diff options
Diffstat (limited to 'Master/texmf-dist/source/latex/l3kernel/l3fp-parse.dtx')
-rw-r--r-- | Master/texmf-dist/source/latex/l3kernel/l3fp-parse.dtx | 2601 |
1 files changed, 2601 insertions, 0 deletions
diff --git a/Master/texmf-dist/source/latex/l3kernel/l3fp-parse.dtx b/Master/texmf-dist/source/latex/l3kernel/l3fp-parse.dtx new file mode 100644 index 00000000000..11ec4e11b54 --- /dev/null +++ b/Master/texmf-dist/source/latex/l3kernel/l3fp-parse.dtx @@ -0,0 +1,2601 @@ +% \iffalse meta-comment +% +%% File: l3fp-parse.dtx Copyright (C) 2011-2012 The LaTeX3 Project +%% +%% It may be distributed and/or modified under the conditions of the +%% LaTeX Project Public License (LPPL), either version 1.3c of this +%% license or (at your option) any later version. The latest version +%% of this license is in the file +%% +%% http://www.latex-project.org/lppl.txt +%% +%% This file is part of the "l3kernel bundle" (The Work in LPPL) +%% and all files in that bundle must be distributed together. +%% +%% The released version of this bundle is available from CTAN. +%% +%% ----------------------------------------------------------------------- +%% +%% The development version of the bundle can be found at +%% +%% http://www.latex-project.org/svnroot/experimental/trunk/ +%% +%% for those people who are interested. +%% +%%%%%%%%%%% +%% NOTE: %% +%%%%%%%%%%% +%% +%% Snapshots taken from the repository represent work in progress and may +%% not work or may contain conflicting material! We therefore ask +%% people _not_ to put them into distributions, archives, etc. without +%% prior consultation with the LaTeX Project Team. +%% +%% ----------------------------------------------------------------------- +%% +% +%<*driver> +\RequirePackage{l3names} +\GetIdInfo$Id: l3fp-parse.dtx 3986 2012-07-15 19:23:51Z joseph $ + {L3 Floating-point expression parsing} +\documentclass[full]{l3doc} +\begin{document} + \DocInput{\jobname.dtx} +\end{document} +%</driver> +% \fi +% +% \title{The \textsf{l3fp-parse} package\thanks{This file +% has version number \fileversion, last +% revised \filedate.}\\ +% Floating point expression parsing} +% \author{^^A +% The \LaTeX3 Project\thanks +% {^^A +% E-mail: +% \href{mailto:latex-team@latex-project.org} +% {latex-team@latex-project.org}^^A +% }^^A +% } +% \date{Released \filedate} +% +% \maketitle +% +% ^^A begin[todo] +% +% ^^A To typeset the examples of expansion control, I'm using a hand-made +% ^^A environment. +% \newcommand{\fpOperation}[1] +% {\textcolor[rgb]{.6,.2,.2}{\ttfamily#1}} +% \newcommand{\fpPrecedence}[1] +% {\textcolor[rgb]{.2,.2,.6}{\ttfamily#1}} +% \newcommand{\fpExpand}[2] +% {\underline{\textcolor{red}{#1{#2}}}} +% \newenvironment{l3fp-code-example} +% {\begin{quote}^^A +% \edef\^{\string^}^^A +% \let\*\fpExpand +% \let\o\fpOperation +% \let\p\fpPrecedence +% \def\!{\begingroup\def\!{\endgroup\par}\color[gray]{0.5}}^^A +% \ttfamily\frenchspacing +% }{\end{quote}} +% +% \begin{documentation} +% +% \end{documentation} +% +% \begin{implementation} +% +% \section{\pkg{l3fp-parse} implementation} +% +% \begin{macrocode} +%<*initex|package> +% \end{macrocode} +% +% \begin{macrocode} +%<@@=fp> +% \end{macrocode} +% +% \section{Precedences} +% +% In order of evaluation (some distinctions are irrelevant for the order +% of evaluation, but serve as signals). +% \begin{itemize} +% \item[32] Juxtaposition for implicit multiplication. +% \item[16] Function calls with multiple arguments. +% \item[15] Function calls expecting exactly one argument. +% \item[14] Binary |**| and |^| (right to left). +% \item[12] Unary |+|, |-|, |!| (right to left). +% \item[10] Binary |*|, |/| and |%|. +% \item[9] Binary |+| and |-|. +% \item[7] Comparisons. +% \item[5] Logical \texttt{and}, denoted by |&&|. +% \item[4] Logical \texttt{or}, denoted by \verb*+||+. +% \item[3] Ternary operator |?:|, piece |?|. +% \item[2] Ternary operator |?:|, piece |:|. +% \item[1] Commas, and parentheses accepting commas. +% \item[0] Parentheses expecting exactly one argument. +% \item[-1] Start and end of the expression. +% \end{itemize} +% +% ^^A todo: change 'mantissa' => 'significand' everywhere. +% ^^A todo: ask SO when sNaN can arise. +% +% \section{Evaluating an expression} +% +% \begin{macro}[EXP, int]{\@@_parse:n} +% \begin{syntax} +% \cs{@@_parse:n} \Arg{floating point expression} +% \end{syntax} +% This \texttt{f}-expands to the internal floating point number +% obtained by evaluating the \meta{floating point expression}. During +% this evaluation, each token is fully \texttt{f}-expanded. +% \begin{texnote} +% Registers (integers, toks, etc.) are automatically unpacked, +% without requiring a function such as \cs{int_use:N}. Invalid +% tokens remaining after \texttt{f}-expansion will lead to +% unrecoverable low-level TeX errors.\footnote{Bruno: describe what +% happens in cases like $2\cs{c_three} = 6$.} +% \end{texnote} +% \end{macro} +% +% \section{Work plan}\label{subsec:fp-parse-workplan} +% +% The task at hand is non-trivial, and some previous failed attempts have +% shown me that the code ends up giving unreadable logs, so we'd better get +% it (almost) right the first time. Let us thus first discuss precisely +% the design before starting to write the code. To simplify matters, +% we first consider expressions with integers only. +% +% \subsection{Storing results} +% +% The main issue in parsing expressions expandably is: \enquote{where +% in the input stream should the result be put?} +% +% One option is to place the result at the end of the expression, +% but this has several drawbacks: +% \begin{itemize} +% \item firstly it means that for long expressions we would be reaching +% all the way to the end of the expression at every step of the +% calculation, which can be rather expensive; +% \item secondly, when parsing parenthesized sub-expressions, we would +% naturally place the result after the corresponding closing parenthesis. +% But since \cs{@@_parse:n} does not assume that its argument is expanded, +% this closing parenthesis may be hidden in a macro, and not present yet, +% causing havoc. +% \end{itemize} +% +% The other natural option is to store the result at the start of the +% expression, and carry it as an argument of each macro. This does not +% really work either: in order to expand what follows on the input stream, +% we need to skip at each step over all the tokens in the result using +% \cs{exp_after:wN}. But this requires adding many \cs{exp_after:wN} to +% the result at each step, also an expensive process. +% +% Hence, we need to go for some fine expansion control: the result is +% stored \emph{before} the start\ldots{} A toy model that illustrates this +% idea is to try and add some positive integers which may be hidden +% within macros, or registers. Assume that one number has already been +% found, and that we want to parse the next number. The current status +% of the code may look as follows. +% \begin{quote}\ttfamily +% \cs{exp_after:wN} \cs{add:ww} +% \cs{__int_value:w} 12345 \cs{exp_after:wN} ; \newline +% \cs{tex_romannumeral:D} -`0 \cs{clean:w} \meta{stuff} +% \end{quote} +% Hitting this construction by one step of expansion expands +% \cs{exp_after:wN}, which triggers the primitive \cs{__int_value:w}, +% which reads an integer, \texttt{12345}. This integer is unfinished, +% causing the second \cs{exp_after:wN} to expand, and trigger +% the construction \cs{tex_romannumeral:D} |-`0|, which f-expands +% \cs{clean:w} (see \pkg{l3expan.dtx} for an explanation). Assume +% then that \cs{clean:w} is such that it expands \meta{stuff} to +% \emph{e.g.}, |333444;|. Once \cs{clean:w} is done expanding, we +% will obtain essentially +% \begin{quote}\ttfamily +% \cs{exp_after:wN} \cs{add:ww} \cs{__int_value:w} 12345 ; 333444 ; +% \end{quote} +% where in fact \cs{exp_after:wN} has already been expanded, and +% \cs{__int_value:w} has already seen \texttt{12345}. Now, +% \cs{__int_value:w} sees the \texttt{;}, and stops expanding, and +% we are left with +% \begin{quote}\ttfamily +% \cs{add:ww} 12345 ; 333444 ; +% \end{quote} +% which can safely perform the addition by grabbing two arguments +% delimited by \texttt{;}. +% +% On this toy example, we could note that if we were to continue +% parsing the expression, then the following number should also +% be cleaned up before the next use of a binary operation such as +% \cs{add:ww}. Just like \cs{__int_value:w} \texttt{12345} +% \cs{exp_after:wN} \texttt{;} expanded what follows once, we need +% \cs{add:ww} to do the calculation, and in the process to expand +% the following once. This is also true in our real application: +% all the functions of the form \cs{@@_..._o:ww} expand what +% follows once. This comes at the cost of leaving tokens in the +% input stack, and we will need to be careful to waste as little +% as possible of this precious memory. +% +% \subsection{Precedence} +% +% A major point to keep in mind when parsing expressions is that +% different operators have different precedence. The true analog +% of our toy \cs{clean:w} macro must thus take care of that. For +% definiteness, let us assume that the operation which prompted +% \cs{clean:w} was a multiplication. Then \cs{clean:w} (expand +% and) read digits until the number is ended by some operation. +% If this is \texttt{+} or~\texttt{-}, then the multiplication +% should be calculated next, so \cs{clean:w} can simply decide +% that its job is done. However, if the operator we find is |^|, +% then this operation must be performed before returning control +% to the multiplication. This means that we need to \cs{clean:w} +% the number following |^|, and perform the calculation, then just +% end our job. +% +% Hence, each time a number is cleaned, the precedence of the +% following operation must be compared to that of the previous +% operation. The process of course has to happen recursively. +% For instance, |1+2^3*4| would involve the following steps. +% \begin{itemize} +% \item |1| is cleaned up. +% \item |2| is cleaned up. +% \item The precedences of |+| and |^| are compared. Since the +% latter is higher, the second operand of |^| should be cleaned. +% \item |3| is cleaned up. +% \item The precedences of |^| and |*| are compared. Since the +% former is higher, the cleaning step stops. +% \item Compute |2^3 = 8|. +% \item We now have |1+8*4|, and the operation |+| is still +% looking for a second operand. Clean |8|. +% \item The precedences of |+| and |*| are compared. Since the +% latter is higher, the second operand of |*| should be cleaned. +% \item |4| is cleaned up, and the end of the expression is reached. +% \item Compute |8*4 = 32|. +% \item We now have |1+8*4|, and the operation |+| is still +% looking for a second operand. Clean |32|, and reach the end +% of the expression. +% \item Compute |1+32 = 33|. +% \end{itemize} +% Here, there is some (expensive) redundant work: the results of +% computations should not need to be cleaned again. Thus the true definition +% is slightly more elaborate. +% +% The precedence of |(| and |)| are defined to be equal, and smaller than +% the precedence of |+| and |-|, itself smaller than |*| and |/|, smaller, +% finally, then the power operator |**| (or |^|). +% +% +% \subsection{Infix operators} +% +% The implementation that was chosen is slightly wasteful: it causes +% more nesting than necessary. ^^A todo: clarify. +% However, it is simpler to implement and to explain than a slightly +% optimized variant. ^^A todo: implement optimized version; compare. +% +% The cornerstone of that method is a pair of functions, +% \cs{until} and \cs{one}, which both take as their first +% argument the precedence (an integer) of the last operation. +% The f-expansion of +% \begin{quote} +% \cs{until} \meta{prec} \cs{one} \meta{prec} \meta{stuff} +% \end{quote} +% is the internal floating point obtained by \enquote{cleaning} +% numbers which follow in the input stream, and performing +% computations until reaching an operation with a precedence +% less than or equal to \meta{prec}. This is followed by a control +% sequence of the form \cs{infix_?}, namely, +% \begin{quote} +% \meta{floating point} \cs{infix_?} +% \end{quote} +% where |?| is the operation following that number in the input +% stream (we thus know that this operation has at most the +% precedence \meta{prec}, otherwise it would have been performed +% already). +% +% How is that expansion achieved? First, \cs{one} \meta{prec} +% reads one \meta{floating point} number, and converts it to an +% internal form, then the following operation, say |*|, is +% packed in the form \cs{infix_*}, which is fed the \meta{prec}. +% This function (one per infix operator) compares \meta{prec} +% with the precedence of the operator we just read (here |*|). +% If \meta{prec} is higher, our job is finished, and \cs{one} +% leaves \cs{@@_parse_stop_until:N} so that \cs{until} knows to stop. +% Otherwise, \cs{infix_*} triggers a new pair +% \cs{until} \meta{prec(*)} \cs{one} \meta{prec(*)}, +% which produces the second operand \meta{floating point_2} +% for the multiplication: +% \begin{quote} +% \cs{until} \meta{prec} \meta{floating point} \newline +% \texttt{...} \meta{floating point_2} |;| \cs{infix_?} +% \end{quote} +% The dots are \cs{@@_parse_apply_binary:NwNwN} |*|. The boolean +% tells \cs{until} that it is not done, and it expands +% (essentially) to +% \begin{quote} +% \cs{until} \meta{prec} +% \cs{@@_mul_o:ww} \meta{floating point} \meta{floating point_2} +% \cs{tex_romannumeral:D} \texttt{-`0} \cs{infix_?} \meta{prec} +% \end{quote} +% making \TeX{} expand \cs{@@_mul_o:ww} before \cs{until}. As +% implemented in \pkg{l3fp-basics}, this operation expands what follows +% its result exactly once. This triggers \cs{tex_romannumeral:D}, +% which fully expands \cs{infix_?} \meta{prec}. This compares +% the precedence of the next operation, |?|, and \meta{prec}, +% and leaves a boolean (and possibly more things), which is then +% checked by \cs{until} \meta{prec} to know if the result +% of the multiplication is the end of the story, or if |?| +% should be computed as well before \cs{until} \meta{prec} ends. +% +% This should be easier to see on an example. To each infix +% operator, for instance, |*|, is associated the following data: +% \begin{itemize} +% \item a test function, \cs{infix_*}, which conditionally continues +% the calculation or waits to be hit again by expansion; +% \item a function \fpOperation{*} (notation for \cs{@@_mul_o:ww}) +% which performs the actual calculation; +% \item an integer, \fpPrecedence{*}, which encodes the precedence of +% the operator. +% \end{itemize} +% The token that is currently being expanded is underlined, +% and in red. Tokens that have not yet been read (and could +% still be hidden in macros) are in gray. +% +% In a first reading, the disinction between the \meta{precedence} +% \fpPrecedence{+}, the operation \fpOperation{+}, and the character +% token |+| should not matter. It is only required to accomodate for +% multi-token infix operators such as |**|: indeed, when controlling +% expansion, we need to skip over those tokens using \cs{exp_after:wN}, +% and this only skips one token. Thus |**| needs to be replaced by a +% single token (either its precedence or its calculating function, +% depending on the place). +% +% To end the computation cleanly, we add a trailing right +% parenthesis, and give |(| and |)| the lowest precedence, +% so that \cs{until}\fpPrecedence{(} \cs{one}\fpPrecedence{(} +% reads numbers and performs operations until meeting a right +% parenthesis. This is discussed more precisely in the next section. +% +% \begin{l3fp-code-example} +% \cs{until}\p( \*\cs{one}\p( \! 11 + 2**3 * 5 - 9 )\! +% \cs{until}\p( 1 \*\cs{one}\p( \! 1 + 2**3 * 5 - 9 )\! +% \cs{until}\p( 11 \*\cs{one}\p( \! + 2**3 * 5 - 9 )\! +% \cs{until}\p( 11; \*\cs{infix_+}\p( \! 2**3 * 5 - 9 )\! +% \cs{until}\p( 11; F \o+ \cs{until}\p+ \*\cs{one}\p+ \! 2**3 * 5 - 9 )\! +% \cs{until}\p( 11; F \o+ \cs{until}\p+ 2 \*\cs{one}\p+ \! **3 * 5 - 9 )\! +% \cs{until}\p( 11; F \o+ \cs{until}\p+ 2; \*\cs{infix_**}\p+ \! 3 * 5 - 9 )\! +% \cs{until}\p( 11; F \o+ \cs{until}\p+ 2; +% F \o{**} \cs{until}\p{**} \*\cs{one}\p{**} \! 3 * 5 - 9 )\! +% \cs{until}\p( 11; F \o+ \cs{until}\p+ 2; +% F \o{**} \cs{until}\p{**} 3 \*\cs{one}\p{**} \! * 5 - 9 )\! +% \cs{until}\p( 11; F \o+ \cs{until}\p+ 2; +% F \o{**} \cs{until}\p{**} 3; \*\cs{infix_*}\p{**} \! 5 - 9 )\! +% \cs{until}\p( 11; F \o+ \cs{until}\p+ 2; +% F \o{**} \*\cs{until}\p{**} 3; T \cs{infix_*} \! 5 - 9 )\! +% \cs{until}\p( 11; F \o+ \*\cs{until}\p+ 2; +% F \o{**} 3; \cs{infix_*} \! 5 - 9 )\! +% \cs{until}\p( 11; F \o+ \cs{until}\p+ \*\o{**} 2; 3; +% \cs{infix_*}\p+ \! 5 - 9 )\! +% \cs{until}\p( 11; F \o+ \cs{until}\p+ 8; \*\cs{infix_*}\p+ \! 5 - 9 )\! +% \cs{until}\p( 11; F \o+ \cs{until}\p+ 8; +% F \o* \cs{until}\p* \*\cs{one}\p* \! 5 - 9 )\! +% \cs{until}\p( 11; F \o+ \cs{until}\p+ 8; +% F \o* \cs{until}\p* 5 \*\cs{one}\p* \! - 9 )\! +% \cs{until}\p( 11; F \o+ \cs{until}\p+ 8; +% F \o* \cs{until}\p* 5; \*\cs{infix_-}\p* \! 9 )\! +% \cs{until}\p( 11; F \o+ \cs{until}\p+ 8; +% F \o* \*\cs{until}\p* 5; T \cs{infix_-} \! 9 )\! +% \cs{until}\p( 11; F \o+ \*\cs{until}\p+ 8; F \o* 5; \cs{infix_-} \! 9 )\! +% \cs{until}\p( 11; F \o+ \cs{until}\p+ \*\o{*} 8; 5; \cs{infix_-}\p+ \! 9 )\! +% \cs{until}\p( 11; F \o+ \cs{until}\p+ 40; \*\cs{infix_-}\p+ \! 9 )\! +% \cs{until}\p( 11; F \o+ \*\cs{until}\p+ 40; T \cs{infix_-} \! 9 )\! +% \*\cs{until}\p( 11; F \o+ 40; \cs{infix_-} \! 9 )\! +% \cs{until}\p( \*\o{+} 11; 40; \cs{infix_-}\p( \! 9 )\! +% \cs{until}\p( 51; \*\cs{infix_-}\p( \! 9 )\! +% \cs{until}\p( 51; F \o- \cs{until}\p- \*\cs{one}\p- \! 9 )\! +% \cs{until}\p( 51; F \o- \cs{until}\p- 9 \*\cs{one}\p- \! )\! +% \cs{until}\p( 51; F \o- \cs{until}\p- 9; \*\cs{infix_)}\p- \!\! +% \cs{until}\p( 51; F \o- \*\cs{until}\p- 9; T \cs{infix_)} \!\! +% \*\cs{until}\p( 51; F \o- 9; \cs{infix_)} \!\! +% \cs{until}\p( \*\o{-} 51; 9; \cs{infix_)}\p( \!\! +% \cs{until}\p( 42; \*\cs{infix_)}\p( \!\! +% \*\cs{until}\p( 42; T \cs{infix_)} \!\! +% 42; \cs{infix_)} \!\! +% \end{l3fp-code-example} +% +% The only missing step is to clean the output by removing \cs{infix_)}, +% and possibly checking that nothing else remains. +% +% \subsection{Prefix operators, parentheses, and functions} +% +% Prefix operators (typically the unary |-|) and parentheses are +% taken care of by the same mechanism, and functions (\texttt{sin}, +% \texttt{exp}, etc.) as well. Finding the argument of the unary +% |-|, for instance, is very similar to grabbing the second operand +% of a binary infix operator, with a small subtelty on precedence +% explained below. Once that argument is found, its sign can be +% flipped. A left parenthesis is just a prefix operator which +% removes the closing parenthesis (with some extra checks). +% +% Detecting prefix operators is done by \cs{one}. Before looking +% for a number, it tests the first character. If it is a digit, a +% dot, or a register, then we have a number. Otherwise, it is put +% in a function, \cs{prefix_?} (where |?| is roughly that first +% character), which is expanded. For instance, with a left +% parenthesis we would have the following. +% \begin{l3fp-code-example} +% \*\cs{one}\p* \! ( 2 + 3 ) \! +% \*\cs{prefix_(}\p* \! 2 + 3 ) \! +% \o(\p* \cs{until}\p( \*\cs{one}\p( \! 2 + 3 ) \! +% ... \!\! +% \o(\p* 5; \cs{infix_)} \! \! +% \end{l3fp-code-example} +% As usual, the \cs{until}--\cs{one} pair reads and compute +% until reaching an operator of precedence at most \fpPrecedence{(}. +% Then \fpOperation{(} removes \cs{infix_)} and looks ahead for +% the next operation, comparing its precedence with the precedence +% \fpPrecedence{*} of the previous operation (in fact, this comparison +% is done by the relevant \cs{infix_?} built from the next operation). +% +% To support multi-character function (and constant) names, we +% may need to put more than one character in the \cs{prefix_?} +% construction. See implementation for details. +% +% Note that contrarily to \cs{infix_?} functions, the \cs{prefix_?} +% functions perform no test on their argument (which is once more +% the previous precedence), since we know that we need a number, +% and must never stop there. +% +% Functions are implemented as prefix operators with infinitely high +% precedence, so that their argument is the first number that can +% possibly be built. For instance, something like the following could +% happen in a computation +% \begin{l3fp-code-example} +% \*\cs{one}\p* \! sqrt 4 + 3 ) \! +% \*\cs{prefix_sqrt}\p* \! 4 + 3 ) \! +% \o{sqrt}\p* \cs{until}\p{$\infty$} \*\cs{one}\p{$\infty$} \! 4 + 3 ) \! +% ... \!\! +% \o{sqrt}\p* 4; \cs{infix_+} \! 3 ) \! +% 2; \*\cs{infix_+}\p* \! 3 ) \! +% \end{l3fp-code-example} +% +% Lonely example, to be put somewhere: |2+sin 1 * 3| is $2+(\sin(1)\times 3)$. +% +% A further complication arises in the case of the unary |-| sign: +% |-3**2| should be $-(3^2)=-9$, and not $(-3)^2=9$. Easy, just give +% |-| a lower precedence, equal to that of the infix |+| and |-|. +% Unfortunately, this fails in subtle cases such as |3**-2*4|, +% yielding $3^{-2\times 4}$ instead of the correct $3^{-2}\times 4$. +% In fact, a unary |-| should only perform operations whose precedence +% is greater than that of the last operation, as well as +% |-|.\footnote{Taking into account the precedence of \texttt{-} itself +% only matters when it follows a left parenthesis: +% \texttt{(-2*4+3)} should give \texttt{((-8)+3)}, not \texttt{(-(8+3))}.} +% Thus, \cs{prefix_-} \meta{prec} expands to something like +% \begin{l3fp-code-example} +% \o- \meta{prec} \cs{until}\p? \*\cs{one} \p? +% \end{l3fp-code-example} +% where \fpPrecedence{?} is the maximum of \meta{prec} and the +% precedence of |-|. Once the argument of |-| is found, \fpOperation{-} +% gets its opposite, and leaves it for the previous operation to use. +% +% An example with parentheses. +% +% \begin{l3fp-code-example} +% \cs{until}\p( \*\cs{one}\p( \! 11 * ( 2 + 3 ) - 9 )\! +% \cs{until}\p( 1 \*\cs{one}\p( \! 1 * ( 2 + 3 ) - 9 )\! +% \cs{until}\p( 11 \*\cs{one}\p( \! * ( 2 + 3 ) - 9 )\! +% \cs{until}\p( 11; \*\cs{infix_*}\p( \! ( 2 + 3 ) - 9 )\! +% \cs{until}\p( 11; F \o* \cs{until}\p* \*\cs{one}\p* \! ( 2 + 3 ) - 9 )\! +% \cs{until}\p( 11; F \o* \cs{until}\p* \*\cs{prefix_(}\p* \! 2 + 3 ) - 9 )\! +% \cs{until}\p( 11; F \o* \cs{until}\p* \o(\p* \cs{until}\p( \*\cs{one}\p( \! 2 + 3 ) - 9 )\! +% \cs{until}\p( 11; F \o* \cs{until}\p* \o(\p* \cs{until}\p( 2 \*\cs{one}\p( \! + 3 ) - 9 )\! +% \cs{until}\p( 11; F \o* \cs{until}\p* \o(\p* \cs{until}\p( 2; \*\cs{infix_+}\p( \! 3 ) - 9 )\! +% \cs{until}\p( 11; F \o* \cs{until}\p* \o(\p* \cs{until}\p( 2; F \o+ \cs{until}\p+ \*\cs{one}\p+ \! 3)-9)\! +% \cs{until}\p( 11; F \o* \cs{until}\p* \o(\p* \cs{until}\p( 2; F \o+ \cs{until}\p+ 3 \*\cs{one}\p+ \! )-9)\! +% \cs{until}\p( 11; F \o* \cs{until}\p* \o(\p* \cs{until}\p( 2; F \o+ \cs{until}\p+ 3; \*\cs{infix_)}\p+ \! -9)\! +% \cs{until}\p( 11; F \o* \cs{until}\p* \o(\p* \cs{until}\p( 2; F \o+ \*\cs{until}\p+ 3; T \cs{infix_)} \! -9)\! +% \cs{until}\p( 11; F \o* \cs{until}\p* \o(\p* \*\cs{until}\p( 2; F \o+ 3; \cs{infix_)} \! - 9 )\! +% \cs{until}\p( 11; F \o* \cs{until}\p* \o(\p* \cs{until}\p( \*\o+ 2; 3; \cs{infix_)}\p( \! - 9 )\! +% \cs{until}\p( 11; F \o* \cs{until}\p* \o(\p* \cs{until}\p( 5; \*\cs{infix_)}\p( \! - 9 )\! +% \cs{until}\p( 11; F \o* \cs{until}\p* \o(\p* \*\cs{until}\p( 5; T \cs{infix_)} \! - 9 )\! +% \cs{until}\p( 11; F \o* \cs{until}\p* \*\o(\p* 5; \cs{infix_)} \! - 9 )\! +% \cs{until}\p( 11; F \o* \cs{until}\p* 5; \*\cs{infix_-}\p* \! 9 )\! +% \cs{until}\p( 11; F \o* \*\cs{until}\p* 5; T \cs{infix_-} \! 9 )\! +% \*\cs{until}\p( 11; F \o* 5; \cs{infix_-} \! 9 )\! +% \cs{until}\p( \*\o* 11; 5; \cs{infix_-}\p( \! 9 )\! +% \cs{until}\p( 55; \* \cs{infix_-}\p( \! 9 )\! +% \cs{until}\p( 55; F \o- \cs{until}\p- \*\cs{one}\p- \! 9 )\! +% \cs{until}\p( 55; F \o- \cs{until}\p- 9 \*\cs{one}\p- \! )\! +% \cs{until}\p( 55; F \o- \cs{until}\p- 9; \*\cs{infix_)}\p- \!\! +% \cs{until}\p( 55; F \o- \*\cs{until}\p- 9; T \cs{infix_)} \!\! +% \*\cs{until}\p( 55; F \o- 9; \cs{infix_)} \!\! +% \cs{until}\p( \*\o- 55; 9; \cs{infix_)}\p( \!\! +% \cs{until}\p( 47; \*\cs{infix_)}\p( \!\! +% \*\cs{until}\p( 47; T \cs{infix_)} \!\! +% 47; \cs{infix_)} \!\! +% \end{l3fp-code-example} +% +% The end of this (sub)section was not revised yet +% +% \begin{itemize} +% \item If it is a sign (|-| or |+|), then any following sign will be +% combined with this initial sign, forming \cs{prefix_+} or \cs{prefix_-}. +% \item If it is a letter, then any following letter is grabbed, forming +% for instance \cs{prefix_sin} or \cs{prefix_sinh}. +% \item Otherwise, only one token\footnote{Some support for multi-character +% prefix operator may be added in the future, but right now, I don't +% see a use for it. Perhaps, for including comments inside +% the computation itself??} is grabbed, for instance \cs{prefix_(}. +% \end{itemize} +% +%^^A todo: make sure that's correct?? +% +% Functions may take several arguments, possibly an unknown +% number\footnote{Keyword argument support may be added later.}, +% for instance \texttt{round(1.23456,2)}. +% \begin{itemize} +% \item \texttt{round} is made into \cs{prefix_round}, which tries to +% grab one number using \cs{one}. +% \item This builds \cs{prefix_(}, which uses \cs{one} to grab one +% number, calculating as necessary. The comma is given the same +% precedence as parentheses, and thus ends the calculation of the +% argument of \texttt{round}. +% \item \texttt{round} now has its first argument. It can check whether +% the argument was closed by |,| or |)|, and branch accordingly. +% \item If it was a comma, then the first argument is skipped over, +% through an expensive set of \cs{exp_after:wN}, and the second +% argument can be grabbed. Here it is simply an integer, easier +% to parse by building upon \cs{etex_numexpr:D}. +% \item The closing parenthesis (or another comma) is seen, and the +% control is given back to \cs{prefix_round}. +% \end{itemize} +% +% \subsection{Type detection} +% +% The type of data should be detected by reading the first few tokens, +% before calling a type-specific function to parse it. Or +% should the type be obtained after the semicolon which indicates the +% end of the thing? And placed there? +% +% ^^A todo: what did I mean in this paragraph? +% Also to grab exponents correctly, build \cs{@@_<abc>:w} when seeing +% some non-numeric |abc| while still looking to complete a number (or +% other data). Then, if \cs{@@_postfix_<type>_<abc>:w} exists, use it. +% +% The internal representation of floating point numbers is quite +% untypable, and we provide here the tools to convert from a more +% user-friendly representation to internal floating point numbers, +% and for various other conversions. Every floating point operation +% calls those functions to normalize the input, so they must be +% optimized. +% +% \section{Internal representation} +% +% Internally, a floating point number \meta{X} is a +% token list containing +% \begin{quote} +% \cs{s_@@} \cs{@@_chk:w} \meta{case} \meta{sign} \meta{body} |;| +% \end{quote} +% Let us explain each piece separately. +% +% Internal floating point numbers will be used in expressions, +% and in this context will be subject to f-expansion. They must +% leave a recognizable mark after \texttt{f}-expansion, to prevent the +% floating point number from being re-parsed. Thus, \cs{s_@@} +% is simply another name for \tn{relax}. +% +% Since floating point numbers are always accessed by the various +% operations using f-expansion, we can safely let them be protected: +% \texttt{x}-expansion will then leave them untouched. However, when +% used directly without an accessor function, floating points should +% produce an error. \cs{s_@@} will do nothing, and \cs{@@_chk:w} +% produces an error. +% +% The (decimal part of the) IEEE-754-2008 standard requires the +% format to be able to represent special floating point numbers +% besides the usual positive and negative cases. The various +% possibilities will be distinguished by their \meta{case}, which +% is a single digit:\footnote{Bruno: I need to implement subnormal +% numbers. Also, quiet and signalling \texttt{nan} must be better +% distinguished.} +% \begin{itemize} +% \item[0] zeros: |+0| and |-0|, +% \item[1] \enquote{normal} numbers (positive and negative), +% \item[2] infinities: |+inf| and |-inf|, +% \item[3] quiet and signalling \texttt{nan}. +% \end{itemize} +% The \meta{sign} is |0| (positive) or |2| (negative), +% except in the case of \texttt{nan}, which have $\meta{sign} = 1$. +% This ensures that changing the \meta{sign} digit to $2-\meta{sign}$ +% is exactly equivalent to changing the sign of the number. +% +% Special floating point numbers have the form +% \begin{quote} +% \cs{s_@@} \cs{@@_chk:w} \meta{case} \meta{sign} \cs{s_@@_...} |;| +% \end{quote} +% where \cs{s_@@_...} is a scan mark carrying information about how the +% number was formed (useful for debugging). +% +% Normal floating point numbers ($\meta{case} = 1$) have the form +% \begin{quote} +% \cs{s_@@} \cs{@@_chk:w} 1 \meta{sign} \Arg{exponent} +% \Arg{X_1} \Arg{X_2} \Arg{X_3} \Arg{X_4} |;| +% \end{quote} +% Here, the \meta{exponent} is an integer, at most +% $\cs{c_@@_max_exponent_int} = +% \the\csname\detokenize{c__fp_max_exponent_int}\endcsname$ +% in absolute value. The body consists in four +% blocks of exactly $4$ digits, $ 0000 \leq \meta{X_i} \leq 9999$, +% such that +% \[ +% \meta{X} +% = (-1)^{\meta{sign}} 10^{-\meta{exponent}} +% \sum_{i=1}^{4} \meta{X_i} 10^{-4i} +% \] +% and such that the \meta{exponent} is minimal. This implies +% $ 1000 \leq \meta{X_1} \leq 9999 $. +% +% \begin{table}\centering +% \caption{Internal representation of floating point numbers.} +% \label{tab:fp-convert-special} +% \begin{tabular}{ll} +% \toprule +% \multicolumn{1}{c}{Representation} & Meaning \\ +% \midrule +% 0 0 \cs{s_@@_...} \texttt{;} & Positive zero. \\ +% 0 2 \cs{s_@@_...} \texttt{;} & Negative zero. \\ +% 1 0 \Arg{exponent} \Arg{X_1} \Arg{X_2} \Arg{X_3} \Arg{X_4} \texttt{;} +% & Positive floating point. \\ +% 1 2 \Arg{exponent} \Arg{X_1} \Arg{X_2} \Arg{X_3} \Arg{X_4} \texttt{;} +% & Negative floating point. \\ +% 2 0 \cs{s_@@_...} \texttt{;} & Positive infinity. \\ +% 2 2 \cs{s_@@_...} \texttt{;} & Negative infinity. \\ +% 3 1 \cs{s_@@_...} \texttt{;} & Quiet \texttt{nan}. \\ +% 3 1 \cs{s_@@_...} \texttt{;} & Signalling \texttt{nan}. \\ +% \bottomrule +% \end{tabular} +% \end{table} +% +% \section{Internal parsing functions} +% +% \begin{macro}[EXP, int]{\@@_parse_until:Nw} +% \begin{syntax} +% \cs{tex_romannumeral:D} \cs{@@_parse_until:Nw} \meta{precedence} \cs{@@_parse_expand:w} \meta{tokens} +% \end{syntax} +% Reads the \meta{tokens}, performing every computation with a +% precedence higher than \meta{precedence}, then expands to +% \begin{syntax} +% \meta{objects} |@| \cs{@@_parse_infix_\meta{operation}:N} \ldots{} +% \end{syntax} +% where the \meta{op} is the first operation with a lower precedence, +% possibly \texttt{end}. +% \end{macro} +% +% \begin{macro}[EXP, int]{\@@_parse_operand:Nw} +% \begin{syntax} +% \cs{@@_parse_operand:Nw} \meta{precedence} \ldots{} +% \end{syntax} +% If the following \meta{operation} has a precedence higher than +% \meta{precedence}, expands to +% \begin{syntax} +% \meta{object_1} |@| \cs{@@_parse_apply_binary:NwNwN} \meta{operation} \meta{object_2} |@| \cs{@@_parse_infix_\meta{operation_2}:N} \ldots{} +% \end{syntax} +% and otherwise expands to +% \begin{syntax} +% \meta{object} |@| \cs{@@_parse_stop_until:N} \cs{@@_parse_infix_\meta{operation}:N} \ldots{} +% \end{syntax} +% \end{macro} +% +% \begin{macro}[EXP, int]{\@@_parse_infix_\meta{operation}:N} +% \begin{syntax} +% \cs{@@_parse_infix_\meta{operation}:N} \meta{precedence} +% \end{syntax} +% If the \meta{op} has a precedence higher than \meta{precedence}, expands to +% \begin{syntax} +% |@| \cs{@@_parse_apply_binary:NwNwN} \meta{operation} \meta{object} |@| \cs{@@_parse_infix_\meta{operation_2}:N} +% \end{syntax} +% Otherwise expands to +% \begin{syntax} +% |@| \cs{@@_parse_stop_until:N} \cs{@@_parse_infix_\meta{operation}:N} +% \end{syntax} +% \end{macro} +% +% ^^A end[todo] +% +% \subsection{Expansion control} +% +% At each step in reading a floating point expression, we wish to +% perform \texttt{f}-expansion. Normally, spaces stop this +% \texttt{f}-expansion. This can be problematic: for instance, the +% macro |\X| below will not be expanded if we simply do +% \texttt{f}-expansion. +% \begin{verbatim} +% \DeclareDocumentCommand {\test} {m} { \fp_eval:n {#1} } +% \ExplSyntaxOff +% \test { 1 + \X } +% \end{verbatim} +% To avoid this problem, at every step, we do essentially what +% \cs{use:f} would do: take an argument, put it back in the input +% stream, then \texttt{f}-expand it. This is not a complete solution, +% since a macro's expansion could contain leading spaces which will stop +% the \texttt{f}-expansion before further macro calls are performed. +% However, in practice it should be enough: in particular, floating +% point numbers will correctly be expanded to the underlying \cs{s_@@} +% \ldots{} structure. +% +%^^A begin[todo] +% Floating point expressions should behave as much as possible like +% \eTeX{}-based integer expressions and dimension expressions. In +% particular, full-expansion should be performed as the expression is +% read, token by token, forcing the expansion of protected macros, and +% ignoring spaces. +% +% Full expansion can be done with \cs{tex_romannumeral:D} |-`0|. +% Unfortunately, this expansion is stopped by spaces. Thus using simply +% this will fail on |\fp_eval:n { 1 + ~ \l_tmpa_fp }| since the floating +% point variable will not be expanded. Of course, spaces will not +% appear in a code setting, but may very easily come in document-level +% input, from which some expressions may come. We can avoid being +% stopped by such explicit space characters (and by some braces) if we +% add \cs{use:n} after~|-`0|. +% +% Testing if a character token |#1| is a digit can be done using +% \begin{verbatim} +% \if_int_compare:w \c_nine < 1 \token_to_str:N #1 \exp_stop_f: +% true code +% \else: +% false code +% \fi: +% \end{verbatim} +% To exclude |0|, replace \cs{c_nine} by \cs{c_ten}. The use of +% \cs{token_to_str:N} ensures that a digit with any catcode is detected. +% +%^^A end[todo] +% +% \begin{macro}[rEXP, aux]{\@@_parse_expand:w} +% \begin{syntax} +% \cs{tex_romannumeral:D} \cs{@@_parse_expand:w} \meta{tokens} +% \end{syntax} +% This function must always come within a \tn{romannumeral} expansion. +% The \meta{tokens} should be the part of the expression that we have +% not yet read. This requires in particular closing all conditionals +% properly before expanding. +% \begin{macrocode} +\cs_new:Npn \@@_parse_expand:w #1 { -`0 #1 } +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[EXP, aux]{\@@_parse_return_semicolon:w} +% This very odd function swaps its position with the following +% \cs{fi:} and removes \cs{@@_parse_expand:w} normally responsible for +% expansion. That turns out to be useful. +% \begin{macrocode} +\cs_new:Npn \@@_parse_return_semicolon:w + #1 \fi: \@@_parse_expand:w { \fi: ; #1 } +% \end{macrocode} +% \end{macro} +% +% \subsection{Fp object type} +% +% \begin{macro}[EXP, int]{\@@_type_from_scan:N} +% \begin{syntax} +% \cs{@@_type_from_scan:N} \meta{token} +% \end{syntax} +% Grabs the pieces of the stringified \meta{token} which lies after +% the first |s__fp|. If the \meta{token} does not contain that +% string, the result is empty. +% \begin{macrocode} +\group_begin: +\char_set_catcode_other:N \S +\char_set_catcode_other:N \F +\char_set_catcode_other:N \P +\char_set_lccode:nn { `\- } { `\_ } +\tl_to_lowercase:n + { + \group_end: + \cs_new:Npn \@@_type_from_scan:N #1 + { + \exp_after:wN \@@_type_from_scan:w + \token_to_str:N #1 \q_mark S--FP \q_mark \q_stop + } + \cs_new:Npn \@@_type_from_scan:w #1 S--FP #2 \q_mark #3 \q_stop {#2} + } +% \end{macrocode} +% \end{macro} +% +% \subsection{Reading digits} +% +% \begin{macro}[rEXP, aux] +% { +% \@@_parse_digits_vii:N , +% \@@_parse_digits_vi:N , +% \@@_parse_digits_v:N , +% \@@_parse_digits_iv:N , +% \@@_parse_digits_iii:N , +% \@@_parse_digits_ii:N , +% \@@_parse_digits_i:N +% } +% These functions must be called within an \cs{__int_value:w} or +% \cs{__int_eval:w} construction. The first token which follows must be +% \texttt{f}-expanded prior to calling those functions. The functions +% read tokens one by one, and output digits into the input stream, +% until meeting a non-digit, or up to a number of digits equal to +% their index. The full expansion is +% \begin{quote} +% \meta{digits} |;| \meta{filling 0} |;| \meta{length} +% \end{quote} +% where \meta{filling 0} is a string of zeros such that \meta{digits} +% \meta{filling 0} has the length given by the index of the function, +% and \meta{length} is the number of zeros in the \meta{filling 0} +% string. Each function puts a digit into the input stream and calls +% the next function, until we find a non-digit. We are careful to +% pass the tested tokens through \cs{token_to_str:N} to normalize +% their category code. +% \begin{macrocode} +\cs_set_protected:Npn \@@_tmp:w #1 #2 #3 + { + \cs_new:cpn { @@_parse_digits_ #1 :N } ##1 + { + \if_int_compare:w \c_nine < 1 \token_to_str:N ##1 \exp_stop_f: + \token_to_str:N ##1 \exp_after:wN #2 \tex_romannumeral:D + \else: + \@@_parse_return_semicolon:w #3 ##1 + \fi: + \@@_parse_expand:w + } + } +\@@_tmp:w {vii} \@@_parse_digits_vi:N { 0000000 ; 7 } +\@@_tmp:w {vi} \@@_parse_digits_v:N { 000000 ; 6 } +\@@_tmp:w {v} \@@_parse_digits_iv:N { 00000 ; 5 } +\@@_tmp:w {iv} \@@_parse_digits_iii:N { 0000 ; 4 } +\@@_tmp:w {iii} \@@_parse_digits_ii:N { 000 ; 3 } +\@@_tmp:w {ii} \@@_parse_digits_i:N { 00 ; 2 } +\@@_tmp:w {i} \@@_parse_digits_:N { 0 ; 1 } +\cs_new_nopar:Npn \@@_parse_digits_:N { ; ; 0 } +% \end{macrocode} +% \end{macro} +% +% \subsection{Parsing one operand} +% +% At the start of an expression, or just following a binary operation or +% a function call, we are looking for an operand. This can be an +% explicit floating point number, a floating point variable, a \TeX{} +% register, a function call such as \texttt{sin(3)}, a parenthesized +% expression, \emph{etc.} We distinguish the various cases by their +% first token after \texttt{f}-expansion: +% \begin{itemize} +% \item \cs{tex_relax:D} in some form. That can be an internal +% floating point, a premature end, or an unitialized register. +% \item A register. We interpret this as the significand of a floating +% point number. This is subtely different from unpacking it, for +% instance, \texttt{\cs{c_minus_one}**2} gives $1$, while +% \texttt{-1**2} gives $-1$. +% \item A digit, or a dot. That marks the start of the significand for +% a floating point number. +% \item A letter (lower or upper-case), which starts an identifier, +% either a constant or a function (possibly unknown). +% \item |+|, |-|, or |!|, unary operators, which resume looking for a +% floating point number before acting on it. +% \item |(|, which makes us parse a subexpression until the +% matching~|)|. +% \item Other characters such as |'| or |"| may be given a meaning +% later. Characters such as |*| or |/| have a meaning as infix +% operators but are not valid when we are looking for an operand: for +% instance, |3+*4| is not valid. +% \end{itemize} +% A category code test separates the first two cases from the others, +% and they are further distinguished with a meaning test. We then +% single out digits. Letters are detected using their character code. +% All other characters are taken care of by building a csname from that +% character and using it to continue parsing. Unknown characters lead +% to an error. +% +% \begin{macro}[int, EXP]{\@@_parse_operand:Nw} +% Function called \cs{one} at other places. It grabs one operand, and +% packs the symbol that follows in an \cs{infix_} csname. |#1| is the +% previous \meta{precedence}, and |#2| the first character of the +% operand (already \texttt{f}-expanded). +% \begin{macrocode} +\cs_new:Npn \@@_parse_operand:Nw #1 #2 + { + \if_catcode:w \tex_relax:D #2 + \if_meaning:w \tex_relax:D #2 + \exp_after:wN \exp_after:wN + \exp_after:wN \@@_parse_operand_relax:NN + \else: + \exp_after:wN \exp_after:wN + \exp_after:wN \@@_parse_operand_register:NN + \fi: + \else: + \if_int_compare:w \c_nine < 1 \token_to_str:N #2 \exp_stop_f: + \exp_after:wN \exp_after:wN + \exp_after:wN \@@_parse_operand_digit:NN + \else: + \exp_after:wN \exp_after:wN + \exp_after:wN \@@_parse_operand_other:NN + \fi: + \fi: + #1 #2 + } +% \end{macrocode} +% \end{macro} +% +% ^^A todo: rounding of negative dimensions is probably wrong. +% \begin{macro}[aux, EXP] +% {\@@_parse_operand_register:NN, \@@_parse_operand_register_aux:www} +% Find the exponent following the register |#2|, then combine the +% value of |#2| (mapping |1pt| to $1$) with the exponent to produce a +% floating point number. +% \begin{macrocode} +\group_begin: +\char_set_catcode_other:N \P +\char_set_catcode_other:N \T +\tl_to_lowercase:n + { + \group_end: + \cs_new:Npn \@@_parse_operand_register:NN #1#2 + { + \exp_after:wN \@@_parse_infix_after_operand:NwN + \exp_after:wN #1 + \tex_romannumeral:D -`0 + \exp_after:wN \@@_parse_operand_register_aux:www + \tex_the:D + \exp_after:wN #2 + \exp_after:wN P + \exp_after:wN T + \exp_after:wN \q_stop + \__int_value:w \@@_parse_exponent:N + } + \cs_new:Npn \@@_parse_operand_register_aux:www #1 PT #2 \q_stop #3 ; + { \@@_parse:n { #1 e #3 } } + } +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[aux, EXP] +% {\@@_parse_operand_relax:NN, \@@_parse_operand_relax_aux:wwnw} The +% argument is a token equal to \cs{tex_relax:D}. This can be +% \cs{s_@@}, \cs{s_@@_mark}, or a badly initialized register. We make +% sure that the last argument of \cs{@@_parse_infix:NN} is +% correctly expanded. +% \begin{macrocode} +\cs_new:Npn \@@_parse_operand_relax:NN #1#2 + { + \@@_parse_operand_relax_aux:wwnw + #2 \s_@@_mark + { + \@@_exp_after_o:nw + { + \tex_romannumeral:D -`0 + \exp_after:wN \@@_parse_infix:NN + \exp_after:wN #1 \tex_romannumeral:D \@@_parse_expand:w + } + \s_@@ + } + \s_@@ #2 + { + \@@_error:n { Premature~end~in~fp~expression. } + \exp_after:wN \c_nan_fp + \tex_romannumeral:D -`0 + \@@_parse_infix:NN #1 + \s_@@_mark + } + \s_@@_mark + { + \@@_error:n { Erroneous~variable~#2 used! } + \exp_after:wN \c_nan_fp + \tex_romannumeral:D -`0 + \exp_after:wN \@@_parse_infix:NN + \exp_after:wN #1 + \tex_romannumeral:D \@@_parse_expand:w + } + \s_@@_mark \s_@@_stop + } +\cs_new:Npn \@@_parse_operand_relax_aux:wwnw + #1 \s_@@ #2 \s_@@_mark #3 #4 \s_@@_mark \s_@@_stop { #3 } +% \end{macrocode} +% \end{macro} +% +% ^^A begin[todo] +% +% \begin{macro}[aux, EXP]{\@@_parse_operand_other:NN} +% The interesting bit is \cs{@@_parse_operand_other:NN}. It separates +% letters from non-letters and builds the appropriate \cs{prefix} +% function. If it is not defined (is \cs{tex_relax:D}), make it +% a signalling \texttt{nan}. We don't look for an argument, as the +% unknown \enquote{prefix} can also be a (mistyped) constant such +% as \texttt{Inf}. +% \begin{macrocode} +\cs_new:Npn \@@_parse_operand_other:NN #1 #2 + { + \if_int_compare:w + \__int_eval:w \tex_uccode:D `#2 / 26 = \c_three + \exp_after:wN \@@_parse_operand_other_word_aux:Nw + \exp_after:wN #1 + \tex_romannumeral:D + \exp_after:wN \@@_parse_letters:NN + \exp_after:wN #2 + \tex_romannumeral:D + \else: + \exp_after:wN \@@_parse_operand_other_prefix_aux:NNN + \exp_after:wN #1 + \exp_after:wN #2 + \cs:w @@_parse_prefix_#2:Nw \exp_after:wN \cs_end: + \tex_romannumeral:D + \fi: + \@@_parse_expand:w + } + +\cs_new:Npn \@@_parse_letters:NN #1#2 + { + \exp_after:wN \c_zero + \exp_after:wN #1 + \tex_romannumeral:D + \if_int_compare:w + \if_catcode:w \tex_relax:D #2 + \c_zero + \else: + \__int_eval:w \tex_uccode:D `#2 / 26 + \fi: + = \c_three + \exp_after:wN \@@_parse_letters:NN + \exp_after:wN #2 + \tex_romannumeral:D + \exp_after:wN \@@_parse_expand:w + \else: + \exp_after:wN \c_zero + \exp_after:wN ; + \exp_after:wN #2 + \fi: + } +\cs_new:Npn \@@_parse_operand_other_word_aux:Nw #1 #2; + { + \cs_if_exist_use:cF { @@_parse_word_#2:N } + { + \__msg_expandable_error:n { Unknown~word~#2. } + \exp_after:wN \c_nan_fp + \tex_romannumeral:D -`0 + \@@_parse_infix:NN + } + #1 + } +\cs_new_eq:NN \s_@@_unknown \tex_relax:D +\cs_new:Npn \@@_parse_operand_other_prefix_aux:NNN #1#2#3 + { + \if_meaning:w \tex_relax:D #3 + \exp_after:wN \@@_parse_operand_other_prefix_unknown:NNN + \exp_after:wN #2 + \fi: + #3 #1 + } +\cs_new:Npn \@@_parse_operand_other_prefix_unknown:NNN #1#2#3 + { + \cs_if_exist:cTF { @@_parse_infix_#1:N } + { + \@@_error:n { Missing~number~before~'#1'. } + \exp_after:wN \c_nan_fp + \tex_romannumeral:D -`0 + \@@_parse_infix:NN #3 #1 + } + { + \@@_error:n { Unknown~symbol~#1~ignored. } + \@@_parse_operand:Nw #3 + } + } +% \end{macrocode} +% \end{macro} +% +% The following forms are accepted: +% \begin{itemize} +% \item +% \item \meta{floating point} +% \item \meta{integer} |.| \meta{decimal} |e| \meta{exponent} +% \end{itemize} +% In both cases, \meta{signs} is a (possibly empty) string of +% |+| and |-| (with any category code\footnote{Bruno: except +% 1, 2, 4, 10, 13, and those which cannot be tokens (0, 5, 9), +% so really, just 3, 6, 7, 8, 11, 12.}).\footnote{Bruno: +% test (and implement) non-other digits.} +% +% In the second form, the \meta{integer} is a sequence of digits, +% whose length is not limited by constraints \TeX{}'s integer +% registers. It stops at the first non-digit character. The +% \meta{decimal} part is formed by all digits from the dot +% (if it exists) until the first non-digit character. The +% \meta{exponent} part has the form \meta{exponent sign} +% \meta{exponent body}, where \meta{exponent sign} is any string +% of |+| or |-|, and \meta{exponent body} is a string of digits, +% stopping, as usual, at the first non-digit. +% +% Any missing part will take the appropriate default value. +% \begin{itemize} +% \item A missing \meta{exponent} is considered to be zero. +% \item A number with no dot has zero decimal part. +% \item An empty \meta{integer} part or decimal part is zero. +% \end{itemize} +% +% Border cases: +% \begin{itemize} +% \item \texttt{e1} is considered as invalid input, and gives +% \texttt{qnan}.\footnote{Bruno: now just gives an error.} +% This will be important once parsing expressions is +% implemented, since \texttt{e-1} would be ambiguous otherwise. +% \item \texttt{.e3} and \texttt{.} are zero. +% \end{itemize} +% +% Bruno: expansion, not yet. Only f-expansion at the start, and +% unpacking of registers after signs. +% +% +% Work-plan. +% \begin{itemize} +% \item Remove any leading sign and build the \meta{sign} as we go. +% If the next character is a letter, go to the \enquote{special} +% branch, discussed later. +% \item Drop leading zeros. +% \item If the next character is a dot, drop some more zeros, +% keeping track of how many were dropped after the dot. +% Counting those gives $\meta{exp_1}<0$. Then read the decimal part +% with the \cs{@@_from_str_small} functions. +% \item Otherwise, $\meta{exp_1}=0$, and first read the integer part, +% then the decimal part. This is implemented through the more +% elaborate \cs{@@_from_str_large} functions. +% \item Continuing in the same line of expansion, read the exponent +% \meta{exp_2}. +% \item Finally check that nothing is left.\footnote{Bruno: not done yet.} +% \end{itemize} +% +% \begin{macro}[aux, EXP]{\@@_parse_operand_digit:NN} +% \begin{macrocode} +\cs_new:Npn \@@_parse_operand_digit:NN #1 + { + \exp_after:wN \@@_parse_infix_after_operand:NwN + \exp_after:wN #1 + \tex_romannumeral:D -`0 + \exp_after:wN \@@_sanitize:wN + \int_use:N \__int_eval:w \c_zero \@@_parse_trim_zeros:N + } +% \end{macrocode} +% \end{macro} +% +% ^^A end[todo] +% +% \subsubsection{Trimming leading zeros} +% +% \begin{macro}[aux, rEXP]{\@@_parse_trim_zeros:N, \@@_parse_trim_end:w} +% This function expects an already expanded token. It removes any +% leading zero, then distinguished three cases: if the first non-zero +% token is a digit, then call \cs{@@_parse_large:N} (the significand is +% $\geq 1$); if it is |.|, then continue trimming zeros with +% \cs{@@_parse_strim_zeros:N}; otherwise, our number is exactly zero, +% and we call \cs{@@_parse_zero:} to take care of that case. +% \begin{macrocode} +\cs_new:Npn \@@_parse_trim_zeros:N #1 + { + \if:w 0 #1 + \exp_after:wN \@@_parse_trim_zeros:N + \tex_romannumeral:D + \else: + \if:w . #1 + \exp_after:wN \@@_parse_strim_zeros:N + \tex_romannumeral:D + \else: + \@@_parse_trim_end:w #1 + \fi: + \fi: + \@@_parse_expand:w + } +\cs_new:Npn \@@_parse_trim_end:w #1 \fi: \fi: \@@_parse_expand:w + { + \fi: + \fi: + \if_int_compare:w \c_nine < 1 \token_to_str:N #1 \exp_stop_f: + \exp_after:wN \@@_parse_large:N + \else: + \exp_after:wN \@@_parse_zero: + \fi: + #1 + } +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[aux, rEXP]{\@@_parse_strim_zeros:N, \@@_parse_strim_end:w} +% If we have removed all digits until a period (or if the body started +% with a period), then enter the \enquote{\texttt{small_trim}} loop +% which outputs $-1$ for each removed $0$. Those $-1$ are added to an +% integer expression waiting for the exponent. If the first non-zero +% token is a digit, call \cs{@@_parse_small:N} (our significand is +% smaller than~$1$), and otherwise, the number is an exact zero. +% \begin{macrocode} +\cs_new:Npn \@@_parse_strim_zeros:N #1 + { + \if:w 0 #1 + - \c_one + \exp_after:wN \@@_parse_strim_zeros:N + \tex_romannumeral:D + \else: + \@@_parse_strim_end:w #1 + \fi: + \@@_parse_expand:w + } +\cs_new:Npn \@@_parse_strim_end:w #1 \fi: \@@_parse_expand:w + { + \fi: + \if_int_compare:w \c_nine < 1 \token_to_str:N #1 \exp_stop_f: + \exp_after:wN \@@_parse_small:N + \else: + \exp_after:wN \@@_parse_zero: + \fi: + #1 + } +% \end{macrocode} +% \end{macro} +% +% \subsubsection{Exact zero} +% +% \begin{macro}[aux, EXP]{\@@_parse_zero:} +% After reading a significand of $0$, we need to remove any exponent, +% then put a sign of |1| for \cs{@@_sanitize:wN}, denoting an +% exact zero. +% \begin{macrocode} +\cs_new:Npn \@@_parse_zero: + { + \exp_after:wN ; \exp_after:wN 1 + \__int_value:w \@@_parse_exponent:N + } +% \end{macrocode} +% \end{macro} +% +% \subsubsection{Small significand} +% +% \begin{macro}[aux, rEXP]{\@@_parse_small:N} +% This function is called after we have passed the decimal separator +% and removed all leading zeros from the significand. It is followed +% by a non-zero digit (with any catcode). The goal is to read up to +% $16$ digits. But we can't do that all at once, because +% \cs{__int_value:w} (which allows us to collect digits and continue +% expanding) can only go up to $9$ digits. Hence we grab digits in +% two steps of $8$ digits. Since |#1| is a digit, read seven more +% digits using \cs{@@_parse_digits_vii:N}. The \texttt{small_leading} +% auxiliary will leave those digits in the \cs{__int_value:w}, and grab +% some more, or stop if there are no more digits. Then the +% \texttt{pack_leading} auxiliary puts the various parts in the +% appropriate order for the processing further up. +% \begin{macrocode} +\cs_new:Npn \@@_parse_small:N #1 + { + \exp_after:wN \@@_parse_pack_leading:NNNNNww + \int_use:N \__int_eval:w 1 \token_to_str:N #1 + \exp_after:wN \@@_parse_small_leading:wwNN + \__int_value:w 1 + \exp_after:wN \@@_parse_digits_vii:N + \tex_romannumeral:D \@@_parse_expand:w + } +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[aux, rEXP]{\@@_parse_small_leading:wwNN} +% \begin{syntax} +% \cs{@@_parse_small_leading:wwNN} |1| \meta{digits} |;| \meta{zeros} |;| \meta{number~of~zeros} +% \end{syntax} +% We leave \meta{digits} \meta{zeros} in the input stream: the +% functions used to grab digits are such that this constitutes digits +% $1$ through $8$ of the significand. Then prepare to pack $8$ more +% digits, with an exponent shift of \cs{c_zero} (this shift is used in +% the case of a large significand). If |#4| is a digit, leave it +% behind for the packing function, and read $6$ more digits to reach a +% total of $15$ digits: further digits are involved in the rounding. +% Otherwise put $8$ zeros in to complete the significand, then look +% for an exponent. +% \begin{macrocode} +\cs_new:Npn \@@_parse_small_leading:wwNN 1 #1 ; #2; #3 #4 + { + #1 #2 + \exp_after:wN \@@_parse_pack_trailing:NNNNNNww + \exp_after:wN \c_zero + \int_use:N \__int_eval:w 1 + \if_int_compare:w \c_nine < 1 \token_to_str:N #4 \exp_stop_f: + \token_to_str:N #4 + \exp_after:wN \@@_parse_small_trailing:wwNN + \__int_value:w 1 + \exp_after:wN \@@_parse_digits_vi:N + \tex_romannumeral:D + \else: + 0000 0000 \@@_parse_exponent:Nw #4 + \fi: + \@@_parse_expand:w + } +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[aux, rEXP]{\@@_parse_small_trailing:wwNN} +% \begin{syntax} +% \cs{@@_parse_small_trailing:wwNN} |1| \meta{digits} |;| \meta{zeros} |;| \meta{number~of~zeros} \meta{next~token} +% \end{syntax} +% Leave digits $10$ to $15$ (arguments |#1| and |#2|) in the input +% stream. If the \meta{next~token} is a digit, it is the $16$th +% digit, we keep it, then the \texttt{small_round} auxiliary considers +% this digit and all further digits to perform the rounding: the +% function expands to nothing or to |+1|. Otherwise, there is no +% $16$-th digit, so we put a $0$, and look for an exponent. +% \begin{macrocode} +\cs_new:Npn \@@_parse_small_trailing:wwNN 1 #1 ; #2; #3 #4 + { + #1 #2 + \if_int_compare:w \c_nine < 1 \token_to_str:N #4 \exp_stop_f: + \token_to_str:N #4 + \exp_after:wN \@@_parse_small_round:NN + \exp_after:wN #4 + \tex_romannumeral:D + \else: + 0 \@@_parse_exponent:Nw #4 + \fi: + \@@_parse_expand:w + } +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[aux, rEXP] +% { +% \@@_parse_pack_trailing:NNNNNNww , +% \@@_parse_pack_leading:NNNNNww , +% \@@_parse_pack_carry:w +% } +% Those functions are expanded after all the digits are found, we took +% care of the rounding, as well as the exponent. The last argument is +% the exponent. The previous five arguments are $8$ digits which we +% pack in groups of $4$, and the argument before that is $1$, except +% in the rare case where rounding lead to a carry, in which case the +% argument is $2$. The \texttt{trailing} function has an exponent +% shift as its first argument, which we add to the exponent found in +% the |e...| syntax. If the trailing digits cause a carry, the +% integer expression for the leading digits is incremented (|+ \c_one| +% in the code below). If the leading digits propagte this carry all +% the way up, the function \cs{@@_parse_pack_carry:w} increments the +% exponent, and changes the mantissa from |0000...| to |1000...|: this +% is simple because such a carry can only occur to give rise to a +% power of $10$. +% \begin{macrocode} +\cs_new:Npn \@@_parse_pack_trailing:NNNNNNww #1 #2 #3#4#5#6 #7; #8 ; + { + \if_meaning:w 2 #2 + \c_one \fi: + ; #8 + #1 ; {#3#4#5#6} {#7}; + } +\cs_new:Npn \@@_parse_pack_leading:NNNNNww #1 #2#3#4#5 #6; #7; + { + + #7 + \if_meaning:w 2 #1 \@@_parse_pack_carry:w \fi: + ; 0 {#2#3#4#5} {#6} + } +\cs_new:Npn \@@_parse_pack_carry:w \fi: ; 0 #1 + { \fi: + \c_one ; 0 {1000} } +% \end{macrocode} +% \end{macro} +% +% \subsubsection{Large significand} +% +% Parsing a significand larger than $1$ is a little bit more difficult +% than parsing small significands. We need to count the number of +% digits before the decimal separator, and add that to the final +% exponent. We also need to test for the presence of a dot each time we +% run out of digits, and branch to the appropriate \texttt{parse_small} +% function in those cases. +% +% \begin{macro}[aux, EXP]{\@@_parse_large:N} +% This function is followed by the first non-zero digit of a +% \enquote{large} significand ($\geq 1$). It is called within an +% integer expression for the exponent. Grab up to $7$ more digits, +% for a total of $8$ digits. +% \begin{macrocode} +\cs_new:Npn \@@_parse_large:N #1 + { + \exp_after:wN \@@_parse_large_leading:wwNN + \__int_value:w 1 \token_to_str:N #1 + \exp_after:wN \@@_parse_digits_vii:N + \tex_romannumeral:D \@@_parse_expand:w + } +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[aux, rEXP]{\@@_parse_large_leading:wwNN} +% \begin{syntax} +% \cs{@@_parse_large_leading:wwNN} |1| \meta{digits} |;| \meta{zeros} |;| \meta{number~of~zeros} \meta{next~token} +% \end{syntax} +% We shift the exponent by the number of digits in |#1|, namely the +% target number, $8$, minus the \meta{number of zeros} (number of +% digits missing). Then prepare to pack the $8$ first digits. If the +% \meta{next token} is a digit, read up to $6$ more digits (digits +% $10$ to $15$). If it is a period, try to grab the end of our $8$ +% first digits, branching to the \texttt{small} functions since the +% number of digit does not affect the exponent anymore. Finally, if +% this is the end of the significand, insert the \meta{zeros} to +% complete the $8$ first digits, insert $8$ more, and look for an +% exponent. +% \begin{macrocode} +\cs_new:Npn \@@_parse_large_leading:wwNN 1 #1 ; #2; #3 #4 + { + + \c_eight - #3 + \exp_after:wN \@@_parse_pack_leading:NNNNNww + \int_use:N \__int_eval:w 1 #1 + \if_int_compare:w \c_nine < 1 \token_to_str:N #4 \exp_stop_f: + \exp_after:wN \@@_parse_large_trailing:wwNN + \__int_value:w 1 \token_to_str:N #4 + \exp_after:wN \@@_parse_digits_vi:N + \tex_romannumeral:D + \else: + \if:w . #4 + \exp_after:wN \@@_parse_small_leading:wwNN + \__int_value:w 1 + \cs:w + @@_parse_digits_ + \tex_romannumeral:D #3 + :N \exp_after:wN + \cs_end: + \tex_romannumeral:D + \else: + #2 + \exp_after:wN \@@_parse_pack_trailing:NNNNNNww + \exp_after:wN \c_zero + \__int_value:w 1 0000 0000 + \@@_parse_exponent:Nw #4 + \fi: + \fi: + \@@_parse_expand:w + } +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[aux, EXP]{\@@_parse_large_trailing:wwNN} +% \begin{syntax} +% \cs{@@_parse_large_trailing:wwNN} |1| \meta{digits} |;| \meta{zeros} |;| \meta{number~of~zeros} \meta{next~token} +% \end{syntax} +% We have just read $15$ digits. If the \meta{next token} is a digit, +% then the exponent shift caused by this block of $8$ digits is $8$, +% first argument to the \texttt{pack_trailing} function. We keep the +% \meta{digits} and this $16$-th digit, and find how this should be +% rounded using \cs{@@_parse_large_round:NN}. Otherwise, the exponent +% shift is the number of \meta{digits}, $7$ minus the \meta{number of +% zeros}, and we test for a decimal point. This case happens in +% |123451234512345.67| with exactly $15$ digits before the decimal +% separator. Then branch to the appropriate \texttt{small} auxiliary, +% grabbing a few more digits to complement the digits we already +% grabbed. Finally, if this is truly the end of the significand, look +% for an exponent after using the \meta{zeros} and providing a $16$-th +% digit of $0$. +% \begin{macrocode} +\cs_new:Npn \@@_parse_large_trailing:wwNN 1 #1 ; #2; #3 #4 + { + \if_int_compare:w \c_nine < 1 \token_to_str:N #4 \exp_stop_f: + \exp_after:wN \@@_parse_pack_trailing:NNNNNNww + \exp_after:wN \c_eight + \int_use:N \__int_eval:w 1 #1 \token_to_str:N #4 + \exp_after:wN \@@_parse_large_round:NN + \exp_after:wN #4 + \tex_romannumeral:D + \else: + \exp_after:wN \@@_parse_pack_trailing:NNNNNNww + \int_use:N \__int_eval:w \c_seven - #3 \exp_stop_f: + \int_use:N \__int_eval:w 1 #1 + \if:w . #4 + \exp_after:wN \@@_parse_small_trailing:wwNN + \__int_value:w 1 + \cs:w + @@_parse_digits_ + \tex_romannumeral:D #3 + :N \exp_after:wN + \cs_end: + \tex_romannumeral:D + \else: + #2 0 \@@_parse_exponent:Nw #4 + \fi: + \fi: + \@@_parse_expand:w + } +% \end{macrocode} +% \end{macro} +% +% \subsubsection{Finding the exponent} +% +% Expansion is a little bit tricky here, in part because we accept input +% where multiplication is implicit. +% \begin{verbatim} +% \@@_parse:n { 3.2 erf(0.1) } +% \@@_parse:n { 3.2 e\l_my_int } +% \@@_parse:n { 3.2 \c_pi_fp } +% \end{verbatim} +% The first case indicates that just looking one character ahead for an +% \enquote{\texttt{e}} is not enough, since we would mistake the +% function \texttt{erf} for an exponent of \enquote{\texttt{rf}}. An +% alternative would be to look two tokens ahead and check if what +% follows is a sign or a digit, considering in that case that we must be +% finding an exponent. But taking care of the second case requires that +% we unpack registers after \texttt{e}. However, blindly expanding the +% two tokens ahead completely would break the third example (unpacking +% is even worse). Indeed, in the course of reading $3.2$, \cs{c_pi_fp} +% is expanded to \cs{s_@@} \cs{@@_chk:w} |1| |0| |{-1}| |{3141}| +% $\cdots$ |;| and \cs{s_@@} stops the expansion. Expanding two tokens +% ahead would then force the expansion of \cs{@@_chk:w} (despite it +% being protected), and that function tries to produce an error. +% +% What can we do? Really, the reason why this last case breaks is that +% just as \TeX{} does, we should read ahead as little as possible. +% Here, the only case where there may be an exponent is if the first +% token ahead is |e|. Then we expand (and possibly unpack) the second +% token --- and hopefully that is safe. +% +% \begin{macro}[aux, rEXP]{\@@_parse_exponent:Nw} +% This auxiliary is convenient to smuggle some material through +% \cs{fi:} ending conditional processing. We place those \cs{fi:} +% (argument |#2|) at a very odd place becase this allows us to insert +% \cs{__int_eval:w} \ldots{} there if needed. +% \begin{macrocode} +\cs_new:Npn \@@_parse_exponent:Nw #1 #2 \@@_parse_expand:w + { + \exp_after:wN ; + \__int_value:w #2 \@@_parse_exponent:N #1 + } +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[aux, rEXP]{\@@_parse_exponent:N, \@@_parse_exponent_ii:N} +% This function should be called within an \cs{__int_value:w} expansion +% (or within an integer expression. It leaves digits of the exponent +% behind it in the input stream, and terminates the expansion with a +% semicolon. If there is no \texttt{e}, leave an exponent of $0$. If +% there is an \texttt{e}, expand the next token to run some tests on +% it. Namely, if the character code of |#1| is greater than that of +% |9| (largest code valid for an exponent, less than any code valid +% for an identifier), there was in fact no exponent; otherwise, we +% search for the sign of the exponent. +% \begin{macrocode} +\cs_new:Npn \@@_parse_exponent:N #1 + { + \if:w e #1 + \exp_after:wN \@@_parse_exponent_ii:N + \tex_romannumeral:D + \else: + 0 \@@_parse_return_semicolon:w #1 + \fi: + \@@_parse_expand:w + } +\cs_new:Npn \@@_parse_exponent_ii:N #1 + { + \if_int_compare:w \if_catcode:w \tex_relax:D #1 + \c_zero \else: `#1 \fi: > `9 \exp_stop_f: + 0 \exp_after:wN ; \exp_after:wN e + \else: + \exp_after:wN \@@_parse_exponent_sign:N + \fi: + #1 + } +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[aux, rEXP]{\@@_parse_exponent_sign:N} +% Read signs one by one (if there is any). +% \begin{macrocode} +\cs_new:Npn \@@_parse_exponent_sign:N #1 + { + \if:w + \if:w - #1 + \fi: \token_to_str:N #1 + \exp_after:wN \@@_parse_exponent_sign:N + \tex_romannumeral:D \exp_after:wN \@@_parse_expand:w + \else: + \exp_after:wN \@@_parse_exponent_body:N + \exp_after:wN #1 + \fi: + } +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[aux, rEXP]{\@@_parse_exponent_body:N} +% An exponent can be an explicit integer (most common case), or +% various other things (most of which are invalid). +% \begin{macrocode} +\cs_new:Npn \@@_parse_exponent_body:N #1 + { + \if_int_compare:w \c_nine < 1 \token_to_str:N #1 \exp_stop_f: + \token_to_str:N #1 + \exp_after:wN \@@_parse_exponent_digits:N + \tex_romannumeral:D + \else: + \@@_parse_exponent_keep:NTF #1 + { \@@_parse_return_semicolon:w #1 } + { + \exp_after:wN ; + \tex_romannumeral:D + } + \fi: + \@@_parse_expand:w + } +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[aux, rEXP]{\@@_parse_exponent_digits:N} +% Read digits one by one, and leave them behind in the input stream. +% When finding a non-digit, stop, and insert a semicolon. Note that +% we don't check for overflow of the exponent, hence there can be a +% TeX error. It is mostly harmless, except when parsing +% |0e9876543210|, which should be a valid representation of $0$, but +% is not. +% \begin{macrocode} +\cs_new:Npn \@@_parse_exponent_digits:N #1 + { + \if_int_compare:w \c_nine < 1 \token_to_str:N #1 \exp_stop_f: + \token_to_str:N #1 + \exp_after:wN \@@_parse_exponent_digits:N + \tex_romannumeral:D + \else: + \@@_parse_return_semicolon:w #1 + \fi: + \@@_parse_expand:w + } +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[aux, rEXP]{\@@_parse_exponent_keep:NTF} +% This is the last building block for parsing exponents. The argument +% |#1| is already fully expanded, and neither |+| nor |-| nor a digit. +% It can be: +% \begin{itemize} +% \item \cs{s_@@}, marking the start of an internal floating point, +% invalid here; +% \item another control sequence equal to \tn{relax}, probably a bad +% variable; +% \item a register: in this case we make sure that it is an integer +% register, not a dimension; +% \item a character other than |+|, |-| or digits, again, an error. +% \end{itemize} +% \begin{macrocode} +\prg_new_conditional:Npnn \@@_parse_exponent_keep:N #1 { TF } + { + \if_catcode:w \tex_relax:D #1 + \if_meaning:w \tex_relax:D #1 + \if_int_compare:w \pdftex_strcmp:D { \s_@@ } { #1 } = \c_zero + 0 \@@_error:n { Cannot~use~floating~point~after~'e'. } + \prg_return_true: + \else: + 0 \@@_error:n { Erroneous~variable~#1 used. } + \prg_return_false: + \fi: + \else: + \if_int_compare:w + \pdftex_strcmp:D { \__int_value:w #1 } { \tex_the:D #1 } + = \c_zero + \__int_value:w #1 + \else: + 0 \@@_error:n { Cannot~use~a~dimension~(#1)~after~'e'. } + \fi: + \prg_return_false: + \fi: + \else: + 0 \@@_error:n { Missing~exponent~after~'e'. } + \prg_return_true: + \fi: + } +% \end{macrocode} +% \end{macro} +% +% ^^A begin[todo] +% ^^A todo: \@@_sin:Nn should first _set, then \@@_sin:w, +% ^^A both for speed, and error reporting. +% ^^A todo: word 'e' == 'invalid syntax', word 'E' == "use 'e' instead" +% +% \subsubsection{Beyond 16 digits: rounding} +% +% \begin{macro}[int]{\@@_cfs_round_loop:N} +% Used both for \cs{@@_parse_small_round:NN} and +% \cs{@@_parse_large_round:NN}. +% Should appear after a \cs{__int_eval:w} |0|. Reads digits one by one, +% until reaching a non-digit. Adds |+1| for each digit. If all digits +% found are |0|, ends the \cs{__int_eval:w} by |;\c_zero|, otherwise +% by |;\c_one|. This is done by switching the loop to |round_up| +% at the first non-zero digit. +% +% \begin{macrocode} +\cs_new:Npn \@@_cfs_round_loop:N #1 + { + \if_int_compare:w \c_nine < 1 \token_to_str:N #1 \exp_stop_f: + + \c_one + \if:w 0 #1 + \exp_after:wN \@@_cfs_round_loop:N + \tex_romannumeral:D + \else: + \exp_after:wN \@@_cfs_round_up:N + \tex_romannumeral:D + \fi: + \else: + \@@_parse_return_semicolon:w \c_zero #1 + \fi: + \@@_parse_expand:w + } +\cs_new:Npn \@@_cfs_round_up:N #1 + { + \if_int_compare:w \c_nine < 1 \token_to_str:N #1 \exp_stop_f: + + 1 + \exp_after:wN \@@_cfs_round_up:N + \tex_romannumeral:D + \else: + \@@_parse_return_semicolon:w \c_one #1 + \fi: + \@@_parse_expand:w + } +% \end{macrocode} +% \end{macro} +% +% +% \begin{macro}[int]{\@@_parse_large_round:NN} +% \begin{syntax} +% \cs{@@_parse_large_round:NN} \meta{digit} \meta{more digits} +% \end{syntax} +% \meta{digit} is the digit that we are currently rounding (we only +% care whether it is even or odd). +% +% The goal is to get \cs{c_zero} or \cs{c_one}, check for an exponent +% afterwards, and combine it to the number of digits before the decimal +% point (which we thus need to keep track of). +% \begin{macrocode} +\cs_new:Npn \@@_parse_large_round:NN #1#2 + { + \if_int_compare:w \c_nine < 1 \token_to_str:N #2 \exp_stop_f: + + + \exp_after:wN \@@_round_s:NNNw + \exp_after:wN 0 + \exp_after:wN #1 + \exp_after:wN #2 + \int_use:N \__int_eval:w + \exp_after:wN \@@_parse_large_round_after:wNN + \int_use:N \__int_eval:w \c_one + \exp_after:wN \@@_cfs_round_loop:N + \else: %^^A could be dot, or e, or other + \exp_after:wN \@@_parse_large_round_dot_test:NNw + \exp_after:wN #1 + \exp_after:wN #2 + \fi: + } +\cs_new:Npn \@@_parse_large_round_dot_test:NNw #1#2 + { + \if:w . #2 + \exp_after:wN \@@_parse_small_round:NN + \exp_after:wN #1 + \tex_romannumeral:D + \else: + \@@_parse_exponent:Nw #2 + \fi: + \@@_parse_expand:w + } +% \end{macrocode} +% \begin{syntax} +% \cs{@@_parse_large_round_after:wNN} \meta{exp} |;| +% ~~\meta{0 or 1} \meta{next~token} +% \end{syntax} +% \begin{macrocode} +\cs_new:Npn \@@_parse_large_round_after:wNN #1 ; #2 #3 + { + \if:w . #3 + \exp_after:wN \@@_parse_large_round_after_ii:wN + \int_use:N \__int_eval:w #1 + + \c_zero * \__int_eval:w \c_zero + \exp_after:wN \@@_cfs_round_loop:N + \tex_romannumeral:D \exp_after:wN \@@_parse_expand:w + \else: + + #2 + \exp_after:wN ; + \int_use:N \__int_eval:w #1 + + \exp_after:wN \@@_parse_exponent:N + \exp_after:wN #3 + \fi: + } +\cs_new:Npn \@@_parse_large_round_after_ii:wN #1 ; #2 + { + + #2 + \exp_after:wN ; + \int_use:N \__int_eval:w #1 + + \@@_parse_exponent:N + } +% \end{macrocode} +% \end{macro} +% +% +% +% \begin{macro}[int]{\@@_parse_small_round:NN} +% \begin{syntax} +% \cs{@@_parse_small_round:NN} \meta{digit} \meta{more digits} +% \end{syntax} +% \meta{digit} is the digit that we are currently rounding (we only +% care whether it is even or odd). +% +% The goal is to get \cs{c_zero} or \cs{c_one} +% \begin{macrocode} +\cs_new:Npn \@@_parse_small_round:NN #1#2 + { + \if_int_compare:w \c_nine < 1 \token_to_str:N #2 \exp_stop_f: + + + \exp_after:wN \@@_round_s:NNNw + \exp_after:wN 0 + \exp_after:wN #1 + \exp_after:wN #2 + \int_use:N \__int_eval:w + \exp_after:wN \@@_parse_small_round_after:wN + \int_use:N \__int_eval:w \c_zero + \exp_after:wN \@@_cfs_round_loop:N + \tex_romannumeral:D + \else: + \@@_parse_exponent:Nw #2 + \fi: + \@@_parse_expand:w + } +\cs_new:Npn \@@_parse_small_round_after:wN #1; #2 + { + + #2 \exp_after:wN ; + \__int_value:w \@@_parse_exponent:N + } +% \end{macrocode} +% \end{macro} +% +% +% \subsection{Main functions} +% +% \begin{macro}[int, EXP]{\@@_parse:n} +% \begin{macro}[aux, EXP]{\@@_parse_after:ww} +% Start a \tn{romannumeral} expansion so that \cs{@@_parse:n} expands +% in two steps. The \cs{@@_parse_until:Nw} function will perform +% computations until reaching an operation with precedence +% \cs{c_minus_one} or less. Then check that there was indeed nothing +% left (this cannot happen), and stop the initial expansion with +% \cs{c_zero}.%^^A todo: simplify a bit. +% \begin{macrocode} +\cs_new:Npn \@@_parse:n #1 + { + \tex_romannumeral:D + \exp_after:wN \@@_parse_after:ww + \tex_romannumeral:D + \@@_parse_until:Nw \c_minus_one + \@@_parse_expand:w #1 \s_@@_mark + \s_@@_stop + } +\cs_new:Npn \@@_parse_after:ww #1@ #2 \s_@@_stop + { +%<assert> \assert_str_eq:nn { #2 } { \@@_parse_infix_end:N \s_@@_mark } + \c_zero #1 + } +% \end{macrocode} +% \end{macro} +% \end{macro} +% +% \begin{macro}[int, EXP]{\@@_parse_until:Nw} +% \begin{macro}[aux, EXP]{\@@_parse_until_test:NwN} +% The \cs{@@_parse_until} +% This is just a shorthand which sets up both \cs{@@_parse_until_test} +% and \cs{@@_parse_operand} with the same precedence. Note the +% trailing \cs{tex_romannumeral:D}. This function should be +% used with much care. +% \begin{macrocode} +\cs_new:Npn \@@_parse_until:Nw #1 + { + -`0 + \exp_after:wN \@@_parse_until_test:NwN + \exp_after:wN #1 + \tex_romannumeral:D -`0 + \exp_after:wN \@@_parse_operand:Nw + \exp_after:wN #1 + \tex_romannumeral:D + } +\cs_new:Npn \@@_parse_until_test:NwN #1 #2 @ #3 { #3 #1 #2 @ } +\cs_new:Npn \@@_parse_stop_until:N #1 { } +% \end{macrocode} +% \end{macro} +% \end{macro} +% +% \begin{macro}[int]{\@@_parse_until_test:NwN} +% \begin{syntax} +% \cs{@@_parse_until_test:NwN} \meta{prec} \meta{fp} \meta{bool} +% \end{syntax} +% If \meta{bool} is true, then \meta{fp} is the floating +% point number that we are looking for (it ends with |;|), +% and this expands to \meta{fp}. If \meta{bool} is false, +% then the input stream actually looks like +% \begin{quote} +% \cs{@@_parse_until_test:NwN} \meta{prec} \meta{fp_1} \meta{false} +% \meta{oper} \meta{fp_2} \cs{infix_?} +% \end{quote} +% and we must feed \meta{prec} to \cs{infix_?}, and perform +% \meta{oper} on \meta{fp_1} and \meta{fp_2}: this +% triggers the expansion of \cs{infix_?} \meta{prec}, continuing +% the computation (or stopping). In that case, the function \cs{until} +% yields +% \begin{quote} +% \cs{@@_parse_until_test:NwN} \meta{prec} +% \meta{oper} \meta{fp_1} \meta{fp_2} +% \cs{tex_romannumeral:D} |-`0| \cs{infix_?} \meta{prec} +% \end{quote} +% expanding \meta{oper} next. +% \begin{macrocode} +% \end{macrocode} +% \end{macro} +% +% ^^A 3.5\mydim e4**2 +% ^^A todo: add tests that catcode changes don't mess things up. +% +% \subsection{Main functions} +% +% \begin{macro}[aux, EXP]{\@@_parse_infix_after_operand:NwN} +% \begin{macrocode} +\cs_new:Npn \@@_parse_infix_after_operand:NwN #1 #2; + { + \@@_exp_after_f:nw { \@@_parse_infix:NN #1 } + #2; + } +\group_begin: + \char_set_catcode_letter:N \* + \cs_new:Npn \@@_parse_infix:NN #1 #2 + { + \if_catcode:w \tex_relax:D #2 + \if_int_compare:w + \pdftex_strcmp:D { \s_@@_mark } { #2 } + = \c_zero + \exp_after:wN \exp_after:wN + \exp_after:wN \@@_parse_infix_end:N + \else: + \exp_after:wN \exp_after:wN + \exp_after:wN \@@_parse_infix_juxtapose:N + \fi: + \else: + \if_int_compare:w + \__int_eval:w \tex_uccode:D `#2 / 26 + = \c_three + \exp_after:wN \exp_after:wN + \exp_after:wN \@@_parse_infix_juxtapose:N + \else: + \exp_after:wN \@@_parse_infix_check:NNN + \cs:w + @@_parse_infix_#2:N + \exp_after:wN \exp_after:wN \exp_after:wN + \cs_end: + \fi: + \fi: + #1 + #2 + } + \cs_new:Npn \@@_parse_infix_check:NNN #1#2#3 + { + \if_meaning:w \tex_relax:D #1 + \__msg_expandable_error:n { Missing~*~inserted. } + \exp_after:wN \@@_parse_infix_*:N + \exp_after:wN #2 + \exp_after:wN #3 + \else: + \exp_after:wN #1 + \exp_after:wN #2 + \tex_romannumeral:D \exp_after:wN \@@_parse_expand:w + \fi: + } +\group_end: +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[int, EXP]{\@@_parse_apply_binary:NwNwN} +% +% \begin{macrocode} +\cs_new:Npn \@@_parse_apply_binary:NwNwN #1 #2#3@ #4 #5#6@ #7 + { + \exp_after:wN \@@_parse_until_test:NwN + \exp_after:wN #1 + \tex_romannumeral:D -`0 + \cs:w + @@ + \@@_type_from_scan:N #2 + \@@_type_from_scan:N #5 + _ #4 _o:ww + \cs_end: + #2#3 #5#6 + \tex_romannumeral:D -`0 #7 #1 + } +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[int, EXP] +% {\@@_parse_apply_unary_array:NNwN, \@@_parse_apply_unary:NNwN} +% Here, |#2| is \emph{e.g.}, \cs{@@_neg_@@:w}, and expands once after the +% calculation.\footnote{Bruno: explain.} The argument |#3| may be an +% array, so either we map through all its items, or we feed all items +% at once to the custom function. +% \begin{macrocode} +\cs_new:Npn \@@_parse_apply_unary_array:NNwN #1#2#3@#4 + { + #2 #3 @ + \tex_romannumeral:D -`0 #4 #1 + } +\cs_new:Npn \@@_parse_apply_unary:NNwN #1#2#3@#4 + { + #2 #3 + \tex_romannumeral:D -`0 #4 #1 + } +\cs_new:Npn \@@_parse_unary_type:N #1 + { \@@_type_from_scan:N #1 :w \cs_end: #1 } +% \end{macrocode} +% \end{macro} +% +% \subsection{Prefix operators} +% +% \subsubsection{Identifiers} +% +% \begin{macro}[aux, EXP] +% { +% \@@_parse_word_inf:N, \@@_parse_word_nan:N, \@@_parse_word_pi:N , +% \@@_parse_word_deg:N, \@@_parse_word_em:N , +% \@@_parse_word_ex:N , \@@_parse_word_in:N , \@@_parse_word_pt:N , +% \@@_parse_word_pc:N , \@@_parse_word_cm:N , \@@_parse_word_mm:N , +% \@@_parse_word_dd:N , \@@_parse_word_cc:N , \@@_parse_word_nd:N , +% \@@_parse_word_nc:N , \@@_parse_word_bp:N , \@@_parse_word_sp:N , +% \@@_parse_word_true:N , \@@_parse_word_false:N , +% } +% A whole bunch of floating point numbers. +% \begin{macrocode} +\cs_set_protected:Npn \@@_tmp:w #1 #2 + { + \cs_new_nopar:cpn { @@_parse_word_#1:N } + { \exp_after:wN #2 \tex_romannumeral:D -`0 \@@_parse_infix:NN } + } +\@@_tmp:w { inf } \c_inf_fp +\@@_tmp:w { nan } \c_nan_fp +\@@_tmp:w { pi } \c_pi_fp +\@@_tmp:w { deg } \c_one_degree_fp +\@@_tmp:w { true } \c_one_fp +\@@_tmp:w { false } \c_zero_fp +\@@_tmp:w { pt } \c_one_fp +\cs_set_protected:Npn \@@_tmp:w #1 #2 + { + \cs_new_nopar:cpn { @@_parse_word_#1:N } + { + \@@_exp_after_f:nw { \@@_parse_infix:NN } + \s_@@ \@@_chk:w 10 #2 ; + } + } +\@@_tmp:w {in} { {2} {7227} {0000} {0000} {0000} } +\@@_tmp:w {pc} { {2} {1200} {0000} {0000} {0000} } +\@@_tmp:w {cm} { {2} {2845} {2755} {9055} {1181} } +\@@_tmp:w {mm} { {1} {2845} {2755} {9055} {1181} } +\@@_tmp:w {dd} { {1} {1070} {0085} {6496} {0630} } +\@@_tmp:w {cc} { {2} {1284} {0102} {7795} {2756} } +\@@_tmp:w {nd} { {1} {1066} {9783} {4645} {6693} } +\@@_tmp:w {nc} { {2} {1280} {3740} {1574} {8031} } +\@@_tmp:w {bp} { {1} {1003} {7500} {0000} {0000} } +\@@_tmp:w {sp} { {-4} {1525} {8789} {0625} {0000} } +\tl_map_inline:nn { {em} {ex} } + { + \cs_new_nopar:cpn { @@_parse_word_#1:N } + { + \exp_after:wN \dim_to_fp:n \exp_after:wN + { \dim_use:N \__dim_eval:w 1 #1 \exp_after:wN } + \tex_romannumeral:D -`0 \@@_parse_infix:NN + } + } +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[int, EXP] +% { +% \@@_parse_word_abs:N , +% \@@_parse_word_cos:N , +% \@@_parse_word_cot:N , +% \@@_parse_word_exp:N , +% \@@_parse_word_ln:N , +% \@@_parse_word_sin:N , +% \@@_parse_word_tan:N , +% } +% Unary functions, which are applied to all of their arguments when +% receiving an array. +% \begin{macrocode} +\tl_map_inline:nn { {abs} {cos} {cot} {exp} {ln} {sin} {tan} } + { + \cs_new:cpn { @@_parse_word_#1:N } ##1 + { + \exp_after:wN \@@_parse_apply_unary:NNwN + \exp_after:wN ##1 + \cs:w @@_ #1 \exp_after:wN \@@_parse_unary_type:N + \tex_romannumeral:D + \@@_parse_until:Nw \c_fifteen + \@@_parse_expand:w + } + } +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[int, EXP] +% { +% \@@_parse_word_max:N , \@@_parse_word_min:N , +% \@@_parse_word_mod:N , +% } +% Those functions are also unary, but need to mix all of their +% arguments together. +% \begin{macrocode} +\cs_set_protected:Npn \@@_tmp:w #1#2 + { + \cs_new:Npn #1 ##1 + { + \exp_after:wN \@@_parse_apply_unary_array:NNwN + \exp_after:wN ##1 + \exp_after:wN #2 + \tex_romannumeral:D + \@@_parse_until:Nw \c_sixteen \@@_parse_expand:w + } + } +\@@_tmp:w \@@_parse_word_max:N \@@_max:w +\@@_tmp:w \@@_parse_word_min:N \@@_min:w + % \@@_tmp:w \@@_parse_word_mod:N \@@_mod:w %^^A todo: not implemented! +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[int, EXP]{\@@_parse_word_round:N} +% This function expects one or two arguments. +% \begin{macrocode} +\cs_new:Npn \@@_parse_word_round:N #1#2 + { + \if_meaning:w + #2 + \@@_parse_round:Nw \@@_round_to_pinf:NNN + \else: + \if_meaning:w 0 #2 + \@@_parse_round:Nw \@@_round_to_zero:NNN + \else: + \if_meaning:w - #2 + \@@_parse_round:Nw \@@_round_to_ninf:NNN + \fi: + \fi: + \fi: + \exp_after:wN \@@_parse_apply_round:NNwN + \exp_after:wN #1 + \exp_after:wN \@@_round_to_nearest:NNN + \tex_romannumeral:D + \@@_parse_until:Nw \c_sixteen \@@_parse_expand:w #2 + } +\cs_new:Npn \@@_parse_round:Nw + #1 #2 \@@_round_to_nearest:NNN #3 \@@_parse_expand:w #4 + { #2 #1 #3 \@@_parse_expand:w } +\cs_new:Npn \@@_parse_apply_round:NNwN #1#2#3@#4 + { + \if_case:w \__int_eval:w \@@_array_count:w #3@ - \c_one \__int_eval_end: + \@@_round:Nwn #2 #3 {0} \tex_romannumeral:D + \or: \@@_round:Nww #2 #3 \tex_romannumeral:D + \else: + \@@_error:n { round()~expects~1~or~2~arguments. } + \exp_after:wN \c_nan_fp \tex_romannumeral:D + \fi: + -`0 #4 #1 + } +% \end{macrocode} +% \end{macro} +% +% \subsubsection{Unary minus, plus, not} +% +% \begin{macro}[EXP, aux]{\@@_parse_prefix_+:Nw} +% A unary |+| does nothing. +% \begin{macrocode} +\cs_new_eq:cN { @@_parse_prefix_+:Nw } \@@_parse_operand:Nw +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[EXP, aux]{\@@_parse_prefix_-:Nw, \@@_parse_prefix_!:Nw} +% Unary |-| is harder. +% Boolean not. +% \begin{macrocode} +\cs_set_protected:Npn \@@_tmp:w #1#2 + { + \cs_new:cpn { @@_parse_prefix_#1:Nw } ##1 + { + \exp_after:wN \@@_parse_apply_unary:NNwN + \exp_after:wN ##1 + \cs:w @@_ #2 \exp_after:wN \@@_parse_unary_type:N + \tex_romannumeral:D + \if_int_compare:w \c_twelve < ##1 + \@@_parse_until:Nw ##1 + \else: + \@@_parse_until:Nw \c_twelve + \fi: + \@@_parse_expand:w + } + } +\@@_tmp:w - { neg } +\@@_tmp:w ! { not } +% \end{macrocode} +% \end{macro} +% +% \subsubsection{Other prefixes} +% +% \begin{macro}[int]{\@@_parse_prefix_(:Nw} +% \begin{macrocode} +\group_begin: + \char_set_catcode_letter:N \) + \cs_new:cpn { @@_parse_prefix_(:Nw } #1 + { + \exp_after:wN \@@_parse_lparen_after:NwN + \exp_after:wN #1 + \tex_romannumeral:D + \if_int_compare:w #1 = \c_sixteen + \@@_parse_until:Nw \c_one + \else: + \@@_parse_until:Nw \c_zero + \fi: + \@@_parse_expand:w + } + \cs_new:Npn \@@_parse_lparen_after:NwN #1#2@#3 + { + \token_if_eq_meaning:NNTF #3 \@@_parse_infix_):N + { + \@@_parse_exp_after_array:wf #2 \s_@@_stop + \exp_after:wN \@@_parse_infix:NN + \exp_after:wN #1 + \tex_romannumeral:D \@@_parse_expand:w + } + { + \@@_error:n { Missing~')'~inserted. } + #2 @ \@@_parse_stop_until:N #3 + } + } +\group_end: +% \end{macrocode} +% \end{macro} +% +%^^A todo: rename to exp_after_array_f:w +% \begin{macro}[int, EXP]{\@@_parse_exp_after_array:wf} +% \begin{macrocode} +\cs_new:Npn \@@_parse_exp_after_array:wf #1 + { + \cs:w @@ \@@_type_from_scan:N #1 _exp_after_f:nw \cs_end: + { \@@_parse_exp_after_array:wf } + #1 + } +\cs_new:Npn \@@_stop_exp_after_f:nw #1#2 { } +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[int]{\@@_parse_prefix_.:Nw} +% This function is called when a number starts with a dot. +% \begin{macrocode} +\cs_new:cpn {@@_parse_prefix_.:Nw} #1 + { + \exp_after:wN \@@_parse_infix_after_operand:NwN + \exp_after:wN #1 + \tex_romannumeral:D -`0 + \exp_after:wN \@@_sanitize:wN + \int_use:N \__int_eval:w \c_zero \@@_parse_strim_zeros:N + } +% \end{macrocode} +% \end{macro} +% +% \subsection{Infix operators} +% +% As described in the \enquote{work plan}, each infix operator has an +% associated \cs{infix} function, a computing function, and +% precedence, given as arguments to \cs{@@_tmp:w}. The +% latter two are only needed when defining the \cs{infix} function. +% \begin{macrocode} +\cs_set_protected:Npn \@@_tmp:w #1#2#3#4 + { + \cs_new:Npn #1 ##1 + { + \if_int_compare:w ##1 < #3 + \exp_after:wN @ + \exp_after:wN \@@_parse_apply_binary:NwNwN + \exp_after:wN #2 + \tex_romannumeral:D + \@@_parse_until:Nw #4 + \exp_after:wN \@@_parse_expand:w + \else: + \exp_after:wN @ + \exp_after:wN \@@_parse_stop_until:N + \exp_after:wN #1 + \fi: + } + } +% \end{macrocode} +% +% \begin{macro}[int, EXP] +% { +% \@@_parse_infix_+:N, \@@_parse_infix_-:N, +% \@@_parse_infix_/:N, \@@_parse_infix_mul:N, +% \@@_parse_infix_and:N, \@@_parse_infix_or:N, +% } +% Using the general mechanism for arithmetic operations. +% \begin{macrocode} +\group_begin: + \char_set_catcode_other:N \& + \@@_tmp:w \@@_parse_infix_juxtapose:N * \c_thirty_two \c_thirty_two + \exp_args:Nc \@@_tmp:w { @@_parse_infix_ / :N } / \c_ten \c_ten + \exp_args:Nc \@@_tmp:w { @@_parse_infix_mul:N } * \c_ten \c_ten + \exp_args:Nc \@@_tmp:w { @@_parse_infix_ - :N } - \c_nine \c_nine + \exp_args:Nc \@@_tmp:w { @@_parse_infix_ + :N } + \c_nine \c_nine + \exp_args:Nc \@@_tmp:w { @@_parse_infix_and:N } & \c_five \c_five + \exp_args:Nc \@@_tmp:w { @@_parse_infix_ or:N } | \c_four \c_four +\group_end: +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[int, EXP]{\@@_parse_infix_*:N} +% \begin{macro}[int, EXP]+\@@_parse_infix_^:N+ +% The power operation must be associative in the opposite order from +% all others. For this, we reverse the test, hence treating a +% \enquote{previous precedence} of \cs{c_fourteen} as less binding +% than |^|. +% \begin{macrocode} +\group_begin: + \char_set_catcode_letter:N ^ + \@@_tmp:w \@@_parse_infix_^:N ^ \c_fifteen \c_fourteen + \cs_new:cpn { @@_parse_infix_*:N } #1#2 + { + \if:w * #2 + \exp_after:wN \@@_parse_infix_^:N + \exp_after:wN #1 + \else: + \exp_after:wN \@@_parse_infix_mul:N + \exp_after:wN #1 + \exp_after:wN #2 + \fi: + } +\group_end: +% \end{macrocode} +% \end{macro} +% \end{macro} +% +% \begin{macro}[int, EXP]+\@@_parse_infix_|:Nw+ +% \begin{macro}[int, EXP]+\@@_parse_infix_&:Nw+ +% \begin{macrocode} +\group_begin: + \char_set_catcode_letter:N \| + \char_set_catcode_letter:N \& + \cs_new:Npn \@@_parse_infix_|:N #1#2 + { + \if:w | #2 + \exp_after:wN \@@_parse_infix_|:N + \exp_after:wN #1 + \tex_romannumeral:D \exp_after:wN \@@_parse_expand:w + \else: + \exp_after:wN \@@_parse_infix_or:N + \exp_after:wN #1 + \exp_after:wN #2 + \fi: + } + \cs_new:Npn \@@_parse_infix_&:N #1#2 + { + \if:w & #2 + \exp_after:wN \@@_parse_infix_&:N + \exp_after:wN #1 + \tex_romannumeral:D \exp_after:wN \@@_parse_expand:w + \else: + \exp_after:wN \@@_parse_infix_and:N + \exp_after:wN #1 + \exp_after:wN #2 + \fi: + } +\group_end: +% \end{macrocode} +% \end{macro} +% \end{macro} +% +% \begin{macro}[int, EXP] +% { +% \@@_parse_infix_<:N, \@@_parse_infix_=:N, +% \@@_parse_infix_>:N, \@@_parse_infix_!:N +% } +% \begin{macro}[aux, EXP] +% { +% \@@_parse_infix_excl_aux:NN, +% \@@_parse_infix_excl_error:, +% \@@_infix_compare:N, +% \@@_parse_compare:NNNNNw, +% \@@_parse_compare_expand:NNNNNw, +% \@@_parse_compare_end:NNNN, +% \@@_compare:wNNNNw, +% } +% \begin{macrocode} +\cs_new:cpn { @@_parse_infix_<:N } #1 + { + \@@_infix_compare:N #1 \c_one_fp + \c_zero_fp \c_zero_fp \c_zero_fp \c_zero_fp < + } +\cs_new:cpn { @@_parse_infix_=:N } #1 + { + \@@_infix_compare:N #1 \c_one_fp + \c_zero_fp \c_zero_fp \c_zero_fp \c_zero_fp = + } +\cs_new:cpn { @@_parse_infix_>:N } #1 + { + \@@_infix_compare:N #1 \c_one_fp + \c_zero_fp \c_zero_fp \c_zero_fp \c_zero_fp > + } +\cs_new:cpn { @@_parse_infix_!:N } #1 + { + \exp_after:wN \@@_parse_infix_excl_aux:NN + \exp_after:wN #1 \tex_romannumeral:D \@@_parse_expand:w + } +\cs_new:Npn \@@_parse_infix_excl_aux:NN #1#2 + { + \if_catcode:w \tex_relax:D #2 + \@@_parse_infix_excl_error: + \else: + \if_int_compare:w `#2 > `? \exp_stop_f: + \@@_parse_infix_excl_error: + \else: + \if_int_compare:w `#2 < `< \exp_stop_f: + \@@_parse_infix_excl_error: + \fi: + \fi: + \fi: + \@@_infix_compare:N #1 \c_zero_fp + \c_one_fp \c_one_fp \c_one_fp \c_one_fp #2 + } +\cs_new:Npn \@@_parse_infix_excl_error: + { \__msg_expandable_error:n { Missing~relation~symbol~after~'!'. } } +\cs_new:Npn \@@_infix_compare:N #1 + { + \if_int_compare:w #1 < \c_seven + \exp_after:wN \@@_parse_compare:NNNNNw + \else: + \exp_after:wN @ + \exp_after:wN \@@_parse_stop_until:N + \exp_after:wN \@@_infix_compare:N + \fi: + } +\cs_new:Npn \@@_parse_compare:NNNNNw #1#2#3#4#5#6 + { + \if_case:w + \if_catcode:w \tex_relax:D #6 + \c_minus_one + \else: + \__int_eval:w `#6 - `< \__int_eval_end: + \fi: + \@@_parse_compare_expand:NNNNNw #1#1#3#4#5 + \or: \@@_parse_compare_expand:NNNNNw #1#2#1#4#5 + \or: \@@_parse_compare_expand:NNNNNw #1#2#3#1#5 + \or: \@@_parse_compare_expand:NNNNNw #1#2#3#4#1 + \else: \@@_parse_compare_end:NNNN #2#3#4#5#6 + \fi: + } +\cs_new:Npn \@@_parse_compare_expand:NNNNNw #1#2#3#4#5 + { + \exp_after:wN \@@_parse_compare:NNNNNw + \exp_after:wN #1 + \exp_after:wN #2 + \exp_after:wN #3 + \exp_after:wN #4 + \exp_after:wN #5 + \tex_romannumeral:D \exp_after:wN \@@_parse_expand:w + } +\cs_new:Npn \@@_parse_compare_end:NNNN #1#2#3#4#5 \fi: + { + \fi: + \exp_after:wN @ + \exp_after:wN \@@_parse_apply_compare:NwNNNNwN + \exp_after:wN #1 + \exp_after:wN #2 + \exp_after:wN #3 + \exp_after:wN #4 + \tex_romannumeral:D + \@@_parse_until:Nw \c_seven \@@_parse_expand:w #5 + } +\cs_new:Npn \@@_parse_apply_compare:NwNNNNwN #1 #2@ #3#4#5#6 #7@ #8 + { + \exp_after:wN \@@_parse_until_test:NwN + \exp_after:wN #1 + \tex_romannumeral:D -`0 + \exp_after:wN \exp_after:wN + \exp_after:wN \exp_after:wN + \exp_after:wN \exp_after:wN + \if_case:w \@@_compare:ww #2 #7 \exp_stop_f: + #4 + \or: #5 + \or: #6 + \else: #3 + \fi: + \tex_romannumeral:D -`0 #8 #1 + } +% \end{macrocode} +% \end{macro} +% \end{macro} +% +% \begin{macro}[aux, EXP]{\@@_parse_infix_?:N, \@@_parse_infix_::N} +% \begin{macrocode} +\group_begin: + \char_set_catcode_letter:N \? + \cs_new:Npn \@@_parse_infix_?:N #1 + { + \if_int_compare:w #1 < \c_three + \exp_after:wN @ + \exp_after:wN \@@_ternary:NwwN + \tex_romannumeral:D + \@@_parse_until:Nw \c_three + \exp_after:wN \@@_parse_expand:w + \else: + \exp_after:wN @ + \exp_after:wN \@@_parse_stop_until:N + \exp_after:wN \@@_parse_infix_?:N + \fi: + } + \cs_new:Npn \@@_parse_infix_::N #1 + { + \if_int_compare:w #1 < \c_three + \__msg_expandable_error:n { Missing~'?'~inserted~for~'?:'. } + \exp_after:wN @ + \exp_after:wN \@@_ternary_ii:NwwN + \tex_romannumeral:D + \@@_parse_until:Nw \c_two + \exp_after:wN \@@_parse_expand:w + \else: + \exp_after:wN @ + \exp_after:wN \@@_parse_stop_until:N + \exp_after:wN \@@_parse_infix_::N + \fi: + } +\group_end: +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[int, EXP]+\@@_parse_infix_):N+ +% This one is a little bit odd: force every previous operator to end, +% regardless of the precedence. This is very similar to +% \cs{@@_parse_infix_end:N}. +% \begin{macrocode} +\group_begin: + \char_set_catcode_letter:N \) + \cs_new:Npn \@@_parse_infix_):N #1 + { + \if_int_compare:w #1 < \c_zero + \@@_error:n { Extra~')'~ignored. } + \exp_after:wN \@@_parse_infix:NN + \exp_after:wN #1 + \tex_romannumeral:D \exp_after:wN \@@_parse_expand:w + \else: + \exp_after:wN @ + \exp_after:wN \@@_parse_stop_until:N + \exp_after:wN \@@_parse_infix_):N + \fi: + } +\group_end: +\cs_new:Npn \@@_parse_infix_end:N #1 + { @ \@@_parse_stop_until:N \@@_parse_infix_end:N } +% \end{macrocode} +% \end{macro} +% +% \begin{macro}[int, EXP]+\@@_parse_infix_,:N+ +% \begin{macrocode} +\group_begin: + \char_set_catcode_letter:N \, + \cs_new:Npn \@@_parse_infix_,:N #1 + { + \if_int_compare:w #1 > \c_one + \exp_after:wN @ + \exp_after:wN \@@_parse_stop_until:N + \exp_after:wN \@@_parse_infix_,:N + \else: + \if_int_compare:w #1 = \c_one + \exp_after:wN \@@_parse_infix_comma:w + \tex_romannumeral:D + \else: + \exp_after:wN \@@_parse_infix_comma_gobble:w + \tex_romannumeral:D + \fi: + \@@_parse_until:Nw \c_one + \exp_after:wN \@@_parse_expand:w + \fi: + } + \cs_new:Npn \@@_parse_infix_comma:w #1 @ + { #1 @ \@@_parse_stop_until:N } + \cs_new:Npn \@@_parse_infix_comma_gobble:w #1 @ + { + \@@_error:n { Unexpected~comma:~extra~arguments~ignored. } + @ \@@_parse_stop_until:N + } +\group_end: +% \end{macrocode} +% \end{macro} +% +% \begin{macrocode} +%</initex|package> +% \end{macrocode} +% +% \end{implementation} +% +% \PrintChanges +% +% \PrintIndex
\ No newline at end of file |