summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/latex/ltxmisc/statex.sty
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/tex/latex/ltxmisc/statex.sty')
-rw-r--r--Master/texmf-dist/tex/latex/ltxmisc/statex.sty278
1 files changed, 147 insertions, 131 deletions
diff --git a/Master/texmf-dist/tex/latex/ltxmisc/statex.sty b/Master/texmf-dist/tex/latex/ltxmisc/statex.sty
index f0be39a5145..a8f3f6f7d19 100644
--- a/Master/texmf-dist/tex/latex/ltxmisc/statex.sty
+++ b/Master/texmf-dist/tex/latex/ltxmisc/statex.sty
@@ -1,7 +1,7 @@
%%
%% This is file `statex.sty'.
%%
-%% Copyright (C) 2002-2004 by Rodney A Sparapani <rsparapa@mcw.edu>
+%% Copyright (C) 2002-2006 by Rodney A Sparapani <rsparapa@mcw.edu>
%%
%% This file may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either version 1.2
@@ -14,12 +14,13 @@
%% version 1999/12/01 or later.
%%
\NeedsTeXFormat{LaTeX2e}
-\ProvidesPackage{statex}[2004/04/03 v1.5 a statistics style for latex]
+\ProvidesPackage{statex}[2006/05/17 v1.6 a statistics style for latex]
\RequirePackage{ifthen}
\RequirePackage{amsmath}
\RequirePackage{amssymb}
\RequirePackage{bm}
-\RequirePackage[dvipsnames, usenames]{color}
+\RequirePackage{color}
+%\RequirePackage[dvipsnames,usenames]{color}
%begin: borrowed from upgreek; thanks to Walter Schmidt <was@VR-Web.de>
%use Adobe Symbol for upright pi (constant)
@@ -46,39 +47,53 @@
\newcommand*{\chisq}{\relax\ifmmode\chi^2\else$\chi^2$\fi}
%\newcommand*{\e}[1]{\mathrm{e}\ifthenelse{\equal{#1}{}}{}{^{#1}}}
\newcommand*{\e}[1]{\mathrm{e}^{#1}}
-\newcommand*{\E}[2][]{\text{E}\ifthenelse{\equal{#1}{}}{}{_{#1}} \lb #2 \rb}
+%\newcommand*{\exp}[1]{\mathrm{e}^{#1}}
+\newcommand*{\E}[2][]{\text{E}\ifthenelse{\equal{#1}{}}{}{_{#1}} \wrap{#2}}
\newcommand*{\ha}{{\frac{\alpha}{2}}}
-\newcommand*{\I}[2][]{\text{I}\ifthenelse{\equal{#1}{}}{}{_{#1}} \lb #2 \rb}
+\newcommand*{\I}[2][]{\text{I}\ifthenelse{\equal{#1}{}}{}{_{#1}} \wrap[()]{#2}}
+\newcommand*{\IBeta}[2]{\frac{\Gamma[#1+#2]}{\Gamma[#1]\Gamma[#2]}}
\newcommand*{\If}{\;\text{if}\;\;}
-\newcommand*{\iid}{\;\text{iid}\;}
-\newcommand*{\ij}{{i,j}}
+%\newcommand*{\ij}{{i,j}}
\newcommand*{\im}{\mathrm{i}}
-\newcommand*{\lb}{\left[}
-\newcommand*{\lp}{\left(}
-\newcommand*{\lr}[1][]{\left[ #1 \right]}
+%\newcommand*{\lb}{\left[}
+%\newcommand*{\lp}{\left(}
+%\newcommand*{\lr}[1][]{\left[ #1 \right]}
\newcommand*{\ol}{\overline}
\newcommand*{\ow}{\;\text{otherwise}\;\;}
\newcommand*{\rb}{\right]}
\newcommand*{\rp}{\right)}
\newcommand*{\sd}{\sigma}
\newcommand*{\ul}{\underline}
-\newcommand*{\V}[2][]{\text{V}\ifthenelse{\equal{#1}{}}{}{_{#1}} \lb #2 \rb}
-\newcommand*{\where}{\;\text{where}\;\;}
+\newcommand*{\V}[2][]{\text{V}\ifthenelse{\equal{#1}{}}{}{_{#1}} \wrap{#2}}
+\newcommand*{\where}{\;\;\text{where}\;\;}
+\newcommand*{\wrap}[2][]%
+{\ifthenelse{\equal{#1}{}}{\left[ #2 \right]}%
+{\ifthenelse{\equal{#1}{()}}{\left( #2 \right)}%
+{\ifthenelse{\equal{#1}{\{\}}}{\left\{ #2 \right\}}%
+%{\ifthenelse{\equal{#1}{(.}}{\left( #2 \right.}%
+%{\ifthenelse{\equal{#1}{[.}}{\left[ #2 \right.}%
+{\ifthenelse{\equal{#1}{\{.}}{\left\{ #2 \right.}{}}}}}
\newcommand*{\xy}{{xy}}
\newcommand*{\XY}{{XY}}
%\newcommand*{\n}[1][]{_{n #1}}
-\def\bp(#1){\left(#1\right)}
-\newcommand*{\bb}[1][]{\left[ #1 \right]}
+%\def\bp(#1){\left(#1\right)}
+%\newcommand*{\bb}[1][]{\left[ #1 \right]}
%re-definitions
%\def~{\relax\ifmmode\sim\else\nobreakspace{}\fi}
\renewcommand*{~}{\relax\ifmmode\sim\else\nobreakspace{}\fi}
+\newcommand*{\iid}{\;\stackrel{\text{iid}}{~}\;}
+\newcommand*{\ind}{\;\stackrel{\text{ind}}{~}\;}
+\newcommand*{\indpr}{\;\stackrel{\text{ind}}{\stackrel{\text{prior}}{~}}\;}
+\newcommand*{\post}{\;\stackrel{\text{post}}{~}\;}
+\newcommand*{\prior}{\;\stackrel{\text{prior}}{~}\;}
+
%\let\STATEXi=\i
%\renewcommand*{\i}[1][]{\ifthenelse{\equal{#1}{}}{\STATEXi}{_{i #1}}}
\let\STATEXGamma=\Gamma
-\renewcommand*{\Gamma}[1][]{\STATEXGamma\ifthenelse{\equal{#1}{}}{}{\lp #1 \rp}}
+\renewcommand*{\Gamma}[1][]{\STATEXGamma\ifthenelse{\equal{#1}{}}{}{\wrap[()]{#1}}}
\let\STATEXand=\and
\renewcommand*{\and}{\relax\ifmmode\expandafter\;\;\text{and}\;\;\else\expandafter\STATEXand\fi}
@@ -88,20 +103,20 @@
\let\STATEXP=\P
\renewcommand*{\P}[2][]{\ifthenelse{\equal{#2}{}}{\STATEXP}%
-{\ifthenelse{\equal{#1}{}}{\text{P} \lb #2 \rb}{\text{P}_{#1} \lb #2 \rb}}}
+{\text{P}\ifthenelse{\equal{#1}{}}{}{_{#1}}\wrap{#2}}}
\renewcommand*{\|}{\relax\ifmmode\expandafter\mid\else\expandafter$\mid$\fi}
%%Discrete distributions
%declarations
-\newcommand*{\B}[1]{\mathrm{B}\lp #1 \rp}
-\newcommand*{\BB}[1]{\mathrm{Beta\!-\!Bin}\lp #1 \rp}
-\newcommand*{\Bin}[1]{\mathrm{Bin}\lp #1 \rp}
-\newcommand*{\Dir}[1]{\mathrm{Dirichlet}\lp #1 \rp}
-\newcommand*{\HG}[1]{\mathrm{Hypergeometric}\lp #1 \rp}
-\newcommand*{\M}[1]{\mathrm{Multinomial}\lp #1 \rp}
-\newcommand*{\NB}[1]{\mathrm{Neg\!-\!Bin}\lp #1 \rp}
-\newcommand*{\Poi}[1]{\mathrm{Poisson}\lp #1 \rp}
+\newcommand*{\B}[1]{\mathrm{B}\wrap[()]{#1}}
+\newcommand*{\BB}[1]{\mathrm{Beta\!-\!Bin}\wrap[()]{#1}}
+\newcommand*{\Bin}[1]{\mathrm{Bin}\wrap[()]{#1}}
+\newcommand*{\Dir}[1]{\mathrm{Dirichlet}\wrap[()]{#1}}
+\newcommand*{\HG}[1]{\mathrm{Hypergeometric}\wrap[()]{#1}}
+\newcommand*{\M}[1]{\mathrm{Multinomial}\wrap[()]{#1}}
+\newcommand*{\NB}[1]{\mathrm{Neg\!-\!Bin}\wrap[()]{#1}}
+\newcommand*{\Poi}[1]{\mathrm{Poisson}\wrap[()]{#1}}
\let\Poisson=\Poi
%probability mass functions
\newcommand*{\pBB}[4][x]{\frac{\Gamma[#2+1]\Gamma[#3+#1]\Gamma[#2+#4-#1]\Gamma[#3+#4]}%
@@ -111,54 +126,54 @@
%\frac{\Gamma[#3+#1]\Gamma[#2+#4-#1]}{\Gamma[#2+#3+#4]}%
%\frac{\Gamma[#3+#4]}{\Gamma[#3]\Gamma[#4]}\I[#1]{\{0, 1,\., #2\}},%
%\where #3>0,\; #4>0 \and n=1, 2,\.}
-\newcommand*{\pBin}[3][x]{\binom{#2}{#1}#3^#1 \lp 1-#3 \rp^{#2-#1}%
-\I[#1]{\{0,1,\.,#2\}}, \where p \in \lp0, 1\rp \and n=1, 2,\.}
+\newcommand*{\pBin}[3][x]{\binom{#2}{#1}#3^#1 \wrap[()]{1-#3}^{#2-#1}%
+\I[#1]{\{0,1,\.,#2\}}, \where p \in \wrap[()]{0, 1} \and n=1, 2,\.}
\newcommand*{\pPoi}[2][x]{\frac{1}{#1!}#2^{#1}\e{-#2}\I[#1]{\{0, 1,\.\}}, \where #2>0}
%%Continuous distributions
%declarations
-\newcommand*{\Cau}[1]{\mathrm{Cauchy}\lp #1 \rp}
+\newcommand*{\Cau}[1]{\mathrm{Cauchy}\wrap[()]{#1}}
\let\Cauchy=\Cau
-\newcommand*{\Chi}[1]{\mathrm{\chi^2}\lp #1 \rp}
+\newcommand*{\Chi}[1]{\mathrm{\chi^2}\wrap[()]{#1}}
\let\Chisq=\Chi
-\newcommand*{\Bet}[1]{\mathrm{Beta}\lp #1 \rp}
+\newcommand*{\Bet}[1]{\mathrm{Beta}\wrap[()]{#1}}
\let\Beta=\Bet
-\newcommand*{\Exp}[1]{\mathrm{Exp}\lp #1 \rp}
-\newcommand*{\F}[1]{\mathrm{F}\lp #1 \rp}
-\newcommand*{\Gam}[1]{\mathrm{Gamma}\lp #1 \rp}
-\newcommand*{\IC}[1]{\mathrm{\chi^{-2}}\lp #1 \rp}
-\newcommand*{\IG}[1]{\mathrm{Gamma^{-1}}\lp #1 \rp}
-\newcommand*{\IW}[1]{\mathrm{Wishart^{-1}}\lp #1 \rp}
-\newcommand*{\Log}[1]{\mathrm{Logistic}\lp #1 \rp}
-\newcommand*{\LogN}[1]{\mathrm{Log\!-\!N}\lp #1 \rp}
-\newcommand*{\N}[2][]{\mathrm{N}\ifthenelse{\equal{#1}{}}{}{_{#1}}\lp #2 \rp}
-\newcommand*{\Par}[1]{\mathrm{Pareto}\lp #1 \rp}
+\newcommand*{\Exp}[1]{\mathrm{Exp}\wrap[()]{#1}}
+\newcommand*{\F}[1]{\mathrm{F}\wrap[()]{#1}}
+\newcommand*{\Gam}[1]{\mathrm{Gamma}\wrap[()]{#1}}
+\newcommand*{\IC}[1]{\mathrm{\chi^{-2}}\wrap[()]{#1}}
+\newcommand*{\IG}[1]{\mathrm{Gamma^{-1}}\wrap[()]{#1}}
+\newcommand*{\IW}[1]{\mathrm{Wishart^{-1}}\wrap[()]{#1}}
+\newcommand*{\Log}[1]{\mathrm{Logistic}\wrap[()]{#1}}
+\newcommand*{\LogN}[1]{\mathrm{Log\!-\!N}\wrap[()]{#1}}
+\newcommand*{\N}[3][]{\mathrm{N}\ifthenelse{\equal{#1}{}}{}{_{#1}}\wrap[()]{#2,\ #3}}
+\newcommand*{\Par}[1]{\mathrm{Pareto}\wrap[()]{#1}}
\let\Pareto=\Par
-\newcommand*{\Tsq}[1]{\mathrm{T^2}\lp #1 \rp}
-\newcommand*{\U}[1]{\mathrm{U}\lp #1 \rp}
-\newcommand*{\W}[1]{\mathrm{Wishart}\lp #1 \rp}
+\newcommand*{\Tsq}[1]{\mathrm{T^2}\wrap[()]{#1}}
+\newcommand*{\U}[1]{\mathrm{U}\wrap[()]{#1}}
+\newcommand*{\W}[1]{\mathrm{Wishart}\wrap[()]{#1}}
\let\STATEXt=\t
-\renewcommand*{\t}[1]{\relax\ifmmode\expandafter\mathrm{t}\lp #1 \rp%
+\renewcommand*{\t}[1]{\relax\ifmmode\expandafter\mathrm{t}\wrap[()]{#1}%
\else\expandafter\STATEXt{#1}\fi}
%probability density functions
-\newcommand*{\pBet}[3][x]{\frac{\Gamma[#2+#3]}{\Gamma[#2]\Gamma[#3]}%
-#1^{#2-1}\lp1-#1\rp^{#3-1}\I[#1]\lb0,1\rb, \where #2>0 \and #3>0}
-\newcommand*{\pCau}[3][x]{\ifthenelse{\equal{#2, #3}{0, 1}}{\frac{1}{\cpi\lp1+#1\rp^2}}%
-{\frac{1}{#3\cpi\left\{1+\lb\lp x-#2\rp/#3\rb^2\right\}}, \where #3>0}}
+\newcommand*{\pBet}[3][x]{\IBeta{#2}{#3}%
+#1^{#2-1}\wrap[()]{1-#1}^{#3-1}\I[#1]{0,\ 1}, \where #2>0 \and #3>0}
+\newcommand*{\pCau}[3][x]{\ifthenelse{\equal{#2, #3}{0, 1}}{\frac{1}{\cpi\wrap[()]{1+#1}^2}}%
+{\frac{1}{#3\cpi\left\{1+\wrap{\wrap[()]{x-#2}/#3}^2\right\}}, \where #3>0}}
\newcommand*{\pChi}[2][x]{\frac{2^{-#2/2}}{\Gamma[#2/2]}#1^{#2/2-1}\e{-#1/2}%
-\I[#1]\lp0,\infty\rp, \where #2>0}
-\newcommand*{\pExp}[2][x]{\frac{1}{#2}\e{-#1/#2}\I[#1]\lp0,\infty\rp,%
+\I[#1]{0,\infty}, \where #2>0}
+\newcommand*{\pExp}[2][x]{\frac{1}{#2}\e{-#1/#2}\I[#1]{0,\infty},%
\where #2>0}
\newcommand*{\pGam}[3][x]{\frac{#3^{#2}}{\Gamma[#2]}#1^{#2-1}\e{-#3#1}%
-\I[#1]\lp0,\infty\rp, \where #2>0 \and #3>0}
+\I[#1]{0,\infty}, \where #2>0 \and #3>0}
\newcommand*{\pN}[3][x]{\ifthenelse{\equal{#2, #3}{0, 1}}%
{\frac{1}{\sqrt{2\cpi}}\e{-#1^2/2}}%
-{\frac{1}{\sqrt{2\cpi#3}}\e{-\lp#1-#2\rp^2/2#3}}}
-\newcommand*{\pPar}[3][x]{\frac{#3}{#2\lp1+#1/#2\rp^{#3+1}}\I[#1]\lp0,\infty\rp,%
+{\frac{1}{\sqrt{2\cpi#3}}\e{-\wrap[()]{#1-#2}^2/2#3}}}
+\newcommand*{\pPar}[3][x]{\frac{#3}{#2\wrap[()]{1+#1/#2}^{#3+1}}\I[#1]{0,\infty},%
\where #2>0 \and #3>0}
-\newcommand*{\pU}[3][x]{\ifthenelse{\equal{#2, #3}{0, 1}}{\I[#1]\lb0, 1\rb}%
-{\frac{1}{#3-#2}\I[#1]\lb#2,#3\rb, \where #2<#3}}
+\newcommand*{\pU}[3][x]{\ifthenelse{\equal{#2, #3}{0, 1}}{\I[#1]{0,\ 1}}%
+{\frac{1}{#3-#2}\I[#1]{#2,\ #3}, \where #2<#3}}
%re-define other accents
\let\STATEXequal=\=
@@ -168,7 +183,7 @@
\let\STATEXtilde=\~
\renewcommand*{\~}{\relax\ifmmode\expandafter\widetilde\else\expandafter\STATEXtilde\fi}
\let\STATEXsinglequote=\'
-\renewcommand*{\'}[1]{\relax\ifmmode\expandafter{\lp{#1}\rp}\else\expandafter\STATEXsinglequote{#1}\fi}
+\renewcommand*{\'}[1]{\relax\ifmmode\expandafter{\wrap[()]{#1}}\else\expandafter\STATEXsinglequote{#1}\fi}
\let\STATEXb=\b
\renewcommand*{\b}{\relax\ifmmode\expandafter\bar\else\expandafter\STATEXb\fi}
\let\STATEXc=\c
@@ -212,180 +227,181 @@
\endinput
-\documentclass{report}
+\documentclass[dvipsnames,usenames]{report}
\usepackage{statex}
\usepackage{shortvrb}
-\MakeShortVerb{!}
+\MakeShortVerb{@}
% Examples
\begin{document}
Many accents have been re-defined
-$$ c \c{c} \pi \cpi$$ %upright constants like the speed of light and 3.14159...
+@ c \c{c} \pi \cpi@ $$ c \c{c} \pi \cpi$$ %upright constants like the speed of light and 3.14159...
-$$\int \e{\im x} \d{x}$$ %\d{x}; also note new commands \e and \im
+@int \e{\im x} \d{x}@ $$\int \e{\im x} \d{x}$$ %\d{x}; also note new commands \e and \im
-$$\^{\beta_1}=b_1$$
+@\^{\beta_1}=b_1@ $$\^{\beta_1}=b_1$$
-$$\=x=\frac{1}{n}\sum x_i$$ %also, \b{x}, but see \ol{x} below
+@\=x=\frac{1}{n}\sum x_i@ $$\=x=\frac{1}{n}\sum x_i$$ %also, \b{x}, but see \ol{x} below
-$$\b{x} = \frac{1}{n} \lp x_1 +\.+ x_n \rp$$
+@\b{x} = \frac{1}{n} \wrap[()]{x_1 +\.+ x_n}@ $$\b{x} = \frac{1}{n} \wrap[()]{x_1 +\.+ x_n}$$
-Sometimes overline is better: $$\b{x}\ vs.\ \ol{x}$$
+Sometimes overline is better: @\b{x}\ vs.\ \ol{x}@ $$\b{x}\ vs.\ \ol{x}$$
-And, underlines are nice too: $$\ul{x}$$
+And, underlines are nice too: @\ul{x}@ $$\ul{x}$$
A few other nice-to-haves:
-$$\binom{n}{x}$$ %provided by amsmath package
+@\Gamma[n+1]=n!@ $$\Gamma[n+1]=n!$$
-$$\e$$
+@\binom{n}{x}@ $$\binom{n}{x}$$ %provided by amsmath package
-$\H_0: \mu_\ij=0$ vs. $\H_1: \mu_\ij \neq 0$ %\ijk too
+@\e{x}@ $$\e{x}$$
-$$\logit \lb p \rb = \log \lb \frac{p}{1-p} \rb$$
+%$\H_0: \mu_\ij=0$ vs. $\H_1: \mu_\ij \neq 0$ %\ijk too
+@\logit \wrap{p} = \log \wrap{\frac{p}{1-p}}@ $$\logit \wrap{p} = \log \wrap{\frac{p}{1-p}}$$
+\pagebreak
Common distributions along with other features follows:
Normal Distribution
-$$Z ~ \N{0, 1}, \where \E{Z}=0 \and \V{Z}=1$$
+@Z ~ \N{0}{1}, \where \E{Z}=0 \and \V{Z}=1@ $$Z ~ \N{0}{1}, \where \E{Z}=0 \and \V{Z}=1$$
-$$\P{|Z|>z_\ha}=\alpha$$
+@\P{|Z|>z_\ha}=\alpha@ $$\P{|Z|>z_\ha}=\alpha$$
-$$\pN[z]{0}{1}$$
+@\pN[z]{0}{1}@ $$\pN[z]{0}{1}$$
or, in general
-$$\pN[z]{\mu}{\sd^2}$$
+@\pN[z]{\mu}{\sd^2}@ $$\pN[z]{\mu}{\sd^2}$$
Sometimes, we subscript the following operations:
-$$\E[z]{Z}=0, \V[z]{Z}=1, \and \P[z]{|Z|>z_\ha}=\alpha$$
+@\E[z]{Z}=0, \V[z]{Z}=1, \and \P[z]{|Z|>z_\ha}=\alpha@ $$\E[z]{Z}=0, \V[z]{Z}=1, \and \P[z]{|Z|>z_\ha}=\alpha$$
Multivariate Normal Distribution
-$$\bm{X} ~ \N[p]{\bm{\mu}, \sfsl{\Sigma}}$$ %\bm provided by the bm package
+@\bm{X} ~ \N[p]{\bm{\mu}}{\sfsl{\Sigma}}@ $$\bm{X} ~ \N[p]{\bm{\mu}}{\sfsl{\Sigma}}$$ %\bm provided by the bm package
Chi-square Distribution
-$$Z_i \iid \N{0, 1}, \where i=1 ,\., n$$
+@Z_i \iid \N{0}{1}, \where i=1 ,\., n@ $$Z_i \iid \N{0}{1}, \where i=1 ,\., n$$
-$$\chisq = \sum_i Z_i^2 ~ \Chi{n}$$
+@\chisq = \sum_i Z_i^2 ~ \Chi{n}@ $$\chisq = \sum_i Z_i^2 ~ \Chi{n}$$
-$$\pChi[z]{n}$$
+@\pChi[z]{n}@ $$\pChi[z]{n}$$
t Distribution
-$$\frac{\b{Z}}{\sqrt{\frac{\chisq}{n}}} ~ \t{n}$$
-
+@\frac{\N{0}{1}}{\sqrt{\frac{\Chisq{n}}{n}}} ~ \t{n}@ $$\frac{\N{0}{1}}{\sqrt{\frac{\Chisq{n}}{n}}} ~ \t{n}$$
+\pagebreak
F Distribution
-$$X_i, Y_i \iid \N{0, 1}, \where i=1 ,\., n, \V{X_i, Y_{\~i}}=\sd_\xy=0,
- \and \~i=1 ,\., n$$ %\XY too
+@X_i, Y_{\~i} \iid \N{0}{1} \where i=1 ,\., n; \~i=1 ,\., m \and \V{X_i, Y_{\~i}}=\sd_\xy=0@ $$X_i, Y_{\~i} \iid \N{0}{1} \where i=1 ,\., n; \~i=1 ,\., m \and \V{X_i, Y_{\~i}}=\sd_\xy=0$$%\XY too
-$$\chisq_x = \sum_i X_i^2 ~ \Chi{n}$$
+@\chisq_x = \sum_i X_i^2 ~ \Chi{n}@ $$\chisq_x = \sum_i X_i^2 ~ \Chi{n}$$
-$$\chisq_y = \sum_i Y_i^2 ~ \Chi{n}$$
+@\chisq_y = \sum_{\~i} Y_{\~i}^2 ~ \Chi{m}@ $$\chisq_y = \sum_{\~i} Y_{\~i}^2 ~ \Chi{m}$$
-$$\frac{\chisq_x}{\chisq_y} ~ \F{n, n}$$
+@\frac{\chisq_x}{\chisq_y} ~ \F{n, m}@ $$\frac{\chisq_x}{\chisq_y} ~ \F{n, m}$$
Beta Distribution
-$$B=\frac{F}{1+F} ~ \Bet{\frac{n}{2}, \frac{n}{2}}$$
+@B=\frac{\frac{n}{m}F}{1+\frac{n}{m}F} ~ \Bet{\frac{n}{2}, \frac{m}{2}}@ $$B=\frac{\frac{n}{m}F}{1+\frac{n}{m}F} ~ \Bet{\frac{n}{2}, \frac{m}{2}}$$
-$$\pBet{\alpha}{\beta}$$
+@\pBet{\alpha}{\beta}@ $$\pBet{\alpha}{\beta}$$
Gamma Distribution
-$$G ~ \Gam{\alpha, \beta}$$
+@G ~ \Gam{\alpha, \beta}@ $$G ~ \Gam{\alpha, \beta}$$
-$$\pGam{\alpha}{\beta}$$
+@\pGam{\alpha}{\beta}@ $$\pGam{\alpha}{\beta}$$
Cauchy Distribution
-$$C ~ \Cau{\theta, \nu}$$
+@C ~ \Cau{\theta, \nu}@ $$C ~ \Cau{\theta, \nu}$$
-$$\pCau{\theta}{\nu}$$
+@\pCau{\theta}{\nu}@ $$\pCau{\theta}{\nu}$$
Uniform Distribution
-$$X ~ \U{0, 1}$$
+@X ~ \U{0, 1}@ $$X ~ \U{0, 1}$$
-$$\pU{0}{1}$$
+@\pU{0}{1}@ $$\pU{0}{1}$$
or, in general
-$$\pU{a}{b}$$
+@\pU{a}{b}@ $$\pU{a}{b}$$
Exponential Distribution
-$$X ~ \Exp{\lambda}$$
+@X ~ \Exp{\lambda}@ $$X ~ \Exp{\lambda}$$
-$$\pExp{\lambda}$$
+@\pExp{\lambda}@ $$\pExp{\lambda}$$
Hotelling's $T^2$ Distribution
-$$X ~ \Tsq{\nu_1, \nu_2}$$
+@X ~ \Tsq{\nu_1, \nu_2}@ $$X ~ \Tsq{\nu_1, \nu_2}$$
Inverse Chi-square Distribution
-$$X ~ \IC{\nu}$$
+@X ~ \IC{\nu}@ $$X ~ \IC{\nu}$$
Inverse Gamma Distribution
-$$X ~ \IG{\alpha, \beta}$$
+@X ~ \IG{\alpha, \beta}@ $$X ~ \IG{\alpha, \beta}$$
Pareto Distribution
-$$X ~ \Par{\alpha, \beta}$$
+@X ~ \Par{\alpha, \beta}@ $$X ~ \Par{\alpha, \beta}$$
-$$\pPar{\alpha}{\beta}$$
+@\pPar{\alpha}{\beta}@ $$\pPar{\alpha}{\beta}$$
Wishart Distribution
-$$\sfsl{X} ~ \W{\nu, \sfsl{S}}$$
+@\sfsl{X} ~ \W{\nu, \sfsl{S}}@ $$\sfsl{X} ~ \W{\nu, \sfsl{S}}$$
Inverse Wishart Distribution
-$$\sfsl{X} ~ \IW{\nu, \sfsl{S^{-1}}}$$
+@\sfsl{X} ~ \IW{\nu, \sfsl{S^{-1}}}@ $$\sfsl{X} ~ \IW{\nu, \sfsl{S^{-1}}}$$
Binomial Distribution
-$$X ~ \Bin{n, p}$$
+@X ~ \Bin{n, p}@ $$X ~ \Bin{n, p}$$
-$$\pBin{n}{p}$$
+@\pBin{n}{p}@ $$\pBin{n}{p}$$
Bernoulli Distribution
-$$X ~ \B{p}$$
+@X ~ \B{p}@ $$X ~ \B{p}$$
Beta-Binomial Distribution
-$$X ~ \BB{p}$$
+@X ~ \BB{p}@ $$X ~ \BB{p}$$
-$$\pBB{n}{\alpha}{\beta}$$
+@\pBB{n}{\alpha}{\beta}@ $$\pBB{n}{\alpha}{\beta}$$
Negative-Binomial Distribution
-$$X ~ \NB{n, p}$$
+@X ~ \NB{n, p}@ $$X ~ \NB{n, p}$$
Hypergeometric Distribution
-$$X ~ \HG{n, M, N}$$
+@X ~ \HG{n, M, N}@ $$X ~ \HG{n, M, N}$$
Poisson Distribution
-$$X ~ \Poi{\mu}$$
+@X ~ \Poi{\mu}@ $$X ~ \Poi{\mu}$$
-$$\pPoi{\mu}$$
+@\pPoi{\mu}@ $$\pPoi{\mu}$$
Dirichlet Distribution
-$$\bm{X} ~ \Dir{\alpha_1 \. \alpha_k}$$
+@\bm{X} ~ \Dir{\alpha_1 \. \alpha_k}@ $$\bm{X} ~ \Dir{\alpha_1 \. \alpha_k}$$
Multinomial Distribution
-$$\bm{X} ~ \M{n, \alpha_1 \. \alpha_k}$$
+@\bm{X} ~ \M{n, \alpha_1 \. \alpha_k}@ $$\bm{X} ~ \M{n, \alpha_1 \. \alpha_k}$$
\pagebreak
@@ -394,32 +410,32 @@ NCRIT program for your TI-83 (or equivalent) calculator. At each step, the
calculator display is shown, followed by what you should do (\Rect\ is the
cursor):\\
\Rect\\
-\Prgm\to!NEW!\to!1:Create New!\\
-!Name=!\Rect\\
+\Prgm\to@NEW@\to@1:Create New@\\
+@Name=@\Rect\\
NCRIT\Enter\\
-!:!\Rect\\
-\Prgm\to!I/O!\to!2:Prompt!\\
-!:Prompt! \Rect\\
+@:@\Rect\\
+\Prgm\to@I/O@\to@2:Prompt@\\
+@:Prompt@ \Rect\\
\Alpha[A],\Alpha[T]\Enter\\
-!:!\Rect\\
-\Distr\to!DISTR!\to!3:invNorm(!\\
-!:invNorm(!\Rect\\
+@:@\Rect\\
+\Distr\to@DISTR@\to@3:invNorm(@\\
+@:invNorm(@\Rect\\
1-(\Alpha[A]$\div$\Alpha[T]))\Sto\Alpha[C]\Enter\\
-!:!\Rect\\
-\Prgm\to!I/O!\to!3:Disp!\\
-!:Disp! \Rect\\
+@:@\Rect\\
+\Prgm\to@I/O@\to@3:Disp@\\
+@:Disp@ \Rect\\
\Alpha[C]\Enter\\
-!:!\Rect\\
+@:@\Rect\\
\Quit\\
-Suppose !A! is $\alpha$ and !T! is the number of tails. To run the program:\\
+Suppose @A@ is $\alpha$ and @T@ is the number of tails. To run the program:\\
\Rect\\
-\Prgm\to!EXEC!\to!NCRIT!\\
-!prgmNCRIT!\Rect\\
+\Prgm\to@EXEC@\to@NCRIT@\\
+@prgmNCRIT@\Rect\\
\Enter\\
-!A=?!\Rect\\
+@A=?@\Rect\\
0.05\Enter\\
-!T=?!\Rect\\
+@T=?@\Rect\\
2\Enter\\
-!1.959963986!
+@1.959963986@
\end{document}