summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/elsarticle/contrib/mytool.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/source/latex/elsarticle/contrib/mytool.tex')
-rw-r--r--Master/texmf-dist/source/latex/elsarticle/contrib/mytool.tex83
1 files changed, 0 insertions, 83 deletions
diff --git a/Master/texmf-dist/source/latex/elsarticle/contrib/mytool.tex b/Master/texmf-dist/source/latex/elsarticle/contrib/mytool.tex
deleted file mode 100644
index f0c6f841739..00000000000
--- a/Master/texmf-dist/source/latex/elsarticle/contrib/mytool.tex
+++ /dev/null
@@ -1,83 +0,0 @@
-\Clear{426.79134pt}{%
-\let\la\lambda
-\noindent\textbf{Remark 3.}\enspace
-We remark that; when the ratio $h/\la$ tends to 0, the expression $\la
-L(r,s)=-(s-r)/(4\left(\frac{h}{\la}\right)^2+(r-s)^2)$ tends to
-$1/(r-s)$ which is a singular function. This means that the expression
-$\la L(r,s)$ is not well behaved for the small values of
-$h/\la$. Consequently, for the solution to converge, the integrals of
-(10) and (11) must be evaluated with a large number of
-nodes. In our numerical applications (cf. section 5), we
-use 100 nodes to evaluate these integrals. With the smallest value of
-$h/\la=0.02$, the convergence is good with $N=20$.
-}
-\Clear{426.79134pt}{%
-\noindent\textbf{Theorem 2.}\enspace\itshape
-For system (8), consensus can be achieved with
-$\|T_{\omega z}(s)\|_{\infty}<\gamma$ if there exist a symmetric
-positive definite
- matrix $P\in \mathcal{R}^{(n-1)\times (n-1)}$ and a scalar $\mu>0$ satisfying
-\setcounter{equation}{9}
-\begin{eqnarray}\label{10}
-\Gamma=\begin{bmatrix}
--\bar{L}^TP-P\bar{L}+U_1^TU_1+\mu \bar{E}&PU_1^TE_1&PU_1^T\\
-E_1^TU_1P&-\mu I&0\\ U_1P&0&-\gamma^2I\end{bmatrix}<0,
-\end{eqnarray}
-where $\bar{L}=U_1^TLU_1$ and $\bar{E}=U_1^TE_2^TE_2U_1.$
-}
-\Clear{426.79134pt}{%
-\noindent\textbf{Proof of Theorem 2.}\enspace Proof follows
-straightforward from Lemma 3 and Theorem 1. However, it should be
-emphasized that all possible $\bar{L}_{\sigma(t)}$ should share a
-common Lyapunov function $V(\delta)=\delta^T(t)P\delta(t)$ (see
-the proof of Lemma 3 in Appendix A). \hfill$\square$
-}
-\Clear{426.79134pt}{%
- \begin{enumerate}[1.]
- \item The enumerate environment starts with an optional
- argument `1.' so that the item counter will be suffixed
- by a period.
- \item If you provide parentheses to the number, the
- output will have only one parentheses for all the item
- counters.
- \item You can use `(a)' for alphabetical counter and '(i)' for
- roman counter.
- \begin{enumerate}[a)]
- \item Another level of list with alphabetical counter.
- \item One more item before we start another.
- \begin{enumerate}[(i)]
- \item This item has roman numeral counter.
- \item Another one before we close the third level.
- \end{enumerate}
- \item Third item in second level.
- \end{enumerate}
- \item All list items conclude with this step.
-\end{enumerate}
-}
-\Clear{284.52756pt}{%
-\lmrgn=4em
- \begin{enumerate}[Step 1.]
- \item This is the first step of the example list.
-\item Obviously this is the second step.
-\item The final step to wind up this example.
- \end{enumerate}
-}
-\Clear{284.52756pt}{%
-\centering
- {\ttfamily\bs includegraphics[width=3in,angle=45]\lb
- tiger.pdf\rb}\\
- \hspace*{-1cm}
- \includegraphics[width=3in,angle=45,origin=c]{tiger.pdf}\\
- \raggedright
- \textbf{Fig.~1.}~~More details on the usage of {\ttfamily\bs
- includegraphics} can be found in the \textsf{grfguide.ps} of the
- \LaTeX{} documentation.
-}
-\Clear{426.79134pt}{%
-\raggedright
-\begin{enumerate}[{[1]}]
-\item Knuth, D.E., \emph{TeX: The Program}, Computers \&
-Typesetting; B., 1995, Addisson-Wesley Publishing Co., Inc., New
-York.
-\end{enumerate}
-}