summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/generic/pgfplots/libs/tikzlibrarypgfplots.patchplots.code.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/tex/generic/pgfplots/libs/tikzlibrarypgfplots.patchplots.code.tex')
-rw-r--r--Master/texmf-dist/tex/generic/pgfplots/libs/tikzlibrarypgfplots.patchplots.code.tex156
1 files changed, 78 insertions, 78 deletions
diff --git a/Master/texmf-dist/tex/generic/pgfplots/libs/tikzlibrarypgfplots.patchplots.code.tex b/Master/texmf-dist/tex/generic/pgfplots/libs/tikzlibrarypgfplots.patchplots.code.tex
index a1259e975f4..fb9283571c9 100644
--- a/Master/texmf-dist/tex/generic/pgfplots/libs/tikzlibrarypgfplots.patchplots.code.tex
+++ b/Master/texmf-dist/tex/generic/pgfplots/libs/tikzlibrarypgfplots.patchplots.code.tex
@@ -12,17 +12,17 @@
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
-%
+%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
-%
+%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
%--------------------------------------------
-
+
% NOTES:
% In general, a Bezier spline C:[0,1] -> \R of order n fulfills
% C'(0) = n ( P_1 - P_0 ),
@@ -31,32 +31,32 @@
% the derivatives at t=0 and t=1.
%
%
- %
+ %
%--------------------------------------------------
% 4-point Lagrange interpolation on {0,1/3,2/3,1}:
-% C(x) =
+% C(x) =
% a * (1/3 - x)/(1/3) * (2/3-x)/(2/3) * (1-x) +
% b * (0 - x)/(0 - 1/3) * (2/3-x)/(2/3-1/3) * (1-x)/(1-1/3) +
% c * (0 - x)/(0 - 2/3) * (1/3-x)/(1/3-2/3) * (1-x)/(1-2/3) +
% d * (0 - x)/(0 - 1) * (1/3-x)/(1/3-1) * (2/3-x) /(2/3-1)
-%
-%
+%
+%
% Derivative:
-%
-% (-9*c + 2*d + 72*c*x - 18*d*x - 81*c*x^2 + 27*d*x^2 +
+%
+% (-9*c + 2*d + 72*c*x - 18*d*x - 81*c*x^2 + 27*d*x^2 +
% a*(-11 + 36*x - 27*x^2) + 9*b*(2 - 10*x + 9*x^2))/2
-%
+%
% bezier control points are
% P1 = (-5*a)/6 + 3*b - (3*c)/2 + d/3
% = -0.833333 a + 3. b - 1.5 c + 0.333333 d
-%
+%
% P2 = 0.333333 (0.5 (2. a - 9. b + 18. c - 11. d) + 3. d)
% = 0.333333 a - 1.5 b + 3. c - 0.833333 d
-%--------------------------------------------------
+%--------------------------------------------------
-% A quadratic spline in the ordering
+% A quadratic spline in the ordering
%
% <left> <right> <middle>
%
@@ -267,7 +267,7 @@
},%
recursive refine@={%
% The 4-point lagrangian interpolation formular is shown on
- % the top of this page. What I do here is simply to evaluate
+ % the top of this page. What I do here is simply to evaluate
% C(i*1/9) for i =0,...,9:
% 0
% 0.493827 A +0.740741 C -0.296296 D +0.0617284 B
@@ -542,7 +542,7 @@
% \fi
% \fi
% },
- %--------------------------------------------------
+ %--------------------------------------------------
stream to shader={%
% create a degenerate coons patch:
\begingroup
@@ -569,7 +569,7 @@
\pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}%
% degenerate: the "edge" \PA -- \PA collabses into one
% point.
- % Per construction, the "edge" is the FOREGROUND.
+ % Per construction, the "edge" is the FOREGROUND.
%\message{STREAMING COLLAPSED EDGE AT START POINT^^J}%
\pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}%
\pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}%
@@ -666,7 +666,7 @@
% \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}01%
% \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}11%
% \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}20%
- %--------------------------------------------------
+ %--------------------------------------------------
% The ordering is not arbitrary
% (unless z buffer=sort is in effect). Let's assume that the
% AB edge is BACKGROUND and the CD edge is FOREGROUND. Then
@@ -734,7 +734,7 @@
%--------------------------------------------------
% \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}00%
% \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}10%
- %--------------------------------------------------
+ %--------------------------------------------------
\expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@F@}%
\expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@D@}%
\expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@E@}%
@@ -745,7 +745,7 @@
% %--------------------------------------------------
% % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}01%
% % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}11%
- % %--------------------------------------------------
+ % %--------------------------------------------------
#1\pgfplotspatchclass@qtri@recursiverefine@newnames
%
%
@@ -1063,7 +1063,7 @@
% \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}01%
% \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}11%
% \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}20%
- %--------------------------------------------------
+ %--------------------------------------------------
% The ordering is not arbitrary
% (unless z buffer=sort is in effect). Let's assume that the
% AB edge is BACKGROUND and the CD edge is FOREGROUND. Then
@@ -1163,8 +1163,8 @@
% D <-- C
% | ^
% v |
-% A --> B
-%
+% A --> B
+%
\pgfkeyssetvalue{/pgfplots/vertex count}{0}%
\pgfplotsdeclarepatchclass{polygon}{%
new=\def\pgfplotspatchclass@poly@no{0},
@@ -1242,13 +1242,13 @@
}%
-% mathematica shape functions parameterized in
+% mathematica shape functions parameterized in
% (xi,eta) in [-1,1]x[-1,1]:
%f[xi_, eta_] =
% a*1/4*(1 - xi) (1 - eta) xi*eta +
-% b 1/4 (-1 - xi) (1 - eta) xi*eta +
+% b 1/4 (-1 - xi) (1 - eta) xi*eta +
% c* 1/4 (-1 - xi) (-1 - eta) xi*eta +
-% d *1/4 (1 - xi) (-1 - eta) xi*eta +
+% d *1/4 (1 - xi) (-1 - eta) xi*eta +
% e * 1/2 (xi^2 - 1) (1 - eta) eta +
% f*1/2 (-1 - xi) (eta^2 - 1) xi +
% g* -1/2 (1 - xi^2) (-1 - eta) eta +
@@ -1321,9 +1321,9 @@
%
% This involves a change from Lagrange to bezier
% representation of the boundary curves.
- %
+ %
% Furthermore, pdf supports only **cubic** bezier curves. What
- % I am doing here is
+ % I am doing here is
% a) change of basis from 3-point lagrange ---> 3 point quadratic bezier
% b) expression 3 point quadratic bezier ----> 4 point cubic bezier
%
@@ -1333,7 +1333,7 @@
%
% OUTPUT:
% \PA,bezier control 1, bezier control 2, \PC.
- %
+ %
\def\pgfplots@edge{%
\ifx\pgfplotspatchclass@biquad@A\PA
\pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\PA\endvertex}%
@@ -1394,7 +1394,7 @@
% \fi
% \fi
% },
- %--------------------------------------------------
+ %--------------------------------------------------
stream to shader={%
\begingroup
%
@@ -1425,7 +1425,7 @@
%
% we use
% \pgfplotspatchclass@rect@to@coonspatch@findshadingsequence@for@depth
- % which works for bilinear, biquadratic, and bicubic
+ % which works for bilinear, biquadratic, and bicubic
\pgfplotspatchclass@rect@to@coonspatch@findshadingsequence@for@depth
{pgfplotspatchclass@biquad@}{\Pcur}{\Pnextseq}%
%
@@ -1454,16 +1454,16 @@
% Well, this is simple: take the matrix as-is!
% simply copy 1:1
%
- % i.e. convert
+ % i.e. convert
% D G C
% H I F
% A E B
%
% to
%
- % AC BC CC
- % AB BB CB
- % AA BA CA
+ % AC BC CC
+ % AB BB CB
+ % AA BA CA
\let\P@AA=\pgfplotspatchclass@biquad@A
\let\P@BA=\pgfplotspatchclass@biquad@E
\let\P@CA=\pgfplotspatchclass@biquad@B
@@ -1477,15 +1477,15 @@
\if B\Pcur
% the "B" point needs to be streamed as first.
%
- % i.e. reorder
+ % i.e. reorder
% D G C
% H I F
% A E B
%
- % to
- % A H D AC BC CC
- % E I G =: AB BB CB
- % B F C AA BA CA
+ % to
+ % A H D AC BC CC
+ % E I G =: AB BB CB
+ % B F C AA BA CA
%
\let\P@AA=\pgfplotspatchclass@biquad@B
\let\P@BA=\pgfplotspatchclass@biquad@F
@@ -1500,15 +1500,15 @@
\if C\Pcur
% the "C" point needs to be streamed as first.
%
- % i.e. reorder
+ % i.e. reorder
% D G C
% H I F
% A E B
%
- % to
- % B E A AC BC CC
- % F I H =: AB BB CB
- % C G D AA BA CA
+ % to
+ % B E A AC BC CC
+ % F I H =: AB BB CB
+ % C G D AA BA CA
%
\let\P@AA=\pgfplotspatchclass@biquad@C
\let\P@BA=\pgfplotspatchclass@biquad@G
@@ -1523,15 +1523,15 @@
\if D\Pcur
% the "D" point needs to be streamed as first.
%
- % i.e. reorder
+ % i.e. reorder
% D G C
% H I F
% A E B
%
- % to
- % C F B AC BC CC
- % G I E =: AB BB CB
- % D H A AA BA CA
+ % to
+ % C F B AC BC CC
+ % G I E =: AB BB CB
+ % D H A AA BA CA
%
\let\P@AA=\pgfplotspatchclass@biquad@D
\let\P@BA=\pgfplotspatchclass@biquad@H
@@ -1567,7 +1567,7 @@
% 'patch type=quadratic spline' . We only need to apply it to all
% lines in U direction and afterwards to all lines in V
% direction.
- %
+ %
\def\pgfplotspatchvertexaddXY@expanded##1\times{%
\edef\pgfplots@loc@TMPa{##1}%
\expandafter\pgfplotspatchvertexaddXY\pgfplots@loc@TMPa\times
@@ -1683,7 +1683,7 @@
% \edef\pgfplotspatchclass@biquade@CA{#2}%
% \fi
% },
- %--------------------------------------------------
+ %--------------------------------------------------
serialize except vertices={%
\ifx\pgfplotspatchclass@biquade@AB\relax
\let\pgfplotsretval\pgfutil@empty%
@@ -1706,7 +1706,7 @@
% \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}01%
% \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}11%
% \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}20%
- %--------------------------------------------------
+ %--------------------------------------------------
% The ordering is not arbitrary
% (unless z buffer=sort is in effect). Let's assume that the
% AB edge is BACKGROUND and the CD edge is FOREGROUND. Then
@@ -1721,11 +1721,11 @@
% {0.375` a - 0.125` b + 0.75` e,
% 0.375` e - 0.125` g + 0.75` i,
% -0.125` f + 0.375` h + 0.75` i,
- % 0.375` a - 0.125` d + 0.75` h,
- % 0.140625` a - 0.046875` b + 0.015625` c - 0.046875` d +
+ % 0.375` a - 0.125` d + 0.75` h,
+ % 0.140625` a - 0.046875` b + 0.015625` c - 0.046875` d +
% 0.28125` e - 0.09375` f - 0.09375` g + 0.28125` h +
% 0.5625` i}
- %--------------------------------------------------
+ %--------------------------------------------------
\pgfplotspatchvertexaccumstart
\expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@A\times{0.375}%
\expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@B\times{-0.125}%
@@ -1832,7 +1832,7 @@
% N[ {f[1, 1/2], f[1/2, 1], f[0, 1/2], f[1/2, 1/2]}]
% {-0.125` b + 0.375` c + 0.75` f,
% 0.375` c - 0.125` d + 0.75` g,
- % -0.125` e + 0.375` g + 0.75` i,
+ % -0.125` e + 0.375` g + 0.75` i,
% 0.015625` a - 0.046875` b + 0.140625` c - 0.046875` d - 0.09375` e + 0.28125` f + 0.28125` g - 0.09375` h + 0.5625` i}
\pgfplotspatchvertexaccumstart
\expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@B\times{-0.125}%
@@ -2317,7 +2317,7 @@
%
% This involves a change from Lagrange to bezier
% representation of the boundary curves.
- %
+ %
\pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@bicubic@AA\endvertex}%
\pgfplotspathcubicfrominterpolation
{\pgfplotspatchclass@bicubic@AA}
@@ -2355,7 +2355,7 @@
%
% we use
% \pgfplotspatchclass@rect@to@coonspatch@findshadingsequence@for@depth
- % which works for bilinear, biquadratic, and bicubic
+ % which works for bilinear, biquadratic, and bicubic
%
% define helper macros which are input for
% \pgfplotspatchclass@rect@to@coonspatch@findshadingsequence@for@depth:
@@ -2400,12 +2400,12 @@
\if B\Pcur
% the "DA" point needs to be streamed as first.
%
- % Reorder
+ % Reorder
% AD BD CD DD
% AC BC CC DC
% AB BB CB DB
% AA BA CA DA
- % to
+ % to
% AA AB AC AD
% BA BB BC BD
% CA CB CC CD
@@ -2431,12 +2431,12 @@
\if C\Pcur
% the "DD" point needs to be streamed as first.
%
- % Reorder
+ % Reorder
% AD BD CD DD
% AC BC CC DC
% AB BB CB DB
% AA BA CA DA
- % to
+ % to
% DA CA BA AA
% DB CB BB AB
% DC CC BC AC
@@ -2462,12 +2462,12 @@
\if D\Pcur
% the "AD" point needs to be streamed as first.
%
- % Reorder
+ % Reorder
% AD BD CD DD
% AC BC CC DC
% AB BB CB DB
% AA BA CA DA
- % to
+ % to
% DD DC DB DA
% CD CC CB CA
% BD BC BB BA
@@ -2513,7 +2513,7 @@
% 'patch type=cubic spline' . We only need to apply it to all
% lines in U direction and afterwards to all lines in V
% direction.
- %
+ %
\def\pgfplotspatchvertexaddXY@expanded##1\times{%
\edef\pgfplots@loc@TMPa{##1}%
\expandafter\pgfplotspatchvertexaddXY\pgfplots@loc@TMPa\times
@@ -2573,7 +2573,7 @@
\let\pgfplotsplothandlermesh@patchclass@=\pgfplotsplothandlermesh@patchclass
\def\pgfplotsplothandlermesh@patchclass{triangle}%
\pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{new}%
- % Ok. Now create a lot of triangles.
+ % Ok. Now create a lot of triangles.
%
% FIXME: The ordering is not arbitrary (unless z buffer=sort is in effect).
%
@@ -2627,12 +2627,12 @@
% Transpose a bicubic matrix (4x4).
%
-% Reorder
+% Reorder
% AD BD CD DD
% AC BC CC DC
% AB BB CB DB
% AA BA CA DA
-% to
+% to
% DA DB DC DD
% CA CB CC CD
% BA BB BC BD
@@ -2648,28 +2648,28 @@
% Transpose a bicubic matrix (4x4).
%
-% Reorder
-% AC BC CC
-% AB BB CB
-% AA BA CA
-% to
-% CA CB CC
-% BA BB BC
-% AA AB AC
+% Reorder
+% AC BC CC
+% AB BB CB
+% AA BA CA
+% to
+% CA CB CC
+% BA BB BC
+% AA AB AC
\def\pgfplotspatchclass@biquad@transpose{%
\pgfplotsutil@swap\P@AB\P@BA
\pgfplotsutil@swap\P@CA\P@AC
\pgfplotsutil@swap\P@CB\P@BC
}
-% Expects that a 4x4 matrix in tensor bezier representation where
+% Expects that a 4x4 matrix in tensor bezier representation where
% A = left end point
% B = first control point
% C = second control point
% D = right end point
%
% and the coordinates are stored in \csname P@[ABCD][ABCD]\endcsname
-%
+%
% Streaming starts with \P@AA and is applied rowwise.
\def\pgfplotsplothandlermesh@shade@cubic@tensor{%
% Stream it to the shader. Note that the shader has a