summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/context/base/math-arr.mkiv
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/tex/context/base/math-arr.mkiv')
-rw-r--r--Master/texmf-dist/tex/context/base/math-arr.mkiv439
1 files changed, 439 insertions, 0 deletions
diff --git a/Master/texmf-dist/tex/context/base/math-arr.mkiv b/Master/texmf-dist/tex/context/base/math-arr.mkiv
new file mode 100644
index 00000000000..5c6cfc29445
--- /dev/null
+++ b/Master/texmf-dist/tex/context/base/math-arr.mkiv
@@ -0,0 +1,439 @@
+%D \module
+%D [ file=math-arr,
+%D version=2007.07.19,
+%D title=\CONTEXT\ Math Macros,
+%D subtitle=Arrows,
+%D author={Hans Hagen \& Taco Hoekwater \& Aditya Mahajan},
+%D date=\currentdate,
+%D copyright=\PRAGMA]
+%C
+%C This module is part of the \CONTEXT\ macro||package and is
+%C therefore copyrighted by \PRAGMA. See mreadme.pdf for
+%C details.
+
+\writestatus{loading}{ConTeXt Math Macros / Arrows}
+
+\unprotect
+
+%D These will be generalized! Is it still needed in \MKIV?
+
+\def\exmthfont#1{\symbolicsizedfont#1\plusone{MathExtension}}
+
+\def\domthfrac#1#2#3#4#5#6#7%
+ {\begingroup
+ \mathsurround\zeropoint
+ \setbox0\hbox{$#1 #6$}%
+ \setbox2\hbox{$#1 #7$}%
+ \dimen0\wd0
+ \ifdim\wd2>\dimen0 \dimen0\wd2 \fi
+ \setbox4\hbox to \dimen0{\exmthfont#2#3\leaders\hbox{#4}\hss#5}%
+ \mathord{\vcenter{{\offinterlineskip
+ \hbox to \dimen0{\hss\box0\hss}%
+ \kern \ht4%
+ \hbox to \dimen0{\hss\copy4\hss}%
+ \kern \ht4%
+ \hbox to \dimen0{\hss\box2\hss}}}}%
+ \endgroup}
+
+\def\domthsqrt#1#2#3#4#5%
+ {\begingroup
+ \mathsurround\zeropoint
+ \setbox0\hbox{$#1 #5$}%
+ \dimen0=1.05\ht0 \advance\dimen0 1pt \ht0 \dimen0
+ \dimen0=1.05\dp0 \advance\dimen0 1pt \dp0 \dimen0
+ \dimen0\wd0
+ \setbox4\hbox to \dimen0{\exmthfont#2\leaders\hbox{#3}\hfill#4}%
+ \delimitershortfall=0pt
+ \nulldelimiterspace=0pt
+ \setbox2\hbox{$\left\delimiter"0270370 \vrule height\ht0 depth \dp0 width0pt
+ \right.$}%
+ \mathord{\vcenter{\hbox{\copy2
+ \rlap{\raise\dimexpr\ht2-\ht4\relax\copy4}\copy0}}}%
+ \endgroup}
+
+\def\mthfrac#1#2#3#4#5{\mathchoice
+ {\domthfrac\displaystyle \textface {#1}{#2}{#3}{#4}{#5}}
+ {\domthfrac\textstyle \textface {#1}{#2}{#3}{#4}{#5}}
+ {\domthfrac\scriptstyle \scriptface {#1}{#2}{#3}{#4}{#5}}
+ {\domthfrac\scriptscriptstyle\scriptscriptface{#1}{#2}{#3}{#4}{#5}}}
+
+\def\mthsqrt#1#2#3{\mathchoice
+ {\domthsqrt\displaystyle \textface {#1}{#2}{#3}}
+ {\domthsqrt\textstyle \textface {#1}{#2}{#3}}
+ {\domthsqrt\scriptstyle \textface {#1}{#2}{#3}}
+ {\domthsqrt\scriptscriptstyle\textface {#1}{#2}{#3}}}
+
+% temp here
+
+%D We next define extensible arrows. Extensible arrows are arrows that
+%D change their length according to the width of the text to be placed
+%D above and below the arrow. Since we need to define a lot of arrows,
+%D we first define some helper macros. The basic idea is to measure
+%D the width of the box to be placed above and below the arrow, and
+%D make the \quotation{body} of the arrow as long as the bigger of the
+%D two widths.
+
+\def\mtharrfactor{1}
+\def\mtharrextra {0}
+
+\def\domthxarr#1#2#3#4#5% hm, looks like we do a double mathrel
+ {\begingroup
+ \def\mtharrfactor{1}%
+ \def\mtharrextra {0}%
+ \processaction[#1] % will be sped up
+ [ \v!none=>\def\mtharrfactor{0},
+ \v!small=>\def\mtharrextra{10},
+ \v!medium=>\def\mtharrextra{15},
+ \v!big=>\def\mtharrextra{20},
+ \v!normal=>,
+ \v!default=>,
+ \v!unknown=>\doifnumberelse{#1}{\def\mtharrextra{#1}}\donothing]%
+ \mathsurround\zeropoint
+ \muskip0=\thirdoffourarguments #2mu
+ \muskip2=\fourthoffourarguments #2mu
+ \muskip4=\firstoffourarguments #2mu
+ \muskip6=\secondoffourarguments #2mu
+ \muskip0=\mtharrfactor\muskip0 \advance\muskip0 \mtharrextra mu
+ \muskip2=\mtharrfactor\muskip2 \advance\muskip2 \mtharrextra mu
+ \setbox0\hbox{$\scriptstyle
+ \mkern\muskip4\relax
+ \mkern\muskip0\relax
+ #5\relax
+ \mkern\muskip2\relax
+ \mkern\muskip6\relax
+ $}%
+ \setbox4\hbox{#3\displaystyle}%
+ \dimen0\wd0
+ \ifdim\wd4>\dimen0 \dimen0\wd4 \fi
+ \setbox2\hbox{$\scriptstyle
+ \mkern\muskip4\relax
+ \mkern\muskip0\relax
+ #4\relax
+ \mkern\muskip2\relax
+ \mkern\muskip6\relax
+ $}%
+ \ifdim\wd2>\dimen0 \dimen0\wd2 \fi
+ \setbox4\hbox to \dimen0{#3\displaystyle}%
+ \mathrel{\mathop{\hbox to \dimen0{\hss\copy4\hss}}\limits^{\box0}_{\box2}}
+ \endgroup}
+
+\let\domthxarrsingle\domthxarr
+
+%D There are some arrows which are created by stacking two arrows. The next
+%D macro helps in defining such \quotation{double arrows}.
+
+\def\domthxarrdouble#1#2#3#4#5#6#7% opt l r sp rs top bot
+ {\mathrel
+ {\scratchdimen.32ex\relax % was .22, todo: make configurable
+ \setbox0\hbox{$\domthxarr{#1}{#2}{#4}{\phantom{#6}}{#7}$}%
+ \setbox2\hbox{$\domthxarr{#1}{#3}{#5}{#6}{\phantom{#7}}$}%
+ \raise\scratchdimen\box0
+ \kern-\wd2
+ \lower\scratchdimen\box2}}
+
+%D \macros{definematharrow}
+%D
+%D Macro for defining new arrows. We can define two types of
+%D arrows|<|single arrows and double arrows. Single arrows are defined
+%D as
+%D
+%D \starttyping
+%D \definematharrow [xrightarrow] [0359] [\rightarrowfill]
+%D \stoptyping
+%D
+%D The first argument is the name of the arrow (\tex{xrightarrow} in
+%D this case.) The second argument consists of a set of 4 numbers and
+%D specify the spacing correction in math units~\type{mu}. These
+%D numbers define:
+%D
+%D \startlines
+%D 1st number: arrow||tip correction
+%D 2nd number: arrow||tip correction
+%D 3rd number: space (multiplied by \tex{matharrfactor} and advanced by \tex{matharrextra})
+%D 4th number: space (multiplied by \tex{matharrfactor} and advanced by \tex{matharrextra})
+%D \stoplines
+%D
+%D The third argument is the name of the extensible fill. The third
+%D argument is optional when the arrow is redefined later (this is
+%D useful for font specific tweaking of the skips.) For example,
+%D
+%D \startbuffer
+%D \math{\xrightarrow{above}}
+%D \definematharrow[xrightarrow][0000]
+%D \math{\xrightarrow{above}}
+%D \definematharrow[xrightarrow][55{50}{50}]
+%D \math{\xrightarrow{above}}
+%D \stopbuffer
+%D \typebuffer gives {\getbuffer}
+%D
+%D The double arrows are defined as follows
+%D
+%D \starttyping
+%D \definematharrow [xrightleftharpoons] [3095,0359]
+%D [\rightharpoonupfill,\leftharpoondownfill]
+%D \stoptyping
+%D
+%D The second and the third set of arguments consist of comma
+%D separated values. The first element of the second argument
+%D (\type{3095}) corresponds to the spacing correction of top arrow
+%D fill (\tex{rightarrowupfill}). Similarly, \type{0359} corresponds
+%D to bottom arrow fill \tex{leftharpoondownfill}). Stacking them on
+%D top of each other we get $\xrightleftharpoons[big]{above}{below}$.
+%D The following math arrows are defined
+%D
+%D \placetable[none]{}{\starttable[|l|m|]
+%D \NC \tex{xrightarrow } \NC \xrightarrow [big] \NC \NR
+%D \NC \tex{xleftarrow } \NC \xleftarrow [big] \NC \NR
+%D \NC \tex{xequal } \NC \xequal [big] \NC \NR
+%D \NC \tex{xRightarrow } \NC \xRightarrow [big] \NC \NR
+%D \NC \tex{xLeftarrow } \NC \xLeftarrow [big] \NC \NR
+%D \NC \tex{xLeftrightarrow } \NC \xLeftrightarrow [big] \NC \NR
+%D \NC \tex{xleftrightarrow } \NC \xleftrightarrow [big] \NC \NR
+%D \NC \tex{xmapsto } \NC \xmapsto [big] \NC \NR
+%D \NC \tex{xtwoheadrightarrow } \NC \xtwoheadrightarrow [big] \NC \NR
+%D \NC \tex{xtwoheadleftarrow } \NC \xtwoheadleftarrow [big] \NC \NR
+%D \NC \tex{xrightharpoondown } \NC \xrightharpoondown [big] \NC \NR
+%D \NC \tex{xrightharpoonup } \NC \xrightharpoonup [big] \NC \NR
+%D \NC \tex{xleftharpoondown } \NC \xleftharpoondown [big] \NC \NR
+%D \NC \tex{xleftharpoonup } \NC \xleftharpoonup [big] \NC \NR
+%D \NC \tex{xhookleftarrow } \NC \xhookleftarrow [big] \NC \NR
+%D \NC \tex{xhookrightarrow } \NC \xhookrightarrow [big] \NC \NR
+%D \NC \tex{xleftrightharpoons } \NC \xleftrightharpoons [big] \NC \NR
+%D \NC \tex{xrightleftharpoons } \NC \xrightleftharpoons [big] \NC \NR
+%D \stoptable}
+
+\def\definematharrow
+ {\doquadrupleargument\dodefinematharrow}
+
+\def\dodefinematharrow[#1][#2][#3][#4]% name type[none|both] template command
+ {\iffourthargument
+ \executeifdefined{dodefine#2arrow}\gobblethreearguments{#1}{#3}{#4}%
+ \else\ifthirdargument
+ \dodefinebotharrow{#1}{#2}{#3}%
+ \else\ifsecondargument
+ \redefinebotharrow{#1}{#2}{#3}%
+ \fi\fi\fi}
+
+\def\redefinebotharrow#1#2#3% real dirty, this overload!
+ {\doifdefined{#1}
+ {\pushmacro\dohandlemtharrow
+ \def\dohandlemtharrow[##1][##2]{\setvalue{#1}{\dohandlemtharrow[#2][##2]}}%
+ % == \def\dohandlemtharrow[##1][##2]{\dodefinebotharrow{#1}{#2}{##2}}%
+ \getvalue{#1}%
+ \popmacro\dohandlemtharrow}}
+
+\def\dodefinebotharrow#1#2#3%
+ {\setvalue{#1}{\dohandlemtharrow[#2][#3]}}
+
+\def\dohandlemtharrow
+ {\dotripleempty\doxmtharrow}
+
+\def\doxmtharrow[#1][#2][#3]% #3 == optional arg
+ {\def\dodoxmtharrow{\dododoxmtharrow[#1,\empty,\empty][#2,\empty,\empty][#3]}% {##1}{##2}
+ \dodoublegroupempty\dodoxmtharrow}
+
+\def\dododoxmtharrow[#1,#2,#3][#4,#5,#6][#7]#8#9% [3] is the optional arg
+ {\edef\!!stringa{#2}%
+ \ifx\!!stringa\empty
+ \ifsecondargument
+ \mathrel{\domthxarrsingle{#7}{#1}{#4}{#8}{#9}}%
+ \else
+ \mathrel{\domthxarrsingle{#7}{#1}{#4}{}{#8}}%
+ \fi
+ \else
+ \ifsecondargument
+ \mathrel{\domthxarrdouble{#7}{#1}{#2}{#4}{#5}{#8}{#9}}%
+ \else
+ \mathrel{\domthxarrdouble{#7}{#1}{#2}{#4}{#5}{}{#8}}%
+ \fi
+ \fi}
+
+% Adapted from amsmath.
+
+%D \macros{mtharrowfill,defaultmtharrowfill}
+%D
+%D To extend the arrows we need to define a \quotation{math arrow
+%D fill}. This command takes 8 arguments: the first four correspond
+%D the second argument of \tex{definematharrow} explained above. The
+%D other three specify the tail, body and head of the arrow. The last
+%D argument specifies the math-mode in which the arrow is drawn.
+%D \tex{defaultmtharrowfill} has values tweaked to match Latin Modern
+%D fonts. For fonts that are significantly different (e.g. cows) a
+%D different set of values need to be determined.
+
+\def\mtharrowfill#1#2#3#4#5#6#7#8%
+ {$\mathsurround 0pt
+ \thickmuskip0mu\medmuskip\thickmuskip\thinmuskip\thickmuskip
+ \relax#8#5%
+ \mkern-#1mu
+ \cleaders\hbox{$#8\mkern -#2mu#6\mkern -#3mu$}\hfill
+ \mkern-#4mu#7$}
+
+\def\defaultmtharrowfill{\mtharrowfill 7227}
+
+%D We now define some arrow fills that will be used for defining the
+%D arrows. Plain \TEX\ already defines \tex{leftarrowfill} and
+%D \tex{rightarrowfill}. The \tex{defaultmtharrowfill} command defines an
+%D arrowfill that takes an argument (so that it can also be used
+%D with over and under arrows). However the Plain \TEX\ definitions of
+%D \tex{leftarrowfill} and \tex{rightarrowfill} do not take this extra
+%D argument. To be backward compatible with Plain \TEX, we define two
+%D arrowfills: \tex{specrightarrowfill} which takes an extra argument, and
+%D \tex{rightarrowfill} which does not.
+
+\def\specrightarrowfill {\defaultmtharrowfill \relbar \relbar \rightarrow}
+\def\specleftarrowfill {\defaultmtharrowfill \leftarrow \relbar \relbar}
+
+\def\rightarrowfill {\specrightarrowfill \textstyle}
+\def\leftarrowfill {\specleftarrowfill \textstyle}
+
+\def\equalfill {\defaultmtharrowfill \Relbar \Relbar \Relbar}
+\def\Rightarrowfill {\defaultmtharrowfill \Relbar \Relbar \Rightarrow}
+\def\Leftarrowfill {\defaultmtharrowfill \Leftarrow \Relbar \Relbar}
+\def\Leftrightarrowfill {\defaultmtharrowfill \Leftarrow \Relbar \Rightarrow}
+\def\leftrightarrowfill {\defaultmtharrowfill \leftarrow \relbar \rightarrow}
+\def\mapstofill {\defaultmtharrowfill{\mapstochar\relbar} \relbar \rightarrow}
+\def\twoheadrightarrowfill{\defaultmtharrowfill \relbar \relbar \twoheadrightarrow}
+\def\twoheadleftarrowfill {\defaultmtharrowfill \twoheadleftarrow \relbar \relbar}
+\def\rightharpoondownfill {\defaultmtharrowfill \relbar \relbar \rightharpoondown}
+\def\rightharpoonupfill {\defaultmtharrowfill \relbar \relbar \rightharpoonup}
+\def\leftharpoondownfill {\defaultmtharrowfill \leftharpoondown \relbar \relbar}
+\def\leftharpoonupfill {\defaultmtharrowfill \leftharpoonup \relbar \relbar}
+\def\hookleftfill {\defaultmtharrowfill \leftarrow \relbar{\relbar\joinrel\rhook}}
+\def\hookrightfill {\defaultmtharrowfill{\lhook\joinrel\relbar}\relbar \rightarrow}
+\def\relfill {\defaultmtharrowfill \relbar \relbar \relbar}
+
+\def\triplerelbar {\mathrel\equiv}
+\def\triplerelfill{\defaultmtharrowfill\triplerelbar\triplerelbar\triplerelbar}
+
+\def\singlebond{{\xrel}} % or \def\singlebond{{\xrel[2]}}
+\def\doublebond{{\xequal}}
+\def\triplebond{{\xtriplerel}}
+
+%D Now we define most commonly used arrows. These include arrows
+%D defined in \filename{amsmath.sty}, \filename{extarrows.sty},
+%D \filename{extpfel.sty} and \filename{mathtools.sty} packages for
+%D \LATEX\ (plus a few more).
+
+\definematharrow [xrightarrow] [0359] [\specrightarrowfill]
+\definematharrow [xleftarrow] [3095] [\specleftarrowfill]
+\definematharrow [xequal] [0099] [\equalfill]
+\definematharrow [xRightarrow] [0359] [\Rightarrowfill]
+\definematharrow [xLeftarrow] [3095] [\Leftarrowfill]
+\definematharrow [xLeftrightarrow] [0099] [\Leftrightarrowfill]
+\definematharrow [xleftrightarrow] [0099] [\leftrightarrowfill]
+\definematharrow [xmapsto] [3599] [\mapstofill]
+\definematharrow [xtwoheadrightarrow] [5009] [\twoheadrightarrowfill]
+\definematharrow [xtwoheadleftarrow] [0590] [\twoheadleftarrowfill]
+\definematharrow [xrightharpoondown] [0359] [\rightharpoondownfill]
+\definematharrow [xrightharpoonup] [0359] [\rightharpoonupfill]
+\definematharrow [xleftharpoondown] [3095] [\leftharpoondownfill]
+\definematharrow [xleftharpoonup] [3095] [\leftharpoonupfill]
+\definematharrow [xhookleftarrow] [3095] [\hookleftfill]
+\definematharrow [xhookrightarrow] [0395] [\hookrightfill]
+\definematharrow [xrel] [0099] [\relfill]
+\definematharrow [xtriplerel] [0099] [\triplerelfill]
+\definematharrow [xrightoverleftarrow] [0359,3095] [\specrightarrowfill,\specleftarrowfill]
+\definematharrow [xleftrightharpoons] [3399,3399] [\leftharpoonupfill,\rightharpoondownfill]
+\definematharrow [xrightleftharpoons] [3399,3399] [\rightharpoonupfill,\leftharpoondownfill]
+
+%D These arrows can be used as follows:
+%D
+%D \startbuffer
+%D \startformula \xrightarrow{stuff on top}\stopformula
+%D \startformula \xrightarrow{}{stuff on top}\stopformula
+%D \startformula \xrightarrow{stuff below}{}\stopformula
+%D \startformula \xrightarrow{stuff below}{stuff on top}\stopformula
+%D
+%D \startformula \xleftarrow [none]{stuff below}{stuff on top}\stopformula
+%D \startformula \xleftarrow [small]{stuff below}{stuff on top}\stopformula
+%D \startformula \xleftarrow [medium]{stuff below}{stuff on top}\stopformula
+%D \startformula \xleftarrow [big]{stuff below}{stuff on top}\stopformula
+%D \stopbuffer
+%D
+%D \typebuffer which gives \getbuffer
+
+%D \macros{definemathoverarrow,defineunderarrow}
+%D
+%D These macros for define math-overarrows are adapted from
+%D \filename{amsmath.sty}
+
+\def\definemathoverarrow
+ {\dotripleargument\dodefinemathoverarrow}
+
+\def\dodefinemathoverarrow[#1][#2][#3]%
+ {\ifthirdargument
+ \setvalue{#1}{\dohandlemathoverarrow[#2][#3]}%
+ \else
+ \setvalue{#1}{\dohandlemathoverarrow[\zeropoint][#2]}%
+ \fi}
+
+\def\dohandlemathoverarrow[#1][#2]%
+ {\mathpalette{\dodohandlemathoverarrow{#1}{#2}}}
+
+%D Note: \filename{math-pln.tex} has \type{\kern-\onepoint} and
+%D \filename{amsmath.sty} does not. We keep the kern amount
+%D configurable. This is useful for harpoons.
+
+\def\dodohandlemathoverarrow#1#2#3#4%
+ {\vbox{\ialign{##\crcr
+ #2#3\crcr
+ \noalign{\kern#1\nointerlineskip}%
+ $\mathsurround\zeropoint\hfil#3#4\hfil$\crcr}}}
+
+%D Now the under arrows
+
+\def\definemathunderarrow
+ {\dotripleargument\dodefinemathunderarrow}
+
+%D For underarrows the default kern is 0.3ex
+
+\def\dodefinemathunderarrow[#1][#2][#3]%
+ {\ifthirdargument
+ \setvalue{#1}{\dohandlemathunderarrow[#2][#3]}%
+ \else
+ \setvalue{#1}{\dohandlemathunderarrow[0.3ex][#2]}%
+ \fi}
+
+\def\dohandlemathunderarrow[#1][#2]%
+ {\mathpalette{\dodohandlemathunderarrow{#1}{#2}}}
+
+\def\dodohandlemathunderarrow#1#2#3#4%
+ {\vtop{\ialign{##\crcr
+ $\mathsurround\zeropoint\hfil#3#4\hfil$\crcr
+ \noalign{\nointerlineskip\kern#1}%
+ #2#3\crcr}}}
+
+%D Now we define the arrows
+
+\definemathoverarrow [overleftarrow] [\specleftarrowfill]
+\definemathoverarrow [overrightarrow] [\specrightarrowfill]
+\definemathoverarrow [overleftrightarrow] [\leftrightarrowfill]
+\definemathoverarrow [overtwoheadrightarrow] [\twoheadrightarrowfill]
+\definemathoverarrow [overtwoheadleftarrow] [\twoheadleftarrowfill]
+\definemathoverarrow [overrightharpoondown] [1pt] [\rightharpoondownfill]
+\definemathoverarrow [overrightharpoonup] [\rightharpoonupfill]
+\definemathoverarrow [overleftharpoondown] [1pt] [\leftharpoondownfill]
+\definemathoverarrow [overleftharpoonup] [\leftharpoonupfill]
+
+\definemathunderarrow [underleftarrow] [\specleftarrowfill]
+\definemathunderarrow [underrightarrow] [\specrightarrowfill]
+\definemathunderarrow [underleftrightarrow] [\leftrightarrowfill]
+\definemathunderarrow [undertwoheadrightarrow][\twoheadrightarrowfill]
+\definemathunderarrow [undertwoheadleftarrow] [\twoheadleftarrowfill]
+\definemathunderarrow [underrightharpoondown] [\rightharpoondownfill]
+\definemathunderarrow [underrightharpoonup] [\rightharpoonupfill]
+\definemathunderarrow [underleftharpoondown] [\leftharpoondownfill]
+\definemathunderarrow [underleftharpoonup] [\leftharpoonupfill]
+
+%D These can be used as follows:
+%D
+%D \startbuffer
+%D $\overleftarrow{A}$ $\overleftarrow{ABC}$
+%D $a_{\overleftarrow{A}}$ $b_{\overleftarrow{ABC}}$
+%D \stopbuffer
+%D \typebuffer which gives \getbuffer
+
+%D TODO: Possibly have a single arrow command define all the arrows.
+
+\protect \endinput