \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-1); + \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-1); + \else + % if even + \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2+(\applicationon/2))} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2+(\applicationon/2))} + \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-2); + \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-2); + \fi + \fi + \ifnum\t>2 + \ifnum\initmodule=1 + % if odd + \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} + \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-1); + \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-1); + \else + % if even + \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} + \draw(r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-2); + \draw(r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-2); + \fi + \fi + } + } + } + + % on the right + + \foreach \stg[evaluate=\stg as \currstg using int(\stages-(\stg-1)), + evaluate=\stg as \nextstg using int(\currstg-1)] in {1,...,\stagesondirection}{ + \pgfmathtruncatemacro\applicationon{\P/(2^\stg)}% number of modules over which the algorithm is applied + \pgfmathtruncatemacro\repetition{int(2^(\stg-1))}% the algorithm should be repeated for \repetition times + \foreach \t in {1,...,\repetition}{ + \pgfmathtruncatemacro\startingpoint{1+((\t-1)*\applicationon)} + \pgfmathtruncatemacro\endingpoint{(\startingpoint+\applicationon)-1} + \foreach \startmodule in {\startingpoint,...,\endingpoint}{ + \pgfmathisodd{\startmodule}{initmodule} + \ifnum\t=1 + \ifnum\initmodule=1 + % if odd + \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2)} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2)} + \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-1); + \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-1); + \else + % if even + \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2)} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2)} + \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-2); + \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-2); + \fi + \fi + \ifnum\t=2 + \ifnum\initmodule=1 + % if odd + \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2+(\applicationon/2))} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2+(\applicationon/2))} + \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-1); + \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-1); + \else + % if even + \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2+(\applicationon/2))} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2+(\applicationon/2))} + \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-2); + \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-2); + \fi + \fi + \ifnum\t>2 + \ifnum\initmodule=1 + % if odd + \pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+1+\applicationon)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} + \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-1); + \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-1); + \else + % if even + \pgfmathtruncatemacro\endmodulei{int((\startmodule)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} + \pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2+(\applicationon/2)+((\applicationon/2)*(\t-2)))} + \draw(r\currstg-\startmodule-input-1)--(r\nextstg-\endmodulei-output-2); + \draw(r\currstg-\startmodule-input-2)--(r\nextstg-\endmoduleii-output-2); + \fi + \fi + } + } + } + + \fi + + + % * * * * + % 2 Intermediate stages + + % Compute \stages/2 + \pgfmathparse{floor(divide(\stages,2))} + \pgfmathtruncatemacro\middlestage{\pgfmathresult} + \pgfmathtruncatemacro\middlestagei{int(\middlestage+1)} + \pgfmathtruncatemacro\middlestageii{int(\middlestagei+1)} + + % Drawing + \foreach \startmodule in {1,...,\r}{ + \pgfmathisodd{\startmodule}{initmodule} + \ifnum\initmodule=1 + % if odd + \pgfmathtruncatemacro\endmodule{int(\startmodule+1)} + \draw(r\middlestage-\startmodule-output-1)--(r\middlestagei-\startmodule-input-1); + \draw(r\middlestage-\startmodule-output-2)--(r\middlestagei-\endmodule-input-1); + \draw(r\middlestagei-\startmodule-output-1)--(r\middlestageii-\startmodule-input-1); + \draw(r\middlestagei-\startmodule-output-2)--(r\middlestageii-\endmodule-input-1); + \else + % if even + \pgfmathtruncatemacro\endmodule{int(\startmodule-1)} + \draw(r\middlestage-\startmodule-output-1)--(r\middlestagei-\endmodule-input-2); + \draw(r\middlestage-\startmodule-output-2)--(r\middlestagei-\startmodule-input-2); + \draw(r\middlestagei-\startmodule-output-1)--(r\middlestageii-\endmodule-input-2); + \draw(r\middlestagei-\startmodule-output-2)--(r\middlestageii-\startmodule-input-2); + \fi + } + % end connections + \fi % disable connections + } +} + + +\endinput |