summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/latex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/tex/latex')
-rw-r--r--Master/texmf-dist/tex/latex/polexpr/polexpr.sty1168
1 files changed, 888 insertions, 280 deletions
diff --git a/Master/texmf-dist/tex/latex/polexpr/polexpr.sty b/Master/texmf-dist/tex/latex/polexpr/polexpr.sty
index f163fe10f29..601446cf671 100644
--- a/Master/texmf-dist/tex/latex/polexpr/polexpr.sty
+++ b/Master/texmf-dist/tex/latex/polexpr/polexpr.sty
@@ -1,7 +1,7 @@
% author: Jean-François Burnol
% License: LPPL 1.3c (author-maintained)
\ProvidesPackage{polexpr}%
- [2018/11/20 v0.6 Polynomial expressions with rational coefficients (JFB)]%
+ [2018/12/08 v0.7 Polynomial expressions with rational coefficients (JFB)]%
\RequirePackage{xintexpr}[2018/06/17]% xint 1.3c for \ifxintglobaldefs boolean
\edef\POL@restorecatcodes
{\catcode`\noexpand\_ \the\catcode`\_ %
@@ -28,11 +28,28 @@
}%
%% AUXILIARIES
+\catcode`! 3
+%% added at 0.7
+\newcommand\polexprsetup[1]{\POL@setup_parsekeys #1,=!,\xint_bye}%
+\def\POL@setup_parsekeys #1=#2#3,{%
+ \ifx!#2\expandafter\xint_bye\fi
+ \csname POL@setup_setkey_\xint_zapspaces #1 \xint_gobble_i\endcsname
+ \xint_firstoftwo
+ {\PackageWarning{polexpr}{The \detokenize{#1} key is unknown! ignoring}}%
+ {\xintZapLastSpaces{#2#3}}%
+ \POL@setup_parsekeys
+}%
+\catcode`! 11
+\def\POL@setup_setkey_norr #1#2{\edef\POL@norr}%
+\def\POL@setup_setkey_sqfnorr #1#2{\edef\POL@sqfnorr}%
+\polexprsetup{norr=_norr, sqfnorr=_sqf_norr}
+
\newcount\POL@count
\newif\ifPOL@pol
\newif\ifxintveryverbose
\newif\ifpoltypesetall
-\newif\ifPOL@sturm@declareunnormalized
+\newif\ifPOL@tosturm@makefirstprimitive
+\POL@tosturm@makefirstprimitivetrue
\newif\ifPOL@isolz@nextwillneedrefine
\newif\ifpoltoexprall
%% the main exchange structure (stored in macros \POLuserpol@<name>)
@@ -681,9 +698,16 @@
\def\POL@makeprim@macro#1%
{\xintREZ{\xintNum{\xintDiv{#1}{\POL@makeprim@icontent}}}}%
\newcommand\PolMakePrimitive[1]{%
+ % This does not need a full user declared polynomial on input, only
+ % a \POLuserpol@name macro, but on output it is fully declared
\edef\POL@makeprim@icontent{\PolIContent{#1}}%
\PolMapCoeffs\POL@makeprim@macro{#1}%
}%
+\def\POL@makeprimitive#1{%
+ % Avoids declaring the polynomial, internal usage in \PolToSturm
+ \edef\POL@makeprim@icontent{\PolIContent{#1}}%
+ \POL@mapcoeffs\POL@makeprim@macro{#1}%
+}%
%% Sturm Algorithm (polexpr 0.4)
@@ -696,15 +720,16 @@
%% holding the coefficients in memory
%% 0.6 fixes the case of a constant polynomial P which caused division
%% by zero error from P'.
-\newcommand\PolToSturm{\@ifstar
- {\POL@sturm@declareunnormalizedtrue\POL@ToSturm}%
- {\POL@sturm@declareunnormalizedfalse\POL@ToSturm}%
-}%
+\newcommand\PolToSturm{\@ifstar{\PolToSturm@@}{\PolToSturm@}}%
\def\POL@aux@toint#1{\xintREZ{\xintNum{#1}}}% for polynomials with int. coeffs!
-\def\POL@ToSturm#1#2{%
+%% Attention that some macros rely upon this one setting \POL@sturmname
+%% and \POL@sturm@N as it does
+\def\PolToSturm@#1#2{%
\edef\POL@sturmname{#2}%
% 0.6 uses 2 underscores (one before index, one after) to keep in memory
% the unnormalized chain
+ % This supposes #1 to be a genuine polynomial, not only a name with
+ % a \POLuserpol@#1 macro
\POL@let{\POL@sturmname _0_}{#1}%
\ifnum\PolDegree{#1}=\z@
\def\POL@sturm@N{0}%
@@ -713,7 +738,8 @@
% if constant is negative. I also don't worry if polynomial is zero.
\@namedef{POLuserpol@\POL@sturmname _0}{0.\empty{1/1[0]}}%
\else
- \POL@ToSturm@DoSturm
+ \ifPOL@tosturm@makefirstprimitive\POL@makeprimitive{\POL@sturmname _0_}\fi
+ \POL@tosturm@dosturm
\fi
\expandafter
\let\csname PolSturmChainLength_\POL@sturmname\endcsname\POL@sturm@N
@@ -724,22 +750,21 @@
\unless\ifnum\POL@sturm@N=\POL@count
\advance\POL@count\@ne
\repeat
+}%
+\def\PolToSturm@@#1#2{\PolToSturm@{#1}{#2}\POL@tosturm@declareunnormalized}%
+\def\POL@tosturm@declareunnormalized{%
% optionally declare also the unnormalized ones
\POL@count\z@
- \ifPOL@sturm@declareunnormalized
- \POL@count\z@
- \xintloop
- \POL@newpol{\POL@sturmname _\the\POL@count _}%
- \unless\ifnum\POL@sturm@N=\POL@count
- \advance\POL@count\@ne
- \repeat
- \fi
+ \xintloop
+ \POL@newpol{\POL@sturmname _\the\POL@count _}%
+ \unless\ifnum\POL@sturm@N=\POL@count
+ \advance\POL@count\@ne
+ \repeat
}%
-\def\POL@ToSturm@DoSturm{%
- \PolMakePrimitive{\POL@sturmname _0_}%
+\def\POL@tosturm@dosturm{%
\POL@Diff@@one{\POL@sturmname _0_}{\POL@sturmname _1_}%
% re-utiliser \POL@varcoeffs directement?
- \PolMakePrimitive{\POL@sturmname _1_}%
+ \POL@makeprimitive{\POL@sturmname _1_}% does not do \POL@newpol
\POL@count\@ne
\xintloop
\POL@divide{\POL@sturmname _\the\numexpr\POL@count-\@ne\relax _}%
@@ -750,6 +775,7 @@
\expandafter\let
\csname POLuserpol@\POL@sturmname _\the\POL@count _\endcsname\POL@R
\edef\POL@makeprim@icontent{-\POL@icontent\POL@polR}%
+ % this avoids the \POL@newpol from \PolMapCoeffs
\POL@mapcoeffs\POL@makeprim@macro{\POL@sturmname _\the\POL@count _}%
\repeat
\edef\POL@sturm@N{\the\POL@count}%
@@ -763,13 +789,13 @@
\expandafter
\let\csname POLuserpol@\POL@sturmname _\the\POL@count\endcsname\POL@Q
% quotient actually belongs to Z[X] and is primitive
- \POL@mapcoeffs{\POL@aux@toint}{\POL@sturmname _\the\POL@count}%
+ \POL@mapcoeffs\POL@aux@toint{\POL@sturmname _\the\POL@count}%
\ifnum\POL@count>\z@
\repeat
\@namedef{POLuserpol@\POL@sturmname _\POL@sturm@N}{0.\empty{1/1[0]}}%
\else % they are already normalized
- \advance\POL@count\@ne % attention to include last one also
- \xintloop
+ \advance\POL@count\@ne % attention to include last one also
+ \xintloop
\advance\POL@count\m@ne
\expandafter\let
\csname POLuserpol@\POL@sturmname _\the\POL@count\expandafter\endcsname
@@ -777,7 +803,7 @@
\ifnum\POL@count>\z@
\repeat
\fi
- % Back to \POL@ToSturm
+ % Back to \PolToSturm@, \POL@count holds 0
}%
\newcommand\PolSturmChainLength[1]
{\romannumeral`^^@\csname PolSturmChainLength_#1\endcsname}%
@@ -791,19 +817,19 @@
}%
\def\POL@sturmchain@getSV@at#1{% ATTENTION USES \POL@count
\def\POL@sturmchain@SV{0}%
- \edef\POL@sturmchain@sign{\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{#1}}}%
+ \edef\POL@sturmchain@sign{\xintiiSgn{\POL@eval{\POL@sturmname _0}{#1}}}%
\let\POL@isolz@lastsign\POL@sturmchain@sign
\POL@count \z@
\ifnum\POL@isolz@lastsign=\z@
\edef\POL@isolz@lastsign
- {\xintiiSgn{\Pol@Eval{\POL@sturmname _1}{#1}}}%
+ {\xintiiSgn{\POL@eval{\POL@sturmname _1}{#1}}}%
\POL@count \@ne
\fi
\xintloop
\unless\ifnum\POL@sturmlength=\POL@count
\advance\POL@count \@ne
\edef\POL@isolz@newsign
- {\xintiiSgn{\Pol@Eval{\POL@sturmname _\the\POL@count}{#1}}}%
+ {\xintiiSgn{\POL@eval{\POL@sturmname _\the\POL@count}{#1}}}%
\ifnum\POL@isolz@newsign=\numexpr-\POL@isolz@lastsign\relax
\edef\POL@sturmchain@SV{\the\numexpr\POL@sturmchain@SV+\@ne}%
\let\POL@isolz@lastsign=\POL@isolz@newsign
@@ -827,11 +853,431 @@
}%
+% 0.6 added starred variant to count multiplicities
+% 0.7 added double starred variant to locate all rational roots
\newcommand\PolSturmIsolateZeros{\@ifstar
{\PolSturmIsolateZerosAndGetMultiplicities}%
{\PolSturmIsolateZeros@}%
}%
-\newcommand\PolSturmIsolateZerosAndGetMultiplicities[2][\empty]{%
+\newcommand\PolSturmIsolateZerosAndGetMultiplicities{\@ifstar
+ {\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots}%
+ {\PolSturmIsolateZerosAndGetMultiplicities@}%
+}%
+% on aurait besoin de ça dans xint, mais il aurait un \xintRaw{#1} alors
+\def\POL@xintfrac@getNDE #1%
+ {\expandafter\POL@xintfrac@getNDE@i\romannumeral`^^@#1}%
+\def\POL@xintfrac@getNDE@i #1/#2[#3]#4#5#6{\def#4{#1}\def#5{#2}\def#6{#3}}%
+\newcommand\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots[2][\empty]{%
+ \PolSturmIsolateZerosAndFindRationalRoots[#1]{#2}%
+ \ifnum\POL@isolz@NbOfRoots>\z@
+ % get multiplicities of irrational (real) roots, if any
+ \ifnum\POL@findrat@nbofirrroots>\z@
+ \POL@findrat@getirrmult
+ \fi
+ \POL@isolzmult@defvar@M
+ \fi
+}%
+% added at 0.7
+\newcommand\PolSturmIsolateZerosAndFindRationalRoots[2][\empty]{%
+ % #1 optional E such that roots are searched in -10^E < x < 10^E
+ % both -10^E and +10^E must not be roots!
+ % #2 name of Sturm chain (already pre-computed)
+ \edef\POL@sturmname{#2}%
+ \edef\POL@sturm@N{\@nameuse{PolSturmChainLength_\POL@sturmname}}%
+ % isolate the roots (detects case of constant polynomial)
+ \PolSturmIsolateZeros@{\POL@sturmname}%
+ \ifnum\POL@isolz@NbOfRoots=\z@
+ % no real roots, define empty arrays nevertheless
+ \begingroup\globaldefs\@ne
+ \expandafter\xintAssignArray\expandafter\to\csname POL_ZeroMult\POL@sturmname\endcsname
+ \expandafter\xintAssignArray\expandafter\to\csname POL_RRIndex\POL@sturmname\endcsname
+ \endgroup
+ \else
+ % all we currently know is that multiplicities are at least one
+ \begingroup\globaldefs\@ne
+ \expandafter\POL@initarray\csname POL_ZeroMult\POL@sturmname\endcsname{1}%
+ \endgroup
+ % on ne va pas utiliser de Horner, mais des divisions par X - x, et ces
+ % choses vont évoluer, ainsi que le coefficient dominant entier
+ % (pour \POL@divide entre autres if faut des noms de user pol)
+ \expandafter\let
+ \csname POLuserpol@\POL@sturmname\POL@sqfnorr\expandafter\endcsname
+ \csname POLuserpol@\POL@sturmname _0\endcsname
+ \expandafter\let
+ \csname POLuserpol@\POL@sturmname\POL@norr\expandafter\endcsname
+ \csname POLuserpol@\POL@sturmname _0_\endcsname
+ % attention formé avec\xintREZ d'où le \xintAbs pas \xintiiAbs
+ % D and its exponent E will get updated along the way
+ \edef\POL@findrat@D{\xintAbs{\PolLeadingCoeff{\POL@sturmname _0}}}%
+ \POL@xintfrac@getNDE\POL@findrat@D\POL@findrat@Dint\POL@_\POL@findrat@Dexp
+ \xintiiifOne{\POL@findrat@Dint}
+ {\let\POL@findrat@E\POL@findrat@Dexp} % aussi ok pour 1[0]
+ {\edef\POL@findrat@E{\the\numexpr\xintLen{\POL@findrat@Dint}%
+ +\POL@findrat@Dexp}}%
+ \POL@initarray\POL@IfMultIsKnown\xint_secondoftwo
+ \let\POL@findrat@nbofirrroots\POL@isolz@NbOfRoots
+ % find all rational roots, and their multiplicities,
+ % factor them out in passing from original (Sturm root) polynomial
+ \ifnum\POL@findrat@E<7
+ \PolEnsureIntervalLength{\POL@sturmname}{1}{-\POL@findrat@E}%
+ \def\POL@findrat@index{1}%
+ \POL@findrat@loop@secondpass@direct
+ \else
+ % we do a first pass scanning for "small" roots p/q (i.e. q < 1000)
+ \def\POL@findrat@index{1}%
+ \POL@findrat@loop@firstpass
+ % and now we do the final pass finding them all
+ \def\POL@findrat@index{1}%
+ \PolEnsureIntervalLength{\POL@sturmname}{1}{-\POL@findrat@E}%
+ \POL@findrat@loop@secondpass
+ \fi
+ % declare the new polynomials
+ \POL@newpol{\POL@sturmname\POL@sqfnorr}% without multiplicities
+ \POL@newpol{\POL@sturmname\POL@norr}% with multiplicities
+ % declare the array holding the interval indices for the rational roots
+ \expandafter\POL@findrat@doRRarray\csname POL_RRIndex\POL@sturmname\endcsname
+ \fi
+}%
+\def\POL@findrat@doRRarray#1{%
+ % il faudrait un \xintAssignArray* qui fasse même expansion que \xintFor*
+ \edef\POL@temp{%
+ \xintiloop[1+1]
+ \romannumeral0\csname POL_ZeroIsKnown\POL@sturmname\xintiloopindex\endcsname
+ \xintbracediloopindex % I should have named it \xintiloopbracedindex...
+ {}%
+ \ifnum\xintiloopindex<\POL@isolz@NbOfRoots\space
+ \repeat }%
+ \begingroup\globaldefs1
+ % attention de ne surtout pas faire un \expandafter ici, car en cas d'un
+ % seul item, \xintAssignArray l'unbraces...
+ \xintAssignArray\POL@temp\to#1%
+ \endgroup
+}%
+\def\POL@findrat@loop@firstpass{%
+ \PolSturmIfZeroExactlyKnown{\POL@sturmname}{\POL@findrat@index}%
+ \POL@findrat@loop@decimal% get its multiplicity
+ \POL@findrat@loop@a
+ \edef\POL@findrat@index{\the\numexpr\POL@findrat@index+\@ne}%
+ \ifnum\POL@findrat@index>\POL@isolz@NbOfRoots
+ \else
+ \expandafter\POL@findrat@loop@firstpass
+ \fi
+}%
+\def\POL@findrat@loop@secondpass{%
+ \PolSturmIfZeroExactlyKnown{\POL@sturmname}{\POL@findrat@index}%
+ {}% nothing more to be done, already stored
+ \POL@findrat@loop@b
+ \edef\POL@findrat@index{\the\numexpr\POL@findrat@index+\@ne}%
+ \ifnum\POL@findrat@index>\POL@isolz@NbOfRoots
+ \else
+ \PolEnsureIntervalLength
+ {\POL@sturmname}{\POL@findrat@index}{-\POL@findrat@E}% dynamic
+ \expandafter\POL@findrat@loop@secondpass
+ \fi
+}%
+\def\POL@findrat@loop@secondpass@direct{%
+ \PolSturmIfZeroExactlyKnown{\POL@sturmname}{\POL@findrat@index}%
+ \POL@findrat@loop@decimal
+ \POL@findrat@loop@b
+ \edef\POL@findrat@index{\the\numexpr\POL@findrat@index+\@ne}%
+ \ifnum\POL@findrat@index>\POL@isolz@NbOfRoots
+ \else
+ \PolEnsureIntervalLength
+ {\POL@sturmname}{\POL@findrat@index}{-\POL@findrat@E}% dynamic
+ \expandafter\POL@findrat@loop@secondpass@direct
+ \fi
+}%
+\def\POL@findrat@loop@decimal{% we have an already found decimal root
+ % we do not go via @storeit, as it is already stored
+ % j'ai beaucoup hésité néanmoins, car je pourrais faire \xintIrr ici,
+ % mais attention aussi à l'interaction avec le \PolDecToString. Les racines
+ % trouvées directement (qui peuvent être des nombres décimaux) sont elles
+ % stockées comme fraction irréductibles (modulo action additionnelle de
+ % \PolDecToString).
+ \POL@xintfrac@getNDE
+ {\xintIrr{\POL@xintexprGetVar{\POL@sturmname L_\POL@findrat@index}}[0]}%
+ \POL@findrat@xN\POL@findrat@xD\POl@_
+ % we can't move this to updatequotients because other branch will
+ % need to do the division first anyhow
+ \edef\POLuserpol@_findrat@oneterm{1.\noexpand\empty
+ {\xintiiOpp\POL@findrat@xN/1[0]}{\POL@findrat@xD/1[0]}}%
+ \POL@divide{\POL@sturmname\POL@sqfnorr}{_findrat@oneterm}% the one without mult.
+ \POL@findrat@loop@updatequotients
+ \POL@findrat@loop@getmultiplicity
+}%
+% lacking from xint 1.3c, but \xintSgn has overhead, so we define ii version
+\def\xintiiifNeg{\romannumeral0\xintiiifneg }%
+\def\xintiiifneg #1%
+{%
+ \ifcase \xintiiSgn{#1}
+ \expandafter\xint_stop_atsecondoftwo
+ \or\expandafter\xint_stop_atsecondoftwo
+ \else\expandafter\xint_stop_atfirstoftwo
+ \fi
+}%
+\def\POL@findrat@getE #1/1[#2]{#2}% /1 as it should be there.
+% so an error will arise if not but cf \POL@refine@getE where I did not put it
+\def\POL@findrat@loop@a{%
+ % we do a first pass to identify roots with denominators < 1000
+ \PolEnsureIntervalLength{\POL@sturmname}{\POL@findrat@index}{-6}%
+ % attention that the width may have been already smaller than 10^{-6}
+ % also attention that one of the bound may be zero
+ \POL@get@IsoLeft@rawin
+ \POL@get@IsoRight@rawin
+ \edef\POL@findrat@localW
+ {\the\numexpr-\expandafter\POL@findrat@getE
+ % do I really need the \xintREZ?
+ \romannumeral0\xintrez
+ {\xintSub{\POL@IsoRight@rawin}{\POL@IsoLeft@rawin}}%
+ }% at least 6, maybe larger
+ \expandafter\POL@get@Int@aux
+ \POL@IsoLeft@rawin\POL@IsoLeft@Int{-\POL@findrat@localW}%
+ \expandafter\POL@get@Int@aux
+ \POL@IsoRight@rawin\POL@IsoRight@Int{-\POL@findrat@localW}%
+ % in case of odd, some waste here
+ \edef\POL@findrat@halflocalW{\the\numexpr(\POL@findrat@localW+1)/2-1}%
+ % Legendre Theorem will be used now but we separate a branch where
+ % everything can be done with \numexpr
+ \ifnum\POL@findrat@localW>10
+ % not implemented yet by lazyness!
+ % this root will be handled in second pass only
+ \else
+ \POL@findrat@gcdloop
+ \fi
+}%
+\def\POL@findrat@gcdloop{%
+ % we must be careful with sign (attention one of the bounds may be zero)
+ \let\POL@findrat@IfNeg\xint_secondoftwo
+ \xintiiifSgn\POL@IsoLeft@Int
+ \POL@findrat@gcdloop@n
+ \POL@findrat@gcdloop@zero
+ \POL@findrat@gcdloop@p
+}%
+\def\POL@findrat@gcdloop@n{%
+ \let\POL@findrat@IfNeg\xint_firstoftwo
+ \let\POL@temp\POL@IsoRight@Int
+ \edef\POL@IsoRight@Int{\xintiiOpp{\POL@IsoLeft@Int}}%
+ \edef\POL@IsoLeft@Int{\xintiiOpp{\POL@temp}}%
+ \xintiiifSgn\POL@IsoLeft@Int
+ \POL@error % impossible branch
+ \POL@findrat@gcdloop@zero
+ \POL@findrat@gcdloop@p
+}%
+\def\POL@findrat@gcdloop@zero{%
+ % the continued fraction would be the one of 1/2, so only 1/2 to test...
+ \edef\POL@findrat@x
+ {1/2\romannumeral\xintreplicate{\POL@findrat@localW}{0}[0]}%
+ \POL@findrat@gcdloop@testit
+}%
+\def\POL@findrat@gcdloop@p{%
+ \edef\POL@findrat@gcdloop@Ap{\xintDec{\xintDouble\POL@IsoRight@Int}}%
+ \edef\POL@findrat@gcdloop@A
+ {2\romannumeral\xintreplicate\POL@findrat@localW{0}}%
+ \xintAssign
+ \xintiiDivision\POL@findrat@gcdloop@Ap\POL@findrat@gcdloop@A
+ \to\POL@findrat@gcdloop@B\POL@findrat@gcdloop@An
+ % on fait de la tambouille pour n'utiliser que \numexpr par la suite
+ % le reste @An est < 2.10^10 au pire donc ok pour \numexpr
+ % we will drop integral part in our updating P
+ \let\POL@findrat@gcdloop@Binitial\POL@findrat@gcdloop@B
+ \def\POL@findrat@gcdloop@B{0}% do as if B1 = 0
+ \def\POL@findrat@gcdloop@Pp{1}% P0
+ \def\POL@findrat@gcdloop@P{0}% P1
+ \def\POL@findrat@gcdloop@Qp{0}% Q0
+ \def\POL@findrat@gcdloop@Q{1}% Q1
+ % A2=An can not be zero, as Ap (=A0) is odd and A (=A1=200...000) is even
+ % first Binitial + P1/Q1 ( = Binitial) can not be root
+ \let\POL@findrat@gcdloop@Ap\POL@findrat@gcdloop@A % A1
+ \let\POL@findrat@gcdloop@A\POL@findrat@gcdloop@An % A2
+ \def\next{\POL@findrat@gcdloop@update}%
+ \def\POL@findrat@gcdloop@done{0}%
+ \POL@findrat@gcdloop@body
+}%
+\def\POL@findrat@gcdloop@body{%
+ % annoying that \numexpr has no divmod... use counts? but groups annoying
+ \edef\POL@findrat@gcdloop@B
+ {\the\numexpr(\POL@findrat@gcdloop@Ap+\POL@findrat@gcdloop@A/2)/%
+ \POL@findrat@gcdloop@A - \@ne}%
+ \edef\POL@findrat@gcdloop@An
+ {\the\numexpr\POL@findrat@gcdloop@Ap-%
+ \POL@findrat@gcdloop@B*\POL@findrat@gcdloop@A}%
+ \edef\POL@findrat@gcdloop@Pn
+ {\the\numexpr\POL@findrat@gcdloop@Pp+%
+ \POL@findrat@gcdloop@B*\POL@findrat@gcdloop@P}%
+ \edef\POL@findrat@gcdloop@Qn
+ {\the\numexpr\POL@findrat@gcdloop@Qp+%
+ \POL@findrat@gcdloop@B*\POL@findrat@gcdloop@Q}%
+ \ifnum\expandafter\xintLength\expandafter{\POL@findrat@gcdloop@Qn}%
+ >\POL@findrat@halflocalW\space
+ \let\next\empty % no solution was found
+ \else
+ % with these conditions on denom, only candidates are by Legendre
+ % theorem among the convergents as computed here
+ \ifnum\POL@findrat@gcdloop@Qn>\POL@findrat@gcdloop@An\space
+ % means that P/Q is in interval and is thus a candidate
+ % it is automatically irreducible
+ \edef\POL@findrat@x{\xintiiAdd
+ {\xintiiMul{\POL@findrat@gcdloop@Qn}{\POL@findrat@gcdloop@Binitial}}%
+ {\POL@findrat@gcdloop@Pn}/\POL@findrat@gcdloop@Qn[0]}%
+ \POL@findrat@gcdloop@testit
+ \if1\POL@findrat@gcdloop@done
+ \let\next\empty % a solution was found
+ \fi
+ \fi
+ \fi
+ \next
+}%
+\def\POL@findrat@gcdloop@update{%
+ \ifnum\POL@findrat@gcdloop@An>\z@
+ \let\POL@findrat@gcdloop@Ap\POL@findrat@gcdloop@A
+ \let\POL@findrat@gcdloop@A\POL@findrat@gcdloop@An
+ \let\POL@findrat@gcdloop@Pp\POL@findrat@gcdloop@P
+ \let\POL@findrat@gcdloop@P\POL@findrat@gcdloop@Pn
+ \let\POL@findrat@gcdloop@Qp\POL@findrat@gcdloop@Q
+ \let\POL@findrat@gcdloop@Q\POL@findrat@gcdloop@Qn
+ \expandafter\POL@findrat@gcdloop@body
+ \fi
+}%
+\def\POL@findrat@gcdloop@testit{%
+ % zero should never occur here
+ \POL@findrat@IfNeg{\edef\POL@findrat@x{-\POL@findrat@x}}{}%
+ \POL@xintfrac@getNDE\POL@findrat@x\POL@findrat@xN\POL@findrat@xD\POL@_
+ \edef\POLuserpol@_findrat@oneterm{1.\noexpand\empty
+ {\xintiiOpp{\POL@findrat@xN}/1[0]}{\POL@findrat@xD/1[0]}}%
+ \POL@divide{\POL@sturmname\POL@sqfnorr}{_findrat@oneterm}% the one without mult.
+ \expandafter\POL@split\POL@R;\POL@degR\POL@polR
+ \ifnum\POL@degR=\m@ne % found a root
+ \POL@findrat@loop@storeit
+ \POL@findrat@loop@updatequotients
+ \POL@findrat@loop@getmultiplicity % will continue updating the mult. one
+ \def\POL@findrat@gcdloop@done{1}%
+ \else
+ \fi
+}%
+% This is second phase
+\def\POL@findrat@loop@b{%
+ \edef\POL@findrat@Lscaled{\xintMul{\POL@findrat@D}%
+ {\POL@xintexprGetVar{\POL@sturmname L_\POL@findrat@index}}}%
+ \edef\POL@findrat@Rscaled{\xintMul{\POL@findrat@D}%
+ {\POL@xintexprGetVar{\POL@sturmname R_\POL@findrat@index}}}%
+ \xintiiifNeg{\POL@findrat@Lscaled}% using ii version is an abuse
+ {% negative interval (right bound possibly zero!)
+ % truncate towards zero (i.e. to the right) the left bound
+ \edef\POL@findrat@Num{\xintNum{\POL@findrat@Lscaled}/1[0]}%
+ % interval boundaries are not root hence in case that was exact
+ % this will not be found as a root; check if in interval
+ \xintifLt\POL@findrat@Num\POL@findrat@Rscaled
+ \POL@findrat@loop@c
+ {}% iterate
+ }%
+ {% positive interval (left bound possibly zero!)
+ % truncate towards zero (i.e. to the left) the right bound
+ \edef\POL@findrat@Num{\xintNum{\POL@findrat@Rscaled}/1[0]}%
+ % check if in interval
+ \xintifGt\POL@findrat@Num\POL@findrat@Lscaled
+ \POL@findrat@loop@c
+ {}% iterate
+ }%
+}%
+\def\POL@findrat@loop@c{%
+ % safer to do the edef as \POL@findrat@x used later in storeit
+ \edef\POL@findrat@x{\xintIrr{\xintDiv\POL@findrat@Num\POL@findrat@D}[0]}%
+ \POL@xintfrac@getNDE\POL@findrat@x\POL@findrat@xN\POL@findrat@xD\POL@_
+ \edef\POLuserpol@_findrat@oneterm{1.\noexpand\empty
+ {\xintiiOpp{\POL@findrat@xN}/1[0]}{\POL@findrat@xD/1[0]}}%
+ \POL@divide{\POL@sturmname\POL@sqfnorr}{_findrat@oneterm}% the one without mult.
+ \expandafter\POL@split\POL@R;\POL@degR\POL@polR
+ \ifnum\POL@degR=\m@ne % found a root
+ \POL@findrat@loop@storeit
+ \POL@findrat@loop@updatequotients
+ \POL@findrat@loop@getmultiplicity % will continue updating the mult. one
+ \fi
+ % iterate
+}%
+\def\POL@findrat@loop@storeit{%
+ % update storage, I can not use storeleftandright here (due to rawout etc...)
+ \expandafter
+ \xdef\csname POL_ZeroInt\POL@sturmname L\POL@findrat@index\endcsname
+ {\PolDecToString{\POL@findrat@x}}%
+ \global\expandafter
+ \let\csname POL_ZeroInt\POL@sturmname R\POL@findrat@index\expandafter\endcsname
+ \csname POL_ZeroInt\POL@sturmname L\POL@findrat@index\endcsname
+ \global\expandafter
+ \let\csname POL_ZeroIsKnown\POL@sturmname\POL@findrat@index\endcsname
+ \xint_stop_atfirstoftwo
+ \begingroup\xintglobaldefstrue
+ \xintdefvar
+ \POL@sturmname L_\POL@findrat@index,%
+ \POL@sturmname R_\POL@findrat@index,%
+ \POL@sturmname Z_\POL@findrat@index _isknown
+ := qfrac(\POL@findrat@x),qfrac(\POL@findrat@x),1;%
+ \endgroup
+}%
+\def\POL@findrat@loop@updatequotients{%
+ % attention last division must have been one testing vanishing of\POL@sqfnorr
+ \expandafter\let\csname POLuserpol@\POL@sturmname\POL@sqfnorr\endcsname\POL@Q
+ % quotient belongs to Z[X] and is primitive
+ \POL@mapcoeffs\POL@aux@toint{\POL@sturmname\POL@sqfnorr}%
+ % update the one with multiplicities
+ \POL@divide{\POL@sturmname\POL@norr}{_findrat@oneterm}%
+ \expandafter\let\csname POLuserpol@\POL@sturmname\POL@norr\endcsname\POL@Q
+ \POL@mapcoeffs\POL@aux@toint{\POL@sturmname\POL@norr}
+ % updating of \POL@findrat@D at end of execution of getmultiplicity
+}%
+\def\POL@findrat@loop@getmultiplicity{%
+ % the one without multiplicity must not be divided again!
+ % check if we have remaining multiplicity
+ \POL@divide{\POL@sturmname\POL@norr}{_findrat@oneterm}%
+ \expandafter\POL@split\POL@R;\POL@degR\POL@polR
+ \ifnum\POL@degR=\m@ne % yes
+ \expandafter\let\csname POLuserpol@\POL@sturmname\POL@norr\endcsname\POL@Q
+ \POL@mapcoeffs\POL@aux@toint{\POL@sturmname\POL@norr}%
+ \expandafter
+ \xdef
+ \csname POL_ZeroMult\POL@sturmname\POL@findrat@index\endcsname
+ {\the\numexpr
+ \csname POL_ZeroMult\POL@sturmname\POL@findrat@index\endcsname+\@ne}%
+ \expandafter\POL@findrat@loop@getmultiplicity
+ \else
+ % done with multiplicity for this rational root, update stuff
+ \edef\POL@findrat@nbofirrroots
+ {\the\numexpr\POL@findrat@nbofirrroots-\@ne}%
+ \@namedef{POL@IfMultIsKnown\POL@findrat@index}{\xint_firstoftwo}%
+ \edef\POL@findrat@D{\xintAbs{\PolLeadingCoeff{\POL@sturmname\POL@sqfnorr}}}%
+ \POL@xintfrac@getNDE\POL@findrat@D\POL@findrat@Dint\POL@_\POL@findrat@Dexp
+ \xintiiifOne{\POL@findrat@Dint}
+ {\let\POL@findrat@E\POL@findrat@Dexp} % aussi ok pour 1[0]
+ {\edef\POL@findrat@E{\the\numexpr\xintLen{\POL@findrat@Dint}%
+ +\POL@findrat@Dexp}}%
+ \fi
+}%
+\def\POL@findrat@getirrmult{%
+ % first get the GCD of remaining pol with its derivative
+ \POL@divide{\POL@sturmname\POL@norr}{\POL@sturmname\POL@sqfnorr}%
+ \expandafter\let
+ % attention au _ (cf. grosse astuce pour \POL@isolzmult@loop)
+ \csname POLuserpol@@_1\POL@sturmname _\endcsname\POL@Q
+ \ifnum\PolDegree{@_1\POL@sturmname _}>\z@
+ % il reste des multiplicités (mais peut-être pour des racines complexes)
+ % (ou pour des racines en-dehors de l'intervalle optionnel)
+ % attention recyclage ici de \POL@isolzmult@loop qui dépend de
+ % la grosse astuce avec \@gobble
+ \POL@makeprimitive{@_1\POL@sturmname _}%
+ \let\POL@originalsturmname\POL@sturmname
+ % trick to get isolzmult@loop to define @@lastGCD to @_1sturmname_
+ % because it will do \POL@sturmname _\POL@sturm@N _
+ \edef\POL@sturmname{@_1\POL@sturmname}%
+ \let\POL@sturm@N\@gobble% !
+ \let\POL@isolz@NbOfRoots@with_unknown_mult\POL@findrat@nbofirrroots
+ \POL@tosturm@makefirstprimitivefalse
+ \POL@isolzmult@loop
+ \POL@tosturm@makefirstprimitivetrue
+ \let\POL@sturmname\POL@originalsturmname
+ \fi
+}%
+
+
+\newcommand\PolSturmIsolateZerosAndGetMultiplicities@[2][\empty]{%
% #1 optional E such that roots are searched in -10^E < x < 10^E
% both -10^E and +10^E must not be roots!
% #2 name of Sturm chain (already pre-computed)
@@ -845,9 +1291,6 @@
\expandafter\xintAssignArray\expandafter\to\csname POL_ZeroMult\POL@sturmname\endcsname
\endgroup
\else
- % store Sturm chain name for usage in the main loop
- \let\POL@originalsturmname\POL@sturmname
- \edef\POL@isolzmult@indices{\xintSeq{1}{\POL@isolz@NbOfRoots}}%
% all we currently know is that multiplicities are at least one
\begingroup\globaldefs\@ne
\expandafter\POL@initarray\csname POL_ZeroMult\POL@sturmname\endcsname{1}%
@@ -857,61 +1300,92 @@
\ifnum\PolDegree{\POL@sturmname _\POL@sturm@N _}>\z@
% scratch array of flags to signal known multiplicities
\POL@initarray\POL@IfMultIsKnown\xint_secondoftwo
+ % this count has utility for the case there are other roots
+ % either complex or outside interval (in case of optional argument)
\let\POL@isolz@NbOfRoots@with_unknown_mult\POL@isolz@NbOfRoots
- \expandafter\expandafter\expandafter\POL@isolzmult@loop
+ % store Sturm chain name, it is needed and altered in isolzmult@loop
+ \let\POL@originalsturmname\POL@sturmname
+ \POL@tosturm@makefirstprimitivefalse
+ \POL@isolzmult@loop
+ \POL@tosturm@makefirstprimitivetrue
+ \let\POL@sturmname\POL@originalsturmname
\fi
+ \POL@isolzmult@defvar@M
\fi
}%
+\def\POL@isolzmult@defvar@M{%
+ % Attention that is used not only in ...GetMultiplicities@ but also
+ % in FindRationalRoots
+ \begingroup\xintglobaldefstrue
+ % added at 0.7
+ \let\x\POL@isolz@NbOfRoots
+ \xintloop
+ \xintdefvar \POL@sturmname M_\x
+ := \csname POL_ZeroMult\POL@sturmname\x\endcsname ;%
+ \edef\x{\the\numexpr\x-\@ne}%
+ \ifnum\x>\z@
+ \repeat
+ \endgroup
+}%
\def\POL@isolzmult@loop{%
- % we are here only if last iteration gave a new PGCD still of degree > 0
- % As 0.6 \PolToSturm keeps memory of unnormalized Sturm chain, we use the
- % PGCD from last iteration and generate a new Sturm chain.
- % ATTENTION: first argument of \PolToSturm MUST NOT CONTAIN \POL@sturmname
- \let\POL@@sturmname\POL@sturmname
- % ATTENTION: we could use an underscore prefix to the name, but attention
- % to tacit multiplication if used in an expression; however \PolEvalAt
- % does not use expression parsing as \PolEvalAtExpr so this would be
- % relatively safe. We must also not overwrite privately used names
- % by polexpr or xint... Using prefix @_1 appears safe. They will accumulate.
- % As the loop may break at any moment, depending on original P, not only
- % on current polynomial which is examined to see if it has zeros, it does
- % not seem to make sense to think about interface to keep memory of all
- % the defined polynomials.
- % \POL@sturm@N supposedly the one from last iteration
- \PolToSturm{\POL@@sturmname _\POL@sturm@N _}{@_1\POL@@sturmname}%
+ % we are here only if last iteration gave a new GCD still of degree > 0
+ % \POL@sturm@N is the one from last iteration
+ % Attention to not use \POL@sturmname directly in first arg. of \PolToSturm
+ % Attention that we need for the case of known roots also to have the last
+ % GCD (with its multiplicities) known as a genuine polynomial
+ % - because of usage of \POL@eval in @isknown branch
+ % - because \PolToSturm@ does a \POL@let which would be anomalous
+ % if the extended structure is not existing
+ \edef\POL@isolzmult@lastGCD{\POL@sturmname _\POL@sturm@N _}%
+ \edef\POL@isolzmult@newsturmname{@_1\POL@sturmname}%
+ \POL@newpol{\POL@isolzmult@lastGCD}%
+ \PolToSturm@{\POL@isolzmult@lastGCD}{\POL@isolzmult@newsturmname}%
% now both \POL@sturmname and \POL@sturm@N have changed
- % if GCD is now a constant, we will not come back here
- \edef\POL@sturmfinaldeg{\PolDegree{\POL@sturmname _\POL@sturm@N _}}%
- \xintFor* ##1 in {\POL@isolzmult@indices}\do
- {%
- \csname POL@IfMultIsKnown##1\endcsname
- {}% nothing to do
- {\def\POL@isolzmult@index{##1}%
- \POL@SturmIfZeroExactlyKnown{\POL@originalsturmname}{##1}%
- \POL@isolzmult@loop@zero_isknown
- \POL@isolzmult@loop@zero_isnotknown
- \POL@isolzmult@loop@sharedbody
- }%
- }%
- \ifnum\POL@sturmfinaldeg>\z@
+ \edef\POL@isolzmult@newGCDdegree{\PolDegree{\POL@sturmname _\POL@sturm@N _}}%
+ \let\POL@isolzmult@index\POL@isolz@NbOfRoots
+ \xintloop
+ % ATTENTION that this executes macros which also modifies \POL@sturmname!
+ % (but not \POL@sturm@N)
+ \POL@isolzmult@doone
+ \edef\POL@isolzmult@index{\the\numexpr\POL@isolzmult@index-\@ne}%
+ \if1\ifnum\POL@isolz@NbOfRoots@with_unknown_mult=\z@ 0\fi
+ \ifnum\POL@isolzmult@index=\z@ 0\fi 1%
+ \repeat
+ \let\POL@sturmname\POL@isolzmult@newsturmname
+ \if1\ifnum\POL@isolz@NbOfRoots@with_unknown_mult=\z@ 0\fi
+ % (if new GCD is constant, time to abort)
+ \ifnum\POL@isolzmult@newGCDdegree=\z@ 0\fi 1%
\expandafter\POL@isolzmult@loop
\fi
}%
-\def\POL@isolzmult@loop@zero_isknown{%
+\def\POL@isolzmult@doone{%
+ \csname POL@IfMultIsKnown\POL@isolzmult@index\endcsname
+ {}% nothing to do
+ {\POL@SturmIfZeroExactlyKnown{\POL@originalsturmname}%
+ {\POL@isolzmult@index}%
+ \POL@isolzmult@loop@isknown
+ \POL@isolzmult@loop@isnotknown
+ \POL@isolzmult@loop@sharedbody
+ }%
+}%
+\def\POL@isolzmult@loop@isknown{%
\xintifZero
- {\Pol@Eval{\POL@sturmname _0_}%
+ % attention that \POL@eval requires a declared polynomial
+ {\POL@eval{\POL@isolzmult@lastGCD}%
{\POL@xintexprGetVar{\POL@originalsturmname L_\POL@isolzmult@index}}}%
{\let\POL@isolzmult@haszero\@ne}%
{\let\POL@isolzmult@haszero\z@}%
}%
-\def\POL@isolzmult@loop@zero_isnotknown{%
+\def\POL@isolzmult@loop@isnotknown{%
\edef\POL@isolzmult@loop@A
{\POL@xintexprGetVar{\POL@originalsturmname L_\POL@isolzmult@index}}
\edef\POL@isolzmult@loop@B
- {\POL@xintexprGetVar{\POL@originalsturmname R_\POL@isolzmult@index}}
+ {\POL@xintexprGetVar{\POL@originalsturmname
+ R_\POL@isolzmult@index}}
+ % attention that \PolSetToNbOfZerosWithin sets \POL@sturmname to 2nd argument
\PolSetToNbOfZerosWithin
\POL@isolzmult@haszero % nb of zeros A < x <= B, here 0 or 1
- \POL@sturmname
+ \POL@isolzmult@newsturmname
\POL@isolzmult@loop@A
\POL@isolzmult@loop@B
}%
@@ -928,10 +1402,6 @@
\@namedef{POL@IfMultIsKnown\POL@isolzmult@index}{\xint_firstoftwo}%
\edef\POL@isolz@NbOfRoots@with_unknown_mult
{\the\numexpr\POL@isolz@NbOfRoots@with_unknown_mult-\@ne}%
- \ifnum\POL@isolz@NbOfRoots@with_unknown_mult=\z@
- \def\POL@sturmfinaldeg{0}% flag to force termination
- \expandafter\expandafter\expandafter\xintBreakFor
- \fi
\fi
}%
@@ -1039,7 +1509,7 @@
}%
% utility macro for a priori bound on root decimal exponent, via Float Rounding
\def\POL@isolz@updateE #1e#2;%
-{\unless\ifnum#2<\POL@isolz@E\space\edef\POL@isolz@E{\the\numexpr#2+\@ne}\fi}%
+ {\unless\ifnum#2<\POL@isolz@E\space\edef\POL@isolz@E{\the\numexpr#2+\@ne}\fi}%
\def\POL@isolz@getaprioribound{%
\PolAssign{\POL@sturmname _0}\toarray\POL@arrayA
\edef\POL@isolz@leading{\POL@arrayA{\POL@arrayA{0}}}%
@@ -1067,12 +1537,14 @@
\def\POL@IsoRight@raw{\POL@IsoRight@Int/1[\POL@isolz@E]}%
\def\POL@IsoLeft@raw {\POL@IsoLeft@Int/1[\POL@isolz@E]}%
\def\POL@IsoRight@rawout{%
- \ifnum\POL@IsoRightSign=\z@\expandafter\xintREZ\fi\POL@IsoRight@raw}%
+ \ifnum\POL@IsoRightSign=\z@\expandafter\xintREZ\fi\POL@IsoRight@raw
+}%
\def\POL@IsoLeft@rawout{%
\ifnum\POL@IsoRightSign=\z@
\expandafter\xint_firstoftwo\else\expandafter\xint_secondoftwo
\fi{\xintREZ\POL@IsoRight@raw}%
- {\POL@IsoLeft@Int/1[\POL@isolz@E]}}%
+ {\POL@IsoLeft@Int/1[\POL@isolz@E]}%
+}%
\def\POL@isolz@main {%
% NOTE 2018/02/16. THIS WILL PRESUMABLY BE RE-ORGANIZED IN FUTURE TO DO
% FIRST POSITIVE ROOTS THEN NEGATIVE ROOTS VIA CHANGE OF VARIABLE TO OPPOSITE.
@@ -1090,116 +1562,137 @@
\edef\POL@IsoRightSV{\the\numexpr\POL@IsoRightSV+\@ne}%
% subtlety here if original polynomial had multiplicities, but ok. I checked!
\edef\POL@IsoRightSign % evaluated twice, but that's not so bad
- {\xintiiOpp{\xintiiSgn{\Pol@Eval{\POL@sturmname _1}{0/1[0]}}}}%
+ {\xintiiOpp{\xintiiSgn{\POL@eval{\POL@sturmname _1}{0/1[0]}}}}%
\fi
\def\POL@IsoLeft@Int{-1}% -10^E isn't a root!
\let\POL@IsoLeftSV \POL@isolz@minusinf@SV
\let\POL@IsoLeftSign\POL@isolz@minusinf@sign
+ % \POL@IsoRight@SV was modified if zero is a root
\edef\POL@isolz@NbOfNegRoots{\the\numexpr\POL@IsoLeftSV-\POL@IsoRightSV}%
\gdef\POL@isolz@IntervalIndex{0}%
- \begingroup
- \let\POL@IsoAtZeroSV\POL@IsoRightSV % locally shifted if root at zero
- \let\POL@IsoAtZeroSign\POL@IsoRightSign
+ \let\POL@isolz@@E\POL@isolz@E
\ifnum\POL@isolz@NbOfNegRoots>\z@
- \def\POL@IsoRight@Int{-1}%
- \xintloop
- \edef\POL@isolz@E{\the\numexpr\POL@isolz@E-\@ne}%
- \POL@sturmchain@getSV@at\POL@IsoRight@raw
- \let\POL@IsoRightSV \POL@sturmchain@SV
- \let\POL@IsoRightSign\POL@sturmchain@sign
- % would an \ifx test be quicker? (to be checked)
- \ifnum\POL@IsoRightSV=\POL@IsoLeftSV\space
- % no roots in-between, sign and SV kept
- \repeat
- \def\POL@IsoLeft@Int{-10}%
- \let\POL@@IsoRightSign\POL@IsoRightSign % zero possible
- \let\POL@@IsoRightSV\POL@IsoRightSV
- \xintloop
- \edef\POL@IsoRight@Int{\the\numexpr\POL@IsoLeft@Int+\@ne}%
-% we could arguably do a more efficient dichotomy here
- \POL@sturmchain@getSV@at\POL@IsoRight@raw
- \let\POL@IsoRightSV \POL@sturmchain@SV
- \let\POL@IsoRightSign\POL@sturmchain@sign
- \POL@isolz@check
- \ifnum\POL@isolz@IntervalIndex=\POL@isolz@NbOfNegRoots\space
- \expandafter\xintbreakloop
- \fi
- \let\POL@IsoLeft@Int\POL@IsoRight@Int
- \let\POL@IsoLeftSign\POL@IsoRightSign
- \let\POL@IsoLeftSV\POL@IsoRightSV
- \ifnum\POL@IsoRight@Int < -\tw@
- \repeat
- \ifnum\POL@isolz@IntervalIndex<\POL@isolz@NbOfNegRoots\space
- \def\POL@IsoRight@Int{-1}%
- \let\POL@IsoRightSign\POL@@IsoRightSign
- \let\POL@IsoRightSV\POL@@IsoRightSV
- \POL@isolz@check
- \ifnum\POL@isolz@IntervalIndex<\POL@isolz@NbOfNegRoots\space
- \def\POL@IsoLeft@Int{-1}%
- \let\POL@IsoLeftSign\POL@IsoRightSign
- \let\POL@IsoLeftSV\POL@IsoRightSV
- \def\POL@IsoRight@Int{0}%
- \let\POL@IsoRightSV\POL@IsoAtZeroSV % altered if 0 was a root
- \let\POL@IsoRightSign\POL@IsoAtZeroSign% id.
-% this will recurse to locate roots with smaller decimal exponents
- \POL@isolz@check % attention that this should not re-evaluate at 0
- \fi
- \fi
+% refactored at 0.7 to fix cases leading to an intervals with zero as end-point
+ \POL@isolz@findroots@neg
\fi
- \endgroup
+ \let\POL@isolz@E\POL@isolz@@E
\def\POL@IsoLeft@Int{0}%
- \let\POL@IsoLeftSV \POL@IsoAtZeroSV
- \let\POL@IsoLeftSign\POL@IsoAtZeroSign
+ \let\POL@IsoLeftSV \POL@IsoAtZeroSV % véritable SV en zéro
+ \let\POL@IsoLeftSign\POL@IsoAtZeroSign% véritable signe en zéro
\ifnum\POL@IsoLeftSign=\z@
\xdef\POL@isolz@IntervalIndex{\the\numexpr\POL@isolz@IntervalIndex+\@ne}%
- \global\POL@isolz@nextwillneedrefinetrue
- \else
- \global\POL@isolz@nextwillneedrefinefalse
\fi
\let\POL@@IsoRightSV \POL@isolz@plusinf@SV
\let\POL@@IsoRightSign\POL@isolz@plusinf@sign % 10^E not a root!
\edef\POL@isolz@NbOfPosRoots
{\the\numexpr\POL@IsoLeftSV-\POL@@IsoRightSV}% attention @@
\ifnum\POL@isolz@NbOfPosRoots>\z@
- \def\POL@IsoRight@Int{1}%
- \xintloop
- \edef\POL@isolz@E{\the\numexpr\POL@isolz@E-\@ne}%
- \POL@sturmchain@getSV@at\POL@IsoRight@raw
- \let\POL@IsoRightSV \POL@sturmchain@SV
- \let\POL@IsoRightSign\POL@sturmchain@sign
- \ifnum\POL@IsoRightSV=\POL@@IsoRightSV\space
- \let\POL@@IsoRightSign\POL@IsoRightSign % root here possible!
- \repeat
- \unless\ifnum\POL@IsoRightSV=\POL@IsoLeftSV\space
- \POL@isolz@check % will recurse inside groups if needed
- \fi
- \def\POL@IsoLeft@Int{1}%
- \let\POL@IsoLeftSV\POL@IsoRightSV
- \let\POL@IsoLeftSign\POL@IsoRightSign
- \xintloop
-% we could arguably do a more efficient dichotomy here
- \edef\POL@IsoRight@Int{\the\numexpr\POL@IsoLeft@Int+\@ne}%
- \POL@sturmchain@getSV@at\POL@IsoRight@raw
- \let\POL@IsoRightSV \POL@sturmchain@SV
- \let\POL@IsoRightSign\POL@sturmchain@sign
- \POL@isolz@check
- \let\POL@IsoLeft@Int\POL@IsoRight@Int
- \let\POL@IsoLeftSign\POL@IsoRightSign
- \let\POL@IsoLeftSV\POL@IsoRightSV
- \ifnum\POL@isolz@IntervalIndex=\POL@isolz@NbOfRoots\space
- \expandafter\xintbreakloop
- \fi
- \ifnum\POL@IsoLeft@Int < \xint_c_ix
- \repeat
- \ifnum\POL@isolz@IntervalIndex<\POL@isolz@NbOfRoots\space
- % get now the last, rightmost, root (or roots)
- \def\POL@IsoRight@Int{10}%
- \let\POL@IsoRightSign\POL@@IsoRightSign
- \let\POL@IsoRightSV\POL@@IsoRightSV
- \POL@isolz@check
- \fi
+ % always do that to avoid zero as end-point whether it is a root or not
+ \global\POL@isolz@nextwillneedrefinetrue
+ \POL@isolz@findroots@pos
+ \fi
+}%
+\def\POL@isolz@findroots@neg{%
+ \def\POL@IsoRight@Int{-1}%
+ \POL@isolz@findnextzeroboundeddecade@neg
+ \def\POL@IsoLeft@Int{-10}%
+ \let\POL@@IsoRightSign\POL@IsoRightSign % a zero there is possible
+ \let\POL@@IsoRightSV \POL@IsoRightSV
+ % this will do possibly recursive \POL@isolz@check's
+ \POL@isolz@explorenexteightsubdecades@neg
+ \ifnum\POL@isolz@IntervalIndex<\POL@isolz@NbOfNegRoots\space
+ % above did not explore -2, -1 for this optimization (SV known at Right)
+ \def\POL@IsoRight@Int{-1}%
+ \let\POL@IsoRightSign\POL@@IsoRightSign
+ \let\POL@IsoRightSV \POL@@IsoRightSV
+ \POL@isolz@check
+ \ifnum\POL@isolz@IntervalIndex<\POL@isolz@NbOfNegRoots\space
+ \def\POL@IsoLeft@Int{-1}%
+ \let\POL@IsoLeftSign\POL@@IsoRightSign
+ \let\POL@IsoLeftSV \POL@@IsoRightSV
+ % I don't like being inside TeX conditionals
+ \expandafter\expandafter\expandafter\POL@isolz@findroots@neg
+ \fi
+ \fi
+}%
+\def\POL@isolz@findnextzeroboundeddecade@neg{%
+ \xintloop
+ \edef\POL@isolz@E{\the\numexpr\POL@isolz@E-\@ne}%
+ \POL@sturmchain@getSV@at\POL@IsoRight@raw
+ \let\POL@IsoRightSV \POL@sturmchain@SV
+ \let\POL@IsoRightSign\POL@sturmchain@sign
+ % would an \ifx test be quicker? (to be checked)
+ \ifnum\POL@IsoRightSV=\POL@IsoLeftSV\space
+ % no roots in-between, iterate
+ \repeat
+}%
+\def\POL@isolz@explorenexteightsubdecades@neg{%
+ \xintloop
+ \edef\POL@IsoRight@Int{\the\numexpr\POL@IsoLeft@Int+\@ne}%
+ % we could arguably do a more efficient dichotomy here
+ \POL@sturmchain@getSV@at\POL@IsoRight@raw
+ \let\POL@IsoRightSV \POL@sturmchain@SV
+ \let\POL@IsoRightSign\POL@sturmchain@sign
+ \POL@isolz@check % may recurse if multiple roots are to be found
+ \ifnum\POL@isolz@IntervalIndex=\POL@isolz@NbOfNegRoots\space
+ \expandafter\xintbreakloop
+ \fi
+ \let\POL@IsoLeft@Int\POL@IsoRight@Int
+ \let\POL@IsoLeftSign\POL@IsoRightSign
+ \let\POL@IsoLeftSV\POL@IsoRightSV
+ \ifnum\POL@IsoRight@Int < -\tw@
+ \repeat
+}%
+\def\POL@isolz@findroots@pos{%
+ % remark (2018/12/08), this needs some refactoring, I hardly understand
+ % the logic and it hides most into the recursion done by \POL@isolz@check
+ % It would probably make more sense to proceed like done for the negative
+ % but here finding the largest roots first.
+ \def\POL@IsoRight@Int{1}%
+ \POL@isolz@findnextzeroboundeddecade@pos
+ \unless\ifnum\POL@IsoRightSV=\POL@IsoLeftSV\space
+ % this actually explores the whole of some interval (0, 10^{e-1}]
+ % in a context where some roots are known to be in (10^{e-1}, 10^{e}]
+ % and none are larger
+ \POL@isolz@check % will recurse inside groups if needed with modified E
+ \fi
+ % we know get the roots in the last 9 decades from 10^{e-1} to 10^{e}
+ % we should arguably do a more efficient dichotomy here
+ \def\POL@IsoLeft@Int{1}%
+ \let\POL@IsoLeftSV\POL@IsoRightSV
+ \let\POL@IsoLeftSign\POL@IsoRightSign
+ \xintloop
+ \edef\POL@IsoRight@Int{\the\numexpr\POL@IsoLeft@Int+\@ne}%
+ \POL@sturmchain@getSV@at\POL@IsoRight@raw
+ \let\POL@IsoRightSV \POL@sturmchain@SV
+ \let\POL@IsoRightSign\POL@sturmchain@sign
+ \POL@isolz@check % recurses in needed
+ \let\POL@IsoLeft@Int\POL@IsoRight@Int
+ \let\POL@IsoLeftSign\POL@IsoRightSign
+ \let\POL@IsoLeftSV\POL@IsoRightSV
+ \ifnum\POL@isolz@IntervalIndex=\POL@isolz@NbOfRoots\space
+ \expandafter\xintbreakloop
+ \fi
+ \ifnum\POL@IsoLeft@Int < \xint_c_ix
+ \repeat
+ \ifnum\POL@isolz@IntervalIndex<\POL@isolz@NbOfRoots\space
+ % get now the last, rightmost, root (or roots)
+ \def\POL@IsoRight@Int{10}%
+ \let\POL@IsoRightSign\POL@@IsoRightSign
+ \let\POL@IsoRightSV\POL@@IsoRightSV
+ \POL@isolz@check
\fi
}%
+\def\POL@isolz@findnextzeroboundeddecade@pos{%
+ \xintloop
+ \edef\POL@isolz@E{\the\numexpr\POL@isolz@E-\@ne}%
+ \POL@sturmchain@getSV@at\POL@IsoRight@raw
+ \let\POL@IsoRightSV \POL@sturmchain@SV
+ \let\POL@IsoRightSign\POL@sturmchain@sign
+ \ifnum\POL@IsoRightSV=\POL@@IsoRightSV\space
+ \let\POL@@IsoRightSign\POL@IsoRightSign % root here possible!
+ \repeat
+}%
\def\POL@isolz@check{% \POL@IsoRightSign must be ready for use here
% \ifxintverbose
% \xintMessage{polexpr}{Info}%
@@ -1220,7 +1713,7 @@
\ifPOL@isolz@nextwillneedrefine
\expandafter\expandafter\expandafter\POL@isolz@refine
\else
- % \POL@IsoRightSign is zero iff root now exactly know
+ % \POL@IsoRightSign is zero iff root now exactly known
\POL@refine@storeleftandright
\ifnum\POL@IsoRightSign=\z@
\global\POL@isolz@nextwillneedrefinetrue
@@ -1275,7 +1768,7 @@
\edef\POL@IsoLeft@Int {\xintDSL{\POL@IsoLeft@Int}}%
\edef\POL@IsoRight@Int{\xintInc{\POL@IsoLeft@Int}}%
\edef\POL@IsoRightSign
- {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
+ {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
\ifnum\POL@IsoRightSign=\POL@@IsoRightSign\space
\repeat
% now second root has been separated from the one at left end point
@@ -1294,7 +1787,7 @@
\else
\edef\POL@IsoRight@Int{\xintDec{\POL@@IsoRight@Int}}%
\edef\POL@IsoRightSign
- {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
+ {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
\ifnum\POL@IsoRightSign=\POL@@IsoRightSign\space
\POL@refine@doonce % we need to locate in interval (1, 9) in local scale
\else
@@ -1319,17 +1812,17 @@
\let\POL@@IsoRightSign\POL@IsoRightSign
\edef\POL@IsoRight@Int{\xintiiAdd{4}{\POL@IsoLeft@Int}}% 5
\edef\POL@IsoRightSign
- {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
+ {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
\ifnum\POL@IsoRightSign=\POL@IsoLeftSign\space
\let\POL@IsoLeft@Int\POL@IsoRight@Int % 5
\edef\POL@IsoRight@Int{\xintiiAdd{2}{\POL@IsoLeft@Int}}%
\edef\POL@IsoRightSign
- {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
+ {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
\ifnum\POL@IsoRightSign=\POL@IsoLeftSign\space
\let\POL@IsoLeft@Int\POL@IsoRight@Int % 7
\edef\POL@IsoRight@Int{\xintInc{\POL@IsoLeft@Int}}%
\edef\POL@IsoRightSign
- {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
+ {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
\ifnum\POL@IsoRightSign=\POL@IsoLeftSign\space
\let\POL@IsoLeft@Int\POL@IsoRight@Int % 8
\let\POL@IsoRight@Int\POL@@IsoRight@Int % 9
@@ -1343,7 +1836,7 @@
\let\POL@@IsoRight@Int\POL@IsoRight@Int % 7
\edef\POL@IsoRight@Int{\xintInc{\POL@IsoLeft@Int}}% 6
\edef\POL@IsoRightSign
- {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
+ {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
\ifnum\POL@IsoRightSign=\POL@IsoLeftSign\space
\let\POL@IsoLeft@Int\POL@IsoRight@Int % 6
\let\POL@IsoRight@Int\POL@@IsoRight@Int % 7
@@ -1358,12 +1851,12 @@
\let\POL@@IsoRight@Int\POL@IsoRight@Int % 5
\edef\POL@IsoRight@Int{\xintiiAdd{2}{\POL@IsoLeft@Int}}%
\edef\POL@IsoRightSign
- {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
+ {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
\ifnum\POL@IsoRightSign=\POL@IsoLeftSign\space
\let\POL@IsoLeft@Int\POL@IsoRight@Int % 3
\edef\POL@IsoRight@Int{\xintInc{\POL@IsoLeft@Int}}% 4
\edef\POL@IsoRightSign
- {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
+ {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
\ifnum\POL@IsoRightSign=\POL@IsoLeftSign\space
\let\POL@IsoLeft@Int\POL@IsoRight@Int % 4
\let\POL@IsoRight@Int\POL@@IsoRight@Int % 5
@@ -1377,7 +1870,7 @@
\let\POL@@IsoRight@Int\POL@IsoRight@Int % 3
\edef\POL@IsoRight@Int{\xintInc{\POL@IsoLeft@Int}}% 2
\edef\POL@IsoRightSign
- {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
+ {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
\ifnum\POL@IsoRightSign=\POL@IsoLeftSign\space
\let\POL@IsoLeft@Int\POL@IsoRight@Int % 2
\let\POL@IsoRight@Int\POL@@IsoRight@Int % 3
@@ -1395,35 +1888,43 @@
\xdef\csname POL_ZeroInt\POL@sturmname
R\POL@isolz@IntervalIndex\endcsname
{\PolDecToString{\POL@IsoRight@rawout}}%
- \begingroup\xintglobaldefstrue
- \xintdefvar\POL@sturmname
- L_\POL@isolz@IntervalIndex:=qfrac(\POL@IsoLeft@rawout);%
- \xintdefvar\POL@sturmname
- R_\POL@isolz@IntervalIndex:=qfrac(\POL@IsoRight@rawout);%
- \endgroup
- % added at 0.6+
+ % added at 0.6
\ifnum\POL@IsoRightSign=\z@
\global
\expandafter
\let\csname POL_ZeroIsKnown\POL@sturmname\POL@isolz@IntervalIndex\endcsname
\xint_stop_atfirstoftwo
\fi
+ \begingroup\xintglobaldefstrue
+ \xintdefvar
+ \POL@sturmname L_\POL@isolz@IntervalIndex,%
+ \POL@sturmname R_\POL@isolz@IntervalIndex,%
+ % added at 0.7
+ \POL@sturmname Z_\POL@isolz@IntervalIndex _isknown
+ := qfrac(\POL@IsoLeft@rawout),%
+ qfrac(\POL@IsoRight@rawout),%
+ \ifnum\POL@IsoRightSign=\z@ 1\else 0\fi;%
+ \endgroup
}%
%% \PolRefineInterval
\def\POL@xintexprGetVar#1{\expandafter\expandafter\expandafter
\XINT_expr_unlock\csname XINT_expr_var_#1\endcsname}%
-\def\POL@set@IsoLeft@rawin{%
+% attention, also used by \POL@findrat@loop@a
+\def\POL@get@IsoLeft@rawin{%
\edef\POL@IsoLeft@rawin
{\POL@xintexprGetVar{\POL@sturmname L_\POL@isolz@IntervalIndex}}%
}%
-\def\POL@set@IsoRight@rawin{%
+% attention, also used by \POL@findrat@loop@a
+\def\POL@get@IsoRight@rawin{%
\edef\POL@IsoRight@rawin
{\POL@xintexprGetVar{\POL@sturmname R_\POL@isolz@IntervalIndex}}%
}%
-\def\POL@set@IsoLeft@Int #1/1[#2]{%
- \edef\POL@IsoLeft@Int{\xintDSH{\POL@isolz@E-#2}{#1}}%
+% attention, also used by \POL@findrat@loop@a
+\def\POL@get@Int@aux #1/1[#2]#3#4{\edef#3{\xintDSH{#4-#2}{#1}}}%
+\def\POL@get@IsoLeft@Int{%
+ \expandafter\POL@get@Int@aux\POL@IsoLeft@rawin\POL@IsoLeft@Int\POL@isolz@E
}%
\newcommand\PolRefineInterval{\@ifstar\POL@srefine@start\POL@refine@start}%
\newcommand\POL@refine@start[3][1]{%
@@ -1441,19 +1942,19 @@
\POL@refine@main}%
}%
\def\POL@refine@sharedbody#1{%
- \POL@set@IsoLeft@rawin
+ \POL@get@IsoLeft@rawin
\edef\POL@IsoLeftSign
- {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoLeft@rawin}}}%
+ {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoLeft@rawin}}}%
\ifnum\POL@IsoLeftSign=\z@
% do nothing if that interval was already a singleton
\else
% else both end-points are not roots and there is a single one in-between
- \POL@set@IsoRight@rawin
+ \POL@get@IsoRight@rawin
\edef\POL@IsoRightSign{\the\numexpr-\POL@IsoLeftSign}%
\edef\POL@isolz@E{\expandafter\POL@refine@getE
% je pense que le xintrez ici est superflu
\romannumeral0\xintrez{\xintSub{\POL@IsoRight@rawin}{\POL@IsoLeft@rawin}}}%
- \expandafter\POL@set@IsoLeft@Int\POL@IsoLeft@rawin
+ \POL@get@IsoLeft@Int
\edef\POL@IsoRight@Int{\xintInc{\POL@IsoLeft@Int}}%
#1%
\POL@refine@storeleftandright % \POL@IsoRightSign not zero
@@ -1478,7 +1979,7 @@
\let\POL@@IsoRightSign\POL@IsoRightSign
\edef\POL@IsoRight@Int{\xintInc{\POL@IsoLeft@Int}}%
\edef\POL@IsoRightSign
- {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
+ {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
\ifnum\POL@IsoRightSign=\z@
\let\POL@IsoLeft@Int\POL@IsoRight@Int % root at 1
\def\POL@IsoLeftSign{0}%
@@ -1491,7 +1992,7 @@
\let\POL@IsoLeft@Int\POL@IsoRight@Int
\edef\POL@IsoRight@Int{\xintDec{\POL@@IsoRight@Int}}%
\edef\POL@IsoRightSign
- {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
+ {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
\ifnum\POL@IsoRightSign=\z@
\let\POL@IsoLeft@Int\POL@IsoRight@Int % root at 9
\def\POL@IsoLeftSign{0}%
@@ -1525,11 +2026,16 @@
\newcommand\PolEnsureIntervalLengths[2]{% #1 = Sturm chain name,
% localize roots in intervals of length at most 10^{#2}
- \POL@count\z@
- % \POL@count used by \POL@sturmchain@getSV@at but latter not used
\edef\POL@sturmname{#1}%
\edef\POL@ensure@targetE{\the\numexpr#2}%
- \edef\POL@nbofroots{\csname POL_ZeroInt\POL@sturmname L\endcsname 0}%
+ \edef\POL@nbofroots{\csname POL_ZeroInt\POL@sturmname L0\endcsname}%
+ \ifnum\POL@nbofroots>\z@
+ \expandafter\POL@ensureintervallengths
+ \fi
+}%
+\def\POL@ensureintervallengths{%
+ \POL@count\z@
+ % \POL@count used by \POL@sturmchain@getSV@at but latter not used
\xintloop
\advance\POL@count\@ne
\edef\POL@isolz@IntervalIndex{\the\POL@count}%
@@ -1543,20 +2049,27 @@
\edef\POL@sturmname{#1}%
\edef\POL@ensure@targetE{\the\numexpr#3}%
\edef\POL@isolz@IntervalIndex{\the\numexpr#2}%
- \POL@ensure@one
+% peut-être autoriser -1, -2, ... ?
+ \ifnum\POL@isolz@IntervalIndex>\z@
+% 0.7, add this safeguard but attention means this structure must be in place
+ \ifnum\csname POL_ZeroInt\POL@sturmname L0\endcsname>\z@
+% je ne fais pas les \expandafter mais je préfèrerai ne pas être à l'intérieur
+ \POL@ensure@one
+ \fi
+ \fi
}%
\def\POL@ensure@one{%
- \POL@set@IsoLeft@rawin
- \POL@set@IsoRight@rawin
+ \POL@get@IsoLeft@rawin
+ \POL@get@IsoRight@rawin
\edef\POL@ensure@delta{\xintREZ{\xintSub{\POL@IsoRight@rawin}{\POL@IsoLeft@rawin}}}%
\xintiiifZero{\POL@ensure@delta}
{}
{\edef\POL@isolz@E{\expandafter\POL@refine@getE\POL@ensure@delta}%
- \expandafter\POL@set@IsoLeft@Int\POL@IsoLeft@rawin
+ \POL@get@IsoLeft@Int
\edef\POL@IsoRight@Int{\xintInc{\POL@IsoLeft@Int}}%
\ifnum\POL@isolz@E>\POL@ensure@targetE\space
\edef\POL@IsoLeftSign
- {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoLeft@raw}}}%
+ {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoLeft@raw}}}%
% at start left and right are not roots, and values of opposite signs
% \edef\POL@IsoRightSign{\the\numexpr-\POL@IsoLeftSign}%
\xintloop
@@ -1576,7 +2089,7 @@
\xintloop
\edef\POL@IsoRight@Int{\xintInc{\POL@IsoLeft@Int}}%
\edef\POL@IsoRightSign
- {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
+ {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}%
% if we have found a zero at right boundary the \ifnum test will fail
% and we exit the loop
% else we exit the loop if sign at right boundary is opposite of
@@ -1595,54 +2108,119 @@
\catcode`_ 8
-\newcommand\PolPrintIntervals[2][Z]{%
- \POL@count \@nameuse{POL_ZeroInt#2L}{0}
- \ifnum\POL@count=\z@
-% No real roots.\par
+\newcommand\PolPrintIntervals
+ {\@ifstar{\PolPrintIntervals@@}{\PolPrintIntervals@}}%
+\newcommand\PolPrintIntervals@@{%
+ \begingroup
+ \def\POL@AfterPrintIntervals{\endgroup}%
+ \def\arraystretch{2}%
+ \let\PolPrintIntervalsPrintExactZero\POL@@PrintIntervalsPrintExactZero
+ \let\PolPrintIntervalsUnknownRoot\POL@@PrintIntervalsUnknownRoot
+ \let\PolPrintIntervalsKnownRoot\POL@@PrintIntervalsKnownRoot
+ \def\PolPrintIntervalsBeginEnv{\[\begin{array}{cl}}%\]
+ \def\PolPrintIntervalsEndEnv{\end{array}\]}%
+ \PolPrintIntervals@
+}%
+\newcommand\PolPrintIntervals@[2][Z]{\POL@PrintIntervals{#1}{#2}}%
+\newcommand\POL@PrintIntervals[2]{%
+ \def\PolPrintIntervalsTheSturmName{#2}%
+ \def\PolPrintIntervalsTheVar{#1}%
+ \ifnum\@nameuse{POL_ZeroInt#2L}{0}=\z@
+ \PolPrintIntervalsNoRealRoots
\else
-% There are \the\POL@count\space distinct real roots:\par
- \[\count@\POL@count
- \global\POL@count\@ne
- \begin{array}{rcccl}
- \xintloop
- \POL@SturmIfZeroExactlyKnown{#2}\POL@count
- {% exact root
- &&
- #1_{\the\POL@count}&=&
- \POL@printintervals@prepare{#2R}%
- \PolPrintIntervalsPrintExactZero
- }%
- {% interval with root in its strict interior
- \POL@printintervals@prepare{#2L}%
- \PolPrintIntervalsPrintLeftEndPoint&<&
- #1_{\the\POL@count}&<&
- \POL@printintervals@prepare{#2R}%
- \PolPrintIntervalsPrintRightEndPoint
- }%
- \global\advance\POL@count\@ne
- \unless\ifnum\POL@count>\count@
- \\%
- \repeat
- \end{array}\]
+ \gdef\PolPrintIntervalsTheIndex{1}%
+ \POL@PrintIntervals@DoDefs
+ \begingroup\edef\POL@tmp{\endgroup
+ \unexpanded\expandafter{\PolPrintIntervalsBeginEnv}%
+ \unexpanded\expandafter{\POL@PrintIntervals@Loop}%
+ \unexpanded\expandafter{\PolPrintIntervalsEndEnv}%
+ }\POL@tmp
\fi
+ \POL@AfterPrintIntervals
+}%
+\let\POL@AfterPrintIntervals\@empty
+\newcommand\PolPrintIntervalsNoRealRoots{}%
+\newcommand\PolPrintIntervalsBeginEnv{\[\begin{array}{rcccl}}%
+\newcommand\PolPrintIntervalsEndEnv{\end{array}\]}%
+\newcommand\PolPrintIntervalsKnownRoot{%
+ &&\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}%
+ &=&\PolPrintIntervalsPrintExactZero
+}%
+\newcommand\PolPrintIntervalsUnknownRoot{%
+ \PolPrintIntervalsPrintLeftEndPoint&<&%
+ \PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}&<&%
+ \PolPrintIntervalsPrintRightEndPoint
+}%
+\newcommand\PolPrintIntervalsPrintExactZero {\PolPrintIntervalsTheLeftEndPoint}%
+\newcommand\PolPrintIntervalsPrintLeftEndPoint {\PolPrintIntervalsTheLeftEndPoint}%
+\newcommand\PolPrintIntervalsPrintRightEndPoint{\PolPrintIntervalsTheRightEndPoint}%
+\newcommand\PolPrintIntervalsPrintMultiplicity{(\mbox{mult. }\PolPrintIntervalsTheMultiplicity)}%
+%
+\newcommand\POL@@PrintIntervalsKnownRoot{%
+ \PolPrintIntervalsPrintMultiplicity&%
+ \PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}=%
+ \PolPrintIntervalsPrintExactZero
+}%
+\newcommand\POL@@PrintIntervalsPrintExactZero{%
+ \displaystyle
+ \xintSignedFrac{\PolPrintIntervalsTheLeftEndPoint}%
+}%
+\newcommand\POL@@PrintIntervalsUnknownRoot{%
+ \PolPrintIntervalsPrintMultiplicity&%
+ \xintifSgn{\PolPrintIntervalsTheLeftEndPoint}%
+ {\xintifSgn{\PolPrintIntervalsTheRightEndPoint}
+ {\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}=%
+ \PolPrintIntervalsPrintRightEndPoint\dots}%
+ {0>\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}>%
+ \PolPrintIntervalsPrintLeftEndPoint}%
+ {\PolErrorThisShouldNotHappenPleaseReportToAuthorA}}%
+ {\xintifSgn{\PolPrintIntervalsTheRightEndPoint}
+ {\PolErrorThisShouldNotHappenPleaseReportToAuthorB}%
+ {\PolErrorThisShouldNotHappenPleaseReportToAuthorC}%
+ {0<\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}<%
+ \PolPrintIntervalsPrintRightEndPoint}}%
+ {\xintifSgn{\PolPrintIntervalsTheRightEndPoint}
+ {\PolErrorThisShouldNotHappenPleaseReportToAuthorD}%
+ {\PolErrorThisShouldNotHappenPleaseReportToAuthorE}%
+ {\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}=%
+ \PolPrintIntervalsPrintLeftEndPoint\dots}}%
}%
+%
\catcode`_ 11
-\newcommand\PolPrintIntervalsPrintExactZero {\PolPrintIntervalsTheEndPoint}%
-\newcommand\PolPrintIntervalsPrintLeftEndPoint {\PolPrintIntervalsTheEndPoint}%
-\newcommand\PolPrintIntervalsPrintRightEndPoint{\PolPrintIntervalsTheEndPoint}%
-\def\POL@printintervals@prepare#1{%
- \edef\PolPrintIntervalsTheIndex{\the\POL@count}%
- \edef\PolPrintIntervalsTheEndPoint{\@nameuse{POL_ZeroInt#1}\POL@count}%
- \xintiiifSgn{\POL@xintexprGetVar{#1_\PolPrintIntervalsTheIndex}}
- {\let\PolIfEndPointIsPositive\xint_secondoftwo
- \let\PolIfEndPointIsNegative\xint_firstoftwo
- \let\PolIfEndPointIsZero\xint_secondoftwo}
- {\let\PolIfEndPointIsPositive\xint_secondoftwo
- \let\PolIfEndPointIsNegative\xint_secondoftwo
- \let\PolIfEndPointIsZero\xint_firstoftwo}
- {\let\PolIfEndPointIsPositive\xint_firstoftwo
- \let\PolIfEndPointIsNegative\xint_secondoftwo
- \let\PolIfEndPointIsZero\xint_secondoftwo}%
+\def\POL@PrintIntervals@Loop{%
+ \POL@SturmIfZeroExactlyKnown\PolPrintIntervalsTheSturmName
+ \PolPrintIntervalsTheIndex
+ \PolPrintIntervalsKnownRoot
+ \PolPrintIntervalsUnknownRoot
+ \xdef\PolPrintIntervalsTheIndex{\the\numexpr\PolPrintIntervalsTheIndex+\@ne}%
+ \unless\ifnum\PolPrintIntervalsTheIndex>
+ \@nameuse{POL_ZeroInt\PolPrintIntervalsTheSturmName L0}
+ \POL@PrintIntervals@DoDefs
+ \xint_afterfi{\\\POL@PrintIntervals@Loop}%
+ \fi
+}%
+\def\POL@PrintIntervals@DoDefs{%
+ \xdef\PolPrintIntervalsTheLeftEndPoint{%
+ \csname POL_ZeroInt%
+ \PolPrintIntervalsTheSturmName L\PolPrintIntervalsTheIndex
+ \endcsname
+ }%
+ \xdef\PolPrintIntervalsTheRightEndPoint{%
+ \csname POL_ZeroInt%
+ \PolPrintIntervalsTheSturmName R\PolPrintIntervalsTheIndex
+ \endcsname
+ }%
+ \xdef\PolPrintIntervalsTheMultiplicity{%
+ \ifcsname POL_ZeroMult%
+ \PolPrintIntervalsTheSturmName\PolPrintIntervalsTheIndex
+ \endcsname
+ \csname POL_ZeroMult%
+ \PolPrintIntervalsTheSturmName\PolPrintIntervalsTheIndex
+ \endcsname
+ \else
+ ?% or use 0 ?
+ \fi
+ }%
}%
@@ -1650,18 +2228,38 @@
\romannumeral0\csname POL_ZeroIsKnown#1\endcsname{#2}%
}%
\newcommand\POL@SturmIfZeroExactlyKnown[2]{% #1 = sturmname, #2=index
- \romannumeral0\csname POL_ZeroIsKnown#1\the\numexpr#2\relax\endcsname
+ \romannumeral0\csname POL_ZeroIsKnown#1\the\numexpr#2\endcsname
}%
\newcommand\PolSturmIsolatedZeroMultiplicity[2]{%
\romannumeral`^^@\csname POL_ZeroMult#1\endcsname{#2}%
}%
\newcommand\PolSturmIsolatedZeroLeft[2]{%
- \romannumeral`^^@\csname POL_ZeroInt#1L\endcsname{#2}}%
+ \romannumeral`^^@\csname POL_ZeroInt#1L\endcsname{#2}%
+}%
\newcommand\PolSturmIsolatedZeroRight[2]{%
- \romannumeral`^^@\csname POL_ZeroInt#1R\endcsname{#2}}%
+ \romannumeral`^^@\csname POL_ZeroInt#1R\endcsname{#2}%
+}%
\newcommand\PolSturmNbOfIsolatedZeros[1]{%
\romannumeral`^^@\csname POL_ZeroInt#1L0\endcsname
}%
+\newcommand\PolSturmRationalRoot[2]{%
+ \romannumeral`^^@\csname POL_ZeroInt#1L%
+ \csname POL_RRIndex#1\endcsname{#2}\endcsname
+}%
+\newcommand\PolSturmRationalRootIndex[2]{%
+ \romannumeral`^^@\csname POL_RRIndex#1\endcsname{#2}%
+}%
+\newcommand\PolSturmRationalRootMultiplicity[2]{%
+ \romannumeral`^^@\csname POL_ZeroMult#1%
+ \csname POL_RRIndex#1\endcsname{#2}\endcsname
+}%
+\newcommand\PolSturmNbOfRationalRoots[1]{%
+ \romannumeral`^^@\csname POL_RRIndex#10\endcsname
+}%
+\newcommand\PolSturmNbOfRationalRootsWithMultiplicities[1]{%
+% means the \POL@norr must not have been changed in-between...
+ \the\numexpr\PolDegree{#1}-\PolDegree{#1\POL@norr}\relax
+}%
\let\PolDecToString\xintDecToString
@@ -2023,18 +2621,18 @@
%% EXPANDABLE MACROS
-\def\Pol@Eval@fork#1\At#2#3\krof{#2}%
-\newcommand\PolEval[3]{\romannumeral`^^@\Pol@Eval@fork
+\def\POL@eval@fork#1\At#2#3\krof{#2}%
+\newcommand\PolEval[3]{\romannumeral`^^@\POL@eval@fork
#2\PolEvalAt
\At\PolEvalAtExpr\krof {#1}{#3}%
}%
\newcommand\PolEvalAt[2]
{\xintpraw{\csname XINT_expr_userfunc_#1\endcsname{#2}}}%
-\newcommand\Pol@Eval[2]
+\newcommand\POL@eval[2]
{\csname XINT_expr_userfunc_#1\endcsname{#2}}%
\newcommand\PolEvalAtExpr[2]{\xinttheexpr #1(#2)\relax}%
%
-\newcommand\PolEvalReduced[3]{\romannumeral`^^@\Pol@Eval@fork
+\newcommand\PolEvalReduced[3]{\romannumeral`^^@\POL@eval@fork
#2\PolEvalReducedAt
\At\PolEvalReducedAtExpr\krof {#1}{#3}%
}%
@@ -2047,7 +2645,7 @@
{\xintIrr{\romannumeral`^^@\xintthebareeval#1(#2)\relax}[0]}%
}%
%
-\newcommand\PolFloatEval[3]{\romannumeral`^^@\Pol@Eval@fork
+\newcommand\PolFloatEval[3]{\romannumeral`^^@\POL@eval@fork
#2\PolFloatEvalAt
\At\PolFloatEvalAtExpr\krof {#1}{#3}%
}%
@@ -2056,37 +2654,48 @@
\newcommand\PolFloatEvalAtExpr[2]{\xintthefloatexpr #1(#2)\relax}%
-\newcommand\PolSturmMultiplicity[3]{\romannumeral`^^@\Pol@Eval@fork
- #2\PolSturmMultiplicityAt
- \At\PolSturmMultiplicityAtExpr\krof {#1}{#3}%
+\newcommand\PolSturmIntervalIndex[3]{\the\numexpr\POL@eval@fork
+ #2\PolSturmIntervalIndexAt
+ \At\PolSturmIntervalIndexAtExpr\krof {#1}{#3}%
}%
-\newcommand\PolSturmMultiplicityAtExpr[2]
- {\PolSturmMultiplicityAt{#1}{\xinttheexpr#2\relax}}%
-\newcommand\PolSturmMultiplicityAt[2]
- {\expandafter\POL@sturm@mult@at\romannumeral`^^@#2!{#1}}%
-\def\POL@sturm@mult@at#1!#2%
+\newcommand\PolSturmIntervalIndexAtExpr[2]
+ {\PolSturmIntervalIndexAt{#1}{\xinttheexpr#2\relax}}%
+\newcommand\PolSturmIntervalIndexAt[2]
+ {\expandafter\POL@sturm@index@at\romannumeral`^^@#2!{#1}\xint_bye\relax}%
+\def\POL@sturm@index@at#1!#2%
{%
- \xintifZero{\Pol@Eval{#2_0}{#1}}%
- {\POL@sturm@mult@at@iloop 1!{#2}{#1}}% we have a zero
- 0% not a zero
+ \expandafter\POL@sturm@index@at@iloop
+ \romannumeral`^^@\PolSturmNbOfIsolatedZeros{#2}!{#2}{#1}%
}%
-\def\POL@sturm@mult@at@iloop #1!#2#3%
+% implementation is sub-optimal as it should use some kind of binary tree
+% search rather than comparing to the intervals from right to left as here
+\def\POL@sturm@index@at@iloop #1!%
+{%
+ \ifnum #1=\z@ 0\expandafter\xint_bye\fi
+ \POL@sturm@index@at@iloop@a #1!%
+}%
+\def\POL@sturm@index@at@iloop@a #1!#2#3%
{% #1 = index, #2 = sturmname, #3 value
- \PolSturmIfZeroExactlyKnown{#2}{#1}%
- {\xintifEq{\POL@xintexprGetVar{#2L_#1}}{#3}%
- {\PolSturmIsolatedZeroMultiplicity{#2}{#1}}%
-% catcode of ! is 11 in polexpr.sty
- {\expandafter\POL@sturm@mult@at@iloop\the\numexpr#1+\@ne !{#2}{#3}}%
+ \PolSturmIfZeroExactlyKnown{#2}{#1}
+ {\xintifCmp{#3}{\POL@xintexprGetVar{#2L_#1}}%
+ {}%
+ {#1\xint_bye}%
+ {0\xint_bye}%
}%
- {\xintifLt{#3}{\POL@xintexprGetVar{#2R_#1}}%
- {\PolSturmIsolatedZeroMultiplicity{#2}{#1}}%
- {\expandafter\POL@sturm@mult@at@iloop\the\numexpr#1+\@ne !{#2}{#3}}%
+ {\xintifGt{#3}{\POL@xintexprGetVar{#2L_#1}}%
+ {\xintifLt{#3}{\POL@xintexprGetVar{#2R_#1}}%
+ {#1\xint_bye}%
+ {0\xint_bye}%
+ }%
+ {}%
}%
+ % catcode of ! is 11 in polexpr.sty
+ \expandafter\POL@sturm@index@at@iloop\the\numexpr#1-\@ne !{#2}{#3}%
}%
-\def\Pol@LessThanOrEqualTo@fork#1\LessThanOrEqualTo#2#3\krof{#2}%
-\newcommand\PolSturmNbOfRootsOf[3]{\romannumeral`^^@\Pol@LessThanOrEqualTo@fork
+\def\POL@leq@fork#1\LessThanOrEqualTo#2#3\krof{#2}%
+\newcommand\PolSturmNbOfRootsOf[3]{\romannumeral`^^@\POL@leq@fork
#2\PolNbOfRootsLessThanOrEqualTo
\LessThanOrEqualTo\PolNbOfRootsLessThanOrEqualToExpr\krof {#1}{#3}%
}%
@@ -2106,7 +2715,7 @@
\def\POL@nbofrootsleq@prep#1!#2%
{%
\expandafter\POL@nbofrootsleq@iloop\expandafter 1\expandafter !%
- \romannumeral0\xintsgn{\Pol@Eval{#2_0}{#1}}!%
+ \romannumeral0\xintsgn{\POL@eval{#2_0}{#1}}!%
#1!{#2}%
}%
\def\POL@nbofrootsleq@iloop#1!#2!#3!#4%
@@ -2120,7 +2729,7 @@
% the test \xintifLt will be negative
{\xintifLt{#3}{\POL@xintexprGetVar{#4R_#1}}%
{\POL@nbofrootsleq@return
- #1\ifnum#2=\xintSgn{\Pol@Eval{#4_0}{\POL@xintexprGetVar{#4L_#1}}}
+ #1\ifnum#2=\xintSgn{\POL@eval{#4_0}{\POL@xintexprGetVar{#4L_#1}}}
-\@ne\fi !%
}%
{\ifnum#1=\PolSturmNbOfIsolatedZeros{#4}
@@ -2135,9 +2744,8 @@
\the\numexpr\@ne+#1!#2!#3!#4{#1}%
-\def\Pol@LessThanOrEqualTo@fork#1\LessThanOrEqualTo#2#3\krof{#2}%
\newcommand\PolSturmNbWithMultOfRootsOf[3]
-{\the\numexpr0\Pol@LessThanOrEqualTo@fork
+{\the\numexpr0\POL@leq@fork
#2\PolNbWithMultOfRootsLessThanOrEqualTo
\LessThanOrEqualTo\PolNbWithMultOfRootsLessThanOrEqualToExpr\krof {#1}{#3}%
}%
@@ -2158,7 +2766,7 @@
\def\POL@nbwmofrootsleq@prep#1!#2%
{%
\expandafter\POL@nbwmofrootsleq@iloop\expandafter 1\expandafter !%
- \romannumeral0\xintsgn{\Pol@Eval{#2_0}{#1}}!%
+ \romannumeral0\xintsgn{\POL@eval{#2_0}{#1}}!%
#1!{#2}%
}%
\def\POL@nbwmofrootsleq@iloop#1!#2!#3!#4%
@@ -2174,7 +2782,7 @@
{\xintifLt{#3}{\POL@xintexprGetVar{#4R_#1}}%
{\POL@nbwmofrootsleq@return
\unless
- \ifnum#2=\xintSgn{\Pol@Eval{#4_0}{\POL@xintexprGetVar{#4L_#1}}}
+ \ifnum#2=\xintSgn{\POL@eval{#4_0}{\POL@xintexprGetVar{#4L_#1}}}
+\PolSturmIsolatedZeroMultiplicity{#4}{#1}\fi !%
}%
{+\PolSturmIsolatedZeroMultiplicity{#4}{#1}%