diff options
Diffstat (limited to 'Master/texmf-dist/tex/optex/demo/op-mathalign.tex')
-rw-r--r-- | Master/texmf-dist/tex/optex/demo/op-mathalign.tex | 367 |
1 files changed, 367 insertions, 0 deletions
diff --git a/Master/texmf-dist/tex/optex/demo/op-mathalign.tex b/Master/texmf-dist/tex/optex/demo/op-mathalign.tex new file mode 100644 index 00000000000..b2524ee80da --- /dev/null +++ b/Master/texmf-dist/tex/optex/demo/op-mathalign.tex @@ -0,0 +1,367 @@ +%% This is part of the OpTeX project, see http://petr.olsak.net/optex + +% Math alignment examples inspired by https://www.ntg.nl/maps/34/06.pdf + +\fontfam[newcm] +\margins/1 a4 (2,2,2,2)cm +\hyperlinks\Blue\Blue + +\refdecl{ + \def\Xpos#1#2#3{\sxdef{pos:#1}{{#2}{#3}\_currpage}} +} +\def\setpos[#1]{\openref\pdfsavepos + \_ewref\Xpos{{#1}\unexpanded{{\the\pdflastxpos}{\the\pdflastypos}}}} + +\def\posx [#1]{\_ea \posi \romannumeral-`\.\trycs{pos:#1}{{0}{0}{0}{0}}sp} +\def\posy [#1]{\_ea \posii \romannumeral-`\.\trycs{pos:#1}{{0}{0}{0}{0}}sp} +\def\pospg[#1]{\_ea \posiii \romannumeral-`\.\trycs{pos:#1}{{0}{0}{0}{0}}} + +\def\posi #1#2#3#4{#1} +\def\posii #1#2#3#4{#2} +\def\posiii #1#2#3#4{#3} + +\newcount\tomarginno +\def\toright#1{\_incr\tomarginno {\setpos[tr:\the\tomarginno]% + \rlap{\kern-\posx[tr:\the\tomarginno]\kern\hoffset\kern\hsize\llap{#1}}}} +\def\toleft#1{\_incr\tomarginno {\setpos[tr:\the\tomarginno]% + \rlap{\kern-\posx[tr:\the\tomarginno]\kern\hoffset\rlap{#1}}}} + +\def\eqm{\toright\eqmark} + +\def\\{\begingroup + \_setverb \obeylines \scanlatex +} +\def\scanlatex#1//{\tt #1\endgroup \scanoptex} +\long\def\scanoptex#1$${\begingroup + \_setverb \obeylines \scanoptexA +} +\ea\def\ea\scanoptexA\ea#\ea1\detokenize{$$}{\bigskip \tt + \detokenize{$$}#1\detokenize{$$}\endgroup + $$\catcode`\^^M=9 \scantextokens{#1}$$ + \bigskip +} + +\tit Math alignment examples + +The document \url{https://www.ntg.nl/maps/34/06.pdf} shows examples how to +do special math alignments in display mode in ConTeXt (and in \LaTeX/ for +comparison). We present the same examples here. They are created in +\OpTeX/ and the \LaTeX/ source is shown for comparison. + +Note that several examples here use the macro \code{\\eqm} for placing +an equation mark. The macro is defined~by + +\begtt +\def\eqm{\toright\eqmark} +\endtt +% +and the \code{\\toright} macro is defined in +\ulink[http://petr.olsak.net/optex/optex-tricks.html#torighteq]{\OpTeX/ trick 0028} +which is based on +\ulink[http://petr.olsak.net/optex/optex-tricks.html#setpos]{\OpTeX/ trick 0020}. +I.e. the following macros are used here: + +\begtt +\refdecl{ + \def\Xpos#1#2#3{\sxdef{pos:#1}{{#2}{#3}\_currpage}} +} +\def\setpos[#1]{\openref\pdfsavepos + \_ewref\Xpos{{#1}\unexpanded{{\the\pdflastxpos}{\the\pdflastypos}}}} + +\def\posx [#1]{\_ea \posi \romannumeral-`\.\trycs{pos:#1}{{0}{0}{0}{0}}sp} +\def\posy [#1]{\_ea \posii \romannumeral-`\.\trycs{pos:#1}{{0}{0}{0}{0}}sp} +\def\pospg[#1]{\_ea \posiii \romannumeral-`\.\trycs{pos:#1}{{0}{0}{0}{0}}} + +\def\posi #1#2#3#4{#1} +\def\posii #1#2#3#4{#2} +\def\posiii #1#2#3#4{#3} + +\newcount\tomarginno +\def\toright#1{\_incr\tomarginno {\setpos[tr:\the\tomarginno]% + \rlap{\kern-\posx[tr:\the\tomarginno]\kern\hoffset\kern\hsize\llap{#1}}}} +\def\toleft#1{\_incr\tomarginno {\setpos[tr:\the\tomarginno]% + \rlap{\kern-\posx[tr:\the\tomarginno]\kern\hoffset\rlap{#1}}}} +\endtt +% +and we have to run \TeX/ twice. + +\notoc\nonum\sec Contents + +\centerline{\vbox{\hsize=.5\hsize +\maketoc +}} + +\vfil\break + +\let\_firstnoindent=\relax +\mathsboff \catcode`\_=12 \everytable{\catcode`\_=11} + +\sec Gather + +\\ +\begin{gather} + v = u + at, \\ + d = ut + \frac12 at^2. +\end{gather} +// + +$$ + \displaylines{ + v = u + at, \eqm \cr + d = ut + {1\over2} at^2. \eqm + } +$$ + +\sec Left gather + +\\ +\begin{align} + & v = u + at, \\ + & d = ut + \frac12 at^2. +\end{align} +// + +$$ + \eqalignno{ + & v = u + at, & \eqmark \cr + & d = ut + {1\over2} at^2. & \eqmark + } +$$ + +\sec Right gather + +\\ +\begin{align} + v = u + at , & \\ + d = ut + \frac12 atˆ2. & +\end{align} +// + +$$ + \eqalignno{ + v = u + at, && \eqmark \cr + d = ut + {1\over2} at^2. && \eqmark + } +$$ + +\sec Align + +\\ +\begin{align} + v &= u + at, \\ + d &= ut + \frac12 at^2. +\end{align} +// + +$$ + \eqalignno{ + v &= u + at, & \eqmark \cr + d &= ut + {1\over2} at^2. & \eqmark + } +$$ + +\sec Split + +\\ +\begin{equation} \begin{split} + (x+1)^8 ={} & x^8 + 8 x^7 + 28 x^6 + 56 x^5 + 70 x^4 \\ + & + 56 x^3 + 28 x^2 + 8 x + 1. +\end{split} \end{equation} +// + +$$ + \eqalign{ + (x+1)^8 = {}& x^8 + 8 x^7 + 28 x^6 + 56 x^5 + 70 x^4 \cr + & + 56 x^3 + 28 x^2 + 8 x + 1. + } \eqmark +$$ + +\sec Alignat + +\\ +\begin{alignat}{2} + \nabla\cdot \mathbf E &= \frac{\rho}{\varepsilon_0}, \qquad +& \nabla\times \mathbf E &= -\frac{\partial \mathbf B}{\partial t},\\ + \nabla\cdot \mathbf B &= 0, +& \nabla\times \mathbf B &= \mu_0{\mathbf j}+\varepsilon_0\mu_0 + \frac{\partial \mathbf E}{\partial t}. +\end{alignat} +// + +$$ + \eqalign{ + \nabla\cdot {\bf E} &= {\rho\over\varepsilon_0}, \qquad + && \nabla\times {\bf E} &= -{\partial {\bf B}\over\partial t}, \eqm\cr + \nabla\cdot {\bf B} &= 0, + && \nabla\times {\bf B} &= \mu_0{\bf j}+\varepsilon_0\mu_0 + {\partial {\bf E}\over \partial t}. \eqm + } +$$ + +\sec Flalign + +\\ +\begin{flalign*} + \nabla\cdot \mathbf E &= \frac{\rho}{\varepsilon_0}, +& \nabla\times \mathbf E &= -\frac{\partial \mathbf B}{\partial t}.\\ + \nabla\cdot \mathbf B &= 0, +& \nabla\times \mathbf B &= \mu_0{\mathbf j}+\varepsilon_0\mu_0 + \frac{\partial \mathbf E}{\partial t}. +\end{flalign*} +// + +$$ + \eqspace=10em + \eqalign{ + \nabla\cdot {\bf E} &= {\rho\over\varepsilon_0}, \qquad + && \nabla\times {\bf E} &= -{\partial {\bf B}\over\partial t}, \cr + \nabla\cdot {\bf B} &= 0, + && \nabla\times {\bf B} &= \mu_0{\bf j}+\varepsilon_0\mu_0 + {\partial {\bf E}\over \partial t}. + } +$$ + +\sec Intertext + +\\ +\begin{align*} + \cos 2\theta &= \cos^2 \theta + \sin^2 \theta \\ + \intertext{replace $\sin^2 \theta$ by $1 - \cos^2 \theta$} + &= 2\cos^2 \theta - 1 +\end{align*} +// + +$$ + \eqalignno{ + \cos 2\theta &= \cos^2 \theta + \sin^2 \theta \cr + \noalign{\hbox{replace $\sin^2 \theta$ by $1 - \cos^2 \theta$}} + &= 2\cos^2 \theta - 1 + } +$$ + +\sec Linear equations + +\\ +\begin{alignat}{5} + x_1 & {} + {}& x_2 &{} + {}& 6x_3 &{} = {}& 170, \\ + 3x_1 & {} - {}& 110x_2 &{} - {}& x_3 &{} = {}& 4, \\ + 14x_1 & {} + {}& 13x_2 &{} + {}& 10x_3 &{} = {}& 25. +\end{alignat} +// + +$$ + \thistable{\tablinespace=0pt \tabiteml={${}}\tabitemr={{}$} + \tabstrut={\lower1.5ex\vbox to3.5ex{}}} + \table{3{rc}r}{ + x_1 &+& x_2 &+& 6x_3 &=& 170, \eqm \cr + 3x_1 &-& 110x_2 &-& x_3 &=& 4, \eqm \cr + 14x_1 &+& 13x_2 &+& 10x_3 &=& 25. \eqm + } +$$ + +\sec Matrix and Arrays + +\\ +\begin{equation*} +\setlength{\arraycolsep}{1em} + \begin{array}{ccc} + A & B & C \\ + AA & BB & CC \\ + AAA & BBB & CCC + \end{array} +\end{equation*} +// + +$$ + \matrix{ + A & B & C \cr + AA & BB & CC \cr + AAA & BBB & CCC + } +$$ + +\\ +\begin{equation*} +\setlength{\arraycolsep}{1em} + \begin{array}{lcr} + A & B & C \\ + AA & BB & CC \\ + AAA & BBB & CCC + \end{array} +\end{equation*} +// + +$$ + \thistable{\tabstrut{}\tabiteml={\kern.5em${}}\tabitemr={{}$\kern.5em}} + \table{lcr}{ + A & B & C \cr + AA & BB & CC \cr + AAA & BBB & CCC + } +$$ + +\sec Pmatrix + +\\ +\begin{equation*} + A = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} +\end{equation*} +// + +$$ + \pmatrix {1\cr 2\cr 3} +$$ + +\sec Delarray package + +\\ +\begin{equation*} + \begin{array}[b]({c}) 1 \\ 2 \\ 3 \end{array} + \begin{array}[c]({c}) 1 \\ 2 \\ 3 \end{array} + \begin{array}[t]({c}) 1 \\ 2 \\ 3 \end{array} +\end{equation*} +// + +$$ + \def\mybox#1{\hbox{$\displaystyle{#1}$}} + \raise3ex\mybox{\pmatrix {1\cr 2\cr 3}} + \pmatrix {1\cr 2\cr 3} + \lower3ex\mybox{\pmatrix {1\cr 2\cr 3}} +$$ + +\sec Cases + +\\ +\begin{equation*} + |x| = + \begin{cases} + x, & \text{if $x \ge 0$;} \\ + -x, & \text{otherwise.} + \end{cases} +\end{equation*} +// + +$$ + |x| = \cases { x & if $x \ge 0$; \cr + -x & otherwise } +$$ + +\\ +\begin{equation*} + f(x) = + \begin{dcases} + \int_0ˆx g(y)\,dy, & \text{if $x \ge 0$;} \\ + \int_{-x}ˆ0 g(y)\,dy, & \text{otherwise.} + \end{dcases} +\end{equation*} +// + +$$ + \let\ds=\displaystyle + f(x) = \cases { \ds \int_0^x g(y)\,dy, & if $x \ge 0$; \cr \noalign{\medskip} + \ds \int_{-x}^0 g(y)\,dy, & otherwise. } +$$ + + + +\end |