diff options
Diffstat (limited to 'Master/texmf-dist/tex/latex')
-rw-r--r-- | Master/texmf-dist/tex/latex/polexpr/polexpr.sty | 1168 |
1 files changed, 888 insertions, 280 deletions
diff --git a/Master/texmf-dist/tex/latex/polexpr/polexpr.sty b/Master/texmf-dist/tex/latex/polexpr/polexpr.sty index f163fe10f29..601446cf671 100644 --- a/Master/texmf-dist/tex/latex/polexpr/polexpr.sty +++ b/Master/texmf-dist/tex/latex/polexpr/polexpr.sty @@ -1,7 +1,7 @@ % author: Jean-François Burnol % License: LPPL 1.3c (author-maintained) \ProvidesPackage{polexpr}% - [2018/11/20 v0.6 Polynomial expressions with rational coefficients (JFB)]% + [2018/12/08 v0.7 Polynomial expressions with rational coefficients (JFB)]% \RequirePackage{xintexpr}[2018/06/17]% xint 1.3c for \ifxintglobaldefs boolean \edef\POL@restorecatcodes {\catcode`\noexpand\_ \the\catcode`\_ % @@ -28,11 +28,28 @@ }% %% AUXILIARIES +\catcode`! 3 +%% added at 0.7 +\newcommand\polexprsetup[1]{\POL@setup_parsekeys #1,=!,\xint_bye}% +\def\POL@setup_parsekeys #1=#2#3,{% + \ifx!#2\expandafter\xint_bye\fi + \csname POL@setup_setkey_\xint_zapspaces #1 \xint_gobble_i\endcsname + \xint_firstoftwo + {\PackageWarning{polexpr}{The \detokenize{#1} key is unknown! ignoring}}% + {\xintZapLastSpaces{#2#3}}% + \POL@setup_parsekeys +}% +\catcode`! 11 +\def\POL@setup_setkey_norr #1#2{\edef\POL@norr}% +\def\POL@setup_setkey_sqfnorr #1#2{\edef\POL@sqfnorr}% +\polexprsetup{norr=_norr, sqfnorr=_sqf_norr} + \newcount\POL@count \newif\ifPOL@pol \newif\ifxintveryverbose \newif\ifpoltypesetall -\newif\ifPOL@sturm@declareunnormalized +\newif\ifPOL@tosturm@makefirstprimitive +\POL@tosturm@makefirstprimitivetrue \newif\ifPOL@isolz@nextwillneedrefine \newif\ifpoltoexprall %% the main exchange structure (stored in macros \POLuserpol@<name>) @@ -681,9 +698,16 @@ \def\POL@makeprim@macro#1% {\xintREZ{\xintNum{\xintDiv{#1}{\POL@makeprim@icontent}}}}% \newcommand\PolMakePrimitive[1]{% + % This does not need a full user declared polynomial on input, only + % a \POLuserpol@name macro, but on output it is fully declared \edef\POL@makeprim@icontent{\PolIContent{#1}}% \PolMapCoeffs\POL@makeprim@macro{#1}% }% +\def\POL@makeprimitive#1{% + % Avoids declaring the polynomial, internal usage in \PolToSturm + \edef\POL@makeprim@icontent{\PolIContent{#1}}% + \POL@mapcoeffs\POL@makeprim@macro{#1}% +}% %% Sturm Algorithm (polexpr 0.4) @@ -696,15 +720,16 @@ %% holding the coefficients in memory %% 0.6 fixes the case of a constant polynomial P which caused division %% by zero error from P'. -\newcommand\PolToSturm{\@ifstar - {\POL@sturm@declareunnormalizedtrue\POL@ToSturm}% - {\POL@sturm@declareunnormalizedfalse\POL@ToSturm}% -}% +\newcommand\PolToSturm{\@ifstar{\PolToSturm@@}{\PolToSturm@}}% \def\POL@aux@toint#1{\xintREZ{\xintNum{#1}}}% for polynomials with int. coeffs! -\def\POL@ToSturm#1#2{% +%% Attention that some macros rely upon this one setting \POL@sturmname +%% and \POL@sturm@N as it does +\def\PolToSturm@#1#2{% \edef\POL@sturmname{#2}% % 0.6 uses 2 underscores (one before index, one after) to keep in memory % the unnormalized chain + % This supposes #1 to be a genuine polynomial, not only a name with + % a \POLuserpol@#1 macro \POL@let{\POL@sturmname _0_}{#1}% \ifnum\PolDegree{#1}=\z@ \def\POL@sturm@N{0}% @@ -713,7 +738,8 @@ % if constant is negative. I also don't worry if polynomial is zero. \@namedef{POLuserpol@\POL@sturmname _0}{0.\empty{1/1[0]}}% \else - \POL@ToSturm@DoSturm + \ifPOL@tosturm@makefirstprimitive\POL@makeprimitive{\POL@sturmname _0_}\fi + \POL@tosturm@dosturm \fi \expandafter \let\csname PolSturmChainLength_\POL@sturmname\endcsname\POL@sturm@N @@ -724,22 +750,21 @@ \unless\ifnum\POL@sturm@N=\POL@count \advance\POL@count\@ne \repeat +}% +\def\PolToSturm@@#1#2{\PolToSturm@{#1}{#2}\POL@tosturm@declareunnormalized}% +\def\POL@tosturm@declareunnormalized{% % optionally declare also the unnormalized ones \POL@count\z@ - \ifPOL@sturm@declareunnormalized - \POL@count\z@ - \xintloop - \POL@newpol{\POL@sturmname _\the\POL@count _}% - \unless\ifnum\POL@sturm@N=\POL@count - \advance\POL@count\@ne - \repeat - \fi + \xintloop + \POL@newpol{\POL@sturmname _\the\POL@count _}% + \unless\ifnum\POL@sturm@N=\POL@count + \advance\POL@count\@ne + \repeat }% -\def\POL@ToSturm@DoSturm{% - \PolMakePrimitive{\POL@sturmname _0_}% +\def\POL@tosturm@dosturm{% \POL@Diff@@one{\POL@sturmname _0_}{\POL@sturmname _1_}% % re-utiliser \POL@varcoeffs directement? - \PolMakePrimitive{\POL@sturmname _1_}% + \POL@makeprimitive{\POL@sturmname _1_}% does not do \POL@newpol \POL@count\@ne \xintloop \POL@divide{\POL@sturmname _\the\numexpr\POL@count-\@ne\relax _}% @@ -750,6 +775,7 @@ \expandafter\let \csname POLuserpol@\POL@sturmname _\the\POL@count _\endcsname\POL@R \edef\POL@makeprim@icontent{-\POL@icontent\POL@polR}% + % this avoids the \POL@newpol from \PolMapCoeffs \POL@mapcoeffs\POL@makeprim@macro{\POL@sturmname _\the\POL@count _}% \repeat \edef\POL@sturm@N{\the\POL@count}% @@ -763,13 +789,13 @@ \expandafter \let\csname POLuserpol@\POL@sturmname _\the\POL@count\endcsname\POL@Q % quotient actually belongs to Z[X] and is primitive - \POL@mapcoeffs{\POL@aux@toint}{\POL@sturmname _\the\POL@count}% + \POL@mapcoeffs\POL@aux@toint{\POL@sturmname _\the\POL@count}% \ifnum\POL@count>\z@ \repeat \@namedef{POLuserpol@\POL@sturmname _\POL@sturm@N}{0.\empty{1/1[0]}}% \else % they are already normalized - \advance\POL@count\@ne % attention to include last one also - \xintloop + \advance\POL@count\@ne % attention to include last one also + \xintloop \advance\POL@count\m@ne \expandafter\let \csname POLuserpol@\POL@sturmname _\the\POL@count\expandafter\endcsname @@ -777,7 +803,7 @@ \ifnum\POL@count>\z@ \repeat \fi - % Back to \POL@ToSturm + % Back to \PolToSturm@, \POL@count holds 0 }% \newcommand\PolSturmChainLength[1] {\romannumeral`^^@\csname PolSturmChainLength_#1\endcsname}% @@ -791,19 +817,19 @@ }% \def\POL@sturmchain@getSV@at#1{% ATTENTION USES \POL@count \def\POL@sturmchain@SV{0}% - \edef\POL@sturmchain@sign{\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{#1}}}% + \edef\POL@sturmchain@sign{\xintiiSgn{\POL@eval{\POL@sturmname _0}{#1}}}% \let\POL@isolz@lastsign\POL@sturmchain@sign \POL@count \z@ \ifnum\POL@isolz@lastsign=\z@ \edef\POL@isolz@lastsign - {\xintiiSgn{\Pol@Eval{\POL@sturmname _1}{#1}}}% + {\xintiiSgn{\POL@eval{\POL@sturmname _1}{#1}}}% \POL@count \@ne \fi \xintloop \unless\ifnum\POL@sturmlength=\POL@count \advance\POL@count \@ne \edef\POL@isolz@newsign - {\xintiiSgn{\Pol@Eval{\POL@sturmname _\the\POL@count}{#1}}}% + {\xintiiSgn{\POL@eval{\POL@sturmname _\the\POL@count}{#1}}}% \ifnum\POL@isolz@newsign=\numexpr-\POL@isolz@lastsign\relax \edef\POL@sturmchain@SV{\the\numexpr\POL@sturmchain@SV+\@ne}% \let\POL@isolz@lastsign=\POL@isolz@newsign @@ -827,11 +853,431 @@ }% +% 0.6 added starred variant to count multiplicities +% 0.7 added double starred variant to locate all rational roots \newcommand\PolSturmIsolateZeros{\@ifstar {\PolSturmIsolateZerosAndGetMultiplicities}% {\PolSturmIsolateZeros@}% }% -\newcommand\PolSturmIsolateZerosAndGetMultiplicities[2][\empty]{% +\newcommand\PolSturmIsolateZerosAndGetMultiplicities{\@ifstar + {\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots}% + {\PolSturmIsolateZerosAndGetMultiplicities@}% +}% +% on aurait besoin de ça dans xint, mais il aurait un \xintRaw{#1} alors +\def\POL@xintfrac@getNDE #1% + {\expandafter\POL@xintfrac@getNDE@i\romannumeral`^^@#1}% +\def\POL@xintfrac@getNDE@i #1/#2[#3]#4#5#6{\def#4{#1}\def#5{#2}\def#6{#3}}% +\newcommand\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots[2][\empty]{% + \PolSturmIsolateZerosAndFindRationalRoots[#1]{#2}% + \ifnum\POL@isolz@NbOfRoots>\z@ + % get multiplicities of irrational (real) roots, if any + \ifnum\POL@findrat@nbofirrroots>\z@ + \POL@findrat@getirrmult + \fi + \POL@isolzmult@defvar@M + \fi +}% +% added at 0.7 +\newcommand\PolSturmIsolateZerosAndFindRationalRoots[2][\empty]{% + % #1 optional E such that roots are searched in -10^E < x < 10^E + % both -10^E and +10^E must not be roots! + % #2 name of Sturm chain (already pre-computed) + \edef\POL@sturmname{#2}% + \edef\POL@sturm@N{\@nameuse{PolSturmChainLength_\POL@sturmname}}% + % isolate the roots (detects case of constant polynomial) + \PolSturmIsolateZeros@{\POL@sturmname}% + \ifnum\POL@isolz@NbOfRoots=\z@ + % no real roots, define empty arrays nevertheless + \begingroup\globaldefs\@ne + \expandafter\xintAssignArray\expandafter\to\csname POL_ZeroMult\POL@sturmname\endcsname + \expandafter\xintAssignArray\expandafter\to\csname POL_RRIndex\POL@sturmname\endcsname + \endgroup + \else + % all we currently know is that multiplicities are at least one + \begingroup\globaldefs\@ne + \expandafter\POL@initarray\csname POL_ZeroMult\POL@sturmname\endcsname{1}% + \endgroup + % on ne va pas utiliser de Horner, mais des divisions par X - x, et ces + % choses vont évoluer, ainsi que le coefficient dominant entier + % (pour \POL@divide entre autres if faut des noms de user pol) + \expandafter\let + \csname POLuserpol@\POL@sturmname\POL@sqfnorr\expandafter\endcsname + \csname POLuserpol@\POL@sturmname _0\endcsname + \expandafter\let + \csname POLuserpol@\POL@sturmname\POL@norr\expandafter\endcsname + \csname POLuserpol@\POL@sturmname _0_\endcsname + % attention formé avec\xintREZ d'où le \xintAbs pas \xintiiAbs + % D and its exponent E will get updated along the way + \edef\POL@findrat@D{\xintAbs{\PolLeadingCoeff{\POL@sturmname _0}}}% + \POL@xintfrac@getNDE\POL@findrat@D\POL@findrat@Dint\POL@_\POL@findrat@Dexp + \xintiiifOne{\POL@findrat@Dint} + {\let\POL@findrat@E\POL@findrat@Dexp} % aussi ok pour 1[0] + {\edef\POL@findrat@E{\the\numexpr\xintLen{\POL@findrat@Dint}% + +\POL@findrat@Dexp}}% + \POL@initarray\POL@IfMultIsKnown\xint_secondoftwo + \let\POL@findrat@nbofirrroots\POL@isolz@NbOfRoots + % find all rational roots, and their multiplicities, + % factor them out in passing from original (Sturm root) polynomial + \ifnum\POL@findrat@E<7 + \PolEnsureIntervalLength{\POL@sturmname}{1}{-\POL@findrat@E}% + \def\POL@findrat@index{1}% + \POL@findrat@loop@secondpass@direct + \else + % we do a first pass scanning for "small" roots p/q (i.e. q < 1000) + \def\POL@findrat@index{1}% + \POL@findrat@loop@firstpass + % and now we do the final pass finding them all + \def\POL@findrat@index{1}% + \PolEnsureIntervalLength{\POL@sturmname}{1}{-\POL@findrat@E}% + \POL@findrat@loop@secondpass + \fi + % declare the new polynomials + \POL@newpol{\POL@sturmname\POL@sqfnorr}% without multiplicities + \POL@newpol{\POL@sturmname\POL@norr}% with multiplicities + % declare the array holding the interval indices for the rational roots + \expandafter\POL@findrat@doRRarray\csname POL_RRIndex\POL@sturmname\endcsname + \fi +}% +\def\POL@findrat@doRRarray#1{% + % il faudrait un \xintAssignArray* qui fasse même expansion que \xintFor* + \edef\POL@temp{% + \xintiloop[1+1] + \romannumeral0\csname POL_ZeroIsKnown\POL@sturmname\xintiloopindex\endcsname + \xintbracediloopindex % I should have named it \xintiloopbracedindex... + {}% + \ifnum\xintiloopindex<\POL@isolz@NbOfRoots\space + \repeat }% + \begingroup\globaldefs1 + % attention de ne surtout pas faire un \expandafter ici, car en cas d'un + % seul item, \xintAssignArray l'unbraces... + \xintAssignArray\POL@temp\to#1% + \endgroup +}% +\def\POL@findrat@loop@firstpass{% + \PolSturmIfZeroExactlyKnown{\POL@sturmname}{\POL@findrat@index}% + \POL@findrat@loop@decimal% get its multiplicity + \POL@findrat@loop@a + \edef\POL@findrat@index{\the\numexpr\POL@findrat@index+\@ne}% + \ifnum\POL@findrat@index>\POL@isolz@NbOfRoots + \else + \expandafter\POL@findrat@loop@firstpass + \fi +}% +\def\POL@findrat@loop@secondpass{% + \PolSturmIfZeroExactlyKnown{\POL@sturmname}{\POL@findrat@index}% + {}% nothing more to be done, already stored + \POL@findrat@loop@b + \edef\POL@findrat@index{\the\numexpr\POL@findrat@index+\@ne}% + \ifnum\POL@findrat@index>\POL@isolz@NbOfRoots + \else + \PolEnsureIntervalLength + {\POL@sturmname}{\POL@findrat@index}{-\POL@findrat@E}% dynamic + \expandafter\POL@findrat@loop@secondpass + \fi +}% +\def\POL@findrat@loop@secondpass@direct{% + \PolSturmIfZeroExactlyKnown{\POL@sturmname}{\POL@findrat@index}% + \POL@findrat@loop@decimal + \POL@findrat@loop@b + \edef\POL@findrat@index{\the\numexpr\POL@findrat@index+\@ne}% + \ifnum\POL@findrat@index>\POL@isolz@NbOfRoots + \else + \PolEnsureIntervalLength + {\POL@sturmname}{\POL@findrat@index}{-\POL@findrat@E}% dynamic + \expandafter\POL@findrat@loop@secondpass@direct + \fi +}% +\def\POL@findrat@loop@decimal{% we have an already found decimal root + % we do not go via @storeit, as it is already stored + % j'ai beaucoup hésité néanmoins, car je pourrais faire \xintIrr ici, + % mais attention aussi à l'interaction avec le \PolDecToString. Les racines + % trouvées directement (qui peuvent être des nombres décimaux) sont elles + % stockées comme fraction irréductibles (modulo action additionnelle de + % \PolDecToString). + \POL@xintfrac@getNDE + {\xintIrr{\POL@xintexprGetVar{\POL@sturmname L_\POL@findrat@index}}[0]}% + \POL@findrat@xN\POL@findrat@xD\POl@_ + % we can't move this to updatequotients because other branch will + % need to do the division first anyhow + \edef\POLuserpol@_findrat@oneterm{1.\noexpand\empty + {\xintiiOpp\POL@findrat@xN/1[0]}{\POL@findrat@xD/1[0]}}% + \POL@divide{\POL@sturmname\POL@sqfnorr}{_findrat@oneterm}% the one without mult. + \POL@findrat@loop@updatequotients + \POL@findrat@loop@getmultiplicity +}% +% lacking from xint 1.3c, but \xintSgn has overhead, so we define ii version +\def\xintiiifNeg{\romannumeral0\xintiiifneg }% +\def\xintiiifneg #1% +{% + \ifcase \xintiiSgn{#1} + \expandafter\xint_stop_atsecondoftwo + \or\expandafter\xint_stop_atsecondoftwo + \else\expandafter\xint_stop_atfirstoftwo + \fi +}% +\def\POL@findrat@getE #1/1[#2]{#2}% /1 as it should be there. +% so an error will arise if not but cf \POL@refine@getE where I did not put it +\def\POL@findrat@loop@a{% + % we do a first pass to identify roots with denominators < 1000 + \PolEnsureIntervalLength{\POL@sturmname}{\POL@findrat@index}{-6}% + % attention that the width may have been already smaller than 10^{-6} + % also attention that one of the bound may be zero + \POL@get@IsoLeft@rawin + \POL@get@IsoRight@rawin + \edef\POL@findrat@localW + {\the\numexpr-\expandafter\POL@findrat@getE + % do I really need the \xintREZ? + \romannumeral0\xintrez + {\xintSub{\POL@IsoRight@rawin}{\POL@IsoLeft@rawin}}% + }% at least 6, maybe larger + \expandafter\POL@get@Int@aux + \POL@IsoLeft@rawin\POL@IsoLeft@Int{-\POL@findrat@localW}% + \expandafter\POL@get@Int@aux + \POL@IsoRight@rawin\POL@IsoRight@Int{-\POL@findrat@localW}% + % in case of odd, some waste here + \edef\POL@findrat@halflocalW{\the\numexpr(\POL@findrat@localW+1)/2-1}% + % Legendre Theorem will be used now but we separate a branch where + % everything can be done with \numexpr + \ifnum\POL@findrat@localW>10 + % not implemented yet by lazyness! + % this root will be handled in second pass only + \else + \POL@findrat@gcdloop + \fi +}% +\def\POL@findrat@gcdloop{% + % we must be careful with sign (attention one of the bounds may be zero) + \let\POL@findrat@IfNeg\xint_secondoftwo + \xintiiifSgn\POL@IsoLeft@Int + \POL@findrat@gcdloop@n + \POL@findrat@gcdloop@zero + \POL@findrat@gcdloop@p +}% +\def\POL@findrat@gcdloop@n{% + \let\POL@findrat@IfNeg\xint_firstoftwo + \let\POL@temp\POL@IsoRight@Int + \edef\POL@IsoRight@Int{\xintiiOpp{\POL@IsoLeft@Int}}% + \edef\POL@IsoLeft@Int{\xintiiOpp{\POL@temp}}% + \xintiiifSgn\POL@IsoLeft@Int + \POL@error % impossible branch + \POL@findrat@gcdloop@zero + \POL@findrat@gcdloop@p +}% +\def\POL@findrat@gcdloop@zero{% + % the continued fraction would be the one of 1/2, so only 1/2 to test... + \edef\POL@findrat@x + {1/2\romannumeral\xintreplicate{\POL@findrat@localW}{0}[0]}% + \POL@findrat@gcdloop@testit +}% +\def\POL@findrat@gcdloop@p{% + \edef\POL@findrat@gcdloop@Ap{\xintDec{\xintDouble\POL@IsoRight@Int}}% + \edef\POL@findrat@gcdloop@A + {2\romannumeral\xintreplicate\POL@findrat@localW{0}}% + \xintAssign + \xintiiDivision\POL@findrat@gcdloop@Ap\POL@findrat@gcdloop@A + \to\POL@findrat@gcdloop@B\POL@findrat@gcdloop@An + % on fait de la tambouille pour n'utiliser que \numexpr par la suite + % le reste @An est < 2.10^10 au pire donc ok pour \numexpr + % we will drop integral part in our updating P + \let\POL@findrat@gcdloop@Binitial\POL@findrat@gcdloop@B + \def\POL@findrat@gcdloop@B{0}% do as if B1 = 0 + \def\POL@findrat@gcdloop@Pp{1}% P0 + \def\POL@findrat@gcdloop@P{0}% P1 + \def\POL@findrat@gcdloop@Qp{0}% Q0 + \def\POL@findrat@gcdloop@Q{1}% Q1 + % A2=An can not be zero, as Ap (=A0) is odd and A (=A1=200...000) is even + % first Binitial + P1/Q1 ( = Binitial) can not be root + \let\POL@findrat@gcdloop@Ap\POL@findrat@gcdloop@A % A1 + \let\POL@findrat@gcdloop@A\POL@findrat@gcdloop@An % A2 + \def\next{\POL@findrat@gcdloop@update}% + \def\POL@findrat@gcdloop@done{0}% + \POL@findrat@gcdloop@body +}% +\def\POL@findrat@gcdloop@body{% + % annoying that \numexpr has no divmod... use counts? but groups annoying + \edef\POL@findrat@gcdloop@B + {\the\numexpr(\POL@findrat@gcdloop@Ap+\POL@findrat@gcdloop@A/2)/% + \POL@findrat@gcdloop@A - \@ne}% + \edef\POL@findrat@gcdloop@An + {\the\numexpr\POL@findrat@gcdloop@Ap-% + \POL@findrat@gcdloop@B*\POL@findrat@gcdloop@A}% + \edef\POL@findrat@gcdloop@Pn + {\the\numexpr\POL@findrat@gcdloop@Pp+% + \POL@findrat@gcdloop@B*\POL@findrat@gcdloop@P}% + \edef\POL@findrat@gcdloop@Qn + {\the\numexpr\POL@findrat@gcdloop@Qp+% + \POL@findrat@gcdloop@B*\POL@findrat@gcdloop@Q}% + \ifnum\expandafter\xintLength\expandafter{\POL@findrat@gcdloop@Qn}% + >\POL@findrat@halflocalW\space + \let\next\empty % no solution was found + \else + % with these conditions on denom, only candidates are by Legendre + % theorem among the convergents as computed here + \ifnum\POL@findrat@gcdloop@Qn>\POL@findrat@gcdloop@An\space + % means that P/Q is in interval and is thus a candidate + % it is automatically irreducible + \edef\POL@findrat@x{\xintiiAdd + {\xintiiMul{\POL@findrat@gcdloop@Qn}{\POL@findrat@gcdloop@Binitial}}% + {\POL@findrat@gcdloop@Pn}/\POL@findrat@gcdloop@Qn[0]}% + \POL@findrat@gcdloop@testit + \if1\POL@findrat@gcdloop@done + \let\next\empty % a solution was found + \fi + \fi + \fi + \next +}% +\def\POL@findrat@gcdloop@update{% + \ifnum\POL@findrat@gcdloop@An>\z@ + \let\POL@findrat@gcdloop@Ap\POL@findrat@gcdloop@A + \let\POL@findrat@gcdloop@A\POL@findrat@gcdloop@An + \let\POL@findrat@gcdloop@Pp\POL@findrat@gcdloop@P + \let\POL@findrat@gcdloop@P\POL@findrat@gcdloop@Pn + \let\POL@findrat@gcdloop@Qp\POL@findrat@gcdloop@Q + \let\POL@findrat@gcdloop@Q\POL@findrat@gcdloop@Qn + \expandafter\POL@findrat@gcdloop@body + \fi +}% +\def\POL@findrat@gcdloop@testit{% + % zero should never occur here + \POL@findrat@IfNeg{\edef\POL@findrat@x{-\POL@findrat@x}}{}% + \POL@xintfrac@getNDE\POL@findrat@x\POL@findrat@xN\POL@findrat@xD\POL@_ + \edef\POLuserpol@_findrat@oneterm{1.\noexpand\empty + {\xintiiOpp{\POL@findrat@xN}/1[0]}{\POL@findrat@xD/1[0]}}% + \POL@divide{\POL@sturmname\POL@sqfnorr}{_findrat@oneterm}% the one without mult. + \expandafter\POL@split\POL@R;\POL@degR\POL@polR + \ifnum\POL@degR=\m@ne % found a root + \POL@findrat@loop@storeit + \POL@findrat@loop@updatequotients + \POL@findrat@loop@getmultiplicity % will continue updating the mult. one + \def\POL@findrat@gcdloop@done{1}% + \else + \fi +}% +% This is second phase +\def\POL@findrat@loop@b{% + \edef\POL@findrat@Lscaled{\xintMul{\POL@findrat@D}% + {\POL@xintexprGetVar{\POL@sturmname L_\POL@findrat@index}}}% + \edef\POL@findrat@Rscaled{\xintMul{\POL@findrat@D}% + {\POL@xintexprGetVar{\POL@sturmname R_\POL@findrat@index}}}% + \xintiiifNeg{\POL@findrat@Lscaled}% using ii version is an abuse + {% negative interval (right bound possibly zero!) + % truncate towards zero (i.e. to the right) the left bound + \edef\POL@findrat@Num{\xintNum{\POL@findrat@Lscaled}/1[0]}% + % interval boundaries are not root hence in case that was exact + % this will not be found as a root; check if in interval + \xintifLt\POL@findrat@Num\POL@findrat@Rscaled + \POL@findrat@loop@c + {}% iterate + }% + {% positive interval (left bound possibly zero!) + % truncate towards zero (i.e. to the left) the right bound + \edef\POL@findrat@Num{\xintNum{\POL@findrat@Rscaled}/1[0]}% + % check if in interval + \xintifGt\POL@findrat@Num\POL@findrat@Lscaled + \POL@findrat@loop@c + {}% iterate + }% +}% +\def\POL@findrat@loop@c{% + % safer to do the edef as \POL@findrat@x used later in storeit + \edef\POL@findrat@x{\xintIrr{\xintDiv\POL@findrat@Num\POL@findrat@D}[0]}% + \POL@xintfrac@getNDE\POL@findrat@x\POL@findrat@xN\POL@findrat@xD\POL@_ + \edef\POLuserpol@_findrat@oneterm{1.\noexpand\empty + {\xintiiOpp{\POL@findrat@xN}/1[0]}{\POL@findrat@xD/1[0]}}% + \POL@divide{\POL@sturmname\POL@sqfnorr}{_findrat@oneterm}% the one without mult. + \expandafter\POL@split\POL@R;\POL@degR\POL@polR + \ifnum\POL@degR=\m@ne % found a root + \POL@findrat@loop@storeit + \POL@findrat@loop@updatequotients + \POL@findrat@loop@getmultiplicity % will continue updating the mult. one + \fi + % iterate +}% +\def\POL@findrat@loop@storeit{% + % update storage, I can not use storeleftandright here (due to rawout etc...) + \expandafter + \xdef\csname POL_ZeroInt\POL@sturmname L\POL@findrat@index\endcsname + {\PolDecToString{\POL@findrat@x}}% + \global\expandafter + \let\csname POL_ZeroInt\POL@sturmname R\POL@findrat@index\expandafter\endcsname + \csname POL_ZeroInt\POL@sturmname L\POL@findrat@index\endcsname + \global\expandafter + \let\csname POL_ZeroIsKnown\POL@sturmname\POL@findrat@index\endcsname + \xint_stop_atfirstoftwo + \begingroup\xintglobaldefstrue + \xintdefvar + \POL@sturmname L_\POL@findrat@index,% + \POL@sturmname R_\POL@findrat@index,% + \POL@sturmname Z_\POL@findrat@index _isknown + := qfrac(\POL@findrat@x),qfrac(\POL@findrat@x),1;% + \endgroup +}% +\def\POL@findrat@loop@updatequotients{% + % attention last division must have been one testing vanishing of\POL@sqfnorr + \expandafter\let\csname POLuserpol@\POL@sturmname\POL@sqfnorr\endcsname\POL@Q + % quotient belongs to Z[X] and is primitive + \POL@mapcoeffs\POL@aux@toint{\POL@sturmname\POL@sqfnorr}% + % update the one with multiplicities + \POL@divide{\POL@sturmname\POL@norr}{_findrat@oneterm}% + \expandafter\let\csname POLuserpol@\POL@sturmname\POL@norr\endcsname\POL@Q + \POL@mapcoeffs\POL@aux@toint{\POL@sturmname\POL@norr} + % updating of \POL@findrat@D at end of execution of getmultiplicity +}% +\def\POL@findrat@loop@getmultiplicity{% + % the one without multiplicity must not be divided again! + % check if we have remaining multiplicity + \POL@divide{\POL@sturmname\POL@norr}{_findrat@oneterm}% + \expandafter\POL@split\POL@R;\POL@degR\POL@polR + \ifnum\POL@degR=\m@ne % yes + \expandafter\let\csname POLuserpol@\POL@sturmname\POL@norr\endcsname\POL@Q + \POL@mapcoeffs\POL@aux@toint{\POL@sturmname\POL@norr}% + \expandafter + \xdef + \csname POL_ZeroMult\POL@sturmname\POL@findrat@index\endcsname + {\the\numexpr + \csname POL_ZeroMult\POL@sturmname\POL@findrat@index\endcsname+\@ne}% + \expandafter\POL@findrat@loop@getmultiplicity + \else + % done with multiplicity for this rational root, update stuff + \edef\POL@findrat@nbofirrroots + {\the\numexpr\POL@findrat@nbofirrroots-\@ne}% + \@namedef{POL@IfMultIsKnown\POL@findrat@index}{\xint_firstoftwo}% + \edef\POL@findrat@D{\xintAbs{\PolLeadingCoeff{\POL@sturmname\POL@sqfnorr}}}% + \POL@xintfrac@getNDE\POL@findrat@D\POL@findrat@Dint\POL@_\POL@findrat@Dexp + \xintiiifOne{\POL@findrat@Dint} + {\let\POL@findrat@E\POL@findrat@Dexp} % aussi ok pour 1[0] + {\edef\POL@findrat@E{\the\numexpr\xintLen{\POL@findrat@Dint}% + +\POL@findrat@Dexp}}% + \fi +}% +\def\POL@findrat@getirrmult{% + % first get the GCD of remaining pol with its derivative + \POL@divide{\POL@sturmname\POL@norr}{\POL@sturmname\POL@sqfnorr}% + \expandafter\let + % attention au _ (cf. grosse astuce pour \POL@isolzmult@loop) + \csname POLuserpol@@_1\POL@sturmname _\endcsname\POL@Q + \ifnum\PolDegree{@_1\POL@sturmname _}>\z@ + % il reste des multiplicités (mais peut-être pour des racines complexes) + % (ou pour des racines en-dehors de l'intervalle optionnel) + % attention recyclage ici de \POL@isolzmult@loop qui dépend de + % la grosse astuce avec \@gobble + \POL@makeprimitive{@_1\POL@sturmname _}% + \let\POL@originalsturmname\POL@sturmname + % trick to get isolzmult@loop to define @@lastGCD to @_1sturmname_ + % because it will do \POL@sturmname _\POL@sturm@N _ + \edef\POL@sturmname{@_1\POL@sturmname}% + \let\POL@sturm@N\@gobble% ! + \let\POL@isolz@NbOfRoots@with_unknown_mult\POL@findrat@nbofirrroots + \POL@tosturm@makefirstprimitivefalse + \POL@isolzmult@loop + \POL@tosturm@makefirstprimitivetrue + \let\POL@sturmname\POL@originalsturmname + \fi +}% + + +\newcommand\PolSturmIsolateZerosAndGetMultiplicities@[2][\empty]{% % #1 optional E such that roots are searched in -10^E < x < 10^E % both -10^E and +10^E must not be roots! % #2 name of Sturm chain (already pre-computed) @@ -845,9 +1291,6 @@ \expandafter\xintAssignArray\expandafter\to\csname POL_ZeroMult\POL@sturmname\endcsname \endgroup \else - % store Sturm chain name for usage in the main loop - \let\POL@originalsturmname\POL@sturmname - \edef\POL@isolzmult@indices{\xintSeq{1}{\POL@isolz@NbOfRoots}}% % all we currently know is that multiplicities are at least one \begingroup\globaldefs\@ne \expandafter\POL@initarray\csname POL_ZeroMult\POL@sturmname\endcsname{1}% @@ -857,61 +1300,92 @@ \ifnum\PolDegree{\POL@sturmname _\POL@sturm@N _}>\z@ % scratch array of flags to signal known multiplicities \POL@initarray\POL@IfMultIsKnown\xint_secondoftwo + % this count has utility for the case there are other roots + % either complex or outside interval (in case of optional argument) \let\POL@isolz@NbOfRoots@with_unknown_mult\POL@isolz@NbOfRoots - \expandafter\expandafter\expandafter\POL@isolzmult@loop + % store Sturm chain name, it is needed and altered in isolzmult@loop + \let\POL@originalsturmname\POL@sturmname + \POL@tosturm@makefirstprimitivefalse + \POL@isolzmult@loop + \POL@tosturm@makefirstprimitivetrue + \let\POL@sturmname\POL@originalsturmname \fi + \POL@isolzmult@defvar@M \fi }% +\def\POL@isolzmult@defvar@M{% + % Attention that is used not only in ...GetMultiplicities@ but also + % in FindRationalRoots + \begingroup\xintglobaldefstrue + % added at 0.7 + \let\x\POL@isolz@NbOfRoots + \xintloop + \xintdefvar \POL@sturmname M_\x + := \csname POL_ZeroMult\POL@sturmname\x\endcsname ;% + \edef\x{\the\numexpr\x-\@ne}% + \ifnum\x>\z@ + \repeat + \endgroup +}% \def\POL@isolzmult@loop{% - % we are here only if last iteration gave a new PGCD still of degree > 0 - % As 0.6 \PolToSturm keeps memory of unnormalized Sturm chain, we use the - % PGCD from last iteration and generate a new Sturm chain. - % ATTENTION: first argument of \PolToSturm MUST NOT CONTAIN \POL@sturmname - \let\POL@@sturmname\POL@sturmname - % ATTENTION: we could use an underscore prefix to the name, but attention - % to tacit multiplication if used in an expression; however \PolEvalAt - % does not use expression parsing as \PolEvalAtExpr so this would be - % relatively safe. We must also not overwrite privately used names - % by polexpr or xint... Using prefix @_1 appears safe. They will accumulate. - % As the loop may break at any moment, depending on original P, not only - % on current polynomial which is examined to see if it has zeros, it does - % not seem to make sense to think about interface to keep memory of all - % the defined polynomials. - % \POL@sturm@N supposedly the one from last iteration - \PolToSturm{\POL@@sturmname _\POL@sturm@N _}{@_1\POL@@sturmname}% + % we are here only if last iteration gave a new GCD still of degree > 0 + % \POL@sturm@N is the one from last iteration + % Attention to not use \POL@sturmname directly in first arg. of \PolToSturm + % Attention that we need for the case of known roots also to have the last + % GCD (with its multiplicities) known as a genuine polynomial + % - because of usage of \POL@eval in @isknown branch + % - because \PolToSturm@ does a \POL@let which would be anomalous + % if the extended structure is not existing + \edef\POL@isolzmult@lastGCD{\POL@sturmname _\POL@sturm@N _}% + \edef\POL@isolzmult@newsturmname{@_1\POL@sturmname}% + \POL@newpol{\POL@isolzmult@lastGCD}% + \PolToSturm@{\POL@isolzmult@lastGCD}{\POL@isolzmult@newsturmname}% % now both \POL@sturmname and \POL@sturm@N have changed - % if GCD is now a constant, we will not come back here - \edef\POL@sturmfinaldeg{\PolDegree{\POL@sturmname _\POL@sturm@N _}}% - \xintFor* ##1 in {\POL@isolzmult@indices}\do - {% - \csname POL@IfMultIsKnown##1\endcsname - {}% nothing to do - {\def\POL@isolzmult@index{##1}% - \POL@SturmIfZeroExactlyKnown{\POL@originalsturmname}{##1}% - \POL@isolzmult@loop@zero_isknown - \POL@isolzmult@loop@zero_isnotknown - \POL@isolzmult@loop@sharedbody - }% - }% - \ifnum\POL@sturmfinaldeg>\z@ + \edef\POL@isolzmult@newGCDdegree{\PolDegree{\POL@sturmname _\POL@sturm@N _}}% + \let\POL@isolzmult@index\POL@isolz@NbOfRoots + \xintloop + % ATTENTION that this executes macros which also modifies \POL@sturmname! + % (but not \POL@sturm@N) + \POL@isolzmult@doone + \edef\POL@isolzmult@index{\the\numexpr\POL@isolzmult@index-\@ne}% + \if1\ifnum\POL@isolz@NbOfRoots@with_unknown_mult=\z@ 0\fi + \ifnum\POL@isolzmult@index=\z@ 0\fi 1% + \repeat + \let\POL@sturmname\POL@isolzmult@newsturmname + \if1\ifnum\POL@isolz@NbOfRoots@with_unknown_mult=\z@ 0\fi + % (if new GCD is constant, time to abort) + \ifnum\POL@isolzmult@newGCDdegree=\z@ 0\fi 1% \expandafter\POL@isolzmult@loop \fi }% -\def\POL@isolzmult@loop@zero_isknown{% +\def\POL@isolzmult@doone{% + \csname POL@IfMultIsKnown\POL@isolzmult@index\endcsname + {}% nothing to do + {\POL@SturmIfZeroExactlyKnown{\POL@originalsturmname}% + {\POL@isolzmult@index}% + \POL@isolzmult@loop@isknown + \POL@isolzmult@loop@isnotknown + \POL@isolzmult@loop@sharedbody + }% +}% +\def\POL@isolzmult@loop@isknown{% \xintifZero - {\Pol@Eval{\POL@sturmname _0_}% + % attention that \POL@eval requires a declared polynomial + {\POL@eval{\POL@isolzmult@lastGCD}% {\POL@xintexprGetVar{\POL@originalsturmname L_\POL@isolzmult@index}}}% {\let\POL@isolzmult@haszero\@ne}% {\let\POL@isolzmult@haszero\z@}% }% -\def\POL@isolzmult@loop@zero_isnotknown{% +\def\POL@isolzmult@loop@isnotknown{% \edef\POL@isolzmult@loop@A {\POL@xintexprGetVar{\POL@originalsturmname L_\POL@isolzmult@index}} \edef\POL@isolzmult@loop@B - {\POL@xintexprGetVar{\POL@originalsturmname R_\POL@isolzmult@index}} + {\POL@xintexprGetVar{\POL@originalsturmname + R_\POL@isolzmult@index}} + % attention that \PolSetToNbOfZerosWithin sets \POL@sturmname to 2nd argument \PolSetToNbOfZerosWithin \POL@isolzmult@haszero % nb of zeros A < x <= B, here 0 or 1 - \POL@sturmname + \POL@isolzmult@newsturmname \POL@isolzmult@loop@A \POL@isolzmult@loop@B }% @@ -928,10 +1402,6 @@ \@namedef{POL@IfMultIsKnown\POL@isolzmult@index}{\xint_firstoftwo}% \edef\POL@isolz@NbOfRoots@with_unknown_mult {\the\numexpr\POL@isolz@NbOfRoots@with_unknown_mult-\@ne}% - \ifnum\POL@isolz@NbOfRoots@with_unknown_mult=\z@ - \def\POL@sturmfinaldeg{0}% flag to force termination - \expandafter\expandafter\expandafter\xintBreakFor - \fi \fi }% @@ -1039,7 +1509,7 @@ }% % utility macro for a priori bound on root decimal exponent, via Float Rounding \def\POL@isolz@updateE #1e#2;% -{\unless\ifnum#2<\POL@isolz@E\space\edef\POL@isolz@E{\the\numexpr#2+\@ne}\fi}% + {\unless\ifnum#2<\POL@isolz@E\space\edef\POL@isolz@E{\the\numexpr#2+\@ne}\fi}% \def\POL@isolz@getaprioribound{% \PolAssign{\POL@sturmname _0}\toarray\POL@arrayA \edef\POL@isolz@leading{\POL@arrayA{\POL@arrayA{0}}}% @@ -1067,12 +1537,14 @@ \def\POL@IsoRight@raw{\POL@IsoRight@Int/1[\POL@isolz@E]}% \def\POL@IsoLeft@raw {\POL@IsoLeft@Int/1[\POL@isolz@E]}% \def\POL@IsoRight@rawout{% - \ifnum\POL@IsoRightSign=\z@\expandafter\xintREZ\fi\POL@IsoRight@raw}% + \ifnum\POL@IsoRightSign=\z@\expandafter\xintREZ\fi\POL@IsoRight@raw +}% \def\POL@IsoLeft@rawout{% \ifnum\POL@IsoRightSign=\z@ \expandafter\xint_firstoftwo\else\expandafter\xint_secondoftwo \fi{\xintREZ\POL@IsoRight@raw}% - {\POL@IsoLeft@Int/1[\POL@isolz@E]}}% + {\POL@IsoLeft@Int/1[\POL@isolz@E]}% +}% \def\POL@isolz@main {% % NOTE 2018/02/16. THIS WILL PRESUMABLY BE RE-ORGANIZED IN FUTURE TO DO % FIRST POSITIVE ROOTS THEN NEGATIVE ROOTS VIA CHANGE OF VARIABLE TO OPPOSITE. @@ -1090,116 +1562,137 @@ \edef\POL@IsoRightSV{\the\numexpr\POL@IsoRightSV+\@ne}% % subtlety here if original polynomial had multiplicities, but ok. I checked! \edef\POL@IsoRightSign % evaluated twice, but that's not so bad - {\xintiiOpp{\xintiiSgn{\Pol@Eval{\POL@sturmname _1}{0/1[0]}}}}% + {\xintiiOpp{\xintiiSgn{\POL@eval{\POL@sturmname _1}{0/1[0]}}}}% \fi \def\POL@IsoLeft@Int{-1}% -10^E isn't a root! \let\POL@IsoLeftSV \POL@isolz@minusinf@SV \let\POL@IsoLeftSign\POL@isolz@minusinf@sign + % \POL@IsoRight@SV was modified if zero is a root \edef\POL@isolz@NbOfNegRoots{\the\numexpr\POL@IsoLeftSV-\POL@IsoRightSV}% \gdef\POL@isolz@IntervalIndex{0}% - \begingroup - \let\POL@IsoAtZeroSV\POL@IsoRightSV % locally shifted if root at zero - \let\POL@IsoAtZeroSign\POL@IsoRightSign + \let\POL@isolz@@E\POL@isolz@E \ifnum\POL@isolz@NbOfNegRoots>\z@ - \def\POL@IsoRight@Int{-1}% - \xintloop - \edef\POL@isolz@E{\the\numexpr\POL@isolz@E-\@ne}% - \POL@sturmchain@getSV@at\POL@IsoRight@raw - \let\POL@IsoRightSV \POL@sturmchain@SV - \let\POL@IsoRightSign\POL@sturmchain@sign - % would an \ifx test be quicker? (to be checked) - \ifnum\POL@IsoRightSV=\POL@IsoLeftSV\space - % no roots in-between, sign and SV kept - \repeat - \def\POL@IsoLeft@Int{-10}% - \let\POL@@IsoRightSign\POL@IsoRightSign % zero possible - \let\POL@@IsoRightSV\POL@IsoRightSV - \xintloop - \edef\POL@IsoRight@Int{\the\numexpr\POL@IsoLeft@Int+\@ne}% -% we could arguably do a more efficient dichotomy here - \POL@sturmchain@getSV@at\POL@IsoRight@raw - \let\POL@IsoRightSV \POL@sturmchain@SV - \let\POL@IsoRightSign\POL@sturmchain@sign - \POL@isolz@check - \ifnum\POL@isolz@IntervalIndex=\POL@isolz@NbOfNegRoots\space - \expandafter\xintbreakloop - \fi - \let\POL@IsoLeft@Int\POL@IsoRight@Int - \let\POL@IsoLeftSign\POL@IsoRightSign - \let\POL@IsoLeftSV\POL@IsoRightSV - \ifnum\POL@IsoRight@Int < -\tw@ - \repeat - \ifnum\POL@isolz@IntervalIndex<\POL@isolz@NbOfNegRoots\space - \def\POL@IsoRight@Int{-1}% - \let\POL@IsoRightSign\POL@@IsoRightSign - \let\POL@IsoRightSV\POL@@IsoRightSV - \POL@isolz@check - \ifnum\POL@isolz@IntervalIndex<\POL@isolz@NbOfNegRoots\space - \def\POL@IsoLeft@Int{-1}% - \let\POL@IsoLeftSign\POL@IsoRightSign - \let\POL@IsoLeftSV\POL@IsoRightSV - \def\POL@IsoRight@Int{0}% - \let\POL@IsoRightSV\POL@IsoAtZeroSV % altered if 0 was a root - \let\POL@IsoRightSign\POL@IsoAtZeroSign% id. -% this will recurse to locate roots with smaller decimal exponents - \POL@isolz@check % attention that this should not re-evaluate at 0 - \fi - \fi +% refactored at 0.7 to fix cases leading to an intervals with zero as end-point + \POL@isolz@findroots@neg \fi - \endgroup + \let\POL@isolz@E\POL@isolz@@E \def\POL@IsoLeft@Int{0}% - \let\POL@IsoLeftSV \POL@IsoAtZeroSV - \let\POL@IsoLeftSign\POL@IsoAtZeroSign + \let\POL@IsoLeftSV \POL@IsoAtZeroSV % véritable SV en zéro + \let\POL@IsoLeftSign\POL@IsoAtZeroSign% véritable signe en zéro \ifnum\POL@IsoLeftSign=\z@ \xdef\POL@isolz@IntervalIndex{\the\numexpr\POL@isolz@IntervalIndex+\@ne}% - \global\POL@isolz@nextwillneedrefinetrue - \else - \global\POL@isolz@nextwillneedrefinefalse \fi \let\POL@@IsoRightSV \POL@isolz@plusinf@SV \let\POL@@IsoRightSign\POL@isolz@plusinf@sign % 10^E not a root! \edef\POL@isolz@NbOfPosRoots {\the\numexpr\POL@IsoLeftSV-\POL@@IsoRightSV}% attention @@ \ifnum\POL@isolz@NbOfPosRoots>\z@ - \def\POL@IsoRight@Int{1}% - \xintloop - \edef\POL@isolz@E{\the\numexpr\POL@isolz@E-\@ne}% - \POL@sturmchain@getSV@at\POL@IsoRight@raw - \let\POL@IsoRightSV \POL@sturmchain@SV - \let\POL@IsoRightSign\POL@sturmchain@sign - \ifnum\POL@IsoRightSV=\POL@@IsoRightSV\space - \let\POL@@IsoRightSign\POL@IsoRightSign % root here possible! - \repeat - \unless\ifnum\POL@IsoRightSV=\POL@IsoLeftSV\space - \POL@isolz@check % will recurse inside groups if needed - \fi - \def\POL@IsoLeft@Int{1}% - \let\POL@IsoLeftSV\POL@IsoRightSV - \let\POL@IsoLeftSign\POL@IsoRightSign - \xintloop -% we could arguably do a more efficient dichotomy here - \edef\POL@IsoRight@Int{\the\numexpr\POL@IsoLeft@Int+\@ne}% - \POL@sturmchain@getSV@at\POL@IsoRight@raw - \let\POL@IsoRightSV \POL@sturmchain@SV - \let\POL@IsoRightSign\POL@sturmchain@sign - \POL@isolz@check - \let\POL@IsoLeft@Int\POL@IsoRight@Int - \let\POL@IsoLeftSign\POL@IsoRightSign - \let\POL@IsoLeftSV\POL@IsoRightSV - \ifnum\POL@isolz@IntervalIndex=\POL@isolz@NbOfRoots\space - \expandafter\xintbreakloop - \fi - \ifnum\POL@IsoLeft@Int < \xint_c_ix - \repeat - \ifnum\POL@isolz@IntervalIndex<\POL@isolz@NbOfRoots\space - % get now the last, rightmost, root (or roots) - \def\POL@IsoRight@Int{10}% - \let\POL@IsoRightSign\POL@@IsoRightSign - \let\POL@IsoRightSV\POL@@IsoRightSV - \POL@isolz@check - \fi + % always do that to avoid zero as end-point whether it is a root or not + \global\POL@isolz@nextwillneedrefinetrue + \POL@isolz@findroots@pos + \fi +}% +\def\POL@isolz@findroots@neg{% + \def\POL@IsoRight@Int{-1}% + \POL@isolz@findnextzeroboundeddecade@neg + \def\POL@IsoLeft@Int{-10}% + \let\POL@@IsoRightSign\POL@IsoRightSign % a zero there is possible + \let\POL@@IsoRightSV \POL@IsoRightSV + % this will do possibly recursive \POL@isolz@check's + \POL@isolz@explorenexteightsubdecades@neg + \ifnum\POL@isolz@IntervalIndex<\POL@isolz@NbOfNegRoots\space + % above did not explore -2, -1 for this optimization (SV known at Right) + \def\POL@IsoRight@Int{-1}% + \let\POL@IsoRightSign\POL@@IsoRightSign + \let\POL@IsoRightSV \POL@@IsoRightSV + \POL@isolz@check + \ifnum\POL@isolz@IntervalIndex<\POL@isolz@NbOfNegRoots\space + \def\POL@IsoLeft@Int{-1}% + \let\POL@IsoLeftSign\POL@@IsoRightSign + \let\POL@IsoLeftSV \POL@@IsoRightSV + % I don't like being inside TeX conditionals + \expandafter\expandafter\expandafter\POL@isolz@findroots@neg + \fi + \fi +}% +\def\POL@isolz@findnextzeroboundeddecade@neg{% + \xintloop + \edef\POL@isolz@E{\the\numexpr\POL@isolz@E-\@ne}% + \POL@sturmchain@getSV@at\POL@IsoRight@raw + \let\POL@IsoRightSV \POL@sturmchain@SV + \let\POL@IsoRightSign\POL@sturmchain@sign + % would an \ifx test be quicker? (to be checked) + \ifnum\POL@IsoRightSV=\POL@IsoLeftSV\space + % no roots in-between, iterate + \repeat +}% +\def\POL@isolz@explorenexteightsubdecades@neg{% + \xintloop + \edef\POL@IsoRight@Int{\the\numexpr\POL@IsoLeft@Int+\@ne}% + % we could arguably do a more efficient dichotomy here + \POL@sturmchain@getSV@at\POL@IsoRight@raw + \let\POL@IsoRightSV \POL@sturmchain@SV + \let\POL@IsoRightSign\POL@sturmchain@sign + \POL@isolz@check % may recurse if multiple roots are to be found + \ifnum\POL@isolz@IntervalIndex=\POL@isolz@NbOfNegRoots\space + \expandafter\xintbreakloop + \fi + \let\POL@IsoLeft@Int\POL@IsoRight@Int + \let\POL@IsoLeftSign\POL@IsoRightSign + \let\POL@IsoLeftSV\POL@IsoRightSV + \ifnum\POL@IsoRight@Int < -\tw@ + \repeat +}% +\def\POL@isolz@findroots@pos{% + % remark (2018/12/08), this needs some refactoring, I hardly understand + % the logic and it hides most into the recursion done by \POL@isolz@check + % It would probably make more sense to proceed like done for the negative + % but here finding the largest roots first. + \def\POL@IsoRight@Int{1}% + \POL@isolz@findnextzeroboundeddecade@pos + \unless\ifnum\POL@IsoRightSV=\POL@IsoLeftSV\space + % this actually explores the whole of some interval (0, 10^{e-1}] + % in a context where some roots are known to be in (10^{e-1}, 10^{e}] + % and none are larger + \POL@isolz@check % will recurse inside groups if needed with modified E + \fi + % we know get the roots in the last 9 decades from 10^{e-1} to 10^{e} + % we should arguably do a more efficient dichotomy here + \def\POL@IsoLeft@Int{1}% + \let\POL@IsoLeftSV\POL@IsoRightSV + \let\POL@IsoLeftSign\POL@IsoRightSign + \xintloop + \edef\POL@IsoRight@Int{\the\numexpr\POL@IsoLeft@Int+\@ne}% + \POL@sturmchain@getSV@at\POL@IsoRight@raw + \let\POL@IsoRightSV \POL@sturmchain@SV + \let\POL@IsoRightSign\POL@sturmchain@sign + \POL@isolz@check % recurses in needed + \let\POL@IsoLeft@Int\POL@IsoRight@Int + \let\POL@IsoLeftSign\POL@IsoRightSign + \let\POL@IsoLeftSV\POL@IsoRightSV + \ifnum\POL@isolz@IntervalIndex=\POL@isolz@NbOfRoots\space + \expandafter\xintbreakloop + \fi + \ifnum\POL@IsoLeft@Int < \xint_c_ix + \repeat + \ifnum\POL@isolz@IntervalIndex<\POL@isolz@NbOfRoots\space + % get now the last, rightmost, root (or roots) + \def\POL@IsoRight@Int{10}% + \let\POL@IsoRightSign\POL@@IsoRightSign + \let\POL@IsoRightSV\POL@@IsoRightSV + \POL@isolz@check \fi }% +\def\POL@isolz@findnextzeroboundeddecade@pos{% + \xintloop + \edef\POL@isolz@E{\the\numexpr\POL@isolz@E-\@ne}% + \POL@sturmchain@getSV@at\POL@IsoRight@raw + \let\POL@IsoRightSV \POL@sturmchain@SV + \let\POL@IsoRightSign\POL@sturmchain@sign + \ifnum\POL@IsoRightSV=\POL@@IsoRightSV\space + \let\POL@@IsoRightSign\POL@IsoRightSign % root here possible! + \repeat +}% \def\POL@isolz@check{% \POL@IsoRightSign must be ready for use here % \ifxintverbose % \xintMessage{polexpr}{Info}% @@ -1220,7 +1713,7 @@ \ifPOL@isolz@nextwillneedrefine \expandafter\expandafter\expandafter\POL@isolz@refine \else - % \POL@IsoRightSign is zero iff root now exactly know + % \POL@IsoRightSign is zero iff root now exactly known \POL@refine@storeleftandright \ifnum\POL@IsoRightSign=\z@ \global\POL@isolz@nextwillneedrefinetrue @@ -1275,7 +1768,7 @@ \edef\POL@IsoLeft@Int {\xintDSL{\POL@IsoLeft@Int}}% \edef\POL@IsoRight@Int{\xintInc{\POL@IsoLeft@Int}}% \edef\POL@IsoRightSign - {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% + {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% \ifnum\POL@IsoRightSign=\POL@@IsoRightSign\space \repeat % now second root has been separated from the one at left end point @@ -1294,7 +1787,7 @@ \else \edef\POL@IsoRight@Int{\xintDec{\POL@@IsoRight@Int}}% \edef\POL@IsoRightSign - {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% + {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% \ifnum\POL@IsoRightSign=\POL@@IsoRightSign\space \POL@refine@doonce % we need to locate in interval (1, 9) in local scale \else @@ -1319,17 +1812,17 @@ \let\POL@@IsoRightSign\POL@IsoRightSign \edef\POL@IsoRight@Int{\xintiiAdd{4}{\POL@IsoLeft@Int}}% 5 \edef\POL@IsoRightSign - {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% + {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% \ifnum\POL@IsoRightSign=\POL@IsoLeftSign\space \let\POL@IsoLeft@Int\POL@IsoRight@Int % 5 \edef\POL@IsoRight@Int{\xintiiAdd{2}{\POL@IsoLeft@Int}}% \edef\POL@IsoRightSign - {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% + {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% \ifnum\POL@IsoRightSign=\POL@IsoLeftSign\space \let\POL@IsoLeft@Int\POL@IsoRight@Int % 7 \edef\POL@IsoRight@Int{\xintInc{\POL@IsoLeft@Int}}% \edef\POL@IsoRightSign - {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% + {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% \ifnum\POL@IsoRightSign=\POL@IsoLeftSign\space \let\POL@IsoLeft@Int\POL@IsoRight@Int % 8 \let\POL@IsoRight@Int\POL@@IsoRight@Int % 9 @@ -1343,7 +1836,7 @@ \let\POL@@IsoRight@Int\POL@IsoRight@Int % 7 \edef\POL@IsoRight@Int{\xintInc{\POL@IsoLeft@Int}}% 6 \edef\POL@IsoRightSign - {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% + {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% \ifnum\POL@IsoRightSign=\POL@IsoLeftSign\space \let\POL@IsoLeft@Int\POL@IsoRight@Int % 6 \let\POL@IsoRight@Int\POL@@IsoRight@Int % 7 @@ -1358,12 +1851,12 @@ \let\POL@@IsoRight@Int\POL@IsoRight@Int % 5 \edef\POL@IsoRight@Int{\xintiiAdd{2}{\POL@IsoLeft@Int}}% \edef\POL@IsoRightSign - {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% + {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% \ifnum\POL@IsoRightSign=\POL@IsoLeftSign\space \let\POL@IsoLeft@Int\POL@IsoRight@Int % 3 \edef\POL@IsoRight@Int{\xintInc{\POL@IsoLeft@Int}}% 4 \edef\POL@IsoRightSign - {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% + {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% \ifnum\POL@IsoRightSign=\POL@IsoLeftSign\space \let\POL@IsoLeft@Int\POL@IsoRight@Int % 4 \let\POL@IsoRight@Int\POL@@IsoRight@Int % 5 @@ -1377,7 +1870,7 @@ \let\POL@@IsoRight@Int\POL@IsoRight@Int % 3 \edef\POL@IsoRight@Int{\xintInc{\POL@IsoLeft@Int}}% 2 \edef\POL@IsoRightSign - {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% + {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% \ifnum\POL@IsoRightSign=\POL@IsoLeftSign\space \let\POL@IsoLeft@Int\POL@IsoRight@Int % 2 \let\POL@IsoRight@Int\POL@@IsoRight@Int % 3 @@ -1395,35 +1888,43 @@ \xdef\csname POL_ZeroInt\POL@sturmname R\POL@isolz@IntervalIndex\endcsname {\PolDecToString{\POL@IsoRight@rawout}}% - \begingroup\xintglobaldefstrue - \xintdefvar\POL@sturmname - L_\POL@isolz@IntervalIndex:=qfrac(\POL@IsoLeft@rawout);% - \xintdefvar\POL@sturmname - R_\POL@isolz@IntervalIndex:=qfrac(\POL@IsoRight@rawout);% - \endgroup - % added at 0.6+ + % added at 0.6 \ifnum\POL@IsoRightSign=\z@ \global \expandafter \let\csname POL_ZeroIsKnown\POL@sturmname\POL@isolz@IntervalIndex\endcsname \xint_stop_atfirstoftwo \fi + \begingroup\xintglobaldefstrue + \xintdefvar + \POL@sturmname L_\POL@isolz@IntervalIndex,% + \POL@sturmname R_\POL@isolz@IntervalIndex,% + % added at 0.7 + \POL@sturmname Z_\POL@isolz@IntervalIndex _isknown + := qfrac(\POL@IsoLeft@rawout),% + qfrac(\POL@IsoRight@rawout),% + \ifnum\POL@IsoRightSign=\z@ 1\else 0\fi;% + \endgroup }% %% \PolRefineInterval \def\POL@xintexprGetVar#1{\expandafter\expandafter\expandafter \XINT_expr_unlock\csname XINT_expr_var_#1\endcsname}% -\def\POL@set@IsoLeft@rawin{% +% attention, also used by \POL@findrat@loop@a +\def\POL@get@IsoLeft@rawin{% \edef\POL@IsoLeft@rawin {\POL@xintexprGetVar{\POL@sturmname L_\POL@isolz@IntervalIndex}}% }% -\def\POL@set@IsoRight@rawin{% +% attention, also used by \POL@findrat@loop@a +\def\POL@get@IsoRight@rawin{% \edef\POL@IsoRight@rawin {\POL@xintexprGetVar{\POL@sturmname R_\POL@isolz@IntervalIndex}}% }% -\def\POL@set@IsoLeft@Int #1/1[#2]{% - \edef\POL@IsoLeft@Int{\xintDSH{\POL@isolz@E-#2}{#1}}% +% attention, also used by \POL@findrat@loop@a +\def\POL@get@Int@aux #1/1[#2]#3#4{\edef#3{\xintDSH{#4-#2}{#1}}}% +\def\POL@get@IsoLeft@Int{% + \expandafter\POL@get@Int@aux\POL@IsoLeft@rawin\POL@IsoLeft@Int\POL@isolz@E }% \newcommand\PolRefineInterval{\@ifstar\POL@srefine@start\POL@refine@start}% \newcommand\POL@refine@start[3][1]{% @@ -1441,19 +1942,19 @@ \POL@refine@main}% }% \def\POL@refine@sharedbody#1{% - \POL@set@IsoLeft@rawin + \POL@get@IsoLeft@rawin \edef\POL@IsoLeftSign - {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoLeft@rawin}}}% + {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoLeft@rawin}}}% \ifnum\POL@IsoLeftSign=\z@ % do nothing if that interval was already a singleton \else % else both end-points are not roots and there is a single one in-between - \POL@set@IsoRight@rawin + \POL@get@IsoRight@rawin \edef\POL@IsoRightSign{\the\numexpr-\POL@IsoLeftSign}% \edef\POL@isolz@E{\expandafter\POL@refine@getE % je pense que le xintrez ici est superflu \romannumeral0\xintrez{\xintSub{\POL@IsoRight@rawin}{\POL@IsoLeft@rawin}}}% - \expandafter\POL@set@IsoLeft@Int\POL@IsoLeft@rawin + \POL@get@IsoLeft@Int \edef\POL@IsoRight@Int{\xintInc{\POL@IsoLeft@Int}}% #1% \POL@refine@storeleftandright % \POL@IsoRightSign not zero @@ -1478,7 +1979,7 @@ \let\POL@@IsoRightSign\POL@IsoRightSign \edef\POL@IsoRight@Int{\xintInc{\POL@IsoLeft@Int}}% \edef\POL@IsoRightSign - {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% + {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% \ifnum\POL@IsoRightSign=\z@ \let\POL@IsoLeft@Int\POL@IsoRight@Int % root at 1 \def\POL@IsoLeftSign{0}% @@ -1491,7 +1992,7 @@ \let\POL@IsoLeft@Int\POL@IsoRight@Int \edef\POL@IsoRight@Int{\xintDec{\POL@@IsoRight@Int}}% \edef\POL@IsoRightSign - {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% + {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% \ifnum\POL@IsoRightSign=\z@ \let\POL@IsoLeft@Int\POL@IsoRight@Int % root at 9 \def\POL@IsoLeftSign{0}% @@ -1525,11 +2026,16 @@ \newcommand\PolEnsureIntervalLengths[2]{% #1 = Sturm chain name, % localize roots in intervals of length at most 10^{#2} - \POL@count\z@ - % \POL@count used by \POL@sturmchain@getSV@at but latter not used \edef\POL@sturmname{#1}% \edef\POL@ensure@targetE{\the\numexpr#2}% - \edef\POL@nbofroots{\csname POL_ZeroInt\POL@sturmname L\endcsname 0}% + \edef\POL@nbofroots{\csname POL_ZeroInt\POL@sturmname L0\endcsname}% + \ifnum\POL@nbofroots>\z@ + \expandafter\POL@ensureintervallengths + \fi +}% +\def\POL@ensureintervallengths{% + \POL@count\z@ + % \POL@count used by \POL@sturmchain@getSV@at but latter not used \xintloop \advance\POL@count\@ne \edef\POL@isolz@IntervalIndex{\the\POL@count}% @@ -1543,20 +2049,27 @@ \edef\POL@sturmname{#1}% \edef\POL@ensure@targetE{\the\numexpr#3}% \edef\POL@isolz@IntervalIndex{\the\numexpr#2}% - \POL@ensure@one +% peut-être autoriser -1, -2, ... ? + \ifnum\POL@isolz@IntervalIndex>\z@ +% 0.7, add this safeguard but attention means this structure must be in place + \ifnum\csname POL_ZeroInt\POL@sturmname L0\endcsname>\z@ +% je ne fais pas les \expandafter mais je préfèrerai ne pas être à l'intérieur + \POL@ensure@one + \fi + \fi }% \def\POL@ensure@one{% - \POL@set@IsoLeft@rawin - \POL@set@IsoRight@rawin + \POL@get@IsoLeft@rawin + \POL@get@IsoRight@rawin \edef\POL@ensure@delta{\xintREZ{\xintSub{\POL@IsoRight@rawin}{\POL@IsoLeft@rawin}}}% \xintiiifZero{\POL@ensure@delta} {} {\edef\POL@isolz@E{\expandafter\POL@refine@getE\POL@ensure@delta}% - \expandafter\POL@set@IsoLeft@Int\POL@IsoLeft@rawin + \POL@get@IsoLeft@Int \edef\POL@IsoRight@Int{\xintInc{\POL@IsoLeft@Int}}% \ifnum\POL@isolz@E>\POL@ensure@targetE\space \edef\POL@IsoLeftSign - {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoLeft@raw}}}% + {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoLeft@raw}}}% % at start left and right are not roots, and values of opposite signs % \edef\POL@IsoRightSign{\the\numexpr-\POL@IsoLeftSign}% \xintloop @@ -1576,7 +2089,7 @@ \xintloop \edef\POL@IsoRight@Int{\xintInc{\POL@IsoLeft@Int}}% \edef\POL@IsoRightSign - {\xintiiSgn{\Pol@Eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% + {\xintiiSgn{\POL@eval{\POL@sturmname _0}{\POL@IsoRight@raw}}}% % if we have found a zero at right boundary the \ifnum test will fail % and we exit the loop % else we exit the loop if sign at right boundary is opposite of @@ -1595,54 +2108,119 @@ \catcode`_ 8 -\newcommand\PolPrintIntervals[2][Z]{% - \POL@count \@nameuse{POL_ZeroInt#2L}{0} - \ifnum\POL@count=\z@ -% No real roots.\par +\newcommand\PolPrintIntervals + {\@ifstar{\PolPrintIntervals@@}{\PolPrintIntervals@}}% +\newcommand\PolPrintIntervals@@{% + \begingroup + \def\POL@AfterPrintIntervals{\endgroup}% + \def\arraystretch{2}% + \let\PolPrintIntervalsPrintExactZero\POL@@PrintIntervalsPrintExactZero + \let\PolPrintIntervalsUnknownRoot\POL@@PrintIntervalsUnknownRoot + \let\PolPrintIntervalsKnownRoot\POL@@PrintIntervalsKnownRoot + \def\PolPrintIntervalsBeginEnv{\[\begin{array}{cl}}%\] + \def\PolPrintIntervalsEndEnv{\end{array}\]}% + \PolPrintIntervals@ +}% +\newcommand\PolPrintIntervals@[2][Z]{\POL@PrintIntervals{#1}{#2}}% +\newcommand\POL@PrintIntervals[2]{% + \def\PolPrintIntervalsTheSturmName{#2}% + \def\PolPrintIntervalsTheVar{#1}% + \ifnum\@nameuse{POL_ZeroInt#2L}{0}=\z@ + \PolPrintIntervalsNoRealRoots \else -% There are \the\POL@count\space distinct real roots:\par - \[\count@\POL@count - \global\POL@count\@ne - \begin{array}{rcccl} - \xintloop - \POL@SturmIfZeroExactlyKnown{#2}\POL@count - {% exact root - && - #1_{\the\POL@count}&=& - \POL@printintervals@prepare{#2R}% - \PolPrintIntervalsPrintExactZero - }% - {% interval with root in its strict interior - \POL@printintervals@prepare{#2L}% - \PolPrintIntervalsPrintLeftEndPoint&<& - #1_{\the\POL@count}&<& - \POL@printintervals@prepare{#2R}% - \PolPrintIntervalsPrintRightEndPoint - }% - \global\advance\POL@count\@ne - \unless\ifnum\POL@count>\count@ - \\% - \repeat - \end{array}\] + \gdef\PolPrintIntervalsTheIndex{1}% + \POL@PrintIntervals@DoDefs + \begingroup\edef\POL@tmp{\endgroup + \unexpanded\expandafter{\PolPrintIntervalsBeginEnv}% + \unexpanded\expandafter{\POL@PrintIntervals@Loop}% + \unexpanded\expandafter{\PolPrintIntervalsEndEnv}% + }\POL@tmp \fi + \POL@AfterPrintIntervals +}% +\let\POL@AfterPrintIntervals\@empty +\newcommand\PolPrintIntervalsNoRealRoots{}% +\newcommand\PolPrintIntervalsBeginEnv{\[\begin{array}{rcccl}}% +\newcommand\PolPrintIntervalsEndEnv{\end{array}\]}% +\newcommand\PolPrintIntervalsKnownRoot{% + &&\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}% + &=&\PolPrintIntervalsPrintExactZero +}% +\newcommand\PolPrintIntervalsUnknownRoot{% + \PolPrintIntervalsPrintLeftEndPoint&<&% + \PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}&<&% + \PolPrintIntervalsPrintRightEndPoint +}% +\newcommand\PolPrintIntervalsPrintExactZero {\PolPrintIntervalsTheLeftEndPoint}% +\newcommand\PolPrintIntervalsPrintLeftEndPoint {\PolPrintIntervalsTheLeftEndPoint}% +\newcommand\PolPrintIntervalsPrintRightEndPoint{\PolPrintIntervalsTheRightEndPoint}% +\newcommand\PolPrintIntervalsPrintMultiplicity{(\mbox{mult. }\PolPrintIntervalsTheMultiplicity)}% +% +\newcommand\POL@@PrintIntervalsKnownRoot{% + \PolPrintIntervalsPrintMultiplicity&% + \PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}=% + \PolPrintIntervalsPrintExactZero +}% +\newcommand\POL@@PrintIntervalsPrintExactZero{% + \displaystyle + \xintSignedFrac{\PolPrintIntervalsTheLeftEndPoint}% +}% +\newcommand\POL@@PrintIntervalsUnknownRoot{% + \PolPrintIntervalsPrintMultiplicity&% + \xintifSgn{\PolPrintIntervalsTheLeftEndPoint}% + {\xintifSgn{\PolPrintIntervalsTheRightEndPoint} + {\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}=% + \PolPrintIntervalsPrintRightEndPoint\dots}% + {0>\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}>% + \PolPrintIntervalsPrintLeftEndPoint}% + {\PolErrorThisShouldNotHappenPleaseReportToAuthorA}}% + {\xintifSgn{\PolPrintIntervalsTheRightEndPoint} + {\PolErrorThisShouldNotHappenPleaseReportToAuthorB}% + {\PolErrorThisShouldNotHappenPleaseReportToAuthorC}% + {0<\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}<% + \PolPrintIntervalsPrintRightEndPoint}}% + {\xintifSgn{\PolPrintIntervalsTheRightEndPoint} + {\PolErrorThisShouldNotHappenPleaseReportToAuthorD}% + {\PolErrorThisShouldNotHappenPleaseReportToAuthorE}% + {\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}=% + \PolPrintIntervalsPrintLeftEndPoint\dots}}% }% +% \catcode`_ 11 -\newcommand\PolPrintIntervalsPrintExactZero {\PolPrintIntervalsTheEndPoint}% -\newcommand\PolPrintIntervalsPrintLeftEndPoint {\PolPrintIntervalsTheEndPoint}% -\newcommand\PolPrintIntervalsPrintRightEndPoint{\PolPrintIntervalsTheEndPoint}% -\def\POL@printintervals@prepare#1{% - \edef\PolPrintIntervalsTheIndex{\the\POL@count}% - \edef\PolPrintIntervalsTheEndPoint{\@nameuse{POL_ZeroInt#1}\POL@count}% - \xintiiifSgn{\POL@xintexprGetVar{#1_\PolPrintIntervalsTheIndex}} - {\let\PolIfEndPointIsPositive\xint_secondoftwo - \let\PolIfEndPointIsNegative\xint_firstoftwo - \let\PolIfEndPointIsZero\xint_secondoftwo} - {\let\PolIfEndPointIsPositive\xint_secondoftwo - \let\PolIfEndPointIsNegative\xint_secondoftwo - \let\PolIfEndPointIsZero\xint_firstoftwo} - {\let\PolIfEndPointIsPositive\xint_firstoftwo - \let\PolIfEndPointIsNegative\xint_secondoftwo - \let\PolIfEndPointIsZero\xint_secondoftwo}% +\def\POL@PrintIntervals@Loop{% + \POL@SturmIfZeroExactlyKnown\PolPrintIntervalsTheSturmName + \PolPrintIntervalsTheIndex + \PolPrintIntervalsKnownRoot + \PolPrintIntervalsUnknownRoot + \xdef\PolPrintIntervalsTheIndex{\the\numexpr\PolPrintIntervalsTheIndex+\@ne}% + \unless\ifnum\PolPrintIntervalsTheIndex> + \@nameuse{POL_ZeroInt\PolPrintIntervalsTheSturmName L0} + \POL@PrintIntervals@DoDefs + \xint_afterfi{\\\POL@PrintIntervals@Loop}% + \fi +}% +\def\POL@PrintIntervals@DoDefs{% + \xdef\PolPrintIntervalsTheLeftEndPoint{% + \csname POL_ZeroInt% + \PolPrintIntervalsTheSturmName L\PolPrintIntervalsTheIndex + \endcsname + }% + \xdef\PolPrintIntervalsTheRightEndPoint{% + \csname POL_ZeroInt% + \PolPrintIntervalsTheSturmName R\PolPrintIntervalsTheIndex + \endcsname + }% + \xdef\PolPrintIntervalsTheMultiplicity{% + \ifcsname POL_ZeroMult% + \PolPrintIntervalsTheSturmName\PolPrintIntervalsTheIndex + \endcsname + \csname POL_ZeroMult% + \PolPrintIntervalsTheSturmName\PolPrintIntervalsTheIndex + \endcsname + \else + ?% or use 0 ? + \fi + }% }% @@ -1650,18 +2228,38 @@ \romannumeral0\csname POL_ZeroIsKnown#1\endcsname{#2}% }% \newcommand\POL@SturmIfZeroExactlyKnown[2]{% #1 = sturmname, #2=index - \romannumeral0\csname POL_ZeroIsKnown#1\the\numexpr#2\relax\endcsname + \romannumeral0\csname POL_ZeroIsKnown#1\the\numexpr#2\endcsname }% \newcommand\PolSturmIsolatedZeroMultiplicity[2]{% \romannumeral`^^@\csname POL_ZeroMult#1\endcsname{#2}% }% \newcommand\PolSturmIsolatedZeroLeft[2]{% - \romannumeral`^^@\csname POL_ZeroInt#1L\endcsname{#2}}% + \romannumeral`^^@\csname POL_ZeroInt#1L\endcsname{#2}% +}% \newcommand\PolSturmIsolatedZeroRight[2]{% - \romannumeral`^^@\csname POL_ZeroInt#1R\endcsname{#2}}% + \romannumeral`^^@\csname POL_ZeroInt#1R\endcsname{#2}% +}% \newcommand\PolSturmNbOfIsolatedZeros[1]{% \romannumeral`^^@\csname POL_ZeroInt#1L0\endcsname }% +\newcommand\PolSturmRationalRoot[2]{% + \romannumeral`^^@\csname POL_ZeroInt#1L% + \csname POL_RRIndex#1\endcsname{#2}\endcsname +}% +\newcommand\PolSturmRationalRootIndex[2]{% + \romannumeral`^^@\csname POL_RRIndex#1\endcsname{#2}% +}% +\newcommand\PolSturmRationalRootMultiplicity[2]{% + \romannumeral`^^@\csname POL_ZeroMult#1% + \csname POL_RRIndex#1\endcsname{#2}\endcsname +}% +\newcommand\PolSturmNbOfRationalRoots[1]{% + \romannumeral`^^@\csname POL_RRIndex#10\endcsname +}% +\newcommand\PolSturmNbOfRationalRootsWithMultiplicities[1]{% +% means the \POL@norr must not have been changed in-between... + \the\numexpr\PolDegree{#1}-\PolDegree{#1\POL@norr}\relax +}% \let\PolDecToString\xintDecToString @@ -2023,18 +2621,18 @@ %% EXPANDABLE MACROS -\def\Pol@Eval@fork#1\At#2#3\krof{#2}% -\newcommand\PolEval[3]{\romannumeral`^^@\Pol@Eval@fork +\def\POL@eval@fork#1\At#2#3\krof{#2}% +\newcommand\PolEval[3]{\romannumeral`^^@\POL@eval@fork #2\PolEvalAt \At\PolEvalAtExpr\krof {#1}{#3}% }% \newcommand\PolEvalAt[2] {\xintpraw{\csname XINT_expr_userfunc_#1\endcsname{#2}}}% -\newcommand\Pol@Eval[2] +\newcommand\POL@eval[2] {\csname XINT_expr_userfunc_#1\endcsname{#2}}% \newcommand\PolEvalAtExpr[2]{\xinttheexpr #1(#2)\relax}% % -\newcommand\PolEvalReduced[3]{\romannumeral`^^@\Pol@Eval@fork +\newcommand\PolEvalReduced[3]{\romannumeral`^^@\POL@eval@fork #2\PolEvalReducedAt \At\PolEvalReducedAtExpr\krof {#1}{#3}% }% @@ -2047,7 +2645,7 @@ {\xintIrr{\romannumeral`^^@\xintthebareeval#1(#2)\relax}[0]}% }% % -\newcommand\PolFloatEval[3]{\romannumeral`^^@\Pol@Eval@fork +\newcommand\PolFloatEval[3]{\romannumeral`^^@\POL@eval@fork #2\PolFloatEvalAt \At\PolFloatEvalAtExpr\krof {#1}{#3}% }% @@ -2056,37 +2654,48 @@ \newcommand\PolFloatEvalAtExpr[2]{\xintthefloatexpr #1(#2)\relax}% -\newcommand\PolSturmMultiplicity[3]{\romannumeral`^^@\Pol@Eval@fork - #2\PolSturmMultiplicityAt - \At\PolSturmMultiplicityAtExpr\krof {#1}{#3}% +\newcommand\PolSturmIntervalIndex[3]{\the\numexpr\POL@eval@fork + #2\PolSturmIntervalIndexAt + \At\PolSturmIntervalIndexAtExpr\krof {#1}{#3}% }% -\newcommand\PolSturmMultiplicityAtExpr[2] - {\PolSturmMultiplicityAt{#1}{\xinttheexpr#2\relax}}% -\newcommand\PolSturmMultiplicityAt[2] - {\expandafter\POL@sturm@mult@at\romannumeral`^^@#2!{#1}}% -\def\POL@sturm@mult@at#1!#2% +\newcommand\PolSturmIntervalIndexAtExpr[2] + {\PolSturmIntervalIndexAt{#1}{\xinttheexpr#2\relax}}% +\newcommand\PolSturmIntervalIndexAt[2] + {\expandafter\POL@sturm@index@at\romannumeral`^^@#2!{#1}\xint_bye\relax}% +\def\POL@sturm@index@at#1!#2% {% - \xintifZero{\Pol@Eval{#2_0}{#1}}% - {\POL@sturm@mult@at@iloop 1!{#2}{#1}}% we have a zero - 0% not a zero + \expandafter\POL@sturm@index@at@iloop + \romannumeral`^^@\PolSturmNbOfIsolatedZeros{#2}!{#2}{#1}% }% -\def\POL@sturm@mult@at@iloop #1!#2#3% +% implementation is sub-optimal as it should use some kind of binary tree +% search rather than comparing to the intervals from right to left as here +\def\POL@sturm@index@at@iloop #1!% +{% + \ifnum #1=\z@ 0\expandafter\xint_bye\fi + \POL@sturm@index@at@iloop@a #1!% +}% +\def\POL@sturm@index@at@iloop@a #1!#2#3% {% #1 = index, #2 = sturmname, #3 value - \PolSturmIfZeroExactlyKnown{#2}{#1}% - {\xintifEq{\POL@xintexprGetVar{#2L_#1}}{#3}% - {\PolSturmIsolatedZeroMultiplicity{#2}{#1}}% -% catcode of ! is 11 in polexpr.sty - {\expandafter\POL@sturm@mult@at@iloop\the\numexpr#1+\@ne !{#2}{#3}}% + \PolSturmIfZeroExactlyKnown{#2}{#1} + {\xintifCmp{#3}{\POL@xintexprGetVar{#2L_#1}}% + {}% + {#1\xint_bye}% + {0\xint_bye}% }% - {\xintifLt{#3}{\POL@xintexprGetVar{#2R_#1}}% - {\PolSturmIsolatedZeroMultiplicity{#2}{#1}}% - {\expandafter\POL@sturm@mult@at@iloop\the\numexpr#1+\@ne !{#2}{#3}}% + {\xintifGt{#3}{\POL@xintexprGetVar{#2L_#1}}% + {\xintifLt{#3}{\POL@xintexprGetVar{#2R_#1}}% + {#1\xint_bye}% + {0\xint_bye}% + }% + {}% }% + % catcode of ! is 11 in polexpr.sty + \expandafter\POL@sturm@index@at@iloop\the\numexpr#1-\@ne !{#2}{#3}% }% -\def\Pol@LessThanOrEqualTo@fork#1\LessThanOrEqualTo#2#3\krof{#2}% -\newcommand\PolSturmNbOfRootsOf[3]{\romannumeral`^^@\Pol@LessThanOrEqualTo@fork +\def\POL@leq@fork#1\LessThanOrEqualTo#2#3\krof{#2}% +\newcommand\PolSturmNbOfRootsOf[3]{\romannumeral`^^@\POL@leq@fork #2\PolNbOfRootsLessThanOrEqualTo \LessThanOrEqualTo\PolNbOfRootsLessThanOrEqualToExpr\krof {#1}{#3}% }% @@ -2106,7 +2715,7 @@ \def\POL@nbofrootsleq@prep#1!#2% {% \expandafter\POL@nbofrootsleq@iloop\expandafter 1\expandafter !% - \romannumeral0\xintsgn{\Pol@Eval{#2_0}{#1}}!% + \romannumeral0\xintsgn{\POL@eval{#2_0}{#1}}!% #1!{#2}% }% \def\POL@nbofrootsleq@iloop#1!#2!#3!#4% @@ -2120,7 +2729,7 @@ % the test \xintifLt will be negative {\xintifLt{#3}{\POL@xintexprGetVar{#4R_#1}}% {\POL@nbofrootsleq@return - #1\ifnum#2=\xintSgn{\Pol@Eval{#4_0}{\POL@xintexprGetVar{#4L_#1}}} + #1\ifnum#2=\xintSgn{\POL@eval{#4_0}{\POL@xintexprGetVar{#4L_#1}}} -\@ne\fi !% }% {\ifnum#1=\PolSturmNbOfIsolatedZeros{#4} @@ -2135,9 +2744,8 @@ \the\numexpr\@ne+#1!#2!#3!#4{#1}% -\def\Pol@LessThanOrEqualTo@fork#1\LessThanOrEqualTo#2#3\krof{#2}% \newcommand\PolSturmNbWithMultOfRootsOf[3] -{\the\numexpr0\Pol@LessThanOrEqualTo@fork +{\the\numexpr0\POL@leq@fork #2\PolNbWithMultOfRootsLessThanOrEqualTo \LessThanOrEqualTo\PolNbWithMultOfRootsLessThanOrEqualToExpr\krof {#1}{#3}% }% @@ -2158,7 +2766,7 @@ \def\POL@nbwmofrootsleq@prep#1!#2% {% \expandafter\POL@nbwmofrootsleq@iloop\expandafter 1\expandafter !% - \romannumeral0\xintsgn{\Pol@Eval{#2_0}{#1}}!% + \romannumeral0\xintsgn{\POL@eval{#2_0}{#1}}!% #1!{#2}% }% \def\POL@nbwmofrootsleq@iloop#1!#2!#3!#4% @@ -2174,7 +2782,7 @@ {\xintifLt{#3}{\POL@xintexprGetVar{#4R_#1}}% {\POL@nbwmofrootsleq@return \unless - \ifnum#2=\xintSgn{\Pol@Eval{#4_0}{\POL@xintexprGetVar{#4L_#1}}} + \ifnum#2=\xintSgn{\POL@eval{#4_0}{\POL@xintexprGetVar{#4L_#1}}} +\PolSturmIsolatedZeroMultiplicity{#4}{#1}\fi !% }% {+\PolSturmIsolatedZeroMultiplicity{#4}{#1}% |