diff options
Diffstat (limited to 'Master/texmf-dist/source')
-rw-r--r-- | Master/texmf-dist/source/generic/xint/xint.dtx | 852 |
1 files changed, 548 insertions, 304 deletions
diff --git a/Master/texmf-dist/source/generic/xint/xint.dtx b/Master/texmf-dist/source/generic/xint/xint.dtx index 8a6a882ba83..6b5ff7588c8 100644 --- a/Master/texmf-dist/source/generic/xint/xint.dtx +++ b/Master/texmf-dist/source/generic/xint/xint.dtx @@ -3,28 +3,28 @@ % Extract all files via "etex xint.dtx" and do "make help" % or follow instructions from extracted README.md. %<*dtx> -\def\xintdtxtimestamp {Time-stamp: <20-02-2021 at 20:47:06 CET>} +\def\xintdtxtimestamp {Time-stamp: <29-03-2021 at 11:06:25 CEST>} %</dtx> %<*drv> %% --------------------------------------------------------------- -\def\xintdocdate {2021/02/20} -\def\xintbndldate{2021/02/20} -\def\xintbndlversion {1.4c} +\def\xintdocdate {2021/03/29} +\def\xintbndldate{2021/03/29} +\def\xintbndlversion {1.4d} %</drv> %<readme>% README %<changes>% CHANGE LOG -%<readme|changes>% xint 1.4c -%<readme|changes>% 2021/02/20 +%<readme|changes>% xint 1.4d +%<readme|changes>% 2021/03/29 %<readme|changes> -%<readme|changes> Source: xint.dtx 1.4c 2021/02/20 (doc 2021/02/20) +%<readme|changes> Source: xint.dtx 1.4d 2021/03/29 (doc 2021/03/29) %<readme|changes> Author: Jean-Francois Burnol %<readme|changes> Info: Expandable operations on big integers, decimals, fractions %<readme|changes> License: LPPL 1.3c %<readme|changes> %<*!readme&!changes&!dohtmlsh&!makefile> %% --------------------------------------------------------------- -%% The xint bundle 1.4c 2021/02/20 -%% Copyright (C) 2013-2020 by Jean-Francois Burnol +%% The xint bundle 1.4d 2021/03/29 +%% Copyright (C) 2013-2021 by Jean-Francois Burnol %<xintkernel>%% xintkernel: Paraphernalia for the xint packages %<xinttools>%% xinttools: Expandable and non-expandable utilities %<xintcore>%% xintcore: Expandable arithmetic on big integers @@ -137,7 +137,7 @@ is a functionality of all major TeX engines since TeXLive 2019. License ======= -Copyright (C) 2013-2020 by Jean-Francois Burnol +Copyright (C) 2013-2021 by Jean-Francois Burnol This Work may be distributed and/or modified under the conditions of the LaTeX Project Public License version 1.3c. @@ -161,6 +161,40 @@ See `xint.pdf` for contact information. %</readme>-------------------------------------------------------- %<*changes>------------------------------------------------------- +`1.4d (2021/03/29)` +---- + +### Breaking changes + + - `quo()` and `rem()` in `\xintiiexpr/\xintiieval` renamed to + `iquo()` and `irem()`. + + - the output of `gcd()` and `lcm()` as applied to fractions is now + always in lowest terms. + +### Bug fixes + + - Ever since `1.3` the `quo()` and `rem()` functions in `\xintexpr` + (not the ones in `\xintiiexpr`) were broken as their (officially + deprecated) support macros had been removed! They had somewhat + useless definitions anyway. They have now been officially removed + from the syntax. Their siblings in `\xintiieval` were renamed to + `iquo()` and `irem()`. + + - Sadly, `gcd()` was broken in `\xintexpr` since `1.4`, if the first + argument vanished. And `gcd()` was broken in `\xintiiexpr` since + `1.3d` if *any* argument vanished. I did have a unit test! (which + obviously was too limited ...) + + Further, the `\xintGCDof` and `\xintLCMof` **xintfrac** macros were + added at `1.4` but did not behave like other **xintfrac** macros with + respect to parsing their arguments: e.g. `\xintGCDof{2}{03}` gave an + unexpected non-numeric result. + + - The `first()` and `last()` functions, if used as arguments to + numerical functions such as `sqr()` inside an `\xintdeffunc` + caused the defined function to be broken. + `1.4c (2021/02/20)` ---- @@ -3577,6 +3611,8 @@ pdfpagemode=UseNone,% % =============== % \ttzfamily done at begin document +\newcommand\ctanpackage[1]{\href{https://ctan.org/pkg/#1}{#1}} + \begin{document}\thispagestyle{empty} \pdfbookmark[1]{Title page}{TOP} \def\partname{Part} @@ -3805,16 +3841,16 @@ pdfpagemode=UseNone,% \node [right of=kernel] (B) {}; \node [block, below right of=B] (core) {\xintcorename}; \node [block, below left of=A] (tools) {\xinttoolsname}; - \node [block, right of=core, xshift=1cm] (bnumexpr) {\href{https://ctan.org/pkg/bnumexpr}{bnumexpr}}; + \node [block, right of=core, xshift=1cm] (bnumexpr) {\ctanpackage{bnumexpr}}; \node [block, below of=core] (xint) {\xintname}; \node [block, left of=xint, xshift=-1cm] (gcd) {\xintgcdname}; \node [block, left of=gcd] (binhex) {\xintbinhexname}; \node [block, below of=xint] (frac) {\xintfracname}; \node [block, below of=frac, yshift=-.5cm] (expr) {\xintexprname}; - \node [block, below right of=expr, yshift=-.5cm, xshift=2.25cm] (polexpr) {\href{https://ctan.org/pkg/polexpr}{polexpr}}; + \node [block, below right of=expr, yshift=-.5cm, xshift=2.25cm] (polexpr) {\ctanpackage{polexpr}}; \node [block, below of=expr, yshift=-.5cm] (trig) {\xinttrigname}; \node [block, left of=trig] (log) {\xintlogname}; - \node [block, left of=log, xshift=-1cm] (poormanlog) {\href{https://ctan.org/pkg/poormanlog}{poormanlog}}; + \node [block, left of=log, xshift=-1cm] (poormanlog) {\ctanpackage{poormanlog}}; \node [block, below right of=frac, xshift=1cm] (series) {\xintseriesname}; \node [block, right of=series] (cfrac) {\xintcfracname}; % Draw edges @@ -3857,17 +3893,17 @@ pdfpagemode=UseNone,% functionalities of the lower module it is thus necessary to use a suitable |\usepackage| (\LaTeX) or |\input| (Plain \TeX.)\par - \href{https://ctan.org/pkg/bnumexpr}{bnumexpr} is a + \ctanpackage{bnumexpr} is a separate (\LaTeX{} only) package by the author which uses (by default) \xintcorename as its mathematical engine. - \href{https://ctan.org/pkg/polexpr}{polexpr} is a + \ctanpackage{polexpr} is a separate (\LaTeX{} only) package by the author which requires \xintexprname. \xinttrigname and \xintlogname are loaded automatically by \xintexprname; they will refuse to be loaded directly (but see \csbxint{reloadxinttrig}). - \href{https://ctan.org/pkg/poormanlog}{poormanlog} is a \TeX{} and + \ctanpackage{poormanlog} is a \TeX{} and \LaTeX{} package by the author which is loaded automatically by \xintlogname. \par \end{addmargin} @@ -3949,6 +3985,49 @@ quality of the document). Reports welcome.% \footnote{Thanks to Jürgen Gilg for keeping the author motivated and helping proof-read the documentation.} +\subsection{Known bugs/features at \texttt{1.4d}} + +\begin{description} +\item[if(100>0,(100,125),(100,128)) breaks my code:] +% + This is a feature. This is a syntax error, as the comma serves to contatenate + "oples" (see \autoref{oples}), so it is parsed to behave as +\begin{everbatim} + if(100>0,100,125,100,128) +\end{everbatim} + which is an error as \func{if} requires exactly three arguments, not + five. Use: +\begin{everbatim} + if(100>0,[100,125],[100,128]) +\end{everbatim} + which will expand to the "tuple" |[100,125]|. +\item[{\detokenize{\xintdeffunc foo(x):= gcd((x>0)?{[x,125]}{[x,128]});} + creates a broken function:}] +% + Bug. Normally \func{gcd} (and other + multi-arguments functions) work both with open lists of arguments or + bracketed lists ("nutples") and the above syntax would work perfectly fine + in numerical context. But the presence of the \oper{?} breaks in + \csbxint{deffunc} context the flexibility of \func{gcd}. + + Currently working alternatives: +\begin{everbatim} +\xintdeffunc foo(x) := gcd(if(x>0, [x,125], [x,128])); +\xintdeffunc foo(x) := if(x>0, gcd(x,125), gcd(x,128)); +\xintdeffunc foo(x) := if(x>0, gcd([x,125]), gcd([x,128])); +\xintdeffunc foo(x) := gcd((x>0)?{x,125}{x,128}); +\xintdeffunc foo(x) := (x>0)?{gcd(x,125)}{gcd(x,128)}; +\xintdeffunc foo(x) := (x>0)?{gcd([x,125])}{gcd([x,128])}; +\end{everbatim} + The same problem will arise with an \oper{??} nested inside \func{gcd} or + similar functions, in an \csbxint{deffunc}. +\end{description} + +If the list stops here, it is probably only because I have not tested enough +yet. But it is already mentioned in the \csbxint{deffunc} documentation that +it can not parse currently the entirety of the available purely numerical +syntax, some documented limitations apply. + \subsection{Features added since the \texttt{1.4} release} For bugfixes and possibly more details check |CHANGES.html|: @@ -4095,7 +4174,8 @@ The rendering here uses extra decoration. \localtableofcontents -\subsection{Oples and nut-ples: terminology for the \text{1.4} \xintname generation} + +\subsection{Oples and nutples: terminology for the \text{1.4} \xintname generation}\label{oples} \emph{Skip this on first reading, else you will never start using the package.} \fbox{SKIP THIS!} (understood?) @@ -4145,7 +4225,7 @@ input syntax, Python |lists|), or \emph{packing} (as a reverse to Python's unpacking of sequence type objects). \item -A braced \emph{ople} is called a \emph{nut-ple}. Among them $\{nil\}$ is a bit +A braced \emph{ople} is called a \emph{nutple}. Among them $\{nil\}$ is a bit special. It is called the \emph{not-ple}. It is not |nil|! \end{itemize} @@ -4172,7 +4252,7 @@ Each \emph{ople} has a length which is its cardinality. The |oples| of length 1 are called \emph{one-ples}. There are two types of \emph{one-ples}: \begin{itemize} \item \emph{numbers}, -\item packed \emph{oples}: the \emph{nut-ples}. +\item packed \emph{oples}: the \emph{nutples}. \end{itemize} As said before the \emph{not-ple} |{{}}| is special. It can be input as @@ -4186,7 +4266,7 @@ can associate with any \emph{ople} a tree. The root is the ople. In the case of the |nil|, there is nothing else than the root, which we then consider also a \emph{leaf}. Else the children at top level are the successive items of the ople. Among the items some are \emph{atoms} giving \emph{leaves} of the tree, -others are \emph{nut-ples} which in turn have children. In the special case of +others are \emph{nutples} which in turn have children. In the special case of the \emph{not-ple} we consider it has a child, which is the empty set and this why we consider the empty set |nil| a \emph{leaf}. We then proceed recursively. We thus obtain from the root \emph{ople} a tree whose vertices @@ -4223,21 +4303,21 @@ indicate the shape than display it. subset. This applies also if it is a \emph{number}. Then it can be sliced only to itself or to the empty set (indeed it has only one element, which is an atom). Similarly the \emph{not-ple} can only be sliced to give itself or the -empty set. And more generally a \emph{nut-ple} is a singleton so also can only +empty set. And more generally a \emph{nutple} is a singleton so also can only be set-sliced to either the empty set or itself. \xintexprname extends «Python-like» slicing to act on \emph{oples}: \begin{itemize}[nosep] -\item if they are not \emph{nut-ples} set-theoretical slicing applies, -\item if they are \emph{nut-ples} (only case having a one-to-one - correspondance in Python) then the slicing happens \emph{within brackets}: - i.e. the \emph{nut-ple} is unpacked then the set-theoretical slicing is - applied, then the result is \emph{repacked} to produce a new \emph{nut-ple}. +\item if they are not \emph{nutples} set-theoretical slicing applies, +\item if they are \emph{nutples} (only case having a one-to-one + correspondence in Python) then the slicing happens \emph{within brackets}: + i.e. the \emph{nutple} is unpacked then the set-theoretical slicing is + applied, then the result is \emph{repacked} to produce a new \emph{nutple}. \end{itemize} With these conventions the \emph{not-ple} for example is invariant under slicing: unpacking it gives the empty set, which has only the empty set as subset and repacking gives back the \emph{not-ple}. Slicing a general -\emph{nut-ple} returns a \emph{nut-ple} but now of course in general distinct +\emph{nutple} returns a \emph{nutple} but now of course in general distinct from the first one. The syntax for Python slicing is to postfix a variable or a parenthesized ople @@ -4252,16 +4332,16 @@ a set). \xintexprname extends «Python-like» indexing to act on \emph{oples}: \begin{itemize}[nosep] -\item if they are not \emph{nut-ples} set-theoretical item indexing applies, -\item if they are \emph{nut-ples} (only case having a one-to-one - correspondance in Python) then the meaning becomes \emph{extracting}: i.e. - the \emph{nut-ple} is unpacked then the set-theoretical indexing is applied, +\item if they are not \emph{nutples} set-theoretical item indexing applies, +\item if they are \emph{nutples} (only case having a one-to-one + correspondence in Python) then the meaning becomes \emph{extracting}: i.e. + the \emph{nutple} is unpacked then the set-theoretical indexing is applied, but the result is \emph{not repacked}. \end{itemize} For example when applied to the \emph{not-ple} we always obtain the |nil|. Whereas as we saw slicing the \emph{not-ple} always gives back the \emph{not-ple}. Indexing is denoted in the syntax by postfixing by |[N]|. Thus -for \emph{nut-ples} (which are analogous to Python objects), there is genuine +for \emph{nutples} (which are analogous to Python objects), there is genuine difference between the |[N]| extractor and the |[N:N+1]| slicer. But for \emph{oples} which are either |nil|, a \emph{number}, or of length at least 2, there is no difference. @@ -4269,8 +4349,8 @@ there is no difference. Nested slicing is a concept from NumPy, which is extended by \xintexprname to trees of varying depths. We have a chain of slicers and extractors. I will -describe only the case of slicers and letting them act on a |nut-ple|. The -first slicer gives back a new |nut-ple|. The second slicer will be applied to +describe only the case of slicers and letting them act on a |nutple|. The +first slicer gives back a new |nutple|. The second slicer will be applied to each of one of its remaining items. However some of them may be \emph{atoms} or the empty set. In the NumPy context all leaves are at the same depth thus this can happen only when we have reached beyond the last dimension @@ -4278,19 +4358,19 @@ this can happen only when we have reached beyond the last dimension does not generate an error. But any attempt to slice an \emph{atom} or the empty set (as element of its container) removes it. Recall we call them \emph{leaves}. We can not slice leaves. We can only slice non-leaf items: such -items are necessarily |nut-ples|. The procedure then applies recursively. +items are necessarily |nutples|. The procedure then applies recursively. If we handle an extractor rather than a slicer, the procedure is similar: we can not extract out of an \emph{atom} or the empty set. They are thus -removed. Else we have a |nut-ple|. It is thus unpacked and replaced by the +removed. Else we have a |nutple|. It is thus unpacked and replaced by the selected item. This item may be an atom or the empty set and any further -slicer or extractor will remove them, or it is a |nut-ple| and the procedure +slicer or extractor will remove them, or it is a |nutple| and the procedure applies with the next slicer/extractor. \xintexprname allows to apply such a |[a:b,c:d,N,e:f,...]| chain of -slicing/extracting also to an \emph{ople}, which is not a \emph{nut-ple}. We +slicing/extracting also to an \emph{ople}, which is not a \emph{nutple}. We simply apply the first step as has been described previously and successive -steps will only get applied to either \emph{nut-ples} or \emph{leaves}, the +steps will only get applied to either \emph{nutples} or \emph{leaves}, the latter getting silently removed by any attempted operation. One last thing. In the syntax of \xintexprname, variables as well as functions @@ -4298,11 +4378,11 @@ have a name and a value. The value is an |ople|. We can always use a variable whose value is an |ople| in a function call, it will occupy the place of as many arguments as its length indicates. But in a function declaration, the variables must stand for -|one-ples|, i.e. either |numbers| or |nut-ples|. +|one-ples|, i.e. either |numbers| or |nutples|. The |*| unpacks a -|nut-ple|. The last positional argument in a function declaration can have a -special form |*|\meta{name}. This means that \meta{name} is a |nut-ple| which +|nutple|. The last positional argument in a function declaration can have a +special form |*|\meta{name}. This means that \meta{name} is a |nutple| which receives as items all arguments in the function call beyond the first ones corresponding to the function declaration. @@ -4934,29 +5014,43 @@ discussion at each level. \precdesc{14} \begin{description} \operdesc{\lowast} multiplication -\operdesc{/} division: exact in \csbxint{eval}, correctly rounded in - \csbxint{floateval} (numerator and denominator are rounded before the - division is done), and rounded to an integer (like |\numexpr| does: - half-integers are rounded towards infinity of same sign) in - \csbxint{iieval}. The division is left-associative: + +\operdesc{/} division: + \begin{itemize} + \item in \csbxint{eval}: exact division in the field of rational numbers (not + automatically reduced to lowest terms), + \item in \csbxint{floateval}: correct rounding of the exact division; the two + operands are, if necessary, float-rounded before the fraction is + evaluated and rounded (to obtain the correcty rounded |A/B| + without prior rounding of |A| and |B| see \func{qfloat}), + \item in \csbxint{iieval}: for compatibility with the legacy behaviour of + |/| in |\numexpr|, it rounds the exact fraction \emph{with half-integers + going towards the infinity of the same sign}. + \end{itemize} + The division is left-associative. Example: \begin{everbatim*} \xintexpr reduce(100/50/2)\relax \end{everbatim*} -\operdesc{//} floored division +\operdesc{//} floored division (and thus produces an integer, see + \func{divmod} for details) -\operdesc{/:} the associated modulo +\operdesc{/:} the associated modulo (see \func{divmod} and \func{mod}) Left-associativity applies generally to operators of same precedence. \begin{everbatim*} \xintexpr 100000/:13, 100000 'mod' 13\relax\newline \xintexpr 100000/:13/13\relax \end{everbatim*} + + Nothing special needs to be done in contexts such as \LaTeX3 + |\ExplSyntaxOn| where |:| is of catcode letter, but if |:| is an active + character (for example in \LaTeX\ with babel+french) with an active |:|, + one needs to use input such as |/\string :| (or use \func{mod}). -\operdesc{'mod'} is same as \oper{/:}. - -Note: The enclosing (right) ticks are -mandatory part of all such infix operator «words». + \operdesc{'mod'} is same as \oper{/:}. \fbox{Attention:} with + \ctanpackage{polexpr} loaded, which allows |'| in variable and function + names, |'mod'| syntax is broken. Use the alternatives. \end{description} @@ -5013,8 +5107,10 @@ precedence, use parentheses for disambiguation. \operdesc{\Ampersand\Ampersand} logical conjunction. Evaluates to \dtt{1} if both sides are non-zero, to \dtt{0} if not. - \operdesc{'and'} idem. The (right) ticks are mandatory. See also the - \func{all} multi-arguments function. + \operdesc{'and'} same as \verb+&&+. See + also the \func{all} multi-arguments function. \fbox{Attention:} with + \ctanpackage{polexpr} loaded, which allows |'| in variable and function + names, |'and'| syntax is broken. Use the alternatives. \end{description} \precdesc{6} @@ -5022,10 +5118,16 @@ precedence, use parentheses for disambiguation. \operdesc{\string|\string|} logical (inclusive) disjunction. Evaluates to \dtt{1} if one or both sides are non-zero, to \dtt{0} if not. - \operdesc{'or'} idem. See also the \func{any} multi-arguments function. + \operdesc{'or'} same as as \verb+||+. See also the \func{any} multi-arguments + function. \fbox{Attention:} with \ctanpackage{polexpr} loaded, which allows + |'| in variable and function names, |'or'| syntax is broken. Use the + alternatives. - \operdesc{'xor'} logical (exclusive) disjunction. See also the \func{xor} - multi-arguments function. + \operdesc{'xor'} logical (exclusive) disjunction. \fbox{Attention:} with + \ctanpackage{polexpr} loaded, which allows |'| in variable and function + names, |'xor'| syntax is broken. Use the multi-arguments \func{xor} function + (or suggest to the author some credible alternative ascii notation to use as + infix operator). \operdesc{\strut..} \operdesc{..[} @@ -5125,13 +5227,13 @@ binomial, bool, ceil, cos, cosd, cot, cotd, cotg, csc, cscd, divmod, even, exp, factorial, first, flat, float, float\string_, floor, frac, gcd, -if, ifint, ifone, ifsgn, ilog10, isint, isone, iter, iterr, inv, +if, ifint, ifone, ifsgn, ilog10, iquo, irem, isint, isone, iter, iterr, inv, last, lcm, len, log, log10, max, min, mod, mul, ndmap, ndseq, ndfillraw, not, num, nuple, odd, pArg, pArgd, pfactorial, pow, pow10, preduce, -qfloat, qfrac, qint, qrand, qraw, quo, -random, randrange, rbit, reduce, rem, reversed, round, rrseq, rseq, +qfloat, qfrac, qint, qrand, qraw, +random, randrange, rbit, reduce, reversed, round, rrseq, rseq, sec, secd, seq, sgn, sin, sinc, sind, sqr, sqrt, sqrtr, subs, subsm, subsn, tan, tand, tg, togl, trunc, unpack, @@ -5474,7 +5576,7 @@ $\xintthefloatexpr subs(((x-1)/x, x/x, (x+1)/x), x=2**30)\relax allow arbitrarily complicated combinations of various |bool(name)|. \funcdesc[name]{togl} returns $1$ - if the \LaTeX{} package \href{https://ctan.org/pkg/etoolbox}{etoolbox}% + if the \LaTeX{} package \ctanpackage{etoolbox}% % % % @@ -5483,7 +5585,7 @@ $\xintthefloatexpr subs(((x-1)/x, x/x, (x+1)/x), x=2**30)\relax has been used to define a toggle named |name|, and this toggle is currently set to |true|. Using |togl| in an |\xintexpr..\relax| without having loaded - \href{https://ctan.org/pkg/etoolbox}{etoolbox} will result in an + \ctanpackage{etoolbox} will result in an error from |\iftoggle| being a non-defined macro. If |etoolbox| is loaded but |togl| is used on a name not recognized by |etoolbox| the error message will be of the type ``ERROR: Missing |\endcsname| @@ -5650,14 +5752,17 @@ $\xintthefloatexpr subs(((x-1)/x, x/x, (x+1)/x), x=2**30)\relax % labelwidth=-\fontdimen2\font, labelsep=\fontdimen2\font, labelindent=0pt, % listparindent=\leftmarginiii] - \funcdesc[f, g]{quo} first truncates the arguments to convert them to integers then - computes the Euclidean quotient. Hence it computes an integer. - \funcdesc[f, g]{rem} first truncates the arguments to convert them to integers then - computes the Euclidean remainder. Hence it computes an integer. + \funcdesc[m, n]{iquo} Only available in |\xintiiexpr/\xintiieval| + context. Computes the Euclidean quotient. Matches with the remainder + defined in next item. See \csbxint{iiQuo}. + + \funcdesc[m, n]{irem} Only available in |\xintiiexpr/\xintiieval| + context. Computes the Euclidean remainder. Attention that, following + mathematical definition, it is always non-negative. See \csbxint{iiRem}. \funcdesc[f, g]{mod} computes |f - g*floor(f/g)|. Hence its output is a general fraction or floating point number or integer depending on the - used parser. + used parser. If non-zero, it has the same sign as |g|. Prior to |1.2p| it computed |f - g*trunc(f/g)|. @@ -5833,15 +5938,23 @@ At |1.4| \func{all}, \func{any}, \func{xor}, \func{max}, \func{min}, \func{gcd}, \func{lcm}, \func{first}, \func{last}, \func{reversed} and \func{len} admit: \begin{itemize} -\item at least two arguments, and then operate as expected in backward - compatible way, -\item or only one argument,\IMPORTANT{} which then \emph{must} be a |nut-ple|, i.e. a - variable or explicit bracketed list. In the case of \func{reversed} the output - is a |nut-ple| if the input was one. +\item at least two arguments, and then they operate as expected in the backwards + compatible way (notice that it is possible in \xintexprname to define + variables expanding to an |ople|, i.e. (at user level) an unpacked comma + separated list, |foo(ople)| thus falls into this category), +\item or only one argument,\IMPORTANT{} which then \emph{must} be a |nutple|, + i.e. a bracketed list (or a variable defined to hold such a + bracketed list, or a function producing such a |nutple|). The argument is then + automatically unpacked. + + In the specific case of \func{reversed} the output is then repacked so that + the output is a |nutple| if and only if the input was one (the reversal does + not propagate to deeper nested |nutple|'s, it applies only at depth one). \end{itemize} -Notice that this is breaking change as the functions do not work anymore with -a single argument being a number (or give funny non-documented results -depending on internal data representation). +The arguments of the functions doing computations on the arguments (such as +\func{gcd}) must be numerical, except if there is only one argument, and then +it must be a |nutple|. Prior to |1.4|, the functions worked also with a single +scalar argument, but this is now illegal. \begin{description} % [parsep=0pt,align=left, @@ -5894,45 +6007,57 @@ the resulting logical assertion, \funcdesc[x, y, ...]{gcd} computes the positive generator of the fractional ideal of rational numbers $x\mathbb Z + y\mathbb Z + ... \subset \mathbb -Q$. When the inputs are integers it is advantageous to use a sub -\csbxint{iiexpr}-ession, as the integer-only macro is more efficient (about -|6X|) than the -one accepting general fractional inputs. Notice that this may require some -\func{num} wrapper when using variables, as they may well be in fraction -format, and \csbxint{iiexpr} accepts only strict integers. Since |1.3d|, this -function and \func{lcm} are available whether or not package \xintgcdname is -loaded. Note that like other operations with fractions it does not always -produce a fraction in irreducible format. This example shows also how to -reduce an n-uple to its primitive part: (this example should be revisited) -\begin{everbatim*} -\xinttheexpr gcd(7/300, 11/150, 13/60)\relax\newline +Q$. Since |1.4d| the output is always in lowest terms. + +This example shows how to reduce an n-uple to its primitive part: +\begin{everbatim*} +\xinteval{gcd(7/300, 11/150, 13/60)}\newline $(7/300, 11/150, 13/60)\to -(\xinttheexpr subs(seq(reduce(x/D), x = 7/300, 11/150, 13/60), D=gcd(7/300, 11/150, 13/60))\relax)$\newline +(\xinteval{subsn(seq(reduce(x/D), x = L), D=gcd(L); L=7/300, 11/150, 13/60)})$\newline \xintexpr gcd([7/300, 11/150, 13/60])\relax\par \end{everbatim*} - +MEMO Perhaps a future release will provide a |primpart()| function as built-in functionality. +In case of strict integers, using a |\xintiiexpr...\relax| wrapper is +advantageous as the integer-only |gcd()| is more efficient. +% +% ceci semble encore à peu près exact à 1.4d : +% (about |6X|) than the one accepting general fractional inputs. +% +As \csbxint{iiexpr} accepts only strict integers, doing this may require +wrapping the argument in \func{num}. + \funcdesc[x, y, ...]{lcm} computes the positive generator of the fractional ideal of rational numbers $x\mathbb Z \cap y\mathbb Z \cap ... -\subset \mathbb Q$. When the inputs are integers it is -advantageous to use a sub \csbxint{iiexpr}-ession, as the integer-only macro -is more efficient (about |9X|) than the one accepting general fractional inputs. +\subset \mathbb Q$. \begin{everbatim*} \xinttheexpr lcm([7/300, 11/150, 13/60])\relax \end{everbatim*} +As for \func{gcd}, since |1.4d| the output is always in lowest terms. +% Memo 1.4d: This +% function got (I did not tests extensively) a |4X| speed gain for inputs being +% only integers +For strict integers it is slightly advantageous to use a sub +\csbxint{iiexpr}-ession. +% +% je disais à 1.4: +% (about |9X|) than the one accepting general fractional inputs. +% mais à 1.4d c'est seulement 2X : le lcm pour les fractions +% a quadruplé sa vitesse ! +% -\funcdesc[x, y, ...]{first} first item of the list or nut-ple argument: +\funcdesc[x, y, ...]{first} first item of the list or nutple argument: \begin{everbatim*} \xintiiexpr first([last(-7..3), [58, 97..105]])\relax \end{everbatim*} -\funcdesc[x, y, ...]{last} last item of the list or nut-ple argument: +\funcdesc[x, y, ...]{last} last item of the list or nutple argument: \begin{everbatim*} \xintiiexpr last([-7..3, 58, first(97..105)])\relax \end{everbatim*} \funcdesc[x, y, ...]{reversed} reverses the order of the comma separated list -or inside a nut-ple: +or inside a nutple: \begin{everbatim*} \xintiieval{reversed(reversed(1..5), reversed([1..5]))} \end{everbatim*} @@ -5940,16 +6065,16 @@ or inside a nut-ple: The above is correct as \xintexprname functions may produce oples and this is the case here. \funcdesc[x, y, ...]{len} computes the number of items in a comma separated - list or inside a nut-ple (at first level only: it is not a counter of leaves). + list or inside a nutple (at first level only: it is not a counter of leaves). \begin{everbatim*} \xinttheiiexpr len(1..50, [101..150], 1001..1050), len([1..10])\relax \end{everbatim*} \funcdesc[\lowast nutples]{zip} behaves\NewWith{1.4b} similarly to - the Python function of the same name: i.e. it produces \emph{an ople of nut-ples, - where the i-th nut-ple contains the i-th element from each of the argument - nut-ples. The ople ends when the shortest input nut-ple is exhausted. - With a single nut-ple argument, it returns an ople of 1-nutples. + the Python function of the same name: i.e. it produces \emph{an ople of nutples, + where the i-th nutple contains the i-th element from each of the argument + nutples. The ople ends when the shortest input nutple is exhausted. + With a single nutple argument, it returns an ople of 1-nutples. With no arguments, it returns the empty ople.} As there is no exact match in \xintexprname of the concept of «iterator» object,% @@ -6363,7 +6488,7 @@ In the example above the parentheses serve to disambiguate from the raw on input. And we used a trick to show that |(7)[-2]| returns |nil|. The behaviour changes for singleton \emph{oples} which are not -\emph{numbers}. They are thus \emph{nut-ples}, or equivalently they are the +\emph{numbers}. They are thus \emph{nutples}, or equivalently they are the bracketing (bracing, packing) of another \emph{ople}. In this case, the meaning of the syntax for item indexing is, as in Python, item \emph{extraction}: @@ -6379,7 +6504,7 @@ of the syntax for item indexing is, as in Python, item \xintiiexpr (0..10)[:6]\relax\ and \xintiiexpr (0..10)[:-6]\relax \end{everbatim*} -As above, the meaning change for \emph{nut-ples} and fits with expectations +As above, the meaning change for \emph{nutples} and fits with expectations from Python regarding its sequence types: \begin{everbatim*} \xintiiexpr [0..10][:6]\relax\ and \xintiiexpr [0..10][:-6]\relax @@ -6391,7 +6516,7 @@ from Python regarding its sequence types: \xintiiexpr (0..10)[6:]\relax\ and \xintiiexpr (0..10)[-6:]\relax \end{everbatim*} -As above, the meaning change for \emph{nut-ples} and fit with expectations +As above, the meaning change for \emph{nutples} and fit with expectations from Python with \emph{tuple} or \emph{list} types: \begin{everbatim*} \xintiiexpr [0..10][6:]\relax\ and \xintiiexpr [0..10][-6:]\relax @@ -6414,7 +6539,7 @@ from Python with \emph{tuple} or \emph{list} types: \end{itemize} -\subsection{NumPy like nested slicing and indexing for arbitrary oples and nut-ples} +\subsection{NumPy like nested slicing and indexing for arbitrary oples and nutples} This is entirely new with |1.4|.\NewWith{1.4} @@ -6467,6 +6592,21 @@ part, or hexadecimal input), or is looking for an infix operator, and: \end{enumerate} \begin{framed} + \centeredline{\textcolor{Red}{\textbf{!!!!ATTENTION!!!!}}} + + Explicit digits prefixing a variable, or a function, whose name starts with + an |e| or |E| will trap the parser into trying to build a number in + scientific notation. So the |*| must be explictly inserted. + +\begin{everbatim} +\xintdefiivar e := (2a+4b+6d+N)/:7;% +\xintdefiivar f := (c+11d+22*e)//451;% 22e would raise errors +\end{everbatim} + + I don't think I will fix this anytime soon... +\end{framed} + +\begin{framed} For example, if |x, y, z| are variables all three of |(x+y)z|, |x(y+z)|, |(x+y)(x+z)| will create a tacit multiplication. @@ -7109,7 +7249,7 @@ This section\CHANGED{1.4} has changed significantly at |1.4| due to the new exte types manipulated by the syntax. Suppose we want to manipulate 3-dimensional vectors, which will be represented -as |nut-ples| of length 3. And let's add a bit of matrix algebra. +as |nutples| of length 3. And let's add a bit of matrix algebra. \begin{everbatim*} \xintdeffunc dprod(V, W) := V[0]*W[0] + V[1]*W[1] + V[2]*W[2]; \xintdeffunc cprod(V, W) := [V[1]*W[2] - V[2]*W[1], @@ -7623,9 +7763,9 @@ This package was first included in release |1.3e| (|2019/04/05|) of Currently, the functions \func{log10}, \func{pow10}, \func{log}, \func{exp}, and \func{pow} use at their core two fast expandable macros handling base 10 logarithms and powers for mantissas of 9 digit tokens. They are -defined by package \href{https://ctan.org/pkg/poormanlog}{poormanlog} which is +defined by package \ctanpackage{poormanlog} which is automatically imported. The error is believed to be at most \dtt{2ulp} (see -its |README|). The package \href{https://ctan.org/pkg/poormanlog}{poormanlog} +its |README|). The package \ctanpackage{poormanlog} has no dependencies and can be imported by any other \TeX\ macro file. Although the precision is thus limited to about \dtt{8} or \dtt{9} digits this @@ -7679,7 +7819,7 @@ first 8 or 9 digits of the output are significant... \end{everbatim*} Notice that the last digit of |log(2)| is not the correctly rounded one... I did say 9 \textbf{or} 8 digits or precision... The documentation of -\href{https://ctan.org/pkg/poormanlog}{poormanlog} mentions an error of up +\ctanpackage{poormanlog} mentions an error of up to 2 units in the ninth digit when computing |log10(x)| for |1<x<10| and |10^x| for |0<x<1|. @@ -7783,7 +7923,7 @@ using standard infix notations with \TeX{} integers. But \eTeX{} did not modify the \TeX{} bound on acceptable integers, and did not add floating point support. -The \href{https://ctan.org/pkg/bigintcalc}{bigintcalc} package by +The \ctanpackage{bigintcalc} package by \textsc{Heiko Oberdiek} provided expandable macros (using some of |\numexpr| possibilities, when available) on arbitrarily big integers, beyond the \TeX{} bound. It does not provide an expression parser.% @@ -7848,7 +7988,7 @@ Even with the superior \liiibigint{} Karatsuba multiplication it takes about computations in a document. I have long been thinking that without the expandability constraint much higher speeds could be achieved, but perhaps I have not given enough thought to sustain that optimistic stance.\footnote{The - \href{https://ctan.org/pkg/apnum}{apnum} package implements + \ctanpackage{apnum} package implements (non-expandably) arbitrary precision fixed point algebra and (v1.6) functions exp, log, sqrt, the trigonometrical direct and inverse functions.} @@ -8076,7 +8216,7 @@ margin annotation next to the description of the arguments. package provided conditionals such as \csbxint{ifEq}, \csbxint{ifGt}, \csbxint{ifSgn},\dots\ or, for \LaTeX{} users and when dealing with short integers the - \href{https://ctan.org/pkg/etoolbox}{etoolbox}% + \ctanpackage{etoolbox}% % \footnote{\url{https://ctan.org/pkg/etoolbox}} expandable conditionals (for small integers only) such as \texttt{\char92 @@ -8617,7 +8757,7 @@ unused branches should not be forgotten. If these tests are to be applied to standard \TeX{} short integers, it is more efficient to use (under \LaTeX{}) the equivalent conditional tests from the -\href{https://ctan.org/pkg/etoolbox}{etoolbox}% +\ctanpackage{etoolbox}% % \footnote{\url{https://ctan.org/pkg/etoolbox}} package. @@ -8867,7 +9007,7 @@ early 2014. This |1.2| release also got its impulse from a fast ``reversing'' macro, which I wrote after my interest got awakened again as a -result of correspondance with Bruno \textsc{Le Floch} during September 2015: +result of correspondence with Bruno \textsc{Le Floch} during September 2015: this new reverse uses a \TeX nique which \emph{requires} the tokens to be digits. I wrote a routine which works (expandably) in quasi-linear time, but a less fancy |O(N^2)| variant which I developed concurrently proved to be faster @@ -11334,8 +11474,11 @@ Prior to |1.4| a macro of the same name existed in \xintgcdname. But it truncated all its arguments to integers via \csbxint{Num} and then proceeded with integer only computations. -See \csbxint{iiGCDof} for the integer only variant (which is about |6X| faster -than this one for integer arguments). +See \csbxint{iiGCDof} for the integer only variant. + +% Semble encore vrai à 1.4d +% Mais je n'ai testé que sur un exemple... +% (which is about |6X| faster than this one for integer arguments). \subsection{\csh{xintLCMof}}\label{xintLCMof} @@ -11349,8 +11492,13 @@ output. Prior to |1.4| a macro of the same name existed in \xintgcdname. But it truncated all its arguments to integers via \csbxint{Num}. -See \csbxint{iiLCMof} for the integer only variant (which is about |9X| faster -than this one for integer arguments). +See \csbxint{iiLCMof} for the integer only variant. + +% Avant 1.4d on avait ceci : +% (which is about |9X| faster han this one for integer arguments). +% mais à 1.4d le lcm des fractions est environ 4X fois plus efficace, +% en ce qui concerne son emploi avec des entiers (testé sur un seul exemple) +% donc le gain de faire \xintiiexpr n'est plus que 2X ! \subsection{\csh{xintDigits}, \csh{xinttheDigits}} \label{xintDigits} @@ -18338,7 +18486,7 @@ math shift catcode. \fi \XINT_providespackage \ProvidesPackage {xintkernel}% - [2021/02/20 v1.4c Paraphernalia for the xint packages (JFB)]% + [2021/03/29 v1.4d Paraphernalia for the xint packages (JFB)]% % \end{macrocode} % \subsection{Constants} % \begin{macrocode} @@ -18431,6 +18579,7 @@ math shift catcode. \long\def\xint_firstofone #1{#1}% \long\def\xint_firstoftwo #1#2{#1}% \long\def\xint_secondoftwo #1#2{#2}% +\long\def\xint_thirdofthree#1#2#3{#3}% 1.4d \let\xint_stop_aftergobble\xint_gob_andstop_i \long\def\xint_stop_atfirstofone #1{ #1}% \long\def\xint_stop_atfirstoftwo #1#2{ #1}% @@ -18462,7 +18611,7 @@ math shift catcode. \long\def\xint_gob_til_xint:#1\xint:{}% \long\def\xint_gob_til_^#1^{}% \def\xint_bracedstopper{\xint:}% -\long\def\xint_gob_til_exclam #1!{}% +\long\def\xint_gob_til_exclam #1!{}% documenter le catcode de ! ici \long\def\xint_gob_til_sc #1;{}% % \end{macrocode} % \subsection{\csh{xint_afterfi}} @@ -19124,7 +19273,7 @@ math shift catcode. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xinttools}% - [2021/02/20 v1.4c Expandable and non-expandable utilities (JFB)]% + [2021/03/29 v1.4d Expandable and non-expandable utilities (JFB)]% % \end{macrocode} % \lverb|\XINT_toks is used in macros such as \xintFor. It is not used % elsewhere in the xint bundle.| @@ -21468,7 +21617,7 @@ math shift catcode. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintcore}% - [2021/02/20 v1.4c Expandable arithmetic on big integers (JFB)]% + [2021/03/29 v1.4d Expandable arithmetic on big integers (JFB)]% % \end{macrocode} % \subsection{(WIP!) Error conditions and exceptions} % \lverb|As per the Mike Cowlishaw/IBM's General Decimal Arithmetic Specification @@ -21782,6 +21931,13 @@ math shift catcode. -{ #1}% \krof }% +\def\XINT_Abs #1% +{% + \xint_UDsignfork + #1{}% + -{#1}% + \krof +}% % \end{macrocode} % \subsection{\csh{xintFDg}} % \lverb|& @@ -24770,7 +24926,7 @@ math shift catcode. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xint}% - [2021/02/20 v1.4c Expandable operations on big integers (JFB)]% + [2021/03/29 v1.4d Expandable operations on big integers (JFB)]% % \end{macrocode} % \subsection{More token management} % \begin{macrocode} @@ -26946,11 +27102,20 @@ math shift catcode. \def\xintToggle #1{\romannumeral`&&@\iftoggle{#1}{1}{0}}% % \end{macrocode} % \subsection{\csh{xintiiGCD}} -% Copied over |\xintiiGCD| code from \xintgcdnameimp at |1.3d| in order to +% |1.3d|: |\xintiiGCD| code from \xintgcdnameimp is copied here to % support |gcd()| function in \csbxint{iiexpr}. % -% At |1.4| original code removed from -% \xintgcdnameimp as the latter now requires \xintnameimp. +% |1.4|: removed from \xintgcdnameimp the original caode as now +% \xintgcdnameimp loads \xintnameimp. +% +% \changed{1.4d}{2021/03/22} Damn'ed! Since |1.3d| (2019/01/06) the code was +% broken if one of the arguments vanished due to a typo in macro names: +% "AisZero" at one location and "Aiszero" at next, and same for B... +% +% How could this not be detected by my tests !?! +% +% This caused |\xintiiGCDof| hence the |gcd()| function in |\xintiiexpr| to +% break as soon as one argument was zero. % \begin{macrocode} \def\xintiiGCD {\romannumeral0\xintiigcd }% \def\xintiigcd #1{\expandafter\XINT_iigcd\romannumeral0\xintiiabs#1\xint:}% @@ -26968,8 +27133,8 @@ math shift catcode. \krof #2% }% -\def\XINT_gcd_AisZero #1\xint:#2\xint:{ #1}% -\def\XINT_gcd_BisZero #1\xint:#2\xint:{ #2}% +\def\XINT_gcd_Aiszero #1\xint:#2\xint:{ #1}% +\def\XINT_gcd_Biszero #1\xint:#2\xint:{ #2}% \def\XINT_gcd_loop #1\xint:#2\xint: {% \expandafter\expandafter\expandafter\XINT_gcd_CheckRem @@ -26982,6 +27147,29 @@ math shift catcode. }% \def\XINT_gcd_end0\XINT_gcd_loop #1\xint:#2\xint:{ #2}% % \end{macrocode} +% \subsection{\csh{xintiiGCDof}} +% \lverb|New with 1.09a (was located in xintgcd.sty). +% +% 1.2l adds protection against items being non-terminated \the\numexpr. +% +% 1.4 renames the macro into \xintiiGCDof and moves it here. +% Terminator modified to ^ for direct call by \xintiiexpr function. +% +% 1.4d fixes breakage inherited since 1.3d rom \xintiiGCD, in case +% any argument vanished. +% +% Currently does not support empty list of arguments. +% | +% \begin{macrocode} +\def\xintiiGCDof {\romannumeral0\xintiigcdof }% +\def\xintiigcdof #1{\expandafter\XINT_iigcdof_a\romannumeral`&&@#1^}% +\def\XINT_iiGCDof {\romannumeral0\XINT_iigcdof_a}% +\def\XINT_iigcdof_a #1{\expandafter\XINT_iigcdof_b\romannumeral`&&@#1!}% +\def\XINT_iigcdof_b #1!#2{\expandafter\XINT_iigcdof_c\romannumeral`&&@#2!{#1}!}% +\def\XINT_iigcdof_c #1{\xint_gob_til_^ #1\XINT_iigcdof_e ^\XINT_iigcdof_d #1}% +\def\XINT_iigcdof_d #1!{\expandafter\XINT_iigcdof_b\romannumeral0\xintiigcd {#1}}% +\def\XINT_iigcdof_e #1!#2!{ #2}% +% \end{macrocode} % \subsection{\csh{xintiiLCM}} % Copied over |\xintiiLCM| code from \xintgcdnameimp at |1.3d| in order to % support |lcm()| function in \csbxint{iiexpr}. @@ -27016,26 +27204,6 @@ math shift catcode. }% \def\XINT_lcm_end #1\xint:#2\xint:#3\xint:{\xintiimul {#2}{\xintiiQuo{#3}{#1}}}% % \end{macrocode} -% \subsection{\csh{xintiiGCDof}} -% \lverb|New with 1.09a (xintgcd.sty). -% -% 1.2l adds protection against items being non-terminated \the\numexpr. -% -% 1.4 renames the macro into \xintiiGCDof and moves it here. -% Terminator modified to ^ for direct call by \xintiiexpr function. -% See comments -% in xintfrac.sty about \xintGCDof macro there.| -% -% \begin{macrocode} -\def\xintiiGCDof {\romannumeral0\xintiigcdof }% -\def\xintiigcdof #1{\expandafter\XINT_iigcdof_a\romannumeral`&&@#1^}% -\def\XINT_iiGCDof {\romannumeral0\XINT_iigcdof_a}% -\def\XINT_iigcdof_a #1{\expandafter\XINT_iigcdof_b\romannumeral`&&@#1!}% -\def\XINT_iigcdof_b #1!#2{\expandafter\XINT_iigcdof_c\romannumeral`&&@#2!{#1}!}% -\def\XINT_iigcdof_c #1{\xint_gob_til_^ #1\XINT_iigcdof_e ^\XINT_iigcdof_d #1}% -\def\XINT_iigcdof_d #1!{\expandafter\XINT_iigcdof_b\romannumeral0\xintiigcd {#1}}% -\def\XINT_iigcdof_e #1!#2!{ #2}% -% \end{macrocode} % \subsection{\csh{xintiiLCMof}} % \lverb|See comments of \xintiiGCDof|. % \begin{macrocode} @@ -27336,7 +27504,7 @@ math shift catcode. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintbinhex}% - [2021/02/20 v1.4c Expandable binary and hexadecimal conversions (JFB)]% + [2021/03/29 v1.4d Expandable binary and hexadecimal conversions (JFB)]% % \end{macrocode} % \subsection{Constants, etc...} % \lverb|1.2n switches to \csname-governed expansion at various places.| @@ -28008,7 +28176,7 @@ math shift catcode. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintgcd}% - [2021/02/20 v1.4c Euclide algorithm with xint package (JFB)]% + [2021/03/29 v1.4d Euclide algorithm with xint package (JFB)]% % \end{macrocode} % \subsection{\csh{xintBezout}} % \lverb|& @@ -28608,7 +28776,7 @@ math shift catcode. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintfrac}% - [2021/02/20 v1.4c Expandable operations on fractions (JFB)]% + [2021/03/29 v1.4d Expandable operations on fractions (JFB)]% % \end{macrocode} % \subsection{\csh{XINT_cntSgnFork}} % \lverb|1.09i. Used internally, #1 must expand to \m@ne, \z@, or \@ne or @@ -30692,7 +30860,11 @@ math shift catcode. % \end{macrocode} % \subsection{\csh{xintDivFloor}} % \lverb|1.1. Changed at 1.2p to not append /1[0] ending but rather output a -% big integer in strict format, like \xintDivTrunc and \xintDivRound.| +% big integer in strict format, like \xintDivTrunc and \xintDivRound. +% +% +% +% | % \begin{macrocode} \def\xintDivFloor {\romannumeral0\xintdivfloor }% \def\xintdivfloor #1#2{\xintifloor{\xintDiv {#1}{#2}}}% @@ -31200,80 +31372,183 @@ math shift catcode. \def\xintSgn {\romannumeral0\xintsgn }% \def\xintsgn #1{\expandafter\XINT_sgn\romannumeral0\xintraw {#1}\xint:}% % \end{macrocode} -% \subsection{\csh{xintGCD}, \csh{xintLCM}} +% \subsection{\csh{xintGCD}} % \changed{1.4}{} -% They replace the former \xintgcdnameimp macros of the -% same names which truncated to integers their arguments. -% Fraction-producing |gcd()| and |lcm()| functions -% were available since |1.3d| \xintexprnameimp, with non-public -% support macros handling comma separated -% values. +% They replace the former \xintgcdnameimp macros of the same names which +% truncated to integers their arguments. Fraction-producing |gcd()| and +% |lcm()| functions were available since |1.3d| \xintexprnameimp, with +% non-public support macros handling comma separated values. +% +% \changed{1.4d}{} +% Somewhat strangely \csh{xintGCD} was formerly \csh{xintGCDof} used with only two +% arguments, as the latter directly implemented a fractionl gcd algorithm +% using \csh{xintMod} repeatedly for two arguments. +% +% Now \csh{xintGCD} contains the pairwise gcd routine and \csh{xintGCDof} +% is only a wrapper. And the pairwise gcd is reduced to integer-only +% computations to hopefully reduce fraction overhead. +% +% Each input is filtered via |\xintPIrr| and |\xintREZ| to reduce size +% of maniuplate integers in algebra. +% +% But hesitation about applying |\xintPIrr| to output, and/or |\xintREZ|. +% (as it is applied on input). +% +% But as the code is now used for frational lcm's we actually need to do +% some reduction of output else lcm's of integers will not be necessarily +% printed by |\xinteval| as integers. +% +% Well finally I apply |\xintIrr| (but not |\xintREZ| to output). +% Hesitations here (thinking of inputs with large [n] parts, the output +% will have many zeros). So I do this only for the user macro but +% the core routine as used by |\xintGCDof| will not do it. +% +% Also at |1.4d| the code uses |\expanded|. % \begin{macrocode} \def\xintGCD {\romannumeral0\xintgcd}% -\def\xintgcd #1#2{\XINT_fgcdof{#1}{#2}^}% -\def\xintLCM {\romannumeral0\xintlcm}% -\def\xintlcm #1#2{\XINT_flcmof{#1}{#2}^}% +\def\xintgcd #1% +{% + \expandafter\XINT_fgcd_in + \romannumeral0\xintrez{\xintPIrr{\xintAbs{#1}}}\xint: +}% +\def\XINT_fgcd_in #1#2\xint:#3% +{% + \expandafter\XINT_fgcd_out + \romannumeral0\expandafter\XINT_fgcd_chkzeros\expandafter#1% + \romannumeral0\xintrez{\xintPIrr{\xintAbs{#3}}}\xint:#1#2\xint: +}% +\def\XINT_fgcd_out#1[#2]{\xintirr{#1[#2]}[0]}% +\def\XINT_fgcd_chkzeros #1#2% +{% + \xint_UDzerofork + #1\XINT_fgcd_aiszero + #2\XINT_fgcd_biszero + 0\XINT_fgcd_main + \krof #2% +}% +\def\XINT_fgcd_aiszero #1\xint:#2\xint:{ #1}% +\def\XINT_fgcd_biszero #1\xint:#2\xint:{ #2}% +\def\XINT_fgcd_main #1/#2[#3]\xint:#4/#5[#6]\xint: +{% + \expandafter\XINT_fgcd_a + \romannumeral0\XINT_gcd_loop #2\xint:#5\xint:\xint: + #2\xint:#5\xint:#1\xint:#4\xint:#3.#6.% +}% +\def\XINT_fgcd_a #1\xint:#2\xint: +{% + \expandafter\XINT_fgcd_b + \romannumeral0\xintiiquo{#2}{#1}\xint:#1\xint:#2\xint: +}% +\def\XINT_fgcd_b #1\xint:#2\xint:#3\xint:#4\xint:#5\xint:#6\xint:#7.#8.% +{% + \expanded{% + \xintiigcd{\xintiiE{\xintiiMul{#5}{\xintiiQuo{#4}{#2}}}{#7-#8}}% + {\xintiiE{\xintiiMul{#6}{#1}}{#8-#7}}% + /\xintiiMul{#1}{#4}% + [\ifnum#7>#8 #8\else #7\fi]% + }% +}% % \end{macrocode} % \subsection{\csh{xintGCDof}} % \changed{1.4}{} -% This inherits from former non public \xintexprnameimp macro called |\xintGCDof:csv|, -% handling comma separated items, and former \xintgcdnameimp macro called -% |\xintGCDof| which handled braced items to which it applied |\xintNum| -% before handling the computations on integers only. The macro keeps the -% former name \xintgcdnameimp, and handles fractions presented as braced -% items. It is now the support macro for the |gcd()| function in |\xintexpr| -% and |\xintfloatexpr|. +% This inherits from former non public \xintexprnameimp macro called +% |\xintGCDof:csv|, which handled comma separated items. % -% The support macro for the |gcd()| function in |\xintiiexpr| is -% \csbxint{iiGCDof} which is located in \xintnameimp. +% It handles fractions presented as braced items and is the support macro +% for the |gcd()| function in |\xintexpr| and |\xintfloatexpr|. The support +% macro for the |gcd()| function in |\xintiiexpr| is \csbxint{iiGCDof}, from +% \xintnameimp. % +% An empty input is allowed but I have some hesitations on the return +% value of 1. +% +% \changed{1.4d}{} +% Sadly the |1.4| version had multiple problems: +% \begin{itemize} +% \item broken if first argument vanished, +% \item broken if some argument was not in strict format, for example +% had leading chains of signs or zeros (|\xintGCDof{2}{03}|). +% This bug originates in the fact the original macro +% was used only in \xintexprnameimp sanitized context. +% \end{itemize} % +% Also, output is now always an irreducible fraction (ending with |[0]|). % \begin{macrocode} \def\xintGCDof {\romannumeral0\xintgcdof}% \def\xintgcdof #1{\expandafter\XINT_fgcdof\romannumeral`&&@#1^}% \def\XINT_GCDof{\romannumeral0\XINT_fgcdof}% -% \end{macrocode} -% \lverb|This abuses the way \xintiiabs works in order to avoid fetching whole -% argument again: \xintiiabs ^ raises no error. -% | -% \begin{macrocode} \def\XINT_fgcdof #1% {% - \xint_gob_til_^ #1\XINT_fgcdof_empty ^% - \expandafter\XINT_fgcdof_loop\romannumeral0\xintiiabs#1\xint: + \expandafter\XINT_fgcdof_chkempty\romannumeral`&&@#1\xint: +}% +\def\XINT_fgcdof_chkempty #1% +{% + \xint_gob_til_^#1\XINT_fgcdof_empty ^\XINT_fgcdof_in #1% +}% +\def\XINT_fgcdof_empty #1\xint:{ 1/1[0]}% hesitation, should it be infinity? O? +\def\XINT_fgcdof_in #1\xint: +{% + \expandafter\XINT_fgcd_out + \romannumeral0\expandafter\XINT_fgcdof_loop + \romannumeral0\xintrez{\xintPIrr{\xintAbs{#1}}}\xint: }% -\def\XINT_fgcdof_empty ^#1\xint:{ 1/1[0]}% \def\XINT_fgcdof_loop #1\xint:#2% {% - \expandafter\XINT_fgcdof_loop_a\romannumeral0\xintiiabs#2\xint:#1\xint: + \expandafter\XINT_fgcdof_chkend\romannumeral`&&@#2\xint:#1\xint:\xint: +}% +\def\XINT_fgcdof_chkend #1% +{% + \xint_gob_til_^#1\XINT_fgcdof_end ^\XINT_fgcdof_loop_pair #1% +}% +\def\XINT_fgcdof_end #1\xint:#2\xint:\xint:{ #2}% +\def\XINT_fgcdof_loop_pair #1\xint:#2% +{% + \expandafter\XINT_fgcdof_loop + \romannumeral0\expandafter\XINT_fgcd_chkzeros\expandafter#2% + \romannumeral0\xintrez{\xintPIrr{\xintAbs{#1}}}\xint:#2% }% % \end{macrocode} +% \subsection{\csh{xintLCM}} +% Same comments as for \csh{xintGCD}. +% Entirely redone for |1.4d|. +% Well, actually we can express it in terms of fractional gcd. % \begin{macrocode} -\def\XINT_fgcdof_loop_a#1#2\xint:#3\xint: +\def\xintLCM {\romannumeral0\xintlcm}% +\def\xintlcm #1% {% - \xint_gob_til_^ #1\XINT_fgcdof_end ^% - \xint_gob_til_zero #1\XINT_fgcdof_skip 0% - \expandafter\XINT_fgcdof_loop_b\romannumeral0\xintmod{#1#2}{#3}\xint:#3\xint: + \expandafter\XINT_flcm_in + \romannumeral0\xintrez{\xintPIrr{\xintAbs{#1}}}\xint: }% -\def\XINT_fgcdof_end ^#1\xint:#2\xint:{ #2}% -\def\XINT_fgcdof_skip 0% - \expandafter\XINT_fgcdof_loop_b\romannumeral0\xintmod#1\xint: +\def\XINT_flcm_in #1#2\xint:#3% {% - \XINT_fgcdof_loop + \expandafter\XINT_fgcd_out + \romannumeral0\expandafter\XINT_flcm_chkzeros\expandafter#1% + \romannumeral0\xintrez{\xintPIrr{\xintAbs{#3}}}\xint:#1#2\xint: }% -\def\XINT_fgcdof_loop_b#1#2\xint:#3\xint: +\def\XINT_flcm_chkzeros #1#2% {% - \xint_gob_til_zero #1\XINT_fgcdof_next 0% - \expandafter\XINT_fgcdof_loop_b\romannumeral0\xintmod{#3}{#1#2}\xint:#1#2\xint: + \xint_UDzerofork + #1\XINT_flcm_zero + #2\XINT_flcm_zero + 0\XINT_flcm_main + \krof #2% }% -\def\XINT_fgcdof_next 0% - \expandafter\XINT_fgcdof_loop_b\romannumeral0\xintmod#1#2\xint:#3\xint:#4% +\def\XINT_flcm_zero #1\xint:#2\xint:{ 0/1[0]}% +\def\XINT_flcm_main #1/#2[#3]\xint:#4/#5[#6]\xint: {% - \expandafter\XINT_fgcdof_loop_a\romannumeral0\xintiiabs#4\xint:#1\xint: + \xintinv + {% + \romannumeral0\XINT_fgcd_main #2/#1[-#3]\xint:#5/#4[-#6]\xint: + }% }% % \end{macrocode} % \subsection{\csh{xintLCMof}} -% See comments for |\xintGCDof|. \xintnameimp provides integer only \csbxint{iiLCMof}. +% See comments for |\xintGCDof|. \xintnameimp provides the integer only +% \csbxint{iiLCMof}. +% +% \changes{1.4d}{} +% Sadly, although a public \xintfracnameimp macro, it did not (since |1.4|) +% sanitize its arguments like other \xintfracnameimp macros. % % \begin{macrocode} \def\xintLCMof {\romannumeral0\xintlcmof}% @@ -31281,50 +31556,39 @@ math shift catcode. \def\XINT_LCMof{\romannumeral0\XINT_flcmof}% \def\XINT_flcmof #1% {% - \xint_gob_til_^ #1\XINT_flcmof_empty ^% - \expandafter\XINT_flcmof_loop\romannumeral0\xintiiabs\xintRaw{#1}\xint: + \expandafter\XINT_flcmof_chkempty\romannumeral`&&@#1\xint: }% -\def\XINT_flcmof_empty ^#1\xint:{ 0/1[0]}% -% \end{macrocode} -% \lverb|\XINT_inv expects A/B[N] format which is the case here.| -% \begin{macrocode} -\def\XINT_flcmof_loop #1% +\def\XINT_flcmof_chkempty #1% {% - \xint_gob_til_zero #1\XINT_flcmof_zero 0% - \expandafter\XINT_flcmof_d\romannumeral0\XINT_inv #1% + \xint_gob_til_^#1\XINT_flcmof_empty ^\XINT_flcmof_in #1% }% -\def\XINT_flcmof_zero #1^{ 0/1[0]}% -% \end{macrocode} -% \lverb|\xintRaw{^} would raise an error thus we delay application of -% \xintRaw to new item. As soon as we hit against a zero item, the l.c.m is -% known to be zero itself. Else we need to inverse new item, but this requires -% full A/B[N] raw format, hence the \xintraw.| -% \begin{macrocode} -\def\XINT_flcmof_d #1\xint:#2% +\def\XINT_flcmof_empty #1\xint:{ 0/1[0]}% hesitation +\def\XINT_flcmof_in #1\xint: {% - \expandafter\XINT_flcmof_loop_a\romannumeral0\xintiiabs#2\xint:#1\xint: + \expandafter\XINT_fgcd_out + \romannumeral0\expandafter\XINT_flcmof_loop + \romannumeral0\xintrez{\xintPIrr{\xintAbs{#1}}}\xint: }% -\def\XINT_flcmof_loop_a #1#2\xint:% +\def\XINT_flcmof_loop #1\xint:#2% {% - \xint_gob_til_^ #1\XINT_flcmof_end ^% - \xint_gob_til_zero #1\XINT_flcmof_zero 0% - \expandafter\XINT_flcmof_loop_b\romannumeral0\expandafter\XINT_inv - \romannumeral0\xintraw{#1#2}\xint: + \expandafter\XINT_flcmof_chkend\romannumeral`&&@#2\xint:#1\xint:\xint: }% -\def\XINT_flcmof_end ^#1\xint:#2\xint:{\XINT_inv #2}% -% \end{macrocode} -% \lverb|This is Euclide algorithm.| -% \begin{macrocode} -\def\XINT_flcmof_loop_b #1#2\xint:#3\xint: +\def\XINT_flcmof_chkend #1% {% - \xint_gob_til_zero #1\XINT_flcmof_next 0% - \expandafter\XINT_flcmof_loop_b\romannumeral0\xintmod{#3}{#1#2}\xint:#1#2\xint: + \xint_gob_til_^#1\XINT_flcmof_end ^\XINT_flcmof_loop_pair #1% }% -\def\XINT_flcmof_next 0% - \expandafter\XINT_flcmof_loop_b\romannumeral0\xintmod#1#2\xint:#3\xint:#4% +\def\XINT_flcmof_end #1\xint:#2\xint:\xint:{ #2}% +\def\XINT_flcmof_loop_pair #1\xint:#2% {% - \expandafter\XINT_flcmof_loop_a\romannumeral0\xintiiabs#4\xint:#1\xint: + \expandafter\XINT_flcmof_chkzero + \romannumeral0\expandafter\XINT_flcm_chkzeros\expandafter#2% + \romannumeral0\xintrez{\xintPIrr{\xintAbs{#1}}}\xint:#2% }% +\def\XINT_flcmof_chkzero #1% +{% + \xint_gob_til_zero#1\XINT_flcmof_zero0\XINT_flcmof_loop#1% +}% +\def\XINT_flcmof_zero#1^{ 0/1[0]}% % \end{macrocode} % \subsection{Floating point macros} % @@ -33797,7 +34061,7 @@ math shift catcode. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintseries}% - [2021/02/20 v1.4c Expandable partial sums with xint package (JFB)]% + [2021/03/29 v1.4d Expandable partial sums with xint package (JFB)]% % \end{macrocode} % \subsection{\csh{xintSeries}} % \begin{macrocode} @@ -34298,7 +34562,7 @@ math shift catcode. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintcfrac}% - [2021/02/20 v1.4c Expandable continued fractions with xint package (JFB)]% + [2021/03/29 v1.4d Expandable continued fractions with xint package (JFB)]% % \end{macrocode} % \subsection{\csh{xintCFrac}} % \begin{macrocode} @@ -35690,7 +35954,7 @@ math shift catcode. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintexpr}% - [2021/02/20 v1.4c Expandable expression parser (JFB)]% + [2021/03/29 v1.4d Expandable expression parser (JFB)]% \catcode`! 11 \let\XINT_Cmp \xintiiCmp \def\XINTfstop{\noexpand\XINTfstop}% @@ -35713,7 +35977,10 @@ math shift catcode. % \subsubsection{Bracketed list rendering with prettifying of leaves from nested % braced contents} % \lverb|1.4 The braces in \XINT:expr:toblistwith are there because there is -% an \expanded trigger.| +% an \expanded trigger. +% +% 1.4d: support for polexpr 0.8 polynomial type. +% | % \begin{macrocode} \def\XINT:expr:toblistwith#1#2% {% @@ -35729,8 +35996,13 @@ math shift catcode. \def\XINT:expr:toblist_a #1{#2% <% \if{#2\xint_dothis<[\XINT:expr:toblist_a>\fi + \if P#2\xint_dothis<\XINT:expr:toblist_pol>\fi \xint_orthat\XINT:expr:toblist_b #1#2% >% +\def\XINT:expr:toblist_pol #1!#2.{#3}}% +<% + pol([\XINT:expr:toblist_b #1!#3}^])\XINT:expr:toblist_c #1!}% +>% \def\XINT:expr:toblist_b #1!#2}% <% \if\relax#2\relax\xintexprEmptyItem\else#1<#2>\fi\XINT:expr:toblist_c #1!}% @@ -36235,7 +36507,6 @@ math shift catcode. \let\XINT:NEhook:f:one:from:two\expandafter \let\XINT:NEhook:f:one:from:two:direct\empty \let\XINT:NEhook:x:one:from:two\empty -\let\XINT:NEhook:x:one:from:twoandone\empty \let\XINT:NEhook:f:one:and:opt:direct \empty \let\XINT:NEhook:f:tacitzeroifone:direct \empty \let\XINT:NEhook:f:iitacitzeroifone:direct \empty @@ -36969,10 +37240,6 @@ math shift catcode. % This means cases like (a+b)/(c+d)(e+f) will first multiply the last two % parenthesized terms. % -% The ! starting a sub-expression must be distinguished from the post-fix ! -% for factorial, thus we must not do a too early \string. In versions < 1.2c, -% the catcode 11 ! had to be identified in all branches of the number or -% function scans. Here it is simply treated as a special case of a letter. % % 1.2q adds tacit multiplication in cases such as (1+1)3 or 5!7! % @@ -37396,11 +37663,11 @@ math shift catcode. \XINT_expr_defbin_b {flexpr}{xor}{vi}{xii} {xintXOR}% \XINT_expr_defbin_b {iiexpr}{xor}{vi}{xii} {xintXOR}% \XINT_expr_defbin_b {expr} {//} {xiv}{xiv}{xintDivFloor}% -\XINT_expr_defbin_b {flexpr}{//} {xiv}{xiv}{XINTinFloatDivFloor}% " -\XINT_expr_defbin_b {iiexpr}{//} {xiv}{xiv}{xintiiDivFloor}% " -\XINT_expr_defbin_b {expr} {/:} {xiv}{xiv}{xintMod}% " -\XINT_expr_defbin_b {flexpr}{/:} {xiv}{xiv}{XINTinFloatMod}% " -\XINT_expr_defbin_b {iiexpr}{/:} {xiv}{xiv}{xintiiMod}% " +\XINT_expr_defbin_b {flexpr}{//} {xiv}{xiv}{XINTinFloatDivFloor}% +\XINT_expr_defbin_b {iiexpr}{//} {xiv}{xiv}{xintiiDivFloor}% +\XINT_expr_defbin_b {expr} {/:} {xiv}{xiv}{xintMod}% +\XINT_expr_defbin_b {flexpr}{/:} {xiv}{xiv}{XINTinFloatMod}% +\XINT_expr_defbin_b {iiexpr}{/:} {xiv}{xiv}{xintiiMod}% \XINT_expr_defbin_b {expr} + {xii}{xii}{xintAdd}% \XINT_expr_defbin_b {flexpr} + {xii}{xii}{XINTinFloatAdd}% \XINT_expr_defbin_b {iiexpr} + {xii}{xii}{xintiiAdd}% @@ -38414,7 +38681,7 @@ math shift catcode. *\unexpanded{\expandafter\expandafter}% \expandafter\noexpand\csname XINT_expr_var_#1\endcsname(}% \ifxintverbose\xintMessage{xintexpr}{Info} - {Variable "#1" \ifxintglobaldefs globally \fi + {Variable #1 \ifxintglobaldefs globally \fi defined with value \csname XINT_expr_varvalue_#1\endcsname.}% \fi }% @@ -39801,7 +40068,7 @@ math shift catcode. % {float}{sfloat}{ilog10} % {divmod}{mod}{binomial}{pfactorial} % {randrange} -% {quo}{rem}{gcd}{lcm}{max}{min} +% {iquo}{irem}{gcd}{lcm}{max}{min} % {`+`}{`*`} % {all}{any}{xor} % {len}{first}{last}{reversed} @@ -40268,27 +40535,13 @@ math shift catcode. {\xintiiRandRange{#1}}% {\xintiiRandRangeAtoB{#1}{#2}}% }% -\def\XINT_expr_func_quo #1#2#3% -{% - \expandafter #1\expandafter #2\expandafter{\romannumeral`&&@% - \XINT:NEhook:f:one:from:two - {\romannumeral`&&@\xintiQuo #3}}% -}% -\let\XINT_flexpr_func_quo\XINT_expr_func_quo -\def\XINT_iiexpr_func_quo #1#2#3% +\def\XINT_iiexpr_func_iquo #1#2#3% {% \expandafter #1\expandafter #2\expandafter{\romannumeral`&&@% \XINT:NEhook:f:one:from:two {\romannumeral`&&@\xintiiQuo #3}}% }% -\def\XINT_expr_func_rem #1#2#3% -{% - \expandafter #1\expandafter #2\expandafter{\romannumeral`&&@% - \XINT:NEhook:f:one:from:two - {\romannumeral`&&@\xintiRem #3}}% -}% -\let\XINT_flexpr_func_rem\XINT_expr_func_rem -\def\XINT_iiexpr_func_rem #1#2#3% +\def\XINT_iiexpr_func_irem #1#2#3% {% \expandafter #1\expandafter #2\expandafter{\romannumeral`&&@% \XINT:NEhook:f:one:from:two @@ -41024,7 +41277,7 @@ math shift catcode. }}\expandafter\XINT:NE:f:iitacitzeroifone:direct\string#% \def\XINT:NE:f:iitacitzeroifone_a #1#2&&A#3% {% - \detokenize{\romannumeral`-0\expandafter#1\expanded{#2}$XINT_expr_exclam#3}%$ + \detokenize{\romannumeral`$XINT_expr_null\expandafter#1\expanded{#2}$XINT_expr_exclam#3}% }% \def\XINT:NE:f:iitacitzeroifone_b\XINT:expr:f:iitacitzeroifone #1#2#3&&A#4% {% @@ -41045,16 +41298,6 @@ math shift catcode. }}\expandafter\XINT:NE:x:one:from:two_fork\string#% \def\XINT:NE:x:one:from:two:p #1#2#3% {~expanded{\detokenize{\expandafter#1}~expanded{{#2}{#3}}}}% -\def\XINT:NE:x:one:from:twoandone #1#2#3{\XINT:NE:x:one:from:twoandone_a #2#3&&A#1{#2}{#3}}% -\def\XINT:NE:x:one:from:twoandone_a #1#2{\XINT:NE:x:one:from:twoandone_fork #1&&A#2&&A}% -\def\XINT:NE:x:one:from:twoandone_fork #1{% -\def\XINT:NE:x:one:from:twoandone_fork ##1##2&&A##3##4&&A##5##6&&A% -{% - \if0\XINT:NE:hastilde ##1##3##5~!\relax\XINT:NE:hashash ##1##3##5#1!\relax 0% - \else - \expandafter\XINT:NE:x:one:from:two:p - \fi -}}\expandafter\XINT:NE:x:one:from:twoandone_fork\string#% \def\XINT:NE:x:listsel #1{% \def\XINT:NE:x:listsel ##1##2&% {% @@ -41065,13 +41308,12 @@ math shift catcode. \fi ##1##2&% }}\expandafter\XINT:NE:x:listsel\string#% -\def\XINT:NE:x:listsel:p #1#2&(#3% +\def\XINT:NE:x:listsel:p #1#2_#3&(#4% {% - \detokenize - {% - \expanded{\expandafter#1\expanded{#2$XINT_expr_tab({#3}}\expandafter\empty\empty}%$ - }% + \detokenize{\expanded\XINT:expr:ListSel{{#3}{#4}}}% }% +\def\XINT:expr:ListSel{\expandafter\XINT:expr:ListSel_i\expanded}% +\def\XINT:expr:ListSel_i #1#2{{\XINT_ListSel_top #2_#1&({#2}}}% \def\XINT:NE:f:reverse #1{% \def\XINT:NE:f:reverse ##1^% {% @@ -41084,13 +41326,14 @@ math shift catcode. }}\expandafter\XINT:NE:f:reverse\string#% \def\XINT:NE:f:reverse:p #1^#2\xint_bye {% - \detokenize - {% - \romannumeral0\expandafter\XINT:expr:f:reverse - \expandafter{\expanded\expandafter{\xint_gobble_i#1}}% - }% + \expandafter\XINT:NE:f:reverse:p_i\expandafter{\xint_gobble_i#1}% }% -\def\XINT:expr:f:reverse #1% +\def\XINT:NE:f:reverse:p_i #1% +{% + \detokenize{\romannumeral0\XINT:expr:f:reverse{{#1}}}% +}% +\def\XINT:expr:f:reverse{\expandafter\XINT:expr:f:reverse_i\expanded}% +\def\XINT:expr:f:reverse_i #1% {% \XINT_expr_reverse #1^^#1\xint:\xint:\xint:\xint: \xint:\xint:\xint:\xint:\xint_bye @@ -41118,7 +41361,7 @@ math shift catcode. ##1{##2}% }}\expandafter\XINT:NE:f:noeval:from:braced:u\string#% \def\XINT:NE:f:noeval:from:braced:u:p #1#2% - {\detokenize{\expandafter#1}~expanded{{#2}}}% + {\detokenize{\romannumeral`$XINT_expr_null\expandafter#1}~expanded{{#2}}}% \catcode`- 11 \def\XINT:NE:exec_? #1#2% {% @@ -41518,7 +41761,6 @@ math shift catcode. \let\XINT:NEhook:f:one:from:two \XINT:NE:f:one:from:two \let\XINT:NEhook:f:one:from:two:direct \XINT:NE:f:one:from:two:direct \let\XINT:NEhook:x:one:from:two \XINT:NE:x:one:from:two - \let\XINT:NEhook:x:one:from:twoandone \XINT:NE:x:one:from:twoandone \let\XINT:NEhook:f:one:and:opt:direct \XINT:NE:f:one:and:opt:direct \let\XINT:NEhook:f:tacitzeroifone:direct \XINT:NE:f:tacitzeroifone:direct \let\XINT:NEhook:f:iitacitzeroifone:direct \XINT:NE:f:iitacitzeroifone:direct @@ -41678,6 +41920,7 @@ math shift catcode. \def\XINT_expr_tilde{~}\def\XINT_expr_qmark{?}% catcode 3 \def\XINT_expr_caret{^}\def\XINT_expr_exclam{!}% catcode 11 \def\XINT_expr_tab{&}% catcode 7 +\def\XINT_expr_null{&&@}% \catcode`~ 13 \catcode`@ 14 \catcode`\% 6 \catcode`# 12 \catcode`$ 11 @ $ \def\XINT_NewExpr_a %1%2%3%4%5@ {@ @@ -41869,10 +42112,10 @@ math shift catcode. \expandafter\xint_secondoftwo \fi {\immediate\write-1{Reloading xinttrig library using Digits=\xinttheDigits.}}% -{\expandafter\gdef\csname xintlibver@trig\endcsname{2021/02/20 v1.4c}% +{\expandafter\gdef\csname xintlibver@trig\endcsname{2021/03/29 v1.4d}% \XINT_providespackage \ProvidesPackage{xinttrig}% -[2021/02/20 v1.4c Trigonometrical functions for xintexpr (JFB)]% +[2021/03/29 v1.4d Trigonometrical functions for xintexpr (JFB)]% }% % \end{macrocode} % \subsection{Ensure used letters are dummy letters} @@ -42868,7 +43111,7 @@ math shift catcode. \xintexprSafeCatcodes\catcode`_ 11 \XINT_providespackage \ProvidesPackage{xintlog}% -[2021/02/20 v1.4c Logarithms and exponentials for xintexpr (JFB)]% +[2021/03/29 v1.4d Logarithms and exponentials for xintexpr (JFB)]% % \end{macrocode} % \subsection{Loading of \cshn{poormanlog} package} % \lverb|Attention to catcode regime when loading poormanlog. It matters less @@ -42882,13 +43125,13 @@ math shift catcode. \fi % \end{macrocode} % \lverb|\XINT_setcatcodes switches to the standard catcode regime of -% xint*.sty files. And we need the xintexpr catcode for ! too (cf -% \XINT_expr_func_pow) +% xint*.sty files. Formerly we needed here the ! of catcode 11 as in +% xintexpr.sty, which is set by \XINT_setcatcodes but does not apply now. % % See the remark above about importance of doing \xintexprRestoreCatcodes if % \xintexprSafeCatcodes has been used...| % \begin{macrocode} -\xintexprRestoreCatcodes\csname XINT_setcatcodes\endcsname\catcode`\! 11 +\xintexprRestoreCatcodes\csname XINT_setcatcodes\endcsname % \end{macrocode} % \subsection{The \cshn{log10()} and \cshn{pow10()} functions} % \lverb|The support macros from poormanlog v0.04 \PoorManLogBaseTen, @@ -42941,9 +43184,6 @@ math shift catcode. \romannumeral`&&@\XINT:NEhook:f:one:from:one {\romannumeral`&&@\XINTinFloatExp#3}}% }% -% \end{macrocode} -% \lverb|Attention that the ! is of catcode 11 here.| -% \begin{macrocode} \def\XINT_expr_func_pow #1#2#3% {% \expandafter #1\expandafter #2\expandafter{% @@ -42954,7 +43194,11 @@ math shift catcode. % \end{macrocode} % \subsection{\csh{poormanloghack}} % \lverb|With \poormanloghack{**}, the ** operator will use pow10(y*log10(x)). -% Same for ^. Sync'd with xintexpr 1.4.| +% Same for ^. Sync'd with xintexpr 1.4. +% +% MEMO: the reason why I need to redefine a lot of stuff is that xintexpr.sty +% does the job only for ^ and then does a \let for exec_** only. So if now +% ^ and ** possibly act differently all must be duplicated.| % \begin{macrocode} \catcode`\* 11 \def\poormanloghack** @@ -43064,9 +43308,9 @@ math shift catcode. xint.sty:205 xintbinhex.sty:53 xintcfrac.sty:183 -xintcore.sty:271 -xintexpr.sty:430 -xintfrac.sty:496 +xintcore.sty:272 +xintexpr.sty:428 +xintfrac.sty:507 xintgcd.sty:41 xintkernel.sty:17 xintlog.sty:9 @@ -43075,15 +43319,15 @@ xinttools.sty:157 xinttrig.sty:31 \fi % grep -o "^{%" xint*sty | wc -l -\def\totala{ 1941} +\def\totala{ 1951} \iffalse % grep -c -e "^}%" xint*sty xint.sty:204 xintbinhex.sty:52 xintcfrac.sty:183 -xintcore.sty:268 -xintexpr.sty:413 -xintfrac.sty:499 +xintcore.sty:269 +xintexpr.sty:412 +xintfrac.sty:510 xintgcd.sty:43 xintkernel.sty:18 xintlog.sty:9 @@ -43092,7 +43336,7 @@ xinttools.sty:156 xinttrig.sty:32 \fi % grep -o "^}%" xint*sty | wc -l -\def\totalb{ 1925} +\def\totalb{ 1936} \cleardoublepage \section{Cumulative line count} @@ -43116,8 +43360,8 @@ xinttrig.sty:32 \TeX\strut. Version {\xintbndlversion} of {\xintbndldate}.\par } -\CheckSum {35109}% 1.4c -% 35103 pour 1.4b, 34648 pour 1.4a, 34575 pour 1.4 +\CheckSum {35184}% 1.4d +% 35109 pour 1.4c, 35103 pour 1.4b, 34648 pour 1.4a, 34575 pour 1.4 % 33497 pour 1.3f, 33274 pour 1.3e, 31601 pour 1.3d, 31122 pour 1.3c % 31069 pour 1.3b, 30482 pour 1.3a, 30621 pour 1.3, 30988 pour 1.2q, % 30982 pour 1.2p, 30524 pour 1.2o, 30303 pour 1.2h, 30403 pour 1.2i, |