diff options
Diffstat (limited to 'Master/texmf-dist/tex/latex/mandi')
-rw-r--r-- | Master/texmf-dist/tex/latex/mandi/mandi.sty | 606 |
1 files changed, 362 insertions, 244 deletions
diff --git a/Master/texmf-dist/tex/latex/mandi/mandi.sty b/Master/texmf-dist/tex/latex/mandi/mandi.sty index d5206ea8965..46db7c1f230 100644 --- a/Master/texmf-dist/tex/latex/mandi/mandi.sty +++ b/Master/texmf-dist/tex/latex/mandi/mandi.sty @@ -6,7 +6,7 @@ %% %% mandi.dtx (with options: `package') %% -%% Copyright (C) 2011,2012 by Paul J. Heafner <heafnerj@gmail.com> +%% Copyright (C) 2011, 2012, 2013 by Paul J. Heafner <heafnerj@gmail.com> %% --------------------------------------------------------------------------- %% This work may be distributed and/or modified under the conditions of the %% LaTeX Project Public License, either version 1.3 of this license or (at @@ -20,21 +20,21 @@ %% The Current Maintainer of this work is Paul J. Heafner. %% %% This work consists of the files mandi.dtx +%% README %% -%% and includes the derived files README -%% mandi.ins +%% and includes the derived files mandi.ins %% mandi.sty -%% mandi.pdf and -%% vdemo.py. +%% vdemo.py and +%% mandi.pdf. %% --------------------------------------------------------------------------- %% -\ProvidesPackage{mandi}[2013/04/10 2.1.0 Macros for intro physics and astronomy] +\ProvidesPackage{mandi}[2013/06/14 2.2.0 Macros for physics and astronomy] \NeedsTeXFormat{LaTeX2e}[1999/12/01] \RequirePackage{amsmath} \RequirePackage{amssymb} +\RequirePackage{array} \RequirePackage{bigints} \RequirePackage{cancel} -\RequirePackage[leftbars,color]{changebar} \RequirePackage[dvipsnames]{xcolor} \RequirePackage{environ} \RequirePackage{etoolbox} @@ -61,6 +61,7 @@ \definecolor{vpythoncolor}{rgb}{0.95,0.95,0.95} \newcommand{\lstvpython}{\lstset{language=Python,numbers=left,numberstyle=\tiny, backgroundcolor=\color{vpythoncolor},upquote=true,breaklines}} +\newcolumntype{C}[1]{>{\centering}m{#1}} \newboolean{@optitalicvectors} \newboolean{@optdoubleabsbars} \newboolean{@optbaseunits} @@ -91,6 +92,7 @@ \newcommand{\coulomb}{\ensuremath{\mathrm{C}}} \newcommand{\degree}{\ensuremath{^{\circ}}} \newcommand{\electronvolt}{\ensuremath{\mathrm{eV}}} +\newcommand{\eV}{\electronvolt} \newcommand{\farad}{\ensuremath{\mathrm{F}}} \newcommand{\henry}{\ensuremath{\mathrm{H}}} \newcommand{\hertz}{\ensuremath{\mathrm{Hz}}} @@ -122,6 +124,7 @@ \newcommand{\T}{\tesla} \newcommand{\V}{\volt} \newcommand{\W}{\watt} +\newcommand{\Wb}{\weber} \newcommand{\square}[1]{\ensuremath{\mathrm{#1}^{2}}} % prefix 2 \newcommand*{\cubic}[1]{\ensuremath{\mathrm{#1}^{3}}} % prefix 3 \newcommand*{\quartic}[1]{\ensuremath{\mathrm{#1}^{4}}} % prefix 4 @@ -207,8 +210,7 @@ \setbox\z@\hbox{% \mathchardef\@tempa\mathcode`\[\relax \def\@tempb##1"##2##3{\the\textfont"##3\char"}% - \expandafter\@tempb\meaning\@tempa \relax - }% + \expandafter\@tempb\meaning\@tempa \relax}% \ht\Mathstrutbox@\ht\z@ \dp\Mathstrutbox@\dp\z@} \begingroup \catcode`(\active \xdef({\left\string(} @@ -242,14 +244,31 @@ \newphysicsquantity{planeangle}{\m\usk\reciprocal\m}[\rad][\rad] \newphysicsquantity{solidangle}{\m\squared\usk\reciprocalsquare\m}[\sr][\sr] \newcommand{\indegrees}[1]{\ensuremath{\unit{#1}{\degree}}} +\newcommand{\inFarenheit}[1]{\ensuremath{\unit{#1}{\degree\mathrm{F}}}} +\newcommand{\inCelsius}[1]{\ensuremath{\unit{#1}{\degree\mathrm{C}}}} \newcommand{\inarcminutes}[1]{\ensuremath{\unit{#1}{\arcminute}}} \newcommand{\inarcseconds}[1]{\ensuremath{\unit{#1}{\arcsecond}}} \newcommand{\ineV}[1]{\ensuremath{\unit{#1}{\electronvolt}}} +\newcommand{\inMeVocs}[1]{\ensuremath{\unit{#1}{\mathrm{MeV}\per\msup{c}{2}}}} +\newcommand{\inMeVoc}[1]{\ensuremath{\unit{#1}{\mathrm{MeV}\per c}}} \newcommand{\inAU}[1]{\ensuremath{\unit{#1}{\mathrm{AU}}}} +\newcommand{\inly}[1]{\ensuremath{\unit{#1}{\mathrm{ly}}}} +\newcommand{\incyr}[1]{\ensuremath{\unit{#1}{c\usk\mathrm{year}}}} +\newcommand{\inpc}[1]{\ensuremath{\unit{#1}{\mathrm{pc}}}} +\newcommand{\insolarL}[1]{\ensuremath{\unit{#1}{\Lsolar}}} +\newcommand{\insolarT}[1]{\ensuremath{\unit{#1}{\Tsolar}}} +\newcommand{\insolarR}[1]{\ensuremath{\unit{#1}{\Rsolar}}} +\newcommand{\insolarM}[1]{\ensuremath{\unit{#1}{\Msolar}}} +\newcommand{\insolarF}[1]{\ensuremath{\unit{#1}{\Fsolar}}} +\newcommand{\insolarf}[1]{\ensuremath{\unit{#1}{\fsolar}}} +\newcommand{\insolarMag}[1]{\ensuremath{\unit{#1}{\Magsolar}}} +\newcommand{\insolarmag}[1]{\ensuremath{\unit{#1}{\magsolar}}} +\newcommand{\insolarD}[1]{\ensuremath{\unit{#1}{\Dsolar}}} +\newcommand{\insolard}[1]{\ensuremath{\unit{#1}{\dsolar}}} \newcommand{\velocityc}[1]{\ensuremath{#1c}} \newphysicsquantity{velocity}{\m\usk\reciprocal\s}[\m\usk\reciprocal\s][\m\per\s] \newphysicsquantity{acceleration}{\m\usk\s\reciprocalsquared}[\N\per\kg][\m\per\s\squared] -\newcommand{\gamman}[1]{\ensuremath{#1}} +\newcommand{\lorentz}[1]{\ensuremath{#1}} \newphysicsquantity{momentum}{\m\usk\kg\usk\reciprocal\s}[\N\usk\s][\kg\usk\m\per\s] \newphysicsquantity{impulse}{\m\usk\kg\usk\reciprocal\s}[\N\usk\s][\kg\usk\m\per\s] \newphysicsquantity{force}{\m\usk\kg\usk\s\reciprocalsquared}[\N][\N] @@ -264,20 +283,16 @@ [\kg\per\m\cubed] \newphysicsquantity{youngsmodulus}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared} [\N\per\m\squared][\Pa] -\newphysicsquantity{work}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J] -[\N\usk\m] -\newphysicsquantity{energy}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J] -[\N\usk\m] +\newphysicsquantity{work}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J][\N\usk\m] +\newphysicsquantity{energy}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J][\N\usk\m] \newphysicsquantity{power}{\m\squared\usk\kg\usk\s\reciprocalcubed}[\W][\J\per\s] \newphysicsquantity{angularvelocity}{\rad\usk\reciprocal\s}[\rad\per\s][\rad\per\s] \newphysicsquantity{angularacceleration}{\rad\usk\s\reciprocalsquared}[\rad\per\s\squared] [\rad\per\s\squared] \newphysicsquantity{angularmomentum}{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s] [\kg\usk\m\squared\per\s] -\newphysicsquantity{momentofinertia}{\m\squared\usk\kg}[\J\usk\s\squared] -[\kg\usk\m\squared] -\newphysicsquantity{torque}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J\per\rad] -[\N\usk\m] +\newphysicsquantity{momentofinertia}{\m\squared\usk\kg}[\J\usk\s\squared][\kg\usk\m\squared] +\newphysicsquantity{torque}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J\per\rad][\N\usk\m] \newphysicsquantity{entropy}{\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\K} [\J\per\K][\J\per\K] \newphysicsquantity{wavelength}{\m}[\m][\m] @@ -285,15 +300,21 @@ \newphysicsquantity{frequency}{\reciprocal\s}[\hertz][\hertz] \newphysicsquantity{angularfrequency}{\rad\usk\reciprocal\s}[\rad\per\s][\rad\per\s] \newphysicsquantity{charge}{\A\usk\s}[\C][\C] -\newphysicsquantity{permittivity}{\m\reciprocalcubed\usk\reciprocal\kg\usk\s - \reciprocalquarted\usk\A\squared}[\F\per\m][\C\squared\per\N\usk\m\squared] -\newphysicsquantity{permeability}{\m\usk\kg\usk\s\reciprocalsquared\usk\A - \reciprocalsquared}[\henry\per\m][\T\usk\m\per\A] +\newphysicsquantity{permittivity} +{\m\reciprocalcubed\usk\reciprocal\kg\usk\s\reciprocalquarted\usk\A\squared} +[\F\per\m][\C\squared\per\N\usk\m\squared] +\newphysicsquantity{permeability} +{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}[\henry\per\m][\T\usk\m\per\A] \newphysicsquantity{electricfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A} [\V\per\m][\N\per\C] \newphysicsquantity{electricdipolemoment}{\m\usk\s\usk\A}[\C\usk\m][\C\usk\m] +\newphysicsquantity{electricflux}{\m\cubed\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A} +[\V\usk\m][\N\usk\m\squared\per\C] \newphysicsquantity{magneticfield}{\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\T] -[\N\per\C\usk(\m\per\s)] +[\N\per\C\usk(\m\per\s)] % also \Wb\per\m\squared +\newphysicsquantity{magneticflux} +{\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\volt\usk\s] +[\T\usk\m\squared] % also \Wb and \J\per\A \newphysicsquantity{cmagneticfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A} [\V\per\m][\N\per\C] \newphysicsquantity{linearchargedensity}{\reciprocal\m\usk\s\usk\A}[\C\per\m][\C\per\m] @@ -317,6 +338,8 @@ \newphysicsquantity{relativepermeability}{}[][] \newphysicsquantity{energydensity}{\m\reciprocaled\usk\kg\usk\reciprocalsquare\s} [\J\per\cubic\m][\J\per\cubic\m] +\newphysicsquantity{energyflux}{\kg\usk\s\reciprocalcubed} +[\W\per\m\squared][\W\per\m\squared] \newphysicsquantity{electroncurrent}{\reciprocal\s} [\ensuremath{\mathrm{e}}\per\s][\ensuremath{\mathrm{e}}\per\s] \newphysicsquantity{conventionalcurrent}{\A}[\C\per\s][\A] @@ -324,27 +347,30 @@ \newphysicsquantity{currentdensity}{\reciprocalsquare\m\usk\A}[\C\usk\s\per\square\m] [\A\per\square\m] \newphysicsquantity{capacitance} -{\reciprocalsquare\m\usk\reciprocal\kg\usk\quartic\s\usk\square\A}[\C\per\V][\F] +{\reciprocalsquare\m\usk\reciprocal\kg\usk\quartic\s\usk\square\A}[\F][\C\per\V] +\newphysicsquantity{inductance} +{\square\m\usk\kg\usk\reciprocalsquare\s\usk\reciprocalsquare\A}[\henry] +[\volt\usk\s\per\A] % also \square\m\usk\kg\per\C\squared, \Wb\per\A \newphysicsquantity{conductivity} {\reciprocalcubic\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\siemens\per\m] -[\A\per\V\usk\m] +[(\A\per\square\m)\per(\V\per\m)] \newphysicsquantity{resistivity} -{\cubic\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\m\per\siemens] -[\ohm\usk\m] +{\cubic\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\ohm\usk\m] +[(\V\per\m)\per(\A\per\square\m)] \newphysicsquantity{resistance} {\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\V\per\A][\ohm] \newphysicsquantity{conductance} {\reciprocalsquare\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\A\per\V][\siemens] +\newphysicsquantity{magneticcharge}{\m\usk\A}[\m\usk\A][\m\usk\A] \newcommand{\lv}{\ensuremath{\left\langle}} \newcommand{\rv}{\ensuremath{\right\rangle}} \newcommand{\symvect}{\mivector} \newcommand{\ncompsvect}{\mivector} -\ExplSyntaxOn +\ExplSyntaxOn % Written in LaTeX3 \NewDocumentCommand{\magvectncomps}{ m O{} } {% \sum_of_squares:nn { #1 }{ #2 } }% - \cs_new:Npn \sum_of_squares:nn #1 #2 {% \tl_if_empty:nTF { #2 } @@ -410,16 +436,16 @@ \compDvect{#1}{z}\rv}} \newcommand{\dervect}[2]{\ensuremath{\frac{\dvect{#1}}{\mathrm{d}{#2}}}} \newcommand{\Dervect}[2]{\ensuremath{\frac{\Dvect{#1}}{\Delta{#2}}}} -\newcommand{\compdervect}[3]{\ensuremath{\dbyd{\compvect{#1}{#3}}{#2}}} -\newcommand{\compDervect}[3]{\ensuremath{\DbyD{\compvect{#1}{#3}}{#2}}} +\newcommand{\compdervect}[3]{\ensuremath{\dbyd{\compvect{#1}{#2}}{#3}}} +\newcommand{\compDervect}[3]{\ensuremath{\DbyD{\compvect{#1}{#2}}{#3}}} \newcommand{\scompsdervect}[2]{\ensuremath{\lv - \compdervect{#1}{#2}{x}, - \compdervect{#1}{#2}{y}, - \compdervect{#1}{#2}{z}\rv}} + \compdervect{#1}{x}{#2}, + \compdervect{#1}{y}{#2}, + \compdervect{#1}{z}{#2}\rv}} \newcommand{\scompsDervect}[2]{\ensuremath{\lv - \compDervect{#1}{#2}{x}, - \compDervect{#1}{#2}{y}, - \compDervect{#1}{#2}{z}\rv}} + \compDervect{#1}{x}{#2}, + \compDervect{#1}{y}{#2}, + \compDervect{#1}{z}{#2}\rv}} \ifthenelse{\boolean{@optdoubleabsbars}} {\newcommand{\magdervect}[2]{\ensuremath{\magof{\dervect{#1}{#2}}}} \newcommand{\magDervect}[2]{\ensuremath{\magof{\Dervect{#1}{#2}}}}} @@ -443,19 +469,19 @@ \newcommand{\compDerpos}[2]{\ensuremath{\frac{\Delta{#1}}{\Delta{#2}}}} \newcommand{\vectsub}[2]{\ensuremath{\ssub{\vect{#1}}{#2}}} \ifthenelse{\boolean{@optitalicvectors}} - {\newcommand{\compvectsub}[3]{\ensuremath{\ssub{#1}{#2,\(#3\)}}}} - {\newcommand{\compvectsub}[3]{\ensuremath{\ssub{\mathrm{#1}}{#2,\(#3\)}}}} + {\newcommand{\compvectsub}[3]{\ensuremath{\ssub{#1}{\(#2\),#3}}}} + {\newcommand{\compvectsub}[3]{\ensuremath{\ssub{\mathrm{#1}}{\(#2\),#3}}}} \newcommand{\scompsvectsub}[2]{\ensuremath{\lv - \compvectsub{#1}{#2}{x}, - \compvectsub{#1}{#2}{y}, - \compvectsub{#1}{#2}{z}\rv}} + \compvectsub{#1}{x}{#2}, + \compvectsub{#1}{y}{#2}, + \compvectsub{#1}{z}{#2}\rv}} \ifthenelse{\boolean{@optdoubleabsbars}} {\newcommand{\magvectsub}[2]{\ensuremath{\magof{\vectsub{#1}{#2}}}}} {\newcommand{\magvectsub}[2]{\ensuremath{\abs{\vectsub{#1}{#2}}}}} \newcommand{\magvectsubscomps}[2]{\ensuremath{\sqrt{ - \msup{\compvectsub{#1}{#2}{x}}{2}+ - \msup{\compvectsub{#1}{#2}{y}}{2}+ - \msup{\compvectsub{#1}{#2}{z}}{2}}}} + \msup{\compvectsub{#1}{x}{#2}}{2}+ + \msup{\compvectsub{#1}{y}{#2}}{2}+ + \msup{\compvectsub{#1}{z}{#2}}{2}}}} \ifthenelse{\boolean{@optitalicvectors}} {\newcommand{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{#1}}{#2}}}} {\newcommand{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{\mathrm{#1}}}{#2}}}} @@ -464,13 +490,13 @@ \newcommand{\compdvectsub}[3]{\ensuremath{\mathrm{d}\compvectsub{#1}{#2}{#3}}} \newcommand{\compDvectsub}[3]{\ensuremath{\Delta\compvectsub{#1}{#2}{#3}}} \newcommand{\scompsdvectsub}[2]{\ensuremath{\lv - \compdvectsub{#1}{#2}{x}, - \compdvectsub{#1}{#2}{y}, - \compdvectsub{#1}{#2}{z}\rv}} + \compdvectsub{#1}{x}{#2}, + \compdvectsub{#1}{y}{#2}, + \compdvectsub{#1}{z}{#2}\rv}} \newcommand{\scompsDvectsub}[2]{\ensuremath{\lv - \compDvectsub{#1}{#2}{x}, - \compDvectsub{#1}{#2}{y}, - \compDvectsub{#1}{#2}{z},\rv}} + \compDvectsub{#1}{x}{#2}, + \compDvectsub{#1}{y}{#2}, + \compDvectsub{#1}{z}{#2}\rv}} \newcommand{\dermagvectsub}[3]{\ensuremath{\dbyd{\magvectsub{#1}{#2}}{#3}}} \newcommand{\Dermagvectsub}[3]{\ensuremath{\DbyD{\magvectsub{#1}{#2}}{#3}}} \newcommand{\dervectsub}[3]{\ensuremath{\dbyd{\vectsub{#1}{#2}}{#3}}} @@ -480,41 +506,41 @@ \newcommand{\magDervectsub}[3]{\ensuremath{\magof{\Dervectsub{#1}{#2}{#3}}}}} {\newcommand{\magdervectsub}[3]{\ensuremath{\abs{\dervectsub{#1}{#2}{#3}}}} \newcommand{\magDervectsub}[3]{\ensuremath{\abs{\Dervectsub{#1}{#2}{#3}}}}} -\newcommand{\compdervectsub}[4]{\ensuremath{\dbyd{\compvectsub{#1}{#2}{#4}}{#3}}} -\newcommand{\compDervectsub}[4]{\ensuremath{\DbyD{\compvectsub{#1}{#2}{#4}}{#3}}} +\newcommand{\compdervectsub}[4]{\ensuremath{\dbyd{\compvectsub{#1}{#2}{#3}}{#4}}} +\newcommand{\compDervectsub}[4]{\ensuremath{\DbyD{\compvectsub{#1}{#2}{#3}}{#4}}} \newcommand{\scompsdervectsub}[3]{\ensuremath{\lv - \compdervectsub{#1}{#2}{#3}{x}, - \compdervectsub{#1}{#2}{#3}{y}, - \compdervectsub{#1}{#2}{#3}{z}\rv}} + \compdervectsub{#1}{x}{#2}{#3}, + \compdervectsub{#1}{y}{#2}{#3}, + \compdervectsub{#1}{z}{#2}{#3}\rv}} \newcommand{\scompsDervectsub}[3]{\ensuremath{\lv - \compDervectsub{#1}{#2}{#3}{x}, - \compDervectsub{#1}{#2}{#3}{y}, - \compDervectsub{#1}{#2}{#3}{z}\rv}} -\newcommand{\comppossub}[2]{\ensuremath{\ssub{#2}{#1}}} + \compDervectsub{#1}{x}{#2}{#3}, + \compDervectsub{#1}{y}{#2}{#3}, + \compDervectsub{#1}{z}{#2}{#3}\rv}} +\newcommand{\comppossub}[2]{\ensuremath{\ssub{#1}{#2}}} \newcommand{\scompspossub}[1]{\ensuremath{\lv - \comppossub{#1}{x}, - \comppossub{#1}{y}, - \comppossub{#1}{z}\rv}} + \comppossub{x}{#1}, + \comppossub{y}{#1}, + \comppossub{z}{#1}\rv}} \newcommand{\compdpossub}[2]{\ensuremath{\mathrm{d}\comppossub{#1}{#2}}} \newcommand{\compDpossub}[2]{\ensuremath{\Delta\comppossub{#1}{#2}}} \newcommand{\scompsdpossub}[1]{\ensuremath{\lv - \compdpossub{#1}{x}, - \compdpossub{#1}{y}, - \compdpossub{#1}{z}\rv}} + \compdpossub{x}{#1}, + \compdpossub{y}{#1}, + \compdpossub{z}{#1}\rv}} \newcommand{\scompsDpossub}[1]{\ensuremath{\lv - \compDpossub{#1}{x}, - \compDpossub{#1}{y}, - \compDpossub{#1}{z}\rv}} -\newcommand{\compderpossub}[3]{\ensuremath{\dbyd{\comppossub{#1}{#3}}{#2}}} -\newcommand{\compDerpossub}[3]{\ensuremath{\DbyD{\comppossub{#1}{#3}}{#2}}} + \compDpossub{x}{#1}, + \compDpossub{y}{#1}, + \compDpossub{z}{#1}\rv}} +\newcommand{\compderpossub}[3]{\ensuremath{\dbyd{\comppossub{#1}{#2}}{#3}}} +\newcommand{\compDerpossub}[3]{\ensuremath{\DbyD{\comppossub{#1}{#2}}{#3}}} \newcommand{\scompsderpossub}[2]{\ensuremath{\lv - \compderpossub{#1}{#2}{x}, - \compderpossub{#1}{#2}{y}, - \compderpossub{#1}{#2}{z}\rv}} + \compderpossub{x}{#1}{#2}, + \compderpossub{y}{#1}{#2}, + \compderpossub{z}{#1}{#2}\rv}} \newcommand{\scompsDerpossub}[2]{\ensuremath{\lv - \compDerpossub{#1}{#2}{x}, - \compDerpossub{#1}{#2}{y}, - \compDerpossub{#1}{#2}{z}\rv}} + \compDerpossub{x}{#1}{#2}, + \compDerpossub{y}{#1}{#2}, + \compDerpossub{z}{#1}{#2}\rv}} \newcommand{\relpos}[1]{\ensuremath{\vectsub{r}{#1}}} \newcommand{\relvel}[1]{\ensuremath{\vectsub{v}{#1}}} \newcommand{\relmom}[1]{\ensuremath{\vectsub{p}{#1}}} @@ -553,105 +579,110 @@ \newcommand{\vectsubdotsvectsub}[4]{\ensuremath{ \scompsvectsub{#1}{#2}\bullet\scompsvectsub{#3}{#4}}} \newcommand{\vectsubdotevectsub}[4]{\ensuremath{ - \compvectsub{#1}{#2}{x}\compvectsub{#3}{#4}{x}+ - \compvectsub{#1}{#2}{y}\compvectsub{#3}{#4}{y}+ - \compvectsub{#1}{#2}{z}\compvectsub{#3}{#4}{z}}} -\newcommand{\vectsubdotsdvectsub}[4]{\ensuremath{ + \compvectsub{#1}{x}{#2}\compvectsub{#3}{x}{#4}+ + \compvectsub{#1}{y}{#2}\compvectsub{#3}{y}{#4}+ + \compvectsub{#1}{z}{#2}\compvectsub{#3}{z}{#4}}} +\newcommand{\vectsubdotsdvectsub}[4]{\ensuremath{% \scompsvectsub{#1}{#2}\bullet\scompsdvectsub{#3}{#4}}} -\newcommand{\vectsubdotsDvectsub}[4]{\ensuremath{ +\newcommand{\vectsubdotsDvectsub}[4]{\ensuremath{% \scompsvectsub{#1}{#2}\bullet\scompsDvectsub{#3}{#4}}} \newcommand{\vectsubdotedvectsub}[4]{\ensuremath{ - \compvectsub{#1}{#2}{x}\compdvectsub{#3}{#4}{x}+ - \compvectsub{#1}{#2}{y}\compdvectsub{#3}{#4}{y}+ - \compvectsub{#1}{#2}{z}\compdvectsub{#3}{#4}{z}}} + \compvectsub{#1}{x}{#2}\compdvectsub{#3}{x}{#4}+ + \compvectsub{#1}{y}{#2}\compdvectsub{#3}{y}{#4}+ + \compvectsub{#1}{z}{#2}\compdvectsub{#3}{z}{#4}}} \newcommand{\vectsubdoteDvectsub}[4]{\ensuremath{ - \compvectsub{#1}{#2}{x}\compDvectsub{#3}{#4}{x}+ - \compvectsub{#1}{#2}{y}\compDvectsub{#3}{#4}{y}+ - \compvectsub{#1}{#2}{z}\compDvectsub{#3}{#4}{z}}} + \compvectsub{#1}{x}{#2}\compDvectsub{#3}{x}{#4}+ + \compvectsub{#1}{y}{#2}\compDvectsub{#3}{y}{#4}+ + \compvectsub{#1}{z}{#2}\compDvectsub{#3}{z}{#4}}} \newcommand{\vectsubdotsdvect}[3]{\ensuremath{ \scompsvectsub{#1}{#2}\bullet\scompsdvect{#3}}} \newcommand{\vectsubdotsDvect}[3]{\ensuremath{ \scompsvectsub{#1}{#2}\bullet\scompsDvect{#3}}} \newcommand{\vectsubdotedvect}[3]{\ensuremath{ - \compvectsub{#1}{#2}{x}\compdvect{#3}{x}+ - \compvectsub{#1}{#2}{y}\compdvect{#3}{y}+ - \compvectsub{#1}{#2}{z}\compdvect{#3}{z}}} + \compvectsub{#1}{x}{#2}\compdvect{x}{#3}+ + \compvectsub{#1}{y}{#2}\compdvect{y}{#3}+ + \compvectsub{#1}{z}{#2}\compdvect{z}{#3}}} \newcommand{\vectsubdoteDvect}[3]{\ensuremath{ - \compvectsub{#1}{#2}{x}\compDvect{#3}{x}+ - \compvectsub{#1}{#2}{y}\compDvect{#3}{y}+ - \compvectsub{#1}{#2}{z}\compDvect{#3}{z}}} + \compvectsub{#1}{x}{#2}\compDvect{x}{#3}+ + \compvectsub{#1}{y}{#2}\compDvect{y}{#3}+ + \compvectsub{#1}{z}{#2}\compDvect{z}{#3}}} \newcommand{\vectsubdotsdpos}[2]{\ensuremath{ \scompsvectsub{#1}{#2}\bullet\scompsdpos}} \newcommand{\vectsubdotsDpos}[2]{\ensuremath{ \scompsvectsub{#1}{#2}\bullet\scompsDpos}} \newcommand{\vectsubdotedpos}[2]{\ensuremath{ - \compvectsub{#1}{#2}{x}\compdpos{x}+ - \compvectsub{#1}{#2}{y}\compdpos{y}+ - \compvectsub{#1}{#2}{z}\compdpos{z}}} + \compvectsub{#1}{x}{#2}\compdpos{x}+ + \compvectsub{#1}{y}{#2}\compdpos{y}+ + \compvectsub{#1}{z}{#2}\compdpos{z}}} \newcommand{\vectsubdoteDpos}[2]{\ensuremath{ - \compvectsub{#1}{#2}{x}\compDpos{x}+ - \compvectsub{#1}{#2}{y}\compDpos{y}+ - \compvectsub{#1}{#2}{z}\compDpos{z}}} + \compvectsub{#1}{x}{#2}\compDpos{x}+ + \compvectsub{#1}{y}{#2}\compDpos{y}+ + \compvectsub{#1}{z}{#2}\compDpos{z}}} \newcommand{\dervectdotsvect}[3]{\ensuremath{ \scompsdervect{#1}{#2}\bullet\scompsvect{#3}}} \newcommand{\Dervectdotsvect}[3]{\ensuremath{ \scompsDervect{#1}{#2}\bullet\scompsvect{#3}}} \newcommand{\dervectdotevect}[3]{\ensuremath{ - \compdervect{#1}{#2}{x}\compvect{#3}{x}+ - \compdervect{#1}{#2}{y}\compvect{#3}{y}+ - \compdervect{#1}{#2}{z}\compvect{#3}{z}}} + \compdervect{#1}{x}{#2}\compvect{x}{#3}+ + \compdervect{#1}{y}{#2}\compvect{y}{#3}+ + \compdervect{#1}{z}{#2}\compvect{z}{#3}}} \newcommand{\Dervectdotevect}[3]{\ensuremath{ - \compDervect{#1}{#2}{x}\compvect{#3}{x}+ - \compDervect{#1}{#2}{y}\compvect{#3}{y}+ - \compDervect{#1}{#2}{z}\compvect{#3}{z}}} + \compDervect{#1}{x}{#2}\compvect{x}{#3}+ + \compDervect{#1}{y}{#2}\compvect{y}{#3}+ + \compDervect{#1}{z}{#2}\compvect{z}{#3}}} \newcommand{\vectdotsdervect}[3]{\ensuremath{ \scompsvect{#1}\bullet\scompsdervect{#2}{#3}}} \newcommand{\vectdotsDervect}[3]{\ensuremath{ \scompsvect{#1}\bullet\scompsDervect{#2}{#3}}} \newcommand{\vectdotedervect}[3]{\ensuremath{ - \compvect{#1}{x}\compdervect{#2}{#3}{x}+ - \compvect{#1}{y}\compdervect{#2}{#3}{y}+ - \compvect{#1}{z}\compdervect{#2}{#3}{z}}} + \compvect{#1}{x}\compdervect{#2}{x}{#3}+ + \compvect{#1}{y}\compdervect{#2}{y}{#3}+ + \compvect{#1}{z}\compdervect{#2}{z}{#3}}} \newcommand{\vectdoteDervect}[3]{\ensuremath{ - \compvect{#1}{x}\compDervect{#2}{#3}{x}+ - \compvect{#1}{y}\compDervect{#2}{#3}{y}+ - \compvect{#1}{z}\compDervect{#2}{#3}{z}}} + \compvect{#1}{x}\compDervect{#2}{x}{#3}+ + \compvect{#1}{y}\compDervect{#2}{y}{#3}+ + \compvect{#1}{z}\compDervect{#2}{z}{#3}}} \newcommand{\dervectdotspos}[2]{\ensuremath{ \scompsdervect{#1}{#2}\bullet\scompspos}} \newcommand{\Dervectdotspos}[2]{\ensuremath{ \scompsDervect{#1}{#2}\bullet\scompspos}} \newcommand{\dervectdotepos}[2]{\ensuremath{ - \compdervect{#1}{#2}{x}\comppos{x}+ - \compdervect{#1}{#2}{y}\comppos{y}+ - \compdervect{#1}{#2}{z}\comppos{z}}} + \compdervect{#1}{x}{#2}\comppos{x}+ + \compdervect{#1}{y}{#2}\comppos{y}+ + \compdervect{#1}{z}{#2}\comppos{z}}} \newcommand{\Dervectdotepos}[2]{\ensuremath{ - \compDervect{#1}{#2}{x}\comppos{x}+ - \compDervect{#1}{#2}{y}\comppos{y}+ - \compDervect{#1}{#2}{z}\comppos{z}}} + \compDervect{#1}{x}{#2}\comppos{x}+ + \compDervect{#1}{y}{#2}\comppos{y}+ + \compDervect{#1}{z}{#2}\comppos{z}}} \newcommand{\dervectdotsdvect}[3]{\ensuremath{ \scompsdervect{#1}{#2}\bullet\scompsdvect{#3}}} \newcommand{\DervectdotsDvect}[3]{\ensuremath{ \scompsDervect{#1}{#2}\bullet\scompsDvect{#3}}} \newcommand{\dervectdotedvect}[3]{\ensuremath{ - \compdervect{#1}{#2}{x}\compdvect{#3}{x}+ - \compdervect{#1}{#2}{y}\compdvect{#3}{y}+ - \compdervect{#1}{#2}{z}\compdvect{#3}{z}}} + \compdervect{#1}{x}{#2}\compdvect{#3}{x}+ + \compdervect{#1}{y}{#2}\compdvect{#3}{y}+ + \compdervect{#1}{z}{#2}\compdvect{#3}{z}}} \newcommand{\DervectdoteDvect}[3]{\ensuremath{ - \compDervect{#1}{#2}{x}\compDvect{#3}{x}+ - \compDervect{#1}{#2}{y}\compDvect{#3}{y}+ - \compDervect{#1}{#2}{z}\compDvect{#3}{z}}} + \compDervect{#1}{x}{#2}\compDvect{#3}{x}+ + \compDervect{#1}{y}{#2}\compDvect{#3}{y}+ + \compDervect{#1}{z}{#2}\compDvect{#3}{z}}} \newcommand{\dervectdotsdpos}[2]{\ensuremath{ \scompsdervect{#1}{#2}\bullet\scompsdpos}} \newcommand{\DervectdotsDpos}[2]{\ensuremath{ \scompsDervect{#1}{#2}\bullet\scompsDpos}} \newcommand{\dervectdotedpos}[2]{\ensuremath{ - \compdervect{#1}{#2}{x}\compdpos{x}+ - \compdervect{#1}{#2}{y}\compdpos{y}+ - \compdervect{#1}{#2}{z}\compdpos{z}}} + \compdervect{#1}{x}{#2}\compdpos{x}+ + \compdervect{#1}{y}{#2}\compdpos{y}+ + \compdervect{#1}{z}{#2}\compdpos{z}}} \newcommand{\DervectdoteDpos}[2]{\ensuremath{ - \compDervect{#1}{#2}{x}\compDpos{x}+ - \compDervect{#1}{#2}{y}\compDpos{y}+ - \compDervect{#1}{#2}{z}\compDpos{z}}} + \compDervect{#1}{x}{#2}\compDpos{x}+ + \compDervect{#1}{y}{#2}\compDpos{y}+ + \compDervect{#1}{z}{#2}\compDpos{z}}} +\newcommand{\vectcrossvect}[2]{\ensuremath{{#1}\times{#2}}} +\newcommand{\ltriplecross}[3]{\ensuremath{({#1}\times{#2})\times{#3}}} +\newcommand{\rtriplecross}[3]{\ensuremath{{#1}\times({#2}\times{#3})}} +\newcommand{\ltriplescalar}[3]{\ensuremath{{#1}\times{#2}\bullet{#3}}} +\newcommand{\rtriplescalar}[3]{\ensuremath{{#1}\bullet{#2}\times{#3}}} \newcommand{\ezero}{\ensuremath{\msub{\mathbf{e}}{0}}} \newcommand{\eone}{\ensuremath{\msub{\mathbf{e}}{1}}} \newcommand{\etwo}{\ensuremath{\msub{\mathbf{e}}{2}}} @@ -667,6 +698,10 @@ \newcommand{\uek}[1]{\ensuremath{\msub{\widehat{\mathbf{e}}}{#1}}} \newcommand{\ue}{\uek} \newcommand{\ezerozero}{\ek{00}} +\newcommand{\ezeroone}{\ek{01}} +\newcommand{\ezerotwo}{\ek{02}} +\newcommand{\ezerothree}{\ek{03}} +\newcommand{\ezerofour}{\ek{04}} \newcommand{\eoneone}{\ek{11}} \newcommand{\eonetwo}{\ek{12}} \newcommand{\eonethree}{\ek{13}} @@ -691,6 +726,10 @@ \newcommand{\euk}[1]{\ensuremath{\msup{\mathbf{e}}{#1}}} \newcommand{\eu}{\euk} \newcommand{\euzerozero}{\euk{00}} +\newcommand{\euzeroone}{\euk{01}} +\newcommand{\euzerotwo}{\euk{02}} +\newcommand{\euzerothree}{\euk{03}} +\newcommand{\euzerofour}{\euk{04}} \newcommand{\euoneone}{\euk{11}} \newcommand{\euonetwo}{\euk{12}} \newcommand{\euonethree}{\euk{13}} @@ -715,6 +754,10 @@ \newcommand{\gk}[1]{\ensuremath{\msub{\mathbf{\gamma}}{#1}}} \newcommand{\g}{\gk} \newcommand{\gzerozero}{\gk{00}} +\newcommand{\gzeroone}{\gk{01}} +\newcommand{\gzerotwo}{\gk{02}} +\newcommand{\gzerothree}{\gk{03}} +\newcommand{\gzerofour}{\gk{04}} \newcommand{\goneone}{\gk{11}} \newcommand{\gonetwo}{\gk{12}} \newcommand{\gonethree}{\gk{13}} @@ -739,6 +782,10 @@ \newcommand{\guk}[1]{\ensuremath{\msup{\mathbf{\gamma}}{#1}}} \newcommand{\gu}{\guk} \newcommand{\guzerozero}{\guk{00}} +\newcommand{\guzeroone}{\guk{01}} +\newcommand{\guzerotwo}{\guk{02}} +\newcommand{\guzerothree}{\guk{03}} +\newcommand{\guzerofour}{\guk{04}} \newcommand{\guoneone}{\guk{11}} \newcommand{\guonetwo}{\guk{12}} \newcommand{\guonethree}{\guk{13}} @@ -755,7 +802,7 @@ \newcommand{\gufourtwo}{\guk{42}} \newcommand{\gufourthree}{\guk{43}} \newcommand{\gufourfour}{\guk{44}} -\ExplSyntaxOn +\ExplSyntaxOn % Vectors formated as in M\&I, written in LaTeX3 \NewDocumentCommand{\mivector}{ O{,} m o }% {% \mi_vector:nn { #1 } { #2 } @@ -772,7 +819,7 @@ }% }% \ExplSyntaxOff -\ExplSyntaxOn +\ExplSyntaxOn % Column and row vectors, written in LaTeX3 \seq_new:N \l__vector_arg_seq \cs_new_protected:Npn \vector_main:nnnn #1 #2 #3 #4 {% @@ -813,81 +860,119 @@ }% }% \newphysicsconstant{oofpez}{\ensuremath{\frac{1}{\phantom{_o}4\pi\ssub{\epsilon}{o}}}} -{\scin[9]{9}}{\ensuremath{\m\cubed\usk\kg\usk\reciprocalquartic\s\usk\\reciprocalsquared}} +{\scin[8.9876]{9}}{\m\cubed\usk\kg\usk\reciprocalquartic\s\usk\A\reciprocalsquared} [\m\per\farad][\newton\usk\m\squared\per\coulomb\squared] +\newcommand{\coulombconstant}{\oofpez} \newphysicsconstant{oofpezcs}{\ensuremath{\frac{1}{\phantom{_o}4\pi\ssub{\epsilon}{o} c^2\phantom{_o}}}}{\scin{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared} [\T\usk\m\squared][\N\usk\s\squared\per\C\squared] -\newphysicsconstant{epsz}{\ensuremath{\ssub{\epsilon}{o}}}{\scin[9]{-12}} +\newcommand{\altcoulombconstant}{\oofpezcs} +\newphysicsconstant{vacuumpermittivity}{\ensuremath{\ssub{\epsilon}{o}}}{\scin[8.8542]{-12}} {\m\reciprocalcubed\usk\reciprocal\kg\usk\s\quarted\usk\A\squared}[\F\per\m] [\C\squared\per\N\usk\m\squared] \newphysicsconstant{mzofp}{\ensuremath{\frac{\phantom{_oo}\ssub{\mu}{o}\phantom{_o}} {4\pi}}}{\scin{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared} -[\henry\per\m] -[\tesla\usk\m\per\A] -\newphysicsconstant{muz}{\ensuremath{\ssub{\mu}{o}}}{\scin[4\pi]{-7}} +[\henry\per\m][\tesla\usk\m\per\A] +\newcommand{\biotsavartconstant}{\mzofp} +\newphysicsconstant{vacuumpermeability}{\ensuremath{\ssub{\mu}{o}}}{\scin[4\pi]{-7}} {\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}[\henry\per\m] [\T\usk\m\per\A] -\newphysicsconstant{kboltz}{\ensuremath{\ssub{k}{B}}}{\scin[1.38]{-23}} -{\kg\usk\m\squared\usk\reciprocalsquare\s\usk\reciprocal\K}[\joule\per\K][\J\per\K] -\newcommand{\kboltznev}{\ensuremath{\scin[8.62]{-5}{\eV\per\K}}} -\newphysicsconstant{stefan}{\ensuremath{\sigma}}{\scin[5.67]{-8}} +\newphysicsconstant{boltzmann}{\ensuremath{\ssub{k}{B}}}{\scin[1.3806]{-23}} +{\m\squared\usk\kg\usk\reciprocalsquare\s\usk\reciprocal\K}[\joule\per\K][\J\per\K] +\newcommand{\boltzmannconstant}{\boltzmann} +\newphysicsconstant{boltzmanninev}{\ensuremath{\ssub{k}{B}}}{\scin[8.6173]{-5}} +{\eV\usk\reciprocal\K}[\eV\per\K][\eV\per\K] +\newphysicsconstant{stefanboltzmann}{\ensuremath{\sigma}}{\scin[5.6704]{-8}} {\kg\usk\s\reciprocalcubed\usk\K\reciprocalquarted}[\W\per\m\squared\usk\K^4] [\W\per\m\squared\usk\K\quarted] -\newphysicsconstant{planck}{\ensuremath{h}}{\scin[6.62]{-34}} -{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s][\kg\usk\m\squared\per\s] -\newcommand{\plancknev}{\ensuremath{\scin[4.136]{-15}{\eV\usk\s}}} -\newphysicsconstant{planckbar}{\ensuremath{\hbar}}{\scin[1.05]{-34}} -{\m\squared\usk\kg\usk\reciprocal\s}[\joule\usk\s][\kg\usk\m\squared\per\s] -\newcommand{\planckbarnev}{\ensuremath{\scin[4.136]{-15}{\eV\usk\s}}} -\newphysicsconstant{Navogadro}{\ensuremath{\ssub{N}{A}}}{\scin[6.022]{23}} +\newcommand{\stefanboltzmannconstant}{\stefanboltzmann} +\newphysicsconstant{planck}{\ensuremath{h}}{\scin[6.6261]{-34}} +{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s][\J\usk\s] +\newcommand{\planckconstant}{\planck} +\newphysicsconstant{planckinev}{\ensuremath{h}}{\scin[4.1357]{-15}} +{\eV\usk\s}[\eV\usk\s][\eV\usk\s] +\newphysicsconstant{planckbar}{\ensuremath{\hbar}}{\scin[1.0546]{-34}} +{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s][\J\usk\s] +\newcommand{\reducedplanckconstant}{\planckbar} +\newphysicsconstant{planckbarinev}{\ensuremath{\hbar}}{\scin[6.5821]{-16}} +{\eV\usk\s}[\eV\usk\s][\eV\usk\s] +\newphysicsconstant{planckc}{\ensuremath{hc}}{\scin[1.9864]{-25}} +{\m\cubed\usk\kg\usk\reciprocalsquare\s}[\J\usk\m][\J\usk\m] +\newcommand{\planckconstanttimesc}{\planckc} +\newphysicsconstant{planckcinev}{\ensuremath{hc}}{\scin[1.9864]{-25}} +{\eV\usk\ensuremath{\mathrm{n}\m}}[\eV\usk\ensuremath{\mathrm{n}\m}] +[\eV\usk\ensuremath{\mathrm{n}\m}] +\newphysicsconstant{rydberg}{\ensuremath{\msub{R}{\infty}}}{\scin[1.0974]{7}} +{\reciprocal\m}[\reciprocal\m][\reciprocal\m] +\newcommand{\rydbergconstant}{\rydberg} +\newphysicsconstant{bohrradius}{\ensuremath{\msub{a}{0}}}{\scin[5.2918]{-11}}{\m}[\m][\m] +\newphysicsconstant{finestructure}{\ensuremath{\alpha}}{\scin[7.2974]{-3}}{\relax} +\newcommand{\finestructureconstant}{\finestructure} +\newphysicsconstant{avogadro}{\ensuremath{\ssub{N}{A}}}{\scin[6.0221]{23}} {\reciprocal\mol}[\reciprocal\mol][\reciprocal\mol] -\newphysicsconstant{bigG}{\ensuremath{G}}{\scin[6.67]{-11}} +\newcommand{\avogadroconstant}{\avogadro} +\newphysicsconstant{universalgrav}{\ensuremath{G}}{\scin[6.6738]{-11}} {\m\cubed\usk\reciprocal\kg\usk\s\reciprocalsquared}[\J\usk\m\per\kg\squared] [\N\usk\m\squared\per\kg\squared] -\newphysicsconstant{littleg}{\ensuremath{g}}{9.80}{\m\usk\s\reciprocalsquared} +\newcommand{\universalgravitationalconstant}{\universalgrav} +\newphysicsconstant{surfacegravfield}{\ensuremath{g}}{9.80}{\m\usk\s\reciprocalsquared} [\N\per\kg][\m\per\s\squared] -\newphysicsconstant{clight}{\ensuremath{c}}{\scin[3.00]{8}}{\m\usk\reciprocal\s} -[\m\usk\reciprocal\s][\m\per\s] -\newcommand{\clightnfn}{\ensuremath{\unit{1}{\mathrm{ft}\per\mathrm{n}\s}}} +\newcommand{\earthssurfacegravitationalfield}{\surfacegravfield} +\newphysicsconstant{clight}{\ensuremath{c}}{\scin[2.9979]{8}}{\m\usk\reciprocal\s} +[\m\per\s][\m\per\s] +\newcommand{\photonconstant}{\clight} +\newphysicsconstant{clightinfeet}{\ensuremath{c}}{0.9836} +{\ensuremath{\mathrm{ft}\usk\reciprocal\mathrm{n}\s}} +[\ensuremath{\mathrm{ft}\per\mathrm{n}\s}][\ensuremath{\mathrm{ft}\per\mathrm{n}\s}] \newphysicsconstant{Ratom}{\ensuremath{\ssub{r}{atom}}}{\scin{-10}}{\m}[\m][\m] -\newphysicsconstant{Mproton}{\ensuremath{\ssub{m}{proton}}}{\scin[1.673]{-27}} +\newcommand{\radiusofatom}{\Ratom} +\newphysicsconstant{Mproton}{\ensuremath{\ssub{m}{proton}}}{\scin[1.6726]{-27}} {\kg}[\kg][\kg] -\newphysicsconstant{Mneutron}{\ensuremath{\ssub{m}{neutron}}}{\scin[1.675]{-27}} +\newcommand{\massofproton}{\Mproton} +\newphysicsconstant{Mneutron}{\ensuremath{\ssub{m}{neutron}}}{\scin[1.6749]{-27}} {\kg}[\kg][\kg] -\newphysicsconstant{Mhydrogen}{\ensuremath{\ssub{m}{hydrogen}}}{\scin[1.673]{-27}} +\newcommand{\massofneutron}{\Mneutron} +\newphysicsconstant{Mhydrogen}{\ensuremath{\ssub{m}{hydrogen}}}{\scin[1.6737]{-27}} {\kg}[\kg][\kg] -\newphysicsconstant{Melectron}{\ensuremath{\ssub{m}{electron}}}{\scin[9.109]{-31}} +\newcommand{\massofhydrogen}{\Mhydrogen} +\newphysicsconstant{Melectron}{\ensuremath{\ssub{m}{electron}}}{\scin[9.1094]{-31}} {\kg}[\kg][\kg] -\newphysicsconstant{echarge}{\ensuremath{e}}{\scin[1.602]{-19}}{\A\usk\s}[\C][\C] +\newcommand{\massofelectron}{\Melectron} +\newphysicsconstant{echarge}{\ensuremath{e}}{\scin[1.6022]{-19}}{\A\usk\s}[\C][\C] +\newcommand{\elementarycharge}{\echarge} \newphysicsconstant{Qelectron}{\ensuremath{\ssub{Q}{electron}}}{-\echargevalue} {\A\usk\s}[\C][\C] \newphysicsconstant{qelectron}{\ensuremath{\ssub{q}{electron}}}{-\echargevalue} {\A\usk\s}[\C][\C] +\newcommand{\chargeofelectron}{\Qelectron} \newphysicsconstant{Qproton}{\ensuremath{\ssub{Q}{proton}}}{+\echargevalue} {\A\usk\s}[\C][\C] \newphysicsconstant{qproton}{\ensuremath{\ssub{q}{proton}}}{+\echargevalue} {\A\usk\s}[\C][\C] -\newphysicsconstant{MEarth}{\ensuremath{\ssub{M}{Earth}}}{\scin[6]{24}}{\kg}[\kg][\kg] -\newphysicsconstant{MMoon}{\ensuremath{\ssub{M}{Moon}}}{\scin[7]{22}}{\kg}[\kg][\kg] -\newphysicsconstant{MSun}{\ensuremath{\ssub{M}{Sun}}}{\scin[2]{30}}{\kg}[\kg][\kg] -\newphysicsconstant{REarth}{\ensuremath{\ssub{R}{Earth}}}{\scin[6.4]{6}}{\m}[\m][\m] -\newphysicsconstant{RMoon}{\ensuremath{\ssub{R}{Moon}}}{\scin[1.75]{6}}{\m}[\m][\m] -\newphysicsconstant{RSun}{\ensuremath{\ssub{R}{Sun}}}{\scin[7]{8}}{\m}[\m][\m] -\newphysicsconstant{ESdist}{\magvectsub{r}{ES}}{\scin[1.5]{11}}{\m}[\m][\m] -\newphysicsconstant{SEdist}{\magvectsub{r}{SE}}{\scin[1.5]{11}}{\m}[\m][\m] -\newphysicsconstant{EMdist}{\magvectsub{r}{EM}}{\scin[4]{8}}{\m}[\m][\m] -\newphysicsconstant{MEdist}{\magvectsub{r}{ME}}{\scin[4]{8}}{\m}[\m][\m] -\newcommand{\lightyear}{\ensuremath{\mathrm{ly}}} -\newcommand{\Lightyear}{\ensuremath{\mathrm{LY}}} -\newcommand{\cyear}{\ensuremath{c\usk\mathrm{year}}} -\newcommand{\cyr}{\ensuremath{c\usk\mathrm{yr}}} -\newcommand{\yyear}{\ensuremath{\mathrm{year}}} -\newcommand{\yr}{\ensuremath{\mathrm{yr}}} -\newcommand{\parsec}{\ensuremath{\mathrm{pc}}} -\newphysicsconstant{LSun}{\ensuremath{\ssub{L}{Sun}}}{\scin[4]{26}} +\newcommand{\chargeofproton}{\Qproton} +\newphysicsconstant{MEarth}{\ensuremath{\ssub{M}{Earth}}}{\scin[5.9736]{24}}{\kg}[\kg][\kg] +\newcommand{\massofEarth}{\MEarth} +\newphysicsconstant{MMoon}{\ensuremath{\ssub{M}{Moon}}}{\scin[7.3459]{22}}{\kg}[\kg][\kg] +\newcommand{\massofMoon}{\MMoon} +\newphysicsconstant{MSun}{\ensuremath{\ssub{M}{Sun}}}{\scin[1.9891]{30}}{\kg}[\kg][\kg] +\newcommand{\massofSun}{\MSun} +\newphysicsconstant{REarth}{\ensuremath{\ssub{R}{Earth}}}{\scin[6.3675]{6}}{\m}[\m][\m] +\newcommand{\radiusofEarth}{\REarth} +\newphysicsconstant{RMoon}{\ensuremath{\ssub{R}{Moon}}}{\scin[1.7375]{6}}{\m}[\m][\m] +\newcommand{\radiusofMoon}{\RMoon} +\newphysicsconstant{RSun}{\ensuremath{\ssub{R}{Sun}}}{\scin[6.9634]{8}}{\m}[\m][\m] +\newcommand{\radiusofSun}{\RSun} +\newphysicsconstant{ESdist}{\magvectsub{r}{ES}}{\scin[1.4960]{11}}{\m}[\m][\m] +\newphysicsconstant{SEdist}{\magvectsub{r}{SE}}{\scin[1.4960]{11}}{\m}[\m][\m] +\newcommand{\EarthSundistance}{\ESdist} +\newcommand{\SunEarthdistance}{\SEdist} +\newphysicsconstant{EMdist}{\magvectsub{r}{EM}}{\scin[3.8440]{8}}{\m}[\m][\m] +\newphysicsconstant{MEdist}{\magvectsub{r}{ME}}{\scin[3.8440]{8}}{\m}[\m][\m] +\newcommand{\EarthMoondistance}{\ESdist} +\newcommand{\MoonEarthdistance}{\SEdist} +\newphysicsconstant{LSun}{\ensuremath{\ssub{L}{Sun}}}{\scin[3.8460]{26}} {\m\squared\usk\kg\usk\s\reciprocalcubed}[\W][\J\per\s] -\newphysicsconstant{TSun}{\ensuremath{\ssub{T}{Sun}}}{5800}{\K}[\K][\K] +\newphysicsconstant{TSun}{\ensuremath{\ssub{T}{Sun}}}{5778}{\K}[\K][\K] \newphysicsconstant{MagSun}{\ensuremath{\ssub{M}{Sun}}}{+4.83}{}[][] \newphysicsconstant{magSun}{\ensuremath{\ssub{m}{Sun}}}{-26.74}{}[][] \newcommand{\Lstar}[1][\(\star\)]{\ensuremath{\ssub{L}{#1}}} @@ -900,8 +985,6 @@ c^2\phantom{_o}}}}{\scin{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocal \newcommand{\Msolar}{\ensuremath{\Mstar[\(\odot\)]}} \newcommand{\Fstar}[1][\(\star\)]{\ensuremath{\ssub{F}{#1}}} \newcommand{\fstar}[1][\(\star\)]{\ensuremath{\ssub{f}{#1}}} -\newcommand{\FSun}{\ensuremath{\Fstar[Sun]}} -\newcommand{\fSun}{\ensuremath{\fstar[Sun]}} \newcommand{\Fsolar}{\ensuremath{\Fstar[\(\odot\)]}} \newcommand{\fsolar}{\ensuremath{\fstar[\(\odot\)]}} \newcommand{\Magstar}[1][\(\star\)]{\ensuremath{\ssub{M}{#1}}} @@ -921,17 +1004,36 @@ c^2\phantom{_o}}}}{\scin{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocal \newcommand{\oneeighth}{\ensuremath{\frac{1}{8}}\xspace} \newcommand{\oneninth}{\ensuremath{\frac{1}{9}}\xspace} \newcommand{\onetenth}{\ensuremath{\frac{1}{10}}\xspace} +\newcommand{\twooneths}{\ensuremath{\frac{2}{1}}\xspace} +\newcommand{\twohalves}{\ensuremath{\frac{2}{2}}\xspace} \newcommand{\twothirds}{\ensuremath{\frac{2}{3}}\xspace} +\newcommand{\twofourths}{\ensuremath{\frac{2}{4}}\xspace} \newcommand{\twofifths}{\ensuremath{\frac{2}{5}}\xspace} +\newcommand{\twosixths}{\ensuremath{\frac{2}{6}}\xspace} \newcommand{\twosevenths}{\ensuremath{\frac{2}{7}}\xspace} +\newcommand{\twoeighths}{\ensuremath{\frac{2}{8}}\xspace} \newcommand{\twoninths}{\ensuremath{\frac{2}{9}}\xspace} +\newcommand{\twotenths}{\ensuremath{\frac{2}{10}}\xspace} +\newcommand{\threeoneths}{\ensuremath{\frac{3}{1}}\xspace} \newcommand{\threehalves}{\ensuremath{\frac{3}{2}}\xspace} +\newcommand{\threethirds}{\ensuremath{\frac{3}{3}}\xspace} \newcommand{\threefourths}{\ensuremath{\frac{3}{4}}\xspace} \newcommand{\threefifths}{\ensuremath{\frac{3}{5}}\xspace} +\newcommand{\threesixths}{\ensuremath{\frac{3}{6}}\xspace} \newcommand{\threesevenths}{\ensuremath{\frac{3}{7}}\xspace} \newcommand{\threeeighths}{\ensuremath{\frac{3}{8}}\xspace} +\newcommand{\threeninths}{\ensuremath{\frac{3}{9}}\xspace} \newcommand{\threetenths}{\ensuremath{\frac{3}{10}}\xspace} +\newcommand{\fouroneths}{\ensuremath{\frac{4}{1}}\xspace} +\newcommand{\fourhalves}{\ensuremath{\frac{4}{2}}\xspace} \newcommand{\fourthirds}{\ensuremath{\frac{4}{3}}\xspace} +\newcommand{\fourfourths}{\ensuremath{\frac{4}{4}}\xspace} +\newcommand{\fourfifths}{\ensuremath{\frac{4}{5}}\xspace} +\newcommand{\foursixths}{\ensuremath{\frac{4}{6}}\xspace} +\newcommand{\foursevenths}{\ensuremath{\frac{4}{7}}\xspace} +\newcommand{\foureighths}{\ensuremath{\frac{4}{8}}\xspace} +\newcommand{\fourninths}{\ensuremath{\frac{4}{9}}\xspace} +\newcommand{\fourtenths}{\ensuremath{\frac{4}{10}}\xspace} \newcommand{\dx}[1]{\ensuremath{\,\mathrm{d}{#1}}} \newcommand{\evalfromto}[3]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}^{#3}}} \@ifpackageloaded{physymb}{% @@ -1000,7 +1102,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \newcommand{\binomialseries}{\ensuremath{% (1 + x)^n \approx 1 + nx + \frac{n(n-1)}{2!}x^2 + \ldots}\xspace} \@ifpackageloaded{physymb}{% - \typeout{mandi: Package physymb detected. Its commands will be used.} + \typeout{mandi: Package physymb detected. Its commands will be used.} }{% \newcommand{\gradient}{\ensuremath{\nabla}} \newcommand{\divergence}{\ensuremath{\nabla\bullet}} @@ -1029,8 +1131,6 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \DeclareMathOperator{\sgn}{sgn} }% \DeclareMathOperator{\dex}{dex} -\newcommand{\eV}{\electronvolt} -\newcommand{\ev}{\electronvolt} \newcommand{\logb}[1][\relax]{\ensuremath{\log_{_{#1}}}} \ifthenelse{\boolean{@optitalicvectors}} {\newcommand{\cB}{\ensuremath{c\mskip -5.00mu B}}} @@ -1050,7 +1150,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \newcommand{\bquant}[1]{\ensuremath{\left[{#1}\right]}} \newcommand{\changein}[1]{\ensuremath{\delta{#1}}} \newcommand{\Changein}[1]{\ensuremath{\Delta{#1}}} -\newcommandx{\scin}[3][1,3=\!\!,usedefault]{\ensuremath{ +\newcommandx{\scin}[3][1,3=\!\!,usedefault]{\ensuremath{% \ifthenelse{\equal{#1}{}} {\unit{\msup{10}{#2}}{#3}} {\unit{\msup{{#1}\times 10}{#2}}{#3}}}} @@ -1060,11 +1160,11 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \newcommand{\hms}[3]{\ensuremath{{#1}^{\hour}{#2}^{\mathrm{m}}{#3}^{\s}}} \newcommand{\clockreading}{\hms} \newcommand{\latitude}[1]{\ensuremath{\unit{#1}{\degree}}} -\newcommand{\latitudeN}[1]{\ensuremath{\unit{#1}{\degree\; N}}} -\newcommand{\latitudeS}[1]{\ensuremath{\unit{#1}{\degree\; S}}} +\newcommand{\latitudeN}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{N}}}} +\newcommand{\latitudeS}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{S}}}} \newcommand{\longitude}[1]{\ensuremath{\unit{#1}{\degree}}} -\newcommand{\longitudeE}[1]{\ensuremath{\unit{#1}{\degree\; E}}} -\newcommand{\longitudeW}[1]{\ensuremath{\unit{#1}{\degree\; W}}} +\newcommand{\longitudeE}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{E}}}} +\newcommand{\longitudeW}[1]{\ensuremath{\unit{#1}{\degree\;\mathrm{W}}}} \newcommand{\ssub}[2]{\ensuremath{{#1}_{_{_{\mbox{\tiny{#2}}}}}}} \newcommand{\ssup}[2]{\ensuremath{{#1}^{^{^{\mbox{\tiny{#2}}}}}}} \newcommand{\ssud}[3]{\ensuremath{{#1}^{^{^{\mbox{\tiny{#2}}}}}_{_{_{\mbox{\tiny{#3}}}}}}} @@ -1072,6 +1172,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \newcommand{\msup}[2]{\ensuremath{#1^{^{\scriptstyle{#2}}}}} \newcommand{\msud}[3]{\ensuremath{#1^{^{\scriptstyle{#2}}}_{_{_{\scriptstyle{#3}}}}}} \newcommand{\levicivita}[1]{\ensuremath{\msub{\varepsilon}{#1}}} +\newcommand{\kronecker}[1]{\ensuremath{\msub{\delta}{#1}}} \newcommand{\xaxis}{\ensuremath{x\mbox{-axis }}} \newcommand{\yaxis}{\ensuremath{y\mbox{-axis }}} \newcommand{\zaxis}{\ensuremath{z\mbox{-axis }}} @@ -1119,36 +1220,37 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \newcommand{\platerthan}{\pwordoperator{later}{than}\xspace} \newcommand{\pforevery}{\pwordoperator{for}{every}\xspace} \newcommand{\defines}{\ensuremath{\stackrel{\text{\tiny{def}}}{=}}\xspace} -\newcommand{\inframe}[1][\relax]{\ensuremath{\xrightarrow[\tiny{\mathcal #1}]{}}\xspace} +\newcommand{\inframe}[1][\relax]{\ensuremath{\xrightarrow[\text\tiny{\mathcal #1}]{}}\xspace} \newcommand{\associates}{\ensuremath{\xrightarrow{\text{\tiny{assoc}}}}\xspace} \newcommand{\becomes}{\ensuremath{\xrightarrow{\text{\tiny{becomes}}}}\xspace} \newcommand{\rrelatedto}[1]{\ensuremath{\xLongrightarrow{\text{\tiny{#1}}}}} \newcommand{\lrelatedto}[1]{\ensuremath{\xLongleftarrow[\text{\tiny{#1}}]{}}} -\newcommand{\brelatedto}[2]{\ensuremath{ +\newcommand{\brelatedto}[2]{\ensuremath{% \xLongleftrightarrow[\text{\tiny{#1}}]{\text{\tiny{#2}}}}} -\newcommand{\momprinciple}{\ensuremath{ +\newcommand{\momentumprinciple}{\ensuremath{ \vectsub{p}{sys,f}=\vectsub{p}{sys,i}+\Fnetsys\Delta t}} -\newcommand{\LHSmomprinciple}{\ensuremath{ +\newcommand{\LHSmomentumprinciple}{\ensuremath{% \vectsub{p}{sys,f}}} -\newcommand{\RHSmomprinciple}{\ensuremath{ +\newcommand{\RHSmomentumprinciple}{\ensuremath{% \vectsub{p}{sys,i}+\Fnetsys\Delta t}} \newcommand{\energyprinciple}{\ensuremath{\ssub{E}{sys,f}=\ssub{E}{sys,i}+ \ssub{W}{ext}+Q}} \newcommand{\LHSenergyprinciple}{\ensuremath{\ssub{E}{sys,f}}} \newcommand{\RHSenergyprinciple}{\ensuremath{\ssub{E}{sys,i}+\ssub{W}{ext}+Q}} -\newcommand{\angularmomprinciple}{\ensuremath{\vectsub{L}{sys,A,f}=\vectsub{L}{sys,A,i}+ +\newcommand{\angularmomentumprinciple}{\ensuremath{\vectsub{L}{sys,A,f}= + \vectsub{L}{sys,A,i}+\Tnetsys\Delta t}} +\newcommand{\LHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{sys,A,f}}} +\newcommand{\RHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{sys,A,i}+ \Tnetsys\Delta t}} -\newcommand{\LHSangularmomprinciple}{\ensuremath{\vectsub{L}{sys,A,f}}} -\newcommand{\RHSangularmomprinciple}{\ensuremath{\vectsub{L}{sys,A,i}+\Tnetsys\Delta t}} -\newcommand{\gravinteraction}{\ensuremath{ - \bigGmathsymbol\frac{\msub{M}{1}\msub{M}{2}}{\msup{\magvectsub{r}{12}}{2}} +\newcommand{\gravitationalinteraction}{\ensuremath{% + \universalgravmathsymbol\frac{\msub{M}{1}\msub{M}{2}}{\msup{\magvectsub{r}{12}}{2}} \quant{-\dirvectsub{r}{12}}}} -\newcommand{\elecinteraction}{\ensuremath{ +\newcommand{\electricinteraction}{\ensuremath{% \oofpezmathsymbol\frac{\msub{Q}{1}\msub{Q}{2}}{\msup{\magvectsub{r}{12}}{2}} \dirvectsub{r}{12}}} -\newcommand{\Bfieldofparticle}{\ensuremath{ +\newcommand{\Bfieldofparticle}{\ensuremath{% \mzofpmathsymbol\frac{Q\magvect{v}}{\msup{\magvect{r}}{2}}\dirvect{v}\times\dirvect{r}}} -\newcommand{\Efieldofparticle}{\ensuremath{ +\newcommand{\Efieldofparticle}{\ensuremath{% \oofpezmathsymbol\frac{Q}{\msup{\magvect{r}}{2}}\dirvect{r}}} \newcommand{\Esys}{\ssub{E}{sys}} \newcommandx{\Us}[1][1]{\ssub{\ssub{U}{s}}{#1}} @@ -1195,10 +1297,10 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \newcommand{\Tnetext}{\ensuremath{\vectsub{T}{net,ext}}} \newcommand{\Tnetsys}{\ensuremath{\vectsub{T}{net,sys}}} \newcommand{\Tsub}[1]{\ensuremath{\vectsub{T}{#1}}} -\newcommand{\vpythonline}{\lstinline[language=Python,numbers=left,numberstyle=\tiny, +\newcommand{\vpythonline}{\lstinline[language=Python,numbers=left,numberstyle=\tiny,% upquote=true,breaklines]} \lstnewenvironment{vpythonblock}{\lstvpython}{} -\newcommand{\vpythonfile}{\lstinputlisting[language=Python,numbers=left, +\newcommand{\vpythonfile}{\lstinputlisting[language=Python,numbers=left,% numberstyle=\tiny,upquote=true,breaklines]} \newcommandx{\emptyanswer}[2][1=0.80,2=0.1,usedefault] {\begin{minipage}{#1\textwidth}\hfill\vspace{#2\textheight}\end{minipage}} @@ -1215,7 +1317,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \response@fbox{\usebox{\@tempboxa}}% \end{center}% }% -\newenvironmentx{adjactivityanswer}[5][1=white,2=black,3=black,4=0.90,5=0.00, +\newenvironmentx{adjactivityanswer}[5][1=white,2=black,3=black,4=0.90,5=0.00,% usedefault]{% \def\skipper{#5}% \def\response@fbox{\fcolorbox{#2}{#1}}% @@ -1230,7 +1332,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{center}% }% \newcommandx{\emptybox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.10,usedefault] - {\begin{center} + {\begin{center}% \fcolorbox{#3}{#2}{% \begin{minipage}[c][#6\textheight][c]{#5\textwidth}\color{#4}% {#1}% @@ -1239,7 +1341,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{center}% }% \newcommandx{\adjemptybox}[7][1=\hfill,2=white,3=black,4=black,5=0.90,6=,7=0.0,usedefault] - {\begin{center} + {\begin{center}% \fcolorbox{#3}{#2}{% \begin{minipage}[c]{#5\textwidth}\color{#4}% \vspace{#7\textheight}% @@ -1250,7 +1352,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{center}% }% \newcommandx{\answerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.1,usedefault] - {\ifthenelse{\equal{#1}{}} + {\ifthenelse{\equal{#1}{}}% {\begin{center}% \fcolorbox{#3}{#2}{% \emptyanswer[#5][#6]}% @@ -1258,8 +1360,8 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{center}}% {\emptybox[#1][#2][#3][#4][#5][#6]}% }% -\newcommandx{\adjanswerbox}[7][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.1,7=0.0, - usedefault] +\newcommandx{\adjanswerbox}[7][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.1,7=0.0,% + usedefault]% {\ifthenelse{\equal{#1}{}}% {\begin{center}% \fcolorbox{#3}{#2}{% @@ -1268,9 +1370,9 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{center}}% {\adjemptybox[#1][#2][#3][#4][#5][#6][#7]}% }% -\newcommandx{\smallanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.10, - usedefault] - {\ifthenelse{\equal{#1}{}} +\newcommandx{\smallanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.10,% + usedefault]% + {\ifthenelse{\equal{#1}{}}% {\begin{center}% \fcolorbox{#3}{#2}{% \emptyanswer[#5][#6]}% @@ -1278,9 +1380,9 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{center}}% {\emptybox[#1][#2][#3][#4][#5][#6]}% }% -\newcommandx{\mediumanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.20, +\newcommandx{\mediumanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.20,% usedefault]{% - \ifthenelse{\equal{#1}{}} + \ifthenelse{\equal{#1}{}}% {\begin{center}% \fcolorbox{#3}{#2}{% \emptyanswer[#5][#6]% @@ -1288,12 +1390,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \vspace{\baselineskip}% \end{center}% }% - {\emptybox[#1][#2][#3][#4][#5][#6] + {\emptybox[#1][#2][#3][#4][#5][#6]% }% }% -\newcommandx{\largeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.25, +\newcommandx{\largeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.25,% usedefault]{% - \ifthenelse{\equal{#1}{}} + \ifthenelse{\equal{#1}{}}% {\begin{center}% \fcolorbox{#3}{#2}{% \emptyanswer[#5][#6]% @@ -1301,12 +1403,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \vspace{\baselineskip}% \end{center}% }% - {\emptybox[#1][#2][#3][#4][#5][#6] + {\emptybox[#1][#2][#3][#4][#5][#6]% }% }% -\newcommandx{\largeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.33, +\newcommandx{\largeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.33,% usedefault]{% - \ifthenelse{\equal{#1}{}} + \ifthenelse{\equal{#1}{}}% {\begin{center}% \fcolorbox{#3}{#2}{% \emptyanswer[#5][#6]% @@ -1314,10 +1416,10 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \vspace{\baselineskip}% \end{center}% }% - {\emptybox[#1][#2][#3][#4][#5][#6] + {\emptybox[#1][#2][#3][#4][#5][#6]% }% }% -\newcommandx{\hugeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.50, +\newcommandx{\hugeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.50,% usedefault]{% \ifthenelse{\equal{#1}{}} {\begin{center}% @@ -1327,12 +1429,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \vspace{\baselineskip}% \end{center}% }% - {\emptybox[#1][#2][#3][#4][#5][#6] + {\emptybox[#1][#2][#3][#4][#5][#6]% }% }% -\newcommandx{\hugeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.75, +\newcommandx{\hugeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.75,% usedefault]{% - \ifthenelse{\equal{#1}{}} + \ifthenelse{\equal{#1}{}}% {\begin{center}% \fcolorbox{#3}{#2}{% \emptyanswer[#5][#6]% @@ -1340,12 +1442,12 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \vspace{\baselineskip}% \end{center}% }% - {\emptybox[#1][#2][#3][#4][#5][#6] + {\emptybox[#1][#2][#3][#4][#5][#6]% }% }% -\newcommandx{\fullpageanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=1.00, +\newcommandx{\fullpageanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=1.00,% usedefault]{% - \ifthenelse{\equal{#1}{}} + \ifthenelse{\equal{#1}{}}% {\begin{center}% \fcolorbox{#3}{#2}{% \emptyanswer[#5][#6]}% @@ -1391,9 +1493,9 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \NewEnviron{miderivation}{% \begin{mdframed}[style=miderivationstyle] \setcounter{equation}{0} - \begin{align} + \begin{align*} \BODY - \end{align} + \end{align*} \end{mdframed} }% \mdfdefinestyle{bwinstructornotestyle}{% @@ -1434,9 +1536,9 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \NewEnviron{bwderivation}{% \begin{mdframed}[style=bwderivationstyle] \setcounter{equation}{0} - \begin{align} + \begin{align*} \BODY - \end{align} + \end{align*} \end{mdframed} }% \newcommand{\checkpoint}{% @@ -1450,29 +1552,45 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld \end{center}% \end{figure}} \newcommand{\sneakyone}[1]{\ensuremath{\cancelto{1}{\frac{#1}{#1}}}} -\newcommand{\chkphysicsquantity}[1]{% - \cs{#1} +\newcommand{\chkquantity}[1]{% + \begin{center} + \begin{tabular}{C{3cm} C{3cm} C{3cm} C{3cm}} + name & baseunit & drvdunit & tradunit \tabularnewline + \cs{#1} & \csname #1onlybaseunit\endcsname & \csname #1onlydrvdunit\endcsname & + \csname #1onlytradunit\endcsname + \end{tabular} + \end{center} +}% +\newcommand{\chkconstant}[1]{% + \begin{center} + \begin{tabular}{C{3cm} C{1cm} C{2cm} C{3cm} C{3cm} C{3cm}} + name & symbol & value & baseunit & drvdunit & tradunit \tabularnewline + \cs{#1} & \csname #1mathsymbol\endcsname & \csname #1value\endcsname & + \csname #1onlybaseunit\endcsname & \csname #1onlydrvdunit\endcsname & + \csname #1onlytradunit\endcsname + \end{tabular} + \end{center} }% \newcommandx{\vecto}[2][2,usedefault]{\ensuremath{% \ifthenelse{\equal{#2}{}}% - {\vec{\mathrm #1}}% - {\ssub{\vec{\mathrm #1}}{#2}}}}% -\newcommandx{\compvecto}[3][2,usedefault]{\ensuremath{% - \ifthenelse{\equal{#2}{}}% - {\ssub{\mathrm #1}{\(#3\)}}% - {\ssub{\mathrm #1}{#2,\(#3\)}}}}% + {\vec{#1}}% + {\ssub{\vec{#1}}{#2}}}}% +\newcommandx{\compvecto}[3][3,usedefault]{\ensuremath{% + \ifthenelse{\equal{#3}{}}% + {\ssub{#1}{\(#2\)}}% + {\ssub{#1}{\(#2\),#3}}}}% \newcommandx{\scompsvecto}[2][2,usedefault]{\ensuremath{% \ifthenelse{\equal{#2}{}}% {\lv\compvecto{#1}{x},\compvecto{#1}{y},\compvecto{#1}{z}\rv}% - {\lv\compvecto{#1}[#2]{x},\compvecto{#1}[#2]{y},\compvecto{#1}[#2]{z}\rv}}}% -\newcommandx{\compposo}[2][1,usedefault]{\ensuremath{% + {\lv\compvecto{#1}{x}[#2],\compvecto{#1}{y}[#2],\compvecto{#1}{z}[#2]\rv}}}% +\newcommandx{\compposo}[2][2,usedefault]{\ensuremath{% \ifthenelse{\equal{#1}{}}% - {#2}% - {\ssub{#2}{#1}}}}% + {#1}% + {\ssub{#1}{#2}}}}% \newcommandx{\scompsposo}[1][1,usedefault]{\ensuremath{% \ifthenelse{\equal{#1}{}}% {\lv\compposo{x},\compposo{y},\compposo{z}\rv}% - {\lv\compposo[#1]{x},\compposo[#1]{y},\compposo[#1]{z}\rv}}}% + {\lv\compposo{x}[#1],\compposo{y}[#1],\compposo{z}[#1]\rv}}}% \endinput %% %% End of file `mandi.sty'. |