summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/ebezier/ebezier.dtx
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/source/latex/ebezier/ebezier.dtx')
-rw-r--r--Master/texmf-dist/source/latex/ebezier/ebezier.dtx1875
1 files changed, 1875 insertions, 0 deletions
diff --git a/Master/texmf-dist/source/latex/ebezier/ebezier.dtx b/Master/texmf-dist/source/latex/ebezier/ebezier.dtx
new file mode 100644
index 00000000000..267dbd7d6ca
--- /dev/null
+++ b/Master/texmf-dist/source/latex/ebezier/ebezier.dtx
@@ -0,0 +1,1875 @@
+% \iffalse meta comment
+%
+% Copyright (c) Gerhard A. Bachmaier 2001-2005
+%
+% This program can be redistributed and/or modified under the terms
+% of the LaTeX Project Public License Distributed from CTAN
+% archives in directory macros/latex/base/ as file lppl.txt; either
+% version 1 of the License, or (at your option) any later version.
+%
+% Gerhard A. Bachmaier
+% Institute for Medical Informatics, Statistics, and Documentation
+% Medical University of Graz
+% send bugs to: gerhard.bachmaier@meduni-graz.at
+%
+% \fi
+%
+% \iffalse
+%
+%<*driver>
+\ProvidesFile{ebezier.drv}
+%</driver>
+%<package>\ProvidesPackage{ebezier}
+ [2005/03/01 v4]
+%
+%<*driver>
+\documentclass{article}
+\usepackage{ebezier}
+\usepackage{calc}
+\usepackage{doc}
+\EnableCrossrefs
+\CodelineIndex
+%\DisableCrossrefs
+\begin{document}
+ \DocInput{ebezier.dtx}
+\end{document}
+%</driver>
+% \fi
+%
+% \CheckSum{1955}
+%
+% \DoNotIndex{\@X,\@Xa,\@Xb,\@Xc,\@Y,\@Ya,\@Yb,\@Yc}
+% \DoNotIndex{\@Z,\@Za,\@Zb,\@Zc,\@Zd,\@Ze,\@Zf,\@Zg,\@Zh,\@Zi,\@Zj}
+% \DoNotIndex{\@clnht,\@clnwd,\@dashdim,\@ifnextchar,\@killglue,\@ne}
+% \DoNotIndex{\@ovdx,\@ovdy,\@ovri,\@ovro,\@ovxx,\@ovyy}
+% \DoNotIndex{\@tempdima,\@tempdimb,\@tempdimc,\@tfor,\@und@fined}
+% \DoNotIndex{\@whilenum,\@xdim,\@ydim,\advance,\approx,\bullet}
+% \DoNotIndex{\c@@cnta,\c@@cntb,\c@@cntc,\c@@cntd,\chardef,\copy}
+% \DoNotIndex{\csname,\def,\dimen,\divide,\do,\dp,\else,\endcsname,\fi}
+% \DoNotIndex{\gdef,\hb@xt@,\hbox,\hskip,\hss,\ht,\ifdim,\ifnum,\ifx}
+% \DoNotIndex{\ignorespaces,\kern,\let,\long,\loop,\lower,\Lpack}
+% \DoNotIndex{\magstep,\magstephalf}
+% \DoNotIndex{\multiply,\myname,\NeedsTeXFormat,\newcommand,\newcounter}
+% \DoNotIndex{\newfont,\newif,\newlength,\newsavebox,\oval,\pi,\put}
+% \DoNotIndex{\raise,\ratio,\realname,\relax,\repeat,\RequirePackage}
+% \DoNotIndex{\reserved@a,\setbox,\setcounter,\setlength,\space,\sqrt}
+% \DoNotIndex{\the,\thr@@,\tw@,\unhcopy,\unitlength,\value,\vrule,\wd,\z@}
+%
+% \title{Using ebezier}
+% \author{Gerhard A. Bachmaier}
+% \date{March 1, 2005}
+%
+% \renewcommand{\topfraction}{.6}
+% \renewcommand{\bottomfraction}{.6}
+% \setcounter{totalnumber}{5}
+% \renewcommand{\textfraction}{.1}
+% \setlength{\unitlength}{1pt}
+% \setlength{\parskip}{3pt}
+% \font \logo=logo10 scaled \magstep1
+% \newcommand{\formstrut}{\rule{0mm}{2mm}}
+% \providecommand{\Metafont}{%
+% {\logo META}\discretionary{}{-}{}{\logo FONT}}
+% \renewcommand{\thefootnote}{\fnsymbol{footnote}}
+% \renewcommand{\arraystretch}{1.2}
+% \newcommand\SB[2]{\setbox1=\hbox{#1#2}}
+% \newcommand*{\Lpack}[1]{\textsf {#1}}
+%
+% \maketitle
+%
+% \begin{abstract}
+% The package \Lpack{ebezier} is an extension of the (old)
+% \Lpack{bezier.sty} which is now part of \LaTeXe. It defines
+% linear and cubic Bernste\u\i{}n polynomials together with some
+% plotting macros for arcs.
+%
+% With the aid of the \Lpack{calc} package also the calculation of
+% square roots and henceforward lengths is supplied.
+% \end{abstract}
+%
+%
+% \StopEventually{}
+%
+% \section*{Preamble}
+%
+% If you want to draw complicated and/or lots of pictures, you should use
+% \textsc{PostScript} for generating your plots and \Lpack{dvips} to include
+% them in \TeX\ documents. \textsc{PostScript} can plot lines with arbitrary
+% slope and unlimited length and circles with arbitrary radius just by using
+% one command. See also the \LaTeX\ Graphics Companion\cite{T1} for further
+% possibilities. There is also a new package \Lpack{pict2e}\cite{pict2e} a\-vail\-able
+% which is preferrable for PDF and \textsc{PostScript}.
+%
+% This package will support also lines with arbitrary slopes and unlimited
+% length, but each line has to be generated as a sample of points. Each
+% point reduces \TeX's memory and you will very likely have to overcome some
+% \texttt{TeX capacity excxeeded...} messages.
+%
+% Exact circles would involve trigonometric functions or square roots
+% to be evaluated by \TeX.
+% Even with some tricks for reducing the effort of the calculation algorithm
+% there would be hundreds of calculations for each point.\footnote{%
+% To use \TeX\ for complex computations is as satisfactory as using your desk
+% calculator for writing tasks. But if you really want to do it e.g.\ the digits 7353
+% can be read (rotating by $180^0$) as
+% \texttt{ESEL}, the german word for ``donkey''.}
+% But they may be quite
+% well approximated by cubic bezier curves, also supplied in this package
+% (The quality of interpolation is discussed in some detail in the Section
+% \textit{Fitting Arcs}.) In fact, the small circles in the \LaTeX-\texttt{lcircle} fonts
+% are also generated by the same method.
+%
+% For draft papers use all kind of bezier curves with small number of points,
+% just for the final run increase the numbers. \TeX\ memory can be set free
+% again with {\verb+\clearpage+} at the end of complicated pictures. It's
+% also a good idea to have them at an extra page (option \verb+[p]+ for
+% \texttt{figure} environments).
+%
+% For optical constructions the software LaTeXPiX\cite{PiX} may be a starting point.
+% This software supports cubic bezier curves defined in this package or from
+% \Lpack{bez123}\cite{T5}.
+%
+% \section{Mathematical Definitions}
+%
+% A Bernste\u\i{}n polynomial of degree $n-1\: (n\ge 2)$ is defined by
+% $n$ points $z_1, z_2,\ldots,z_n$
+%
+% \[ \mathcal{B}_{n-1} [t] = \sum_{i=0}^{n-1} {n-1\choose i}
+% (1-t)^{n-1-i} t^i z_{i+1}\quad t\in[0,1].\footnotemark\]%
+% \footnotetext{There are also
+% variants of this definitions with all coefficients $\equiv 1$.}
+%
+% The points $z_i, \: i\in\lbrace1,\ldots,n\rbrace$, may be considered as
+% real numbers, then $\mathcal{B}$ is really a polynomial in $t$. Or they
+% denote points in a plane, which notation we will use further. In this case
+% both \emph{components} are polynominials and the graph for $\mathcal{B}$
+% is---part of---an algebraic curve.
+%
+% \bigskip
+%
+% All these graphs have in common:
+% \begin{itemize}
+% \item The graph is contained in the convex hull of the defining points.
+% \item The graph starts at $z_1$ and stops at $z_n$.
+% \item At the endpoints the tangents coincident with
+% the directions $z_1-z_2$ and $z_{n-1}-z_n$ correspondingly.
+% \end{itemize}
+%
+% For $n=2$ the Bernste\u\i{}n polynomial $\mathcal{B}_1$ reduces to the
+% linear form spanned by $z_1$ and $z_2$. The parametrization in $t$
+%
+% \[ \mathcal{B}_1 [t] =(1-t) z_1 + t z_2=: t[z_1,z_2]\]
+%
+% is also known as \emph{convex coordinates} for the segment
+% $\overline{\formstrut z_1z_2}$.
+%
+% \begin{figure}[htb]
+% \begin{center}
+% \begin{picture}(100,60)
+% \put(-25,-10){\framebox(155,70){}}
+% \put(20,10){\line(2,1){60}}
+% \put(20,10){\makebox(0,0){$\bullet$}}
+% \put(80,40){\makebox(0,0){$\bullet$}}
+% \put(40,20){\makebox(0,0){$\bullet$}}
+% \put(-17,15){$z_1 (t=0)$}
+% \put(75,47){$z_2 (t=1)$}
+% \put(40,10){$t=1/3$}
+% \end{picture}
+% \end{center}
+% \caption{Line defined by two points}
+% \end{figure}
+%
+% \bigskip
+%
+% For $n=3$ the result is a (quadratic) parabola which can also
+% be constructed as the convex hull of all tangents in the
+% triangle $\Delta\,z_1 z_2 z_3$ (examplified in Fig.\ 2b).
+%
+% \begin{figure}[hbt]
+% \begin{center}
+% \begin{picture}(250,120)
+% \put(-15,-10){\framebox(280,130){}}
+% \Qbezier[300](0,0)(50,100)(100,0)
+% \put(0,0){\makebox(0,0){$\bullet$}}
+% \put(100,0){\makebox(0,0){$\bullet$}}
+% \put(50,100){\makebox(0,0){$\bullet$}}
+% \put(-6,10){$z_1$}
+% \put(50,105){$z_2$}
+% \put(99,10){$z_3$}
+% \put(0,0){\line(1,2){50}}
+% \put(100,0){\line(-1,2){50}}
+%%
+% \put(150,0){\makebox(0,0){$\bullet$}}
+% \put(250,0){\makebox(0,0){$\bullet$}}
+% \put(200,100){\makebox(0,0){$\bullet$}}
+% \put(144,10){$z_1$}
+% \put(200,105){$z_2$}
+% \put(249,10){$z_3$}
+% \put(150,0){\line(1,2){50}}
+% \put(250,0){\line(-1,2){50}}
+% \lbezier[50](160,20)(210,80)
+% \lbezier[30](170,40)(220,60)
+% \lbezier[30](180,60)(230,40)
+% \lbezier[50](190,80)(240,20)
+% \lbezier[50](155,10)(205,90)
+% \lbezier[50](165,30)(215,70)
+% \lbezier[30](175,50)(225,50)
+% \lbezier[50](185,70)(235,30)
+% \lbezier[50](195,90)(245,10)
+% \end{picture}
+% \end{center}
+% \caption{Quadratic parabola (a) as Bernste\u\i{}n polynom of degree 2
+% and (b) as hull of tangents}
+% \end{figure}
+%
+% For $n=4$ finally we arrive at the cubic curves used e.g.\ in the \Metafont\
+% book\cite{T3}.
+%
+% \begin{figure}[hbt]
+% \begin{center}
+% \begin{picture}(100,100)
+% \put(-10,-10){\framebox(130,110){}}
+% \Cbezier[500](0,0)(10,80)(70,40)(100,0)
+% \put(5,0){$z_1$}
+% \put(10,85){$z_2$}
+% \put(70,50){$z_3$}
+% \put(105,0){$z_4$}
+% \end{picture}
+% \end{center}
+% \caption{A simple cubic parabola.}
+% \end{figure}
+%
+%
+% We will not use more complicated polynomials for several reasons:
+%
+% \begin{itemize}
+% \item Higher degree polynomials require more operations to calculate
+% just one point of the graph.
+% \item For sketches (and \textbf{not} exact graphs!) cubic splines are
+% sufficient to scope with all kind of different curvature requirements.
+% \item \TeX\ can handle integers up to $2^{28}$, and ``real number'' lengths
+% are transformed to integers (multiples of scaled points: 1\,pt=$2^{16}$ sp) \cite{T2}. To stay
+% within this restricted range even for cubic beziers we have to do calculations
+% in the right order. Changing the order of multiplication and divisions will
+% result very soon in arithmetic overflows. Also multiplication with these pseudo-real
+% numbers is not an associative operation (due to the range limits!).
+% \item The maximum number of arguments for commands in \TeX\ is limited to nine,
+% which is just enough for four points and a number.
+% \end{itemize}
+%
+%
+% %
+% \section{The Plotting Macros}
+%
+% \subsection{Simple Beziers}
+%
+% There are two first level plot commands to be used in a
+% \LaTeXe\ \texttt{picture} environment:
+%
+% \begin{verbatim}
+% \lbezier[n](x1,y1)(x2,y2)
+% \cbezier[n](x1,y1)(x2,y2)(x3,y3)(x4,y4)
+% \end{verbatim}
+%
+% The arguments in square brackets are optional! If they are omitted or $n=0$ an adequate number
+% will be calculated (cf. Section 8).
+%
+% \DescribeMacro{\qbezier}
+% \verb+\lbezier+ draws line segments from point $(x_1,y_1)$
+% to $(x_2,y_2)$, or more exactly, $n+1$ intermediate points, while
+% \verb+\cbezier+ is an implementation of the cubic variant. Just for
+% completeness let me remind you that the quadratic
+% variant---\verb+\qbezier[n](x1,y1)(x2,y2)(x3,y3)+---is part of \LaTeXe.
+%
+% \DescribeMacro{\qbeziermax}
+% $n$ is always limited by the number \verb+\qbeziermax+ (=500).
+%
+% You may change \verb+\qbeziermax+ by a command like (it is not a counter!)
+% \verb+\renewcommand{\qbeziermax}{1000}+.
+%
+% \subsubsection{lbezier}
+% \DescribeMacro{\lbezier}
+% \verb+\lbezier+ is straightforward defined as
+% linear polynomial. It produces equally spaced points.
+%
+% \begin{verbatim}
+% ...
+% \put(0,25){\line(1,0){90}}
+% \lbezier[20](0,10)(90,10)
+% \lbezier[200](0,-5)(90,-5)
+% ...
+% \end{verbatim}
+%
+% \begin{figure}[hbt]
+% \begin{center}
+% \begin{picture}(150,30)
+% \put(-20,-15){\framebox(230,50){}}
+% \put(0,25){\line(1,0){90}}
+% \put(95,25){\makebox(100,0){\protect\LaTeXe\ \protect\texttt{line}}}
+% \lbezier[20](0,10)(90,10)
+% \put(95,10){\makebox(100,0){\protect\texttt{lbezier} (21 points)}}
+% \lbezier[200](0,-5)(90,-5)
+% \put(95,-5){\makebox(100,-5){\protect\texttt{lbezier} (201 points)}}
+% \end{picture}
+% \end{center}
+% \caption{Different line commands}
+% \end{figure}
+%
+% Use \verb+\lbezier+ only in cases where the line you want to plot is not within
+% the scope of the \verb+\line+ command, i.e. the slope is not a small rational number
+% and/or the length is too small.
+%
+% \subsubsection{cbezier}
+%
+% \DescribeMacro{\cbezier}
+% Just like the \verb+\lbezier+ macro \verb+\cbezier+ uses no tricks to generate
+% the third order polynomial. The examples are from the \Metafont\ book
+% (pp. 13)\cite{T3}, where the influence of changing the order of the
+% controlling points ($z_1$ up to $z_4$) is also demonstrated.
+%
+% \begin{verbatim}
+% ...
+% % z1=(0,16) z2=(40,84) z3=(136,96) z4=(250,0)
+% % z12=(20,50) z23=(88,90) z34=(193,48) z123=(54,70)
+% % z234=(140.5,69)
+% \cbezier[400](0,16)(40,84)(136,96)(250,0)
+% \lbezier[30](0,16)(40,84)
+% \lbezier[30](40,84)(136,96)
+% \lbezier[30](136,96)(250,0)
+% \lbezier[30](20,50)(88,90)
+% \lbezier[30](88,90)(193,48)
+% \lbezier[30](54,70)(140.5,69)
+% ...
+% \end{verbatim}
+% \begin{figure}[hbt]
+% \begin{center}
+% \begin{picture}(250,100)
+% \put(-10,-10){\framebox(270,115){}}
+% \cbezier[400](0,16)(40,84)(136,96)(250,0)
+% \lbezier[30](0,16)(40,84)
+% \lbezier[30](40,84)(136,96)
+% \lbezier[30](136,96)(250,0)
+% \lbezier[30](20,50)(88,90)
+% \lbezier[30](88,90)(193,48)
+% \lbezier[30](54,70)(140.5,69)
+% \end{picture}
+% \end{center}
+% \caption{Iteration scheme for one point}
+% \end{figure}
+%
+%
+% \DescribeMacro{\Cbezier}
+% The variant \verb+\Cbezier+ draws also dots and lines for the controlling points (see
+% Fig.\ 6)\footnote{It resets also the plot symbol to the standard one; cf. Section 7}.
+%
+%
+% \begin{figure}[hbt]
+% \begin{center}
+% \begin{picture}(184,100)
+% \put(-10,-10){\framebox(204,100){}}
+% \Cbezier[200](0,50)(12,72)(43,78)(84,50)
+% \Cbezier[200](100,50)(143,78)(112,72)(184,50)
+% \Cbezier[200](12,22)(0,0)(43,28)(84,0)
+% \Cbezier[200](100,0)(184,0)(112,22)(143,28)
+% \end{picture}
+% \end{center}
+% \caption{Examples for cubic curves with varying the order of the controlling points}
+% \end{figure}
+%
+% \subsection{Circles and Arcs}
+%
+% All complex plotting commands in this package
+% use a variant of \verb+\cbezier+ as building block. As
+% in the \Metafont\ book circles and arcs may be represented by
+% \verb+\cbezier+.
+%
+% To illustrate the procedure of the macro
+% we do one calculation explicitely.
+%
+% E.g. we want to draw the upper right quarter of a circle with end points $z_1=(0,r)$
+% and $z_4=(r,0)$. $z_2$ and $z_3$ determine the tangents. So we may introduce
+% them as $z_2=(h,r)$ and $z_3=(r,h)$ with a---so far unspecified---parameter
+% $h$.
+%
+% \begin{figure}[hbt]
+% \begin{center}
+% \begin{picture}(50,50)
+% \put(20,10){\line(1,0){30}}
+% \put(20,10){\line(0,1){30}}
+% \put(20,40){\line(1,0){10}}
+% \put(50,10){\line(0,1){10}}
+% \put(30,40){\line(1,-1){20}}
+% \put(20,40){\makebox(0,0){$\bullet$}}
+% \put(50,20){\makebox(0,0){$\bullet$}}
+% \put(30,40){\makebox(0,0){$\bullet$}}
+% \put(50,10){\makebox(0,0){$\bullet$}}
+% \put(5,35){$z_1$}
+% \put(45,0){$z_4$}
+% \put(52,18){$z_3$}
+% \put(25,45){$z_2$}
+% \put(-5,-10){\framebox(70,70){}}
+% \end{picture}
+% \end{center}
+% \caption{Sketch for the geometrical configuration}
+% \end{figure}
+%
+% If we substitute all points in the formula for the Bernste\u\i{}n
+% polynomial for both components, we end at (for $t=1/2$)
+% \[ x[\frac{1}{2}]=y[\frac{1}{2}]=\frac{r}{2}+\frac{3h}{8}\]
+% These values should be $r/\sqrt{2}$ for a circle.
+% So we arrive at
+% \[ h=\frac{4}{3}\left(\sqrt{2}-1\right).\]
+%
+% \DescribeMacro{\cArc}
+% \DescribeMacro{\cCircle}
+% The plot commands are:
+% \begin{verbatim}
+% \cArc[n](xm,ym)(x1,y1)
+% \cCircle[n](xm,ym){r}[loc]
+% \end{verbatim}
+%
+% The optional qualifier $n$ determines the number
+% of plotted points (There are as before $n+1$ plotted points for arcs; for circles the
+% number depends on the specifier \textit{loc} and may be $n+1$, $2n+2$, or $4n+4$.).
+%
+% \verb+\cArc+ plots a half circle with centre $(x_m,y_m)$ and $x$-axis through
+% $(x_1,y_1)$ counterclockwise.
+%
+% $r$ is the radius of the circle, specified as decimal constant in terms of
+% \verb+\unitlength+.
+%
+% \verb+\cCircle+ plots full, halves and quarters of circles by specifying
+% \textit{loc} (see the corresponding table).
+%
+% \begin{table}[hbtp]
+% \caption{Location specifiers for \texttt{cCircle}s}
+% \begin{center}
+% \begin{tabular}{|l|l|}
+% \hline
+% \textit{loc} & specifies \dots\\
+% \hline
+% \texttt{f} & full circle\\
+% \texttt{l} & left half circle\\
+% \texttt{r} & right half circle\\
+% \texttt{b} & bottom half circle\\
+% \texttt{t} & top half circle\\
+% \texttt{lb} or \texttt{bl} & left bottom quarter of the circle\\
+% \texttt{lt} or \texttt{tl} & left top quarter of the circle\\
+% \texttt{rb} or \texttt{br} & right bottom quarter of the circle\\
+% \texttt{rt} or \texttt{tr} & right top quarter of the circle\\
+% \hline
+% \end{tabular}
+% \end{center}
+% \end{table}
+%
+% \begin{figure}[hbtp]
+% \begin{center}
+% \begin{picture}(300,100)
+% \cCircle[1600](150,50){50}[f]
+% \cCircle[150](100,0){50}[tr]
+% \cCircle[150](100,100){50}[br]
+% \cCircle[150](200,0){50}[tl]
+% \cCircle[150](200,100){50}[bl]
+% \cCircle[200](50,90){45}[b]
+% \cCircle[200](50,0){45}[t]
+% \cCircle[200](5,45){45}[r]
+% \cCircle[200](95,45){45}[l]
+% \cArc[200](250,70)(280,50)
+% \cArc[200](250,60)(280,50)
+% \cArc[200](250,50)(280,50)
+% \cArc[200](250,40)(280,50)
+% \cArc[200](250,30)(280,50)
+% \put(-10,-10){\framebox(320,120){}}
+% \end{picture}
+% \end{center}
+% \caption{Examples for \texttt{cCircle} and \texttt{cArc}}
+% \end{figure}
+% %
+%
+% \section{Fitting Arcs}
+%
+% The quality of representating arcs by cubic bezier curves is quite
+% satisfactory. The differences between circles and beziers may be
+% estimated in two ways.
+%
+% \begin{enumerate}
+% \item If we test the overall fit the area enclosed by
+% the curves is a good metric: The area of \texttt{Carc} for the quarter circle
+% is $1/30 (-33+40\sqrt{2})r^2$ to be conferred with $\pi/4\:r^2$. This is an overshot
+% by just 0.028\%!
+% \item The pointwise fit is measured by the radial difference.
+% The maximum is $\cong 0.00025\,r$ (at odd multiples of $\pi/8$),
+% it is zero for all multiples of $\pi/4$.
+% \end{enumerate}
+%
+% \section{Some \TeX{}nical Notes}
+%
+% For the macros therein a lot of counters and lengths have to
+% be declared.\footnote{Although I reuse some internal lengths I had to
+% declare some more to be used in function calls.}
+% Counters represent integer numbers, lengths are
+% ``real'' numbers (actually they are just integer multiples of
+% $1/65536=2^{-16}$). \TeX\ has just a limited number of these
+% stacks and therefore I use the same counters/lengths in all the macros.
+%
+% One cannot store a real number for further use in these internal stacks just a
+% multiplication of a \textit{decimal constant} with a length is possible (counters
+% may be multiplied also with real numbers but just the integer part of the decimal
+% constant is used!)
+%
+% The package \Lpack{calc} introduced in the \LaTeX\ Companion\cite{T4} adds a
+% new possiblity for multiplying lengths with the ratio of two lengths. This feature will be
+% utilized furthermore.
+%
+% \section{Calculating Lengths}
+%
+% If I define lengths with respect to some \verb+\unitlength+ I can now define a
+% product or fraction of two lengths:
+%
+% \verb+\lengthc = \lengtha*\ratio{\lengthb}{\unitlength}+
+%
+% and
+%
+% \verb+\lengthc = \unitlenght*\ratio{\lengtha}{\lengthb}+
+%
+% The dimension of \verb+\lengthc+ \textit{in terms of} \verb+\unitlength+ (!) is the
+% product, or factor respectively, of the two other lengths.
+%
+% With these operations it is even possible to
+% calculate square roots. Simply use the iteration scheme ($m$ integer)
+% \[ \xi_{m+1}=\frac{1}{2}\left( \xi_m + \frac{a}{\xi_m} \right) \]
+% which will converge fast (with accuracy \verb+\eps+=1\,sp) to $\sqrt a$ (starting with
+% $\xi_0=a>0$).
+%
+%
+% Lengths (in a \texttt{picture} environment) are easily calculated too, one just has to
+% care for the upper limits (the maximum length for \TeX\ is roughly 16384\,pt!).
+%
+% \DescribeMacro{\LenMult}
+% \DescribeMacro{\LenDiv}
+% \DescribeMacro{\AbsLen}
+% \DescribeMacro{\LenSqrt}
+% \DescribeMacro{\Length}
+% \DescribeMacro{\LenNorm}
+% The macros are:
+% \begin{itemize}
+% \item \verb+\LenMult#1#2#3+ and \verb+\LenDiv#1#2#3+ with two input and one output length
+% (\verb+#3+).
+% \item \verb+\AbsLen#1+ which returns the input length as positive length
+% (\TeX\ lengths can be negative!).
+% \item \verb+\LenSqrt#1#2+ returns in the length \verb+#2+ the square root of length \verb+#1+
+% (to say it again: measured in terms of \verb+\unitlength+).
+% \item \verb+\Length(#1,#2)(#3,#4)#5+ stores in \verb+#5+ the length of the line
+% segment between points \verb+(#1,#2)+ and \verb+(#3,#4)+ (coordinates may be decimal
+% constants as in the \texttt{picture} commands).
+% \item \verb+\LenNorm#1#2#3+ returns in \verb+#3+ the length of the hypothenuse of the
+% rectangular triangle with catheti \verb+#1+ and \verb+#2+.
+% \end{itemize}
+%
+% \DescribeMacro{\eps}
+% \textbf{All calculations} can be only exact up to the smallest length in \TeX\ which is
+% \verb+\eps+=1\,sp=$2^{-16}$\,pt=0.000015\,pt.
+%
+% Examples (\verb+\unitlength+=1\,pt):
+% \begin{verbatim}
+% Mult: \LenMult{3pt}{4.333333pt}{\PathLength}\the\PathLength
+% Div: \LenDiv{3pt}{4.3333333pt}{\PathLength}\the\PathLength
+% Abs: \setlength{\PathLength}{-10pt}\the\PathLength\
+% \AbsLen{\PathLength}\the\PathLength
+% Sqrt: \LenSqrt{16pt}{\PathLength}\the\PathLength\
+% \LenSqrt{2pt}{\PathLength}\the\PathLength\
+% \Length(1.5,4.3)(2.7,5){\PathLength}\the\PathLength\
+% \LenNorm{3pt}{4pt}{\PathLength}\the\PathLength
+% \end{verbatim}
+%
+% Mult: \LenMult{3pt}{4.333333pt}{\PathLength}\the\PathLength\ (exact: 13\,pt)
+%
+% Div: \LenDiv{3pt}{4.333333pt}{\PathLength}\the\PathLength\ (exact: 0.692308\,pt)
+%
+% Abs: \setlength{\PathLength}{-10pt}\the\PathLength\
+% \AbsLen{\PathLength}\the\PathLength
+%
+% Sqrt: \LenSqrt{16pt}{\PathLength}\the\PathLength\ (exact: 4\,pt)\
+% \LenSqrt{2pt}{\PathLength}\the\PathLength\ (exact: 1.414213\,pt)
+%
+% \hspace*{10mm} \Length(1.5,4.3)(2.7,5){\PathLength}\the\PathLength\ (exact: 1.389244\,pt)
+% \LenNorm{3pt}{4pt}{\PathLength}\the\PathLength (exact: 5\,pt)
+%
+% \DescribeMacro{\PathLengthQ}
+% \DescribeMacro{\PathLengthC}
+% \DescribeMacro{\PathLength}
+% \DescribeMacro{\pathmax}
+% Furthermore you can use these macros to evaluate the length of linear interpolations
+% of the curves displayed by \verb+\qbezier+ and \verb+\cbezier+. The syntax is
+% \verb+\PathLengthQ[n](x1,y1)(x2,y2)(x3,y3)+ and\\
+% \verb+\PathLengthC[n](x1,y1)(x2,y2)(x3,y3)(x4,y4)+ respectively. $n$ is the
+% number of interpolation points which is bounded by \verb+\pathmax+=50. The length
+% is stored in the%
+% ---already defined and used---length \verb+\PathLength+. Note: $n$ is \emph{not} optional
+% for these two macros.
+%
+% Example: For the cubic spline\\
+% \verb+\cbezier[200](0,0)(50,100)(50,0)(100,100)+
+% shown in Fig.~9 the results of the \verb+\PathLength+ \\
+% for $n$=2,5,10,20,30,40,50
+% are displayed below. You may increase the value of \verb+\pathmax+ as for
+% \verb+\qbeziermax+ but the result will due to the internal calculation problems
+% not become sigificant better.
+%
+% \begin{figure}[hbt]
+% \begin{center}
+% \begin{picture}(100,80)
+% \put(0,0){\framebox(100,100){}}
+% \cbezier[300](0,0)(50,100)(50,0)(100,100)
+% \end{picture}
+% \end{center}
+% \caption{A nice cubic curve}
+% \end{figure}
+%
+% The results are: \PathLengthC[2](0,0)(50,100)(50,0)(100,100)\the\PathLength,
+% \PathLengthC[5](0,0)(50,100)(50,0)(100,100)\the\PathLength,
+% \PathLengthC[10](0,0)(50,100)(50,0)(100,100)\the\PathLength,
+% \PathLengthC[20](0,0)(50,100)(50,0)(100,100)\the\PathLength,
+% \PathLengthC[30](0,0)(50,100)(50,0)(100,100)\the\PathLength,
+% \PathLengthC[40](0,0)(50,100)(50,0)(100,100)\the\PathLength,
+% \PathLengthC[50](0,0)(50,100)(50,0)(100,100)\the\PathLength.
+% (An good numercial integration program will yield more accurate 149.999.)
+%
+% \section{More general arcs}
+%
+% \DescribeMacro{\cArcs}
+% Finally you can plot an arc (i.e.\ a cubic approximation to the circle arc) between
+% two points with given centre of the circle:\\
+% \verb+\cArcs[n](xm,ym)(x1,y1)(x2,y2)+\\
+% with $n+1$ number of points (limited by
+% \verb+\qbeziermax+ again) and centre $(x_m,y_m)$.
+%
+% \begin{figure}[hbt]
+% \begin{center}
+% \begin{picture}(200,200)
+% \put(0,0){\framebox(200,200){}}
+% \put(100,100){\makebox(0,0){$\bullet$}}
+% \cArcs[300](100,100)(120,130)(130,120)
+% \cArcs[100](100,100)(150,110)(110,150)
+% \cArcs[300](100,100)(130,180)(130,20)
+% \cArcs[300](100,100)(120,170)(80,170)
+% \cArcs[300](100,100)(60,150)(60,50)
+% \cArcs[100](100,100)(90,90)(110,90)
+% \cArcs[200](100,100)(60,70)(130,60)
+% \end{picture}
+% \end{center}
+% \caption{Some examples for arcs; the centre is marked by $\bullet$}
+% \end{figure}
+%
+% Limitations:
+% \begin{itemize}
+% \item The arc should be smaller than the half of a circle (The limit is
+% handled by \verb+\cArc+ and is built-in again in \verb+\cArcs+.) Otherwise the shape
+% will become ``elliptic'' and ly in the wrong half plane.
+% \item There is no check for consistency if $r_1^2=(x_1-x_m)^2+(y_1-y_m)^2$ and
+% $r_2^2=(x_2-x_m)^2+(y_2-y_m)^2$ are really equal. The graph will contain in any case
+% both points as border points.
+% \end{itemize}
+% I will shortly derive the formulas used in the code. The code is even more tricky
+% due to the fact that I had just a limited number of lengths and the code reuses
+% some lengths explicitely and implicitely by calling routines.
+%
+% \begin{figure}[hbt]
+% \begin{center}
+% \begin{picture}(200,200)
+% \put(0,0){\framebox(200,200){}}
+% \put(80,20){\makebox(0,0){$\bullet$}}
+% \put(50,120){\makebox(0,0){$\bullet$}}
+% \put(171.65,70){\makebox(0,0){$\bullet$}}
+% \put(100,135){\makebox(0,0){$\bullet$}}
+% \put(146.65,115.825){\makebox(0,0){$\bullet$}}
+% \put(120.3,115.6){\makebox(0,0){$\bullet$}}
+% \lbezier[150](80,20)(50,120)
+% \lbezier[150](80,20)(171.65,70)
+% \cArcs[200](80,20)(50,120)(171.65,70)
+% \lbezier[150](50,120)(150,150)
+% \lbezier[150](171.65,70)(121.65,161.65)
+% \lbezier[30](80,20)(141.65,170)
+% \put(66,21){$M$}
+% \put(41,115){4}
+% \put(174,65){1}
+% \put(90,135){3}
+% \put(150,112){2}
+% \put(116,120){5}
+% \end{picture}
+% \end{center}
+% \caption{Sketch for the geometric situation}
+% \end{figure}
+%
+% We know the coordinates for the points $M$, 1, and 4. The tangents $\overline{43}$ and
+% $\overline{12}$ are normals to the radius in the corresponding points. The distances
+% $\overline{43}$ and $\overline{12}$ should be equal. 5 lies on the symmetry axis (dotted
+% line) with distance $r$ from $M$.
+%
+% \noindent Normal vectors: $\vec n_1=(y_m-y_1,x_1-x_m)$ and $\vec n_2=(y_4-y_m,x_m-x_4)$
+%
+% \noindent Coordinate vectors: $\vec 2 = \vec 1 + \lambda \vec n_1$ and
+% $\vec 3 = \vec 4 + \lambda \vec n_2$ ($\lambda$ is the same because both normal
+% vectors have length $r$)
+%
+% \noindent Furthermore $\vec 5={\cal B}_4 [1/2]$ (the cubic spline
+% should also be symmetric and contain 5)
+%
+% Now we have:
+% \begin{eqnarray}
+% x[ t] & = & (1-t)^3 x_1 + 3 t (1-t)^2 x_2 + 3 t^2 (1-t) x_3 +t^3 x_4\\
+% y[ t] & = & (1-t)^3 y_1 + 3 t (1-t)^2 y_2 + 3 t^2 (1-t) y_3 +t^3 y_4
+% \end{eqnarray}
+%
+% Substituting for $x_2$, $y_2$, $x_3$, and $y_3$ and $t\to1/2$:
+% \begin{eqnarray}
+% x_5=x\left[ \frac{1}{2}\right] & = & \frac{1}{2}
+% (x_1 +x_4) + \frac{3}{8} \lambda(y_4-y_1) \\
+% y_5=y\left[ \frac{1}{2}\right] & = & \frac{1}{2}
+% (y_1 +y_4) + \frac{3}{8} \lambda(x_1-x_4 )
+% \end{eqnarray}
+%
+% We could now calculate the norm of this point and set it equal to the radius $r^2=
+% (x_m-x_1)^2+(y_m-y_1)^2$. This gives a quadratic equation for
+% $\lambda$. But the result is a rather complex term with respect to our input parameters.
+%
+% A nicer term can be found if we define
+% \begin{equation}
+% x_5=x_m+\kappa (x_1+x_4-2x_m) \quad y_5=y_m+\kappa (y_1+y_4-2y_m)
+% \end{equation}
+% with aid of the symmetry vector. $\kappa$ is simply $r$ divided by the norm of the
+% symmetry vector.
+%
+% The resulting $\lambda$ is now (using just the $x$-equation)
+% \begin{equation}
+% \lambda=\frac{4}{3} (-1+2 \kappa)\frac{x_1+x_4-2x_m}{y_4-y_1}
+% \end{equation}
+%
+% Special cases:
+% \begin{itemize}
+% \item The symmetry vector is the null vector if $\overline{14}$ is a diameter of the
+% circle. But this case is already solved by \verb+\cArc+.
+% \item For $y_4=y_1$ one needs the equation for the $y$-component, i.e.\ we have as factor
+% $(y_1+y_4-2y_m)/(x_1-x_4)$ in $\lambda$.
+% \end{itemize}
+%
+%
+% \section{Varying the line thickness}
+%
+% There is another package, \Lpack{bez123}\cite{T5}, which introduces also linear and cubic
+% bezier curves, even variants which plot exactly all kind of conic curves (ellipses,
+% parabolas, and hyperbolas). There are two features in \Lpack{bez123}, which I added in the
+% third version of \Lpack{ebezier}:
+%
+% \DescribeMacro{\thinlines}
+% \DescribeMacro{\thicklines}
+% \DescribeMacro{\linethickness}
+% \DescribeMacro{\qbeziermax}
+% \begin{enumerate}
+% \item Changing the size of the plot squares by the \LaTeX\ commands\\
+% \verb+\thinlines+, \verb+\thicklines+, and/or \verb+\linethickness+.
+% \item Calulation of an optimal number of plot points if $n$=0 instead of using the
+% maximum \verb+\qbeziermax+ (see next section).
+% \end{enumerate}
+%
+% If you look close to lines you will note some peculiarity. For instance the original
+% \LaTeX\ \verb+\line+ is in horizontal/vertical mode a simple \verb+\ruler+.
+%
+% \begin{figure}[htbp]
+% \begin{center}
+% \begin{picture}(100,100)
+% \thinlines
+% \put(-5,-5){\framebox(110,110){}}
+% \setlength{\linethickness}{0.1pt}
+% \put(0,10){\line(1,0){100}}
+% \put(10,0){\line(0,1){100}}
+% \setlength{\linethickness}{10pt}
+% \put(10,10){\line(1,0){60}}
+% \put(10,10){\line(0,1){60}}
+% \end{picture}
+% \end{center}
+% \caption{Axes with standard lines}
+% \end{figure}
+%
+% Remark: The \textit{line} is exactly as long as specified.
+%
+% \DescribeMacro{\@wholewidth}
+% But the plot point used by \verb+\qbezier+, \Lpack{bez123} and \Lpack{ebezier}
+% (until version 2!) is a small square which is not centered at the control points
+% (dimension \verb+\@wholewidth+)
+%
+% \begin{figure}[htbp]
+% \begin{center}
+% \begin{picture}(50,50)
+% \thinlines
+% \put(-5,-5){\framebox(60,60){}}
+% \setlength{\linethickness}{0.1pt}
+% \put(0,25){\line(1,0){50}}
+% \put(15,0){\line(0,1){50}}
+% \DefOldPlotSymbol
+% \setlength{\linethickness}{10pt}
+% \lbezier[1](15,25)(15,25)
+% \end{picture}
+% \end{center}
+% \caption{Old plot symbol}
+% \end{figure}
+%
+% which results in a shifted $y$-axis and \textit{lines} which are actually longer
+% by an amount of one square (i.e. \verb+\@wholewidth+)
+%
+% \begin{figure}[htbp]
+% \begin{center}
+% \begin{picture}(100,100)
+% \thinlines
+% \put(-5,-5){\framebox(110,110){}}
+% \setlength{\linethickness}{0.1pt}
+% \put(0,10){\line(1,0){100}}
+% \put(10,0){\line(0,1){100}}
+% \setlength{\linethickness}{10pt}
+% \DefOldPlotSymbol
+% \setlength{\linethickness}{10pt}
+% \lbezier[10](10,10)(80,10)
+% \lbezier[10](10,10)(10,80)
+% \end{picture}
+% \end{center}
+% \caption{Axes with old plot symbol}
+% \end{figure}
+%
+% or with hollow squares ($\bullet$ references to the end points).
+%
+% \begin{figure}[htbp]
+% \begin{center}
+% \begin{picture}(100,100)
+% \thinlines
+% \put(-5,-5){\framebox(110,110){}}
+% \setlength{\linethickness}{0.1pt}
+% \put(0,10){\line(1,0){100}}
+% \put(10,0){\line(0,1){100}}
+% \thinlines
+% \put(10,5){\framebox(70,10){}}
+% \put(10,5){\framebox(10,70){}}
+% \put(10,5){\framebox(10,10){}}
+% \put(70,5){\framebox(10,10){}}
+% \put(10,65){\framebox(10,10){}}
+% \put(10,10){\makebox(0,0){$\bullet$}}
+% \put(70,10){\makebox(0,0){$\bullet$}}
+% \put(10,70){\makebox(0,0){$\bullet$}}
+% \end{picture}
+% \end{center}
+% \caption{Axes with old plot symbol (hollow)}
+% \end{figure}
+%
+%
+% This version uses centered plot symbols (standard is again a square)
+%
+% \begin{figure}[htbp]
+% \begin{center}
+% \begin{picture}(50,50)
+% \put(-5,-5){\framebox(60,60){}}
+% \setlength{\linethickness}{0.1pt}
+% \put(0,25){\line(1,0){50}}
+% \put(25,0){\line(0,1){50}}
+% \DefStandardPlotSymbol
+% \setlength{\linethickness}{10pt}
+% \lbezier[1](25,25,)(25,25)
+% \end{picture}
+% \end{center}
+% \caption{New standard plot symbol}
+% \end{figure}
+%
+% which corrects the shift of the $y$-axis. The line is again longer but this
+% time the excess is symmetrically on both ends
+%
+% \begin{figure}[htbp]
+% \begin{center}
+% \begin{picture}(100,100)
+% \thinlines
+% \put(-5,-5){\framebox(110,110){}}
+% \setlength{\linethickness}{0.1pt}
+% \put(0,10){\line(1,0){100}}
+% \put(10,0){\line(0,1){100}}
+% \setlength{\linethickness}{10pt}
+% \lbezier[10](10,10)(80,10)
+% \lbezier[10](10,10)(10,80)
+% \end{picture}
+% \end{center}
+% \caption{Axes with new standard plot symbol}
+% \end{figure}
+%
+% or again with hollow squares.
+%
+% \begin{figure}[htbp]
+% \begin{center}
+% \begin{picture}(100,100)
+% \thinlines
+% \put(-5,-5){\framebox(110,110){}}
+% \setlength{\linethickness}{0.1pt}
+% \put(0,10){\line(1,0){100}}
+% \put(10,0){\line(0,1){100}}
+% \thinlines
+% \put(5,5){\framebox(70,10){}}
+% \put(5,5){\framebox(10,70){}}
+% \put(5,5){\framebox(10,10){}}
+% \put(65,5){\framebox(10,10){}}
+% \put(5,65){\framebox(10,10){}}
+% \put(10,10){\makebox(0,0){$\bullet$}}
+% \put(70,10){\makebox(0,0){$\bullet$}}
+% \put(10,70){\makebox(0,0){$\bullet$}}
+% \end{picture}
+% \end{center}
+% \caption{Axes with new standard plot symbol (hollow)}
+% \end{figure}
+%
+% \DescribeMacro{\DefOldPlotSymbol}
+% \DescribeMacro{\Qbezier}
+% To be consistent with the old version the command \verb+\DefOldPlotSymbol+
+% is supplied which uses the old form. Also a variant \verb+\Qbezier+ for
+% \verb+\qbezier+ is
+% defined which can use the new plot symbol.\footnote{This command is just for convenience.
+% A quadratic bezier can be plotted as cubic bezier as follows. If you want to plot
+% $\backslash$\texttt{qbezier[100](z1)(zm)(z4)} with $(z)=(x,y)$ you may calulate points
+% $z_2=2/3[z_m,z_1]$ and $z_3=2/3[z_m,z_4]$. The cubic bezier $\backslash$%
+% \texttt{cbezier[100](z1)(z2)(z3)(z4)} is exactly the same as the quadratic one!}%
+% \footnote{It can also use the other new symbols defined later.}
+%
+% The next point of consideration is the handling of slanted lines.
+% In the ordinary \LaTeX-\texttt{picture} environment
+% \verb+\linethickness+ has no effect on slanted lines. Now the change applies
+% but a new problem occurs. If you plot a slanted line (slope angle $\varphi$)
+% with squares
+%
+% \begin{figure}[htb]
+% \begin{center}
+% \begin{picture}(100,80)
+% \thinlines
+% \put(-5,-5){\framebox(110,90){}}
+% \put(5,5){\framebox(30,30){}}
+% \put(25,15){\framebox(30,30){}}
+% \put(45,25){\framebox(30,30){}}
+% \put(65,35){\framebox(30,30){}}
+% \put(35,5){\line(2,1){70}}
+% \put(5,35){\line(2,1){70}}
+% \put(60,5){\vector(-1,2){5}}
+% \put(55,15){\line(-1,2){23}}
+% \put(32.5,60){\vector(1,-2){5}}
+% \put(61,22){$\scriptscriptstyle\varphi$}
+% \put(32,47){$\scriptscriptstyle\varphi$}
+% \put(65,10){$d$}
+% \end{picture}
+% \end{center}
+% \caption{Effective thickness for slanted lines}
+% \end{figure}
+%
+% your line gets effective thicker! The factor of enlargement is $\sin \varphi
+% +\cos \varphi$ which has its maximum $\sqrt 2$ with slope $\varphi_0=45^0$.
+%
+%
+% There are two possiblities to correct the thickness
+% \begin{itemize}
+% \item correct the line thickness of each line or
+% \item use other plot symbols which behave better.
+% \end{itemize}
+%
+% \DescribeMacro{\Lbezier}
+% The first possibilitiy can be realized just for \verb+\lbezier+ and not
+% \verb+\cbezier+ because the slope changes from point to point in the latter case.
+% The solution is established by internally changing the \verb+\linethickness+
+% by the factor $\ell/(\Delta x+\Delta y)$ where $\ell$ denotes the length of the
+% line ($=\sqrt{\Delta^2 x +\Delta^2 y}$)
+% and $\Delta x$ is the horizontal difference of the the points
+% ($\Delta y$ respectivelly for the vertical difference).
+%
+% To use this line type call \verb+\Lbezier[n](x1,y1)(x2,y2)+.
+%
+% The second chance is to change the plot symbol to a disc. The smallest disk
+% available is the character ``.'' at 5pt. Unfortunately this method will
+% implicitely restrict the \verb+\linethickness+ to some definite values (see the
+% following table for the numbers in question).
+%
+% \begin{table}[hbtp]
+% \caption{Dimensions for various plot symbols}
+% \begin{center}
+% \begin{tabular}{|ll|rr|l|}
+% \hline
+% Font&Size for (10pt) & Width & Heigth & Rule \\
+% \hline
+% \verb+\vrm+ &tiny& \SB{\vrm}{.}\the\wd1 & \SB{\vrm}{.}\the\ht1 &
+% \SB{\vrm}{.}\rule{1 cm}{\ht1} \copy1\\
+% \verb+\virm+ &tiny for 11/12pt& \SB{\virm}{.}\the\wd1 & \SB{\virm}{.}\the\ht1 &
+% \SB{\virm}{.}\rule{1 cm}{\ht1} \copy1\\
+% \verb+\viirm+ & scriptsize &\SB{\viirm}{.}\the\wd1 & \SB{\viirm}{.}\the\ht1 &
+% \SB{\viirm}{.}\rule{1 cm}{\ht1} \copy1\\
+% \verb+\viiirm+ & footnotesize & \SB{\viiirm}{.}\the\wd1 & \SB{\viiirm}{.}\the\ht1 &
+% \SB{\viiirm}{.}\rule{1 cm}{\ht1} \copy1\\
+% \verb+\ixrm+ & small &\SB{\ixrm}{.}\the\wd1 & \SB{\ixrm}{.}\the\ht1 &
+% \SB{\ixrm}{.}\rule{1 cm}{\ht1} \copy1\\
+% \verb+\xrm+ & normalsize &\SB{\xrm}{.}\the\wd1 & \SB{\xrm}{.}\the\ht1 &
+% \SB{\xrm}{.}\rule{1 cm}{\ht1} \copy1\\
+% \verb+\xirm+ & normalsize 11pt& \SB{\xirm}{.}\the\wd1 & \SB{\xirm}{.}\the\ht1 &
+% \SB{\xirm}{.}\rule{1 cm}{\ht1} \copy1\\
+% \verb+\xiirm+ & large &\SB{\xiirm}{.}\the\wd1 & \SB{\xiirm}{.}\the\ht1 &
+% \SB{\xiirm}{.}\rule{1 cm}{\ht1} \copy1\\
+% \verb+\xivrm+ & Large & \SB{\xivrm}{.}\the\wd1 & \SB{\xivrm}{.}\the\ht1 &
+% \SB{\xivrm}{.}\rule{1 cm}{\ht1} \copy1\\
+% \verb+\xviirm+ & LARGE &\SB{\xviirm}{.}\the\wd1 & \SB{\xviirm}{.}\the\ht1 &
+% \SB{\xviirm}{.}\rule{1 cm}{\ht1} \copy1\\
+% \verb+\xxrm+ & huge &\SB{\xxrm}{.}\the\wd1 & \SB{\xxrm}{.}\the\ht1 &
+% \SB{\xxrm}{.}\rule{1 cm}{\ht1} \copy1\\
+% \verb+\xxvrm+ & Huge &\SB{\xxvrm}{.}\the\wd1 & \SB{\xxvrm}{.}\the\ht1 &
+% \SB{\xxvrm}{.}\rule{1 cm}{\ht1} \copy1\\
+% \verb+$\bullet$+ & &\SB{$\bullet$}{}\the\wd1 &\SB{$\bullet$}{}\the\ht1&
+% \SB{$\bullet$}{}\rule{1cm}{\ht1} \copy1\\
+% \hline
+% \end{tabular}
+% \end{center}
+% \end{table}
+%
+% \DescribeMacro{\DefPlotSymbol}
+% With the aim of the command \verb+\DefPlotSymbol{item}+ you may define any
+% \textit{item} as your plot symbol\footnote{A similar approach with centered
+% symbols can be found in the packages
+% \Lpack{epic}\cite{epic} and PiC\TeX\cite{pictex}.}.
+% It will be centered as the default plot square
+% (otherwise an even larger shift of the $y$-axis would occur). Use explicit font
+% selection with the names supplied in the table to ensure style independence
+% (otherwise e.g.\
+% \verb+\DefPlotSymbol{\tiny .}+ would be different in 10pt and 11pt context).
+%
+% \DescribeMacro{\DefShiftedPlotSymbol}
+% This works
+% for all \textit{items} which have a vertical symmetry axis with respect to their
+% defining bounding box (defined by \Metafont) and which ly on the baseline
+% (or beyond if they have some defined depth). It will not work otherwise. For example the
+% circles from the circle font have heigth and depth zero and their reference point is
+% already the centre (i.e. the symbol extends backward). Or consider the ``*''-sign.
+% It does not ly on the baseline. For these cases a generalized command is supplied:\\
+% \verb+\DefShiftedPlotSymbol{item}{x-shift}{y-shift}{height}+.
+%
+% The shifts are applied
+% to the left and downward. The supplied heigth will only have effect if you specify
+% $n=0$ for the number of plotting points.
+%
+% Examples:
+% \begin{verbatim}
+% \DefShiftedPlotSymbol{\tencirc n}{0pt}{0pt}{1pt}
+% \DefShiftedPlotSymbol{\tencirc \char'176}{0pt}{0pt}{15pt}
+% \DefShiftedPlotSymbol{\fbox{\Huge *}}{0pt}{0pt}{25pt}
+% %with bounding box
+% \setbox0=\hbox{*}
+% \DefShiftedPlotSymbol{*}{.5\wd0}{.7\ht0}{.6\ht0}
+% \lbezier[1](100,30)(100,30)
+% \lbezier[0](0,20)(125,20)
+% \DefShiftedPlotSymbol{*}{.5\wd0}{.7\ht0}{10\ht0}
+% \lbezier[0](0,10)(125,10)
+% \end{verbatim}
+%
+% \setlength{\fboxsep}{0pt}
+% \setlength{\fboxrule}{0.1pt}
+%
+% \begin{figure}[hbtp]
+% \begin{center}
+% \begin{picture}(125,50)
+% \put(-5,-5){\framebox(135,60){}}
+% \setlength{\linethickness}{0.1pt}
+% \put(0,30){\line(1,0){125}}
+% \multiput(25,20)(25,0){4}{\line(0,1){20}}
+% \DefShiftedPlotSymbol{\tencirc n}{0pt}{0pt}{1pt}
+% \lbezier[1](25,30)(25,30)
+% \DefShiftedPlotSymbol{\tencirc \char'176}{0pt}{0pt}{15pt}
+% \lbezier[1](50,30)(50,30)
+% \DefShiftedPlotSymbol{\fbox{\Huge *}}{0pt}{0pt}{25pt}
+% \lbezier[1](75,30)(75,30)
+% \setbox0=\hbox{*}
+% \DefShiftedPlotSymbol{*}{.5\wd0}{.7\ht0}{.6\ht0}
+% \lbezier[1](100,30)(100,30)
+% \lbezier[0](0,20)(125,20)
+% \DefShiftedPlotSymbol{*}{.5\wd0}{.7\ht0}{10\ht0}
+% \lbezier[0](0,10)(125,10)
+% \end{picture}
+% \end{center}
+% \caption{Examples for other plot symbols}
+% \end{figure}
+%
+% \emph{Caution:} The commands for changing the line thickness have
+% implicit effects for plot symbols
+% defined with \verb+\DefPlotSymbol{item}+ or \\
+% \verb+\DefShiftedPlotSymbol+. The implicit or
+% explicit defined height is redefined. But the effect is only visible in case $n=0$.
+%
+%
+% \DescribeMacro{\DefStandardPlotSymbol}
+% In any case you may restore \textbf{default values} by stating
+% \begin{verbatim}
+% \DefStandardPlotSymbol
+% \thinlines
+% \end{verbatim}
+%
+% \section{Estimation for the number of plotting points}
+%
+% As mentioned in the last section all plotting macros will calculate the number
+% of plotting points if the value $n=0$ is active. All calculations will
+% use the actual length of the object which can
+% be calculated with the aim of the calculation macros in Section \textit{Calculating Lengths}.
+% For all these calculations \verb+\eps+ is temporarily increased by a factor of 10 and
+% for higher bezier curves just 5 intermediate points will be used. If the calculated number
+% exceeds the specified maximum \verb+\qbeziermax+ an info in the log-file will be generated.
+%
+% All macros for circles and arcs will use a simpler estimate due to their construction
+% by an intrinsic call of the cubic bezier. It uses the length of the chord and
+% the maximal deviation factor $\pi/2$ from the arc length.
+%
+%
+% \section{Joining linear beziers}
+%
+% \DescribeMacro{\ljoin}
+% A further command has been supplied to ease the drawing of polygon paths. Instead of
+% writing a sequence of \verb+\lbezier+s with common vertices you can write compactly
+% \verb+\ljoin[n](x1,y1)(x2,y2)(x3,y3)...(xm,ym)+
+%
+% Caution: There should be no spaces in the command, so break lines with \% if
+% necessary. There should be at least 2 points. The parameter $n$ is optional, internally
+% \verb-\lbezier[n](xk,yk)(xk+1,yk+1)- will be executed.
+%
+% \DescribeMacro{\Ljoin}
+% There is also a variant \verb+\Ljoin+ which uses \verb+\Lbezier+.
+%
+% \renewcommand{\qbeziermax}{1200}
+% \begin{figure}
+% \begin{center}
+% \begin{picture}(200,100)
+% \put(-5,-5){\framebox(210,110){}}
+% \begin{picture}(100,100)
+% \ljoin(0,0)(20,100)(20,0)(40,50)(40,0)(60,25)(60,0)(80,12.5)(80,0)(100,6.25)(100,0)
+% \end{picture}
+% \begin{picture}(100,100)
+% \Ljoin(0,0)(20,100)(20,0)(40,50)(40,0)(60,25)(60,0)%
+% (80,12.5)(80,0)(100,6.25)(100,0)
+% \end{picture}
+% \end{picture}
+% \end{center}
+% \caption{$\backslash$\texttt{ljoin} versus $\backslash$\texttt{Ljoin}}
+% \end{figure}
+%
+% \changes{Version 1}{2000/07/28}{original version}
+% \changes{Version 2}{2001/12/04}{major bug fix for cCircle}
+% \changes{Version 3}{2002/10/23}{major changes}
+% \changes{Version 4}{2005/03/01}{minor changes}
+%
+% \section*{Versions}
+%
+% This is Version 4 from March 1, 2004.
+%
+% Changes with regard to version 3:
+% \begin{itemize}
+% \item Bug-address changed.
+% \item Error in defining (first) equation corrected (thanks to \verb+jens.schwaiger@uni-graz.at+).
+% \item Marginal corrections with regard to \Lpack{l2tabu} (v1.8).
+% \item Documentaion as pdf supplied.
+% \end{itemize}
+%
+% Changes with regard to version 2:
+% \begin{itemize}
+% \item Implementing line thickness (\verb+\thinlines+, \verb+\thicklines+, and\\
+% \verb+\setlength{\linethickness}{dimen}+.
+% \item Different plot symbols.
+% \item \verb+\Lbezier+ for equally thick lines in all directions.
+% \item \verb+\Qbezier+ implementation to be used with new plot symbols.
+% \item Calculation of an optimal number of plot symbols (as default number for case $n$=0).
+% \item Parameter $n$ is for all \emph{plot} commands optional.
+% \item New macro for polygon paths.
+% \item Style supplied in dtx-format.
+% \item Minor style changes regarding numbers and lengths.
+% \end{itemize}
+%
+% Changes with regard to Version 1:
+% \begin{itemize}
+% \item \verb+\@tempa+ replaced by \verb+\@TempDim+. \verb+\@tempa+ was also
+% used by other packages.
+% \item Additionaly supplied \verb+\RequirePackage{calc}+.
+% \item Bug fixed for circles. The original macros did actually not support changes in
+% \verb+\unitlength+.
+% \end{itemize}
+%
+% \begin{thebibliography}{9}
+% \bibitem{T2} D.\ E.\ Knuth: \textit{The} \TeX\ \textit{Book}, Addison-Wesley,
+% Reading MA, 1986.
+% \bibitem{T3} D.\ E.\ Knuth: \textit{The} \Metafont\ \textit{Book}, Addison-Wesley,
+% Reading MA, 1986.
+% \bibitem{T4} M.\ Goossens, F.\ Mittelbach, A.\ Samarin: \textit{The} \LaTeX\ \textit{Companion},
+% Addison-Wesley, Reading MA, 1994.
+% \bibitem{T1} M.\ Goossens, S.\ Rahtz, F.\ Mittelbach: \textit{The} \LaTeX\
+% \textit{Graphics Companion}, Addison-Wesley, Reading MA, 1997.
+% \bibitem{T5} P.\ Wilson: \textit{The} \Lpack{bez123} \textit{and} \Lpack{multiply}
+% \textit{packages}, 1998;\\ packages at CTAN/macros/latex/contrib/supported/bez123.
+% \bibitem{epic} S.\ Podar: \textit{Enhancements to the Picture Environment
+% in }\LaTeX, 1986;\\ package at CTAN/macros/latex/other/epic.
+% \bibitem{pictex} M.\ J.\ Wichura: \textit{The PiC}\TeX\ \textit{Manual}, 1992;\\
+% package at CTAN/graphics/pictex.
+% \bibitem{pict2e} R.\ Niepraschk, H.\ Gaesslein: The \Lpack{pict2e} Package, 2003;\\
+% package at CTAN/macros/latex/contrib/pict2e.
+% \bibitem{PiX} N.\ J.\ H.\ M.\ van Beurden: A \LaTeX\ picture editor for Windows, 2003;\\
+% package at CTAN/systems/win32/latexpix.
+% \end{thebibliography}
+%
+% \OnlyDescription
+%
+% \section{Implementation}
+%
+% The macros \verb+\lbezier+ and \verb+\cbezier+ are rather old, they existed since
+% I realized the existence of \Lpack{bezier.sty} more then ten years ago. Therefore
+% the macros are written rather in pure \TeX\ than in \LaTeX. Only the calculation
+% macros demand for \LaTeX\ notation to use the package \Lpack{calc}. But with this
+% version the macros interact more and some \LaTeX\ part occurrs also in the plot macros.
+%
+% \begin{macrocode}
+%<*package>
+\NeedsTeXFormat{LaTeX2e}
+\RequirePackage{calc}
+%%
+% \end{macrocode}
+% I define new font names because \texttt{cmr} may not be the standard font. They
+% may be needed for plotting symbols.
+% \begin{macrocode}
+\newfont{\vrm}{cmr5}
+\newfont{\virm}{cmr6}
+\newfont{\viirm}{cmr7}
+\newfont{\viiirm}{cmr8}
+\newfont{\ixrm}{cmr9}
+\newfont{\xrm}{cmr10}
+\newfont{\xiirm}{cmr12}
+\newfont{\xviirm}{cmr17}
+\newfont{\xirm}{cmr10 scaled \magstephalf}
+\newfont{\xivrm}{cmr10 scaled \magstep2}
+\newfont{\xxrm}{cmr10 scaled \magstep4}
+\newfont{\xxvrm}{cmr10 scaled \magstep5}
+%%
+% \end{macrocode}
+%
+% I need only three new counters,
+% \begin{macrocode}
+\newcounter{@cnta}\newcounter{@cntb}\newcounter{@cntc}\newcounter{@cntd}
+%%
+% \end{macrocode}
+% but a lot of lengths. Packages like PiC\TeX\ have problems by defining too many
+% lengths, so I try to use as many already defined lengths (defined for usage
+% in a plotting context).
+% \begin{macrocode}
+%% \@TempDim#1#2#3{"count"|"dimen"|"box"|"skip"}{\myname}{\realname}
+%% allocate new one or alias is defined, so use it
+%%
+\def\@TempDim#1#2#3{%
+ \ifx\@und@fined#3\csname new#1\endcsname#2%
+ \else\let#2#3\fi}
+%%
+\@TempDim{dimen}\@X\@ovxx
+\@TempDim{dimen}\@Xa\@ovdx
+\@TempDim{dimen}\@Xb\@ovyy
+\@TempDim{dimen}\@Xc\@ovdy
+\@TempDim{dimen}\@Y\@ovro
+\@TempDim{dimen}\@Ya\@ovri
+\@TempDim{dimen}\@Yb\@xdim
+\@TempDim{dimen}\@Yc\@ydim
+\@TempDim{dimen}\@Z\@clnht
+\@TempDim{dimen}\@Za\@clnwd
+\@TempDim{dimen}\@Zb\@dashdim
+\@TempDim{dimen}\@Zc\@tempdima
+\@TempDim{dimen}\@Zd\@tempdimb
+\@TempDim{dimen}\@Ze\@tempdimc
+%%
+\newlength{\@Zf}\newlength{\@Zg}\newlength{\@Zh}
+\newlength{\@Zi}\newlength{\@Zj}
+% \end{macrocode}
+%
+% This special length will be used for the circle macros. The magic number is
+% $0.55228474983=4/3 (\sqrt{2}-1)$.
+%
+% \begin{macrocode}
+\newlength{\magicnum}
+\newcommand\set@magic{%
+ \setlength{\magicnum}{0.55228474983\unitlength}}
+%%
+% \end{macrocode}
+%
+% Another special one is \verb+\eps+. It could be initialized by \verb+\eps\@ne+
+% but due to its context to the calculation part 1sp=1/65536pt is used.
+%
+% \begin{macrocode}
+\newlength{\eps}
+\setlength{\eps}{1sp}
+%%
+% \end{macrocode}
+%
+% The last one is \verb+\PathLength+. It stores lengths which the user may need for
+% further use.
+%
+% \begin{macrocode}
+\newlength{\PathLength}
+%%
+% \end{macrocode}
+%
+% This two constants are needed in calculations, but I did not want to waste
+% any additional counter. \verb+\pathmax+ may be redefined to exceed 256, so it
+% is not defined by \verb+\chardef+.
+%
+% \begin{macrocode}
+\chardef\x@=10
+\newcommand{\pathmax}{50}
+%%
+% \end{macrocode}
+%
+% This fundamental box will keep the plotting symbol.
+%
+% \begin{macrocode}
+\newsavebox{\@pt}
+%%
+% \end{macrocode}
+%
+% I have to distinguish three cases: standard plot symbol, old standard plot symbol,
+% or any new one. For this purpose I need two logicals.
+%
+% \begin{macrocode}
+\newif\if@other@symbol
+\newif\if@standard@symbol
+% \end{macrocode}
+%
+% All plot symbols may be defined by the most general one,\\
+% \verb+\DefShiftedPlotSymbol+, but this way may be faster. The
+% other important macro is \verb+\set@width+ which redefines the plot
+% box due to changes which may have occurred (line thickness).
+%
+% \begin{macrocode}
+\newcommand{\DefStandardPlotSymbol}{%
+ \@other@symbolfalse\@standard@symboltrue
+ \setbox\@pt\hbox{\hskip -.5\wd0\vrule height\@halfwidth
+ depth\@halfwidth width\@wholewidth}}
+\newcommand{\DefOldPlotSymbol}{%
+ \@other@symbolfalse\@standard@symbolfalse
+ \setbox\@pt\hbox{\vrule height\@halfwidth
+ depth\@halfwidth width\@wholewidth}}
+\newcommand{\DefPlotSymbol}[1]{\setbox0=\hbox{#1}\@X\ht0\advance\@X-\dp0
+ \@halfwidth.5\ht0\@wholewidth\ht0
+ \@other@symboltrue\@standard@symbolfalse
+ \setbox\@pt\hbox{\hskip -.5\wd0\lower.5\@X\copy0}}
+\newcommand{\DefShiftedPlotSymbol}[4]{\setbox0=\hbox{#1}\@X #2\@Y #3
+ \@wholewidth #4\@halfwidth.5\@wholewidth
+ \@other@symboltrue\@standard@symbolfalse
+ \setbox\@pt\hbox{\hskip-\@X\lower\@Y\copy0}}
+\newcommand{\set@width}{%
+ \if@other@symbol
+ \relax
+ \else
+ \if@standard@symbol
+ \@X-.5\@wholewidth
+ \else
+ \@X\z@
+ \fi
+ \setbox\@pt\hbox{\hskip\@X\vrule height\@halfwidth
+ depth\@halfwidth width\@wholewidth}%
+ \fi}
+%%
+% \end{macrocode}
+%
+% The initialization is done here. Note that \verb+\thinlines+
+% is already default and needs not be specified here.
+%
+% \begin{macrocode}
+\DefStandardPlotSymbol
+%%
+% \end{macrocode}
+%
+% All plot macros have an optional number. Therefore an additional internal macro
+% is needed (it will have the same name with an extra @ in front of it.
+%
+% Here is the simpliest one, the linear case.
+%
+% \begin{macrocode}
+\def\lbezier{\@ifnextchar [{\@lbezier}{\@lbezier[0]}}
+\def\@lbezier[#1](#2,#3)(#4,#5){%
+ \c@@cntc#1\relax
+ \ifnum \c@@cntc<\@ne
+% \end{macrocode}
+%
+% I decrease the precision locally to speed up calculations. We need just
+% an estimate.
+%
+% \begin{macrocode}
+ \multiply\eps\x@
+ \Length(#2,#3)(#4,#5){\PathLength}%
+ \divide\eps\x@
+ \c@@cntc\PathLength
+ \@X.5\@halfwidth \divide\c@@cntc\@X
+ \ifnum \c@@cntc>\qbeziermax%
+ \PackageInfo{ebezier}{\the\c@@cntc\space points needed exceeding %
+ qbeziermax=\qbeziermax!}\fi
+ \fi
+ \ifnum \c@@cntc>\qbeziermax
+ \c@@cntc\qbeziermax\relax
+ \PackageWarning{ebezier}{Counter reset to qbeziermax=\qbeziermax!}\fi
+ \c@@cnta\c@@cntc\relax\advance\c@@cnta\@ne
+ \@Xa #4\unitlength \advance\@Xa-#2\unitlength \divide\@Xa\c@@cntc
+ \@Ya #5\unitlength \advance\@Ya-#3\unitlength \divide\@Ya\c@@cntc
+ \c@@cntb\z@\relax
+ \set@width
+ \put(#2,#3){\@whilenum{\c@@cntb<\c@@cnta}\do
+ {\@X\c@@cntb \@Xa\@Y \c@@cntb\@Ya
+ \raise\@Y\hbox to\z@{\hskip\@X\unhcopy\@pt\hss}%
+ \advance\c@@cntb\@ne}}}
+%%
+% \end{macrocode}
+%
+% \verb+\Lbezier+ changes the line thickness. It is stored in \verb+\@Xb+.
+%
+% \begin{macrocode}
+\def\Lbezier{\@ifnextchar [{\@Lbezier}{\@Lbezier[0]}}
+\def\@Lbezier[#1](#2,#3)(#4,#5){\c@@cntc#1\relax
+ \@Xb\@wholewidth
+ \@X #4\unitlength \advance\@X-#2\unitlength \AbsLen{\@X}%
+ \@Y #5\unitlength \advance\@Y-#3\unitlength \AbsLen{\@Y}%
+ \LenNorm{\@X}{\@Y}{\@Xc}\LenMult{\@Xc}{\@wholewidth}{\@Yb}%
+ \LenDiv{\@Yb}{\@X+\@Y}{\@wholewidth}\@halfwidth .5\@wholewidth
+ \ifnum \c@@cntc<\@ne
+ \multiply\eps\x@
+ \Length(#2,#3)(#4,#5){\PathLength}%
+ \divide\eps\x@
+ \c@@cntc\PathLength
+ \@X.5\@halfwidth \divide\c@@cntc\@X
+ \ifnum \c@@cntc>\qbeziermax%
+ \PackageInfo{ebezier}{\the\c@@cntc\space points needed exceeding %
+ qbeziermax=\qbeziermax!}\fi
+ \fi
+ \ifnum \c@@cntc>\qbeziermax
+ \c@@cntc\qbeziermax\relax
+ \PackageWarning{ebezier}{Counter reset to qbeziermax=\qbeziermax!}\fi
+ \c@@cnta\c@@cntc\relax \advance\c@@cnta\@ne
+ \@Xa #4\unitlength \advance\@Xa-#2\unitlength \divide\@Xa\c@@cntc
+ \@Ya #5\unitlength \advance\@Ya-#3\unitlength \divide\@Ya\c@@cntc
+ \c@@cntb\z@\relax
+ \set@width
+ \put(#2,#3){\@whilenum{\c@@cntb<\c@@cnta}\do
+ {\@X\c@@cntb \@Xa\@Y \c@@cntb\@Ya
+ \raise\@Y\hbox to\z@{\hskip\@X\unhcopy\@pt\hss}%
+ \advance\c@@cntb\@ne}}
+ \@wholewidth\@Xb \@halfwidth .5\@Xb}
+%%
+% \end{macrocode}
+%
+% The two joining macros need two internal steps to process an implicit list.
+%
+% \begin{macrocode}
+\def\ljoin{\@ifnextchar [{\@ljoin}{\@ljoin[0]}}
+\def\@ljoin[#1](#2,#3){\@ifnextchar ({\l@join[#1](#2,#3)}{\relax}}
+\def\l@join[#1](#2,#3)(#4,#5){%
+ \lbezier[#1](#2,#3)(#4,#5)%
+ \ljoin[#1](#4,#5)}
+%%
+\def\Ljoin{\@ifnextchar [{\@Ljoin}{\@Ljoin[0]}}
+\def\@Ljoin[#1](#2,#3){\@ifnextchar ({\L@join[#1](#2,#3)}{\relax}}
+\def\L@join[#1](#2,#3)(#4,#5){%
+ \Lbezier[#1](#2,#3)(#4,#5)%
+ \Ljoin[#1](#4,#5)}
+%%
+% \end{macrocode}
+%
+% \verb+\Qbezier+ is defined, because \verb+\qbezier+ uses an other plot box.
+% The original macro is a little bit more complicated to handle extra spaces
+% but I hope this will suffice.
+%
+% \begin{macrocode}
+\def\Qbezier{\@ifnextchar [{\@Qbezier}{\@Qbezier[0]}}
+\def\@Qbezier[#1](#2,#3)(#4,#5)(#6,#7){\c@@cntc#1\relax
+ \ifnum \c@@cntc<\@ne
+ \multiply\eps\x@
+ \PathLengthQ[5](#2,#3)(#4,#5)(#6,#7)%
+ \divide\eps\x@
+ \c@@cntc\PathLength
+ \@X.5\@halfwidth \divide\c@@cntc\@X
+ \ifnum \c@@cntc>\qbeziermax%
+ \PackageInfo{ebezier}{\the\c@@cntc\space points needed exceeding %
+ qbeziermax=\qbeziermax!}\fi
+ \fi
+ \ifnum \c@@cntc>\qbeziermax
+ \c@@cntc\qbeziermax\relax
+ \PackageWarning{ebezier}{Counter reset to qbeziermax=\qbeziermax!}\fi
+ \c@@cnta\c@@cntc\relax \advance\c@@cnta\@ne
+ \@Xa #4\unitlength \advance\@Xa-#2\unitlength \multiply\@Xa\tw@
+ \@Xb #6\unitlength \advance\@Xb-#2\unitlength
+ \advance\@Xb-\@Xa \divide\@Xb\c@@cntc
+ \@Ya #5\unitlength \advance\@Ya-#3\unitlength \multiply\@Ya\tw@
+ \@Yb #7\unitlength \advance\@Yb-#3\unitlength
+ \advance\@Yb-\@Ya \divide\@Yb\c@@cntc
+ \c@@cntb\z@\relax
+ \set@width
+ \put(#2,#3){\@whilenum{\c@@cntb<\c@@cnta}\do
+ {\@X\c@@cntb \@Xb\@Y \c@@cntb\@Yb
+ \advance\@X\@Xa \advance\@Y\@Ya
+ \divide\@X\c@@cntc \divide\@Y\c@@cntc
+ \multiply\@X\c@@cntb \multiply\@Y\c@@cntb
+ \raise \@Y \hb@xt@\z@{\kern\@X\unhcopy\@pt\hss}%
+ \advance\c@@cntb\@ne}}}
+%%
+% \end{macrocode}
+%
+% \verb+\cbezier+ is the most complex command. All calculations have to be
+% done in the correct order to minimize overflow conditions.
+%
+% \begin{macrocode}
+\def\cbezier{\@ifnextchar [{\@cbezier}{\@cbezier[0]}}
+\def\@cbezier[#1](#2,#3)(#4,#5)(#6,#7)(#8,#9){%
+ \c@@cntc#1\relax
+ \ifnum \c@@cntc<\@ne
+ \multiply\eps\x@
+ \PathLengthC[5](#2,#3)(#4,#5)(#6,#7)(#8,#9)%
+ \divide\eps\x@
+ \c@@cntc\PathLength
+ \@X = 0.5\@halfwidth
+ \divide\c@@cntc\@X
+ \ifnum \c@@cntc>\qbeziermax%
+ \PackageInfo{ebezier}{\the\c@@cntc\space points needed exceeding %
+ qbeziermax=\qbeziermax!}\fi
+ \fi
+ \ifnum \c@@cntc>\qbeziermax
+ \c@@cntc\qbeziermax\relax
+ \PackageWarning{ebezier}{Counter reset to qbeziermax=\qbeziermax!}\fi
+ \c@@cnta\c@@cntc\relax \advance\c@@cnta\@ne
+ \@Xa #4\unitlength \advance\@Xa-#2\unitlength \multiply\@Xa\thr@@
+ \@Xb #6\unitlength \advance\@Xb-#2\unitlength \multiply\@Xb\thr@@
+ \advance\@Xb -2\@Xa
+ \@Xc #8\unitlength \advance\@Xc-#2\unitlength
+ \advance\@Xc-\@Xa \advance\@Xc-\@Xb
+ \@Ya #5\unitlength \advance\@Ya-#3\unitlength \multiply\@Ya\thr@@
+ \@Yb #7\unitlength \advance\@Yb-#3\unitlength \multiply\@Yb\thr@@
+ \advance\@Yb-2\@Ya
+ \@Yc #9\unitlength \advance\@Yc-#3\unitlength
+ \advance\@Yc-\@Ya \advance\@Yc-\@Yb
+ \divide\@Xc\c@@cntc \divide\@Yc\c@@cntc
+ \c@@cntb\z@\relax
+ \set@width
+ \put(#2,#3){\@whilenum{\c@@cntb<\c@@cnta}\do
+ {\@X\c@@cntb \@Xc\@Y \c@@cntb\@Yc
+ \advance\@X\@Xb \advance\@Y\@Yb
+ \divide\@X\c@@cntc \divide\@Y\c@@cntc
+ \multiply\@X\c@@cntb \multiply\@Y\c@@cntb
+ \advance\@X\@Xa \advance\@Y\@Ya
+ \divide\@X\c@@cntc \divide\@Y\c@@cntc
+ \multiply\@X\c@@cntb \multiply\@Y\c@@cntb
+ \raise \@Y \hbox to \z@{\hskip \@X\unhcopy\@pt\hss}%
+ \advance\c@@cntb\@ne}}}
+%%
+% \end{macrocode}
+%
+% \verb+\Cbezier+ changes the plot symbol so a restore is needed. But it will
+% not keep the original one!
+%
+% \begin{macrocode}
+\def\Cbezier{\@ifnextchar [{\@Cbezier}{\@Cbezier[0]}}
+\def\@Cbezier[#1](#2,#3)(#4,#5)(#6,#7)(#8,#9){%
+ \cbezier[#1](#2,#3)(#4,#5)(#6,#7)(#8,#9)%
+ \c@@cntc#1\relax\divide\c@@cntc\thr@@
+ \lbezier[\c@@cntc](#2,#3)(#4,#5)%
+ \lbezier[\c@@cntc](#4,#5)(#6,#7)%
+ \lbezier[\c@@cntc](#6,#7)(#8,#9)%
+ \DefPlotSymbol{$\bullet$}
+ \lbezier[1](#2,#3)(#2,#3)
+ \lbezier[1](#4,#5)(#4,#5)
+ \lbezier[1](#6,#7)(#6,#7)
+ \lbezier[1](#8,#9)(#8,#9)
+ \DefStandardPlotSymbol
+ \thinlines}
+%%
+% \end{macrocode}
+%
+% \verb+\l@put+ is like \verb+\put+ but its arguments are lengths and not
+% decimal constants. It will be used in \verb+\l@cbezier+ which also has
+% lengths as arguments. All complex plotting commands use this form.
+% Just for the calculation of plotting points four more lengths are needed.
+% I use the ``scratch'' dimens from \TeX.
+%
+% \begin{macrocode}
+\long\gdef\l@put(#1,#2)#3{%
+ \@killglue\raise#2\hb@xt@\z@{\kern#1#3\hss}\ignorespaces}
+%%
+\long\gdef\l@cbezier[#1](#2,#3)(#4,#5)(#6,#7)(#8,#9){%
+ \c@@cntc#1\relax
+ \dimen1#2\dimen3#3
+%%
+ \@Xa #4 \advance\@Xa-#2 \multiply\@Xa\thr@@
+ \@Xb #6 \advance\@Xb-#2 \multiply\@Xb\thr@@
+ \advance\@Xb-2\@Xa
+ \@Xc #8 \advance\@Xc-#2
+ \advance\@Xc-\@Xa \advance\@Xc-\@Xb
+ \@Ya #5 \advance\@Ya-#3 \multiply\@Ya\thr@@
+ \@Yb #7 \advance\@Yb-#3 \multiply\@Yb\thr@@
+ \advance\@Yb-2\@Ya
+ \@Yc #9 \advance\@Yc-#3
+ \advance\@Yc-\@Ya \advance\@Yc-\@Yb
+%%
+%% assume half arc
+%%
+ \ifnum \c@@cntc <\@ne
+ \multiply\eps\x@
+ \dimen5#2 \advance\dimen5-#8 \AbsLen{\dimen5}%
+ \dimen7#3 \advance\dimen7-#9 \AbsLen{\dimen7}%
+ \LenNorm{\dimen5}{\dimen7}{\PathLength}%
+ \divide\eps\x@
+ \c@@cntc\PathLength
+ \dimen5.5\@halfwidth
+ \divide\c@@cntc\dimen5
+%%
+%% 11/7 \approx \pi/2
+%%
+ \divide\c@@cntc 7 \multiply\c@@cntc 11
+ \ifnum \c@@cntc>\qbeziermax
+ \PackageInfo{ebezier}{\the\c@@cntc\space points needed exceeding %
+ qbeziermax=\qbeziermax!}\fi
+ \fi
+ \ifnum\c@@cntc>\qbeziermax
+ \c@@cntc\qbeziermax\relax
+ \PackageWarning{ebezier}{Counter reset to qbeziermax=\qbeziermax!}\fi
+ \c@@cnta\c@@cntc\relax\advance\c@@cnta\@ne%
+ \divide\@Xc\c@@cntc \divide\@Yc\c@@cntc
+ \c@@cntb\z@\relax
+ \set@width
+ \l@put(\dimen1,\dimen3){\@whilenum{\c@@cntb<\c@@cnta}\do
+ {\@X\c@@cntb \@Xc\@Y \c@@cntb\@Yc
+ \advance\@X\@Xb \advance\@Y\@Yb
+ \divide\@X\c@@cntc \divide\@Y\c@@cntc
+ \multiply\@X\c@@cntb \multiply\@Y\c@@cntb
+ \advance\@X\@Xa \advance\@Y\@Ya
+ \divide\@X\c@@cntc \divide\@Y\c@@cntc
+ \multiply\@X\c@@cntb \multiply\@Y\c@@cntb
+ \raise\@Y\hbox to\z@{\hskip\@X\unhcopy\@pt\hss}%
+ \advance\c@@cntb\@ne}}}
+%%
+% \end{macrocode}
+%
+% The building blocks for the circles are the four quarters. Each is defined
+% separately and will be combined by the \verb+\cCircle+ macro.
+%
+% \begin{macrocode}
+\def\@circle@rt[#1](#2,#3)#4{%
+ \set@magic
+ \@Z #4\magicnum\@Za #2\unitlength\@Zb #3\unitlength
+ \@Zc #2\unitlength \advance\@Zc\@Z
+ \@Zd #3\unitlength \advance\@Zd\@Z
+ \@Ze #4\unitlength \advance\@Ze\@Za
+ \@Zf #4\unitlength \advance\@Zf\@Zb
+ \l@cbezier[#1](\@Ze,\@Zb)(\@Ze,\@Zd)(\@Zc,\@Zf)(\@Za,\@Zf)}
+%%
+\def\@circle@lt[#1](#2,#3)#4{%
+ \set@magic
+ \@Z #4\magicnum\@Za #2\unitlength\@Zb #3\unitlength
+ \@Zc #2\unitlength \advance\@Zc-\@Z
+ \@Zd #3\unitlength \advance\@Zd\@Z
+ \@Ze -#4\unitlength \advance\@Ze\@Za
+ \@Zf #4\unitlength \advance\@Zf\@Zb
+ \l@cbezier[#1](\@Za,\@Zf)(\@Zc,\@Zf)(\@Ze,\@Zd)(\@Ze,\@Zb)}
+%%
+\def\@circle@rb[#1](#2,#3)#4{%
+ \set@magic
+ \@Z #4\magicnum\@Za #2\unitlength\@Zb #3\unitlength
+ \@Zc #2\unitlength \advance\@Zc\@Z
+ \@Zd #3\unitlength \advance\@Zd-\@Z
+ \@Ze #4\unitlength \advance\@Ze\@Za
+ \@Zf -#4\unitlength \advance\@Zf\@Zb
+ \l@cbezier[#1](\@Za,\@Zf)(\@Zc,\@Zf)(\@Ze,\@Zd)(\@Ze,\@Zb)}
+%%
+\def\@circle@lb[#1](#2,#3)#4{%
+ \set@magic
+ \@Z #4\magicnum\@Za #2\unitlength\@Zb #3\unitlength
+ \@Zc #2\unitlength \advance\@Zc-\@Z
+ \@Zd #3\unitlength \advance\@Zd-\@Z
+ \@Ze -#4\unitlength \advance\@Ze\@Za
+ \@Zf -#4\unitlength \advance\@Zf\@Zb
+ \l@cbezier[#1](\@Ze,\@Zb)(\@Ze,\@Zd)(\@Zc,\@Zf)(\@Za,\@Zf)}
+%%
+% \end{macrocode}
+%
+% I use the logicals from the \verb+\oval+ defined in \LaTeX. So I need just
+% one more logical \verb+\if@ovf+.
+%
+% \begin{macrocode}
+\newif\if@ovf
+\def\cCircle{\@ifnextchar [{\@cCircle}{\@cCircle[0]}}
+\def\@cCircle[#1](#2,#3)#4[#5]{%
+ \@ovtfalse\@ovbfalse\@ovlfalse\@ovrfalse\@ovffalse
+ \c@@cnta#1\relax
+ \@tfor\reserved@a:=#5\do{\csname @ov\reserved@a true\endcsname}%
+ \if@ovf\@ovttrue \divide\c@@cnta\tw@\fi
+ \if@ovt
+ \if@ovr
+ \@circle@rt[\c@@cnta](#2,#3){#4}
+ \else\if@ovl
+ \@circle@lt[\c@@cnta](#2,#3){#4}
+ \else\divide\c@@cnta\tw@
+ \@circle@rt[\c@@cnta](#2,#3){#4}
+ \@circle@lt[\c@@cnta](#2,#3){#4}
+ \fi\fi
+ \if@ovf
+ \@circle@rb[\c@@cnta](#2,#3){#4}
+ \@circle@lb[\c@@cnta](#2,#3){#4}
+ \fi
+ \else\if@ovb
+ \if@ovr
+ \@circle@rb[\c@@cnta](#2,#3){#4}
+ \else\if@ovl
+ \@circle@lb[\c@@cnta](#2,#3){#4}
+ \else\divide\c@@cnta\tw@
+ \@circle@rb[\c@@cnta](#2,#3){#4}
+ \@circle@lb[\c@@cnta](#2,#3){#4}
+ \fi\fi
+ \else
+ \divide\c@@cnta\tw@
+ \if@ovr
+ \@circle@rb[\c@@cnta](#2,#3){#4}
+ \@circle@rt[\c@@cnta](#2,#3){#4}
+ \else
+ \if@ovl
+ \@circle@lb[\c@@cnta](#2,#3){#4}
+ \@circle@lt[\c@@cnta](#2,#3){#4}
+ \else
+ \PackageError{Ebezier}{Missing or illegal position specifier in cCircle}
+ \fi\fi\fi\fi}
+%%
+\def\cArc{\@ifnextchar [{\@cArc}{\@cArc[0]}}
+\def\@cArc[#1](#2,#3)(#4,#5){%
+ \c@@cntc#1\relax
+ \@X #2\unitlength \@Y #3\unitlength
+ \@Za #4\unitlength \@Zb #5\unitlength
+ \@Zc 2\@X \advance\@Zc-\@Za \@Zd 2\@Y \advance\@Zd-\@Zb
+ \@Xa\@Y \advance\@Xa-\@Zb \@Ya\@Za \advance\@Ya-\@X
+ \multiply\@Xa 4 \divide\@Xa\thr@@ \multiply\@Ya 4 \divide\@Ya\thr@@
+ \@Ze\@Za \advance\@Ze\@Xa \@Zf\@Zb \advance\@Zf\@Ya
+ \@Zg\@Zc \advance\@Zg\@Xa \@Zh\@Zd \advance\@Zh\@Ya
+ \l@cbezier[#1](\@Za,\@Zb)(\@Ze,\@Zf)(\@Zg,\@Zh)(\@Zc,\@Zd)}
+%%
+% \end{macrocode}
+%
+% Historically from this point starts the calculation part. The notation
+% will be more \LaTeX\ convenient.
+%
+% All square roots are calculated by the same iteration. To keep numbers
+% small enough some scaling has to be done (factor \verb+\c@@cntd+).
+%
+% \begin{macrocode}
+\def\LenMult#1#2#3{\setlength{#3}{#1*\ratio{#2}{\unitlength}}}
+%%
+\def\LenDiv#1#2#3{\setlength{#3}{\unitlength*\ratio{#1}{#2}}}
+%%
+\def\AbsLen#1{\ifdim#1<\z@\setlength{#1}{-#1}\fi}
+%%
+\def\LenSqrt#1#2{%
+ \setlength{\@Za}{#1}%
+ \ifdim\@Za>\eps\loop\setlength{\@Zb}{(\@Za+\unitlength*\ratio{#1}{\@Za})/2}%
+ \setlength{\@Zc}{\@Za-\@Zb}\AbsLen{\@Zc}%
+ \ifdim\@Zc>\eps\setlength{\@Za}{\@Zb}\repeat\fi%
+ \setlength{#2}{\@Za}}
+%%
+\def\Length(#1,#2)(#3,#4)#5{%
+ \setlength{\@Zd}{#3\unitlength-#1\unitlength}%
+ \setlength{\@Ze}{#4\unitlength-#2\unitlength}%
+ \setcounter{@cntd}{1}%
+ \setlength{\@Zf}{\@Zd}\ifdim\@Ze>\@Zd\setlength{\@Zf}{\@Ze}\fi
+ \loop\setlength{\@Zd}{\@Zd/2}\setlength{\@Ze}{\@Ze/2}\setlength{\@Zf}{\@Zf/2}%
+ \multiply\c@@cntd\tw@\ifdim\@Zf>\x@ pt\repeat
+ \LenMult{\@Zd}{\@Zd}{\@Zg}\LenMult{\@Ze}{\@Ze}{\@Zh}\setlength{\@Zf}{\@Zg+\@Zh}%
+ \LenSqrt{\@Zf}{\@Zg}\setlength{#5}{\@Zg*\value{@cntd}}}
+%%
+\def\LenNorm#1#2#3{%
+ \setlength{\@Zd}{#1}\setlength{\@Ze}{#2}\setcounter{@cntd}{1}%
+ \setlength{\@Zf}{\@Zd}\ifdim\@Ze>\@Zd\setlength{\@Zf}{\@Ze}\fi
+ \loop\setlength{\@Zd}{\@Zd/2}\setlength{\@Ze}{\@Ze/2}\setlength{\@Zf}{\@Zf/2}%
+ \multiply\c@@cntd\tw@\ifdim\@Zf>\x@ pt\repeat
+ \LenMult{\@Zd}{\@Zd}{\@Zg}\LenMult{\@Ze}{\@Ze}{\@Zh}\setlength{\@Zf}{\@Zg+\@Zh}%
+ \LenSqrt{\@Zf}{\@Zg}\setlength{#3}{\@Zg*\value{@cntd}}}
+%%
+\def\PathLengthQ[#1](#2,#3)(#4,#5)(#6,#7){%
+ \PathLength\z@\c@@cntc#1\relax
+ \ifnum \c@@cntc<\@ne \c@@cntc\pathmax\relax\fi
+ \ifnum \c@@cntc>\pathmax \c@@cntc\pathmax\relax
+ \PackageWarning{ebezier}{Counter reset to pathmax=\pathmax!}\fi
+ \@Za\z@ \@Zb\z@ \c@@cntb\c@@cntc\relax \advance\c@@cntb\@ne
+ \@Xb #4\unitlength \advance\@Xb-#2\unitlength \multiply\@Xb\tw@
+ \@Yb #5\unitlength \advance\@Yb-#3\unitlength \multiply\@Yb\tw@
+ \@Xa #6\unitlength \advance\@Xa-#2\unitlength
+ \advance\@Xa-\@Xb \divide\@Xa\c@@cntc
+ \@Ya #7\unitlength \advance\@Ya-#3\unitlength
+ \advance\@Ya-\@Yb \divide\@Ya\c@@cntc \c@@cnta\@ne\relax
+ \@whilenum{\c@@cnta<\c@@cntb}\do
+ {\@X\c@@cnta\@Xa \advance\@X\@Xb \divide\@X\c@@cntc \multiply\@X\c@@cnta
+ \@Y\c@@cnta\@Ya \advance\@Y\@Yb \divide\@Y\c@@cntc \multiply\@Y\c@@cnta
+ \@Zi\@X\@Zj\@Y
+ \advance\@X-\@Za \advance\@Y-\@Zb \LenNorm{\@X}{\@Y}{\@Z}%
+ \advance\PathLength\@Z
+ \@Za\@Zi\@Zb\@Zj \advance\c@@cnta\@ne}}
+%%
+\def\PathLengthC[#1](#2,#3)(#4,#5)(#6,#7)(#8,#9){%
+ \PathLength\z@ \c@@cntc#1\relax
+ \ifnum \c@@cntc<\@ne \c@@cntc\pathmax\relax\fi
+ \ifnum \c@@cntc>\pathmax \c@@cntc\pathmax\relax
+ \PackageWarning{ebezier}{Counter reset to pathmax=\pathmax!}\fi
+ \@Za\z@ \@Zb\z@ \c@@cnta\c@@cntc\relax \advance\c@@cnta\@ne
+ \@Xa #4\unitlength \advance\@Xa-#2\unitlength \multiply\@Xa\thr@@
+ \@Xb #6\unitlength \advance\@Xb-#2\unitlength \multiply\@Xb\thr@@
+ \advance\@Xb-2\@Xa
+ \@Xc #8\unitlength \advance\@Xc-#2\unitlength
+ \advance\@Xc-\@Xa \advance\@Xc-\@Xb
+ \@Ya #5\unitlength \advance\@Ya-#3\unitlength \multiply\@Ya\thr@@
+ \@Yb #7\unitlength \advance\@Yb-#3\unitlength \multiply\@Yb\thr@@
+ \advance\@Yb-2\@Ya
+ \@Yc #9\unitlength \advance\@Yc-#3\unitlength
+ \advance\@Yc-\@Ya \advance\@Yc-\@Yb
+ \divide\@Xc\c@@cntc \divide\@Yc\c@@cntc
+ \c@@cntb\@ne\relax
+ \@whilenum{\c@@cntb<\c@@cnta}\do
+ {\@X\c@@cntb\@Xc \@Y\c@@cntb\@Yc \advance\@X\@Xb \advance\@Y\@Yb
+ \divide\@X\c@@cntc \divide\@Y\c@@cntc
+ \multiply\@X\c@@cntb \multiply\@Y\c@@cntb
+ \advance\@X\@Xa \advance\@Y\@Ya
+ \divide\@X\c@@cntc \divide\@Y\c@@cntc
+ \multiply\@X\c@@cntb \multiply\@Y\c@@cntb
+ \@Zi\@X\@Zj\@Y
+ \advance\@X-\@Za \advance\@Y-\@Zb \LenNorm{\@X}{\@Y}{\@Z}%
+ \advance\PathLength\@Z
+ \@Za\@Zi\@Zb\@Zj\advance\c@@cntb\@ne}}
+%%
+% \end{macrocode}
+%
+% The most complex macro is explained in the text. The exception is
+% handled by the logical \verb+\if@ovf+.
+%
+% \begin{macrocode}
+\def\cArcs{\@ifnextchar [{\@cArcs}{\@cArcs[0]}}
+\def\@cArcs[#1](#2,#3)(#4,#5)(#6,#7){%
+ \c@@cntc#1\relax
+ \@ovffalse
+ \@X#2\unitlength\@Y#3\unitlength
+ \@Zi#6\unitlength\@Zj#7\unitlength
+ \setlength{\@Xa}{\@X-\@Zi}\setlength{\@Ya}{\@Y-\@Zj}%
+ \LenNorm{\@Xa}{\@Ya}{\@Xb}%
+ \@Xa#4\unitlength \advance\@Xa\@Zi \advance\@Xa-2\@X
+ \@Ya#5\unitlength \advance\@Ya\@Zj \advance\@Ya-2\@Y
+ \@Xc\@Xa\AbsLen{\@Xc}\@Yc\@Ya\AbsLen{\@Yc}%
+ \ifdim\@Xc<\eps\ifdim\@Yc<\eps\@ovftrue\fi\fi
+ \if@ovf
+ \cArc[#1](#2,#3)(#4,#5)%
+ \else
+ \LenNorm{\@Xa}{\@Ya}{\@Yb}%
+ \setlength{\@Xc}{\unitlength*\ratio{\@Xb}{\@Yb}}%
+ \setlength{\@Yc}{(-\unitlength+\@Xc*2)*4/3}%
+ \@Xb-#5\unitlength \advance\@Xb\@Zj
+ \@Z\@Xb\AbsLen{\@Z}%
+ \ifdim\@Z<100\eps \@Xb#4\unitlength \advance\@Xb-\@Zi \@Xa\@Ya\fi
+ \setlength{\@Z}{\@Yc*\ratio{\@Xa}{\@Xb}}%
+ \@Xa#4\unitlength\@Ya#5\unitlength
+ \setlength{\@Za}{\@Y-\@Ya}\setlength{\@Zb}{\@Xa-\@X}%
+ \setlength{\@Zc}{\@Zj-\@Y}\setlength{\@Zd}{\@X-\@Zi}%
+ \@Xb\@Xa \LenMult{\@Z}{\@Za}{\@Zh}\advance\@Xb\@Zh
+ \@Yb\@Ya\LenMult{\@Z}{\@Zb}{\@Zh}\advance\@Yb\@Zh
+ \@Xc\@Zi\LenMult{\@Z}{\@Zc}{\@Zh}\advance\@Xc\@Zh
+ \@Yc\@Zj\LenMult{\@Z}{\@Zd}{\@Zh}\advance\@Yc\@Zh
+ \@Z\@Xa\@Za\@Ya\@Zb\@Xb\@Zc\@Yb\@Zd\@Xc\@Ze\@Yc
+ \l@cbezier[#1](\@Z,\@Za)(\@Zb,\@Zc)(\@Zd,\@Ze)(\@Zi,\@Zj)%
+ \fi}
+%</package>
+% \end{macrocode}
+% \Finale \PrintIndex \PrintChanges
+\endinput