diff options
Diffstat (limited to 'Master/texmf-dist/source/generic/xint/xint.dtx')
-rw-r--r-- | Master/texmf-dist/source/generic/xint/xint.dtx | 2270 |
1 files changed, 1549 insertions, 721 deletions
diff --git a/Master/texmf-dist/source/generic/xint/xint.dtx b/Master/texmf-dist/source/generic/xint/xint.dtx index 49fbd503512..dabb98f21c2 100644 --- a/Master/texmf-dist/source/generic/xint/xint.dtx +++ b/Master/texmf-dist/source/generic/xint/xint.dtx @@ -3,27 +3,27 @@ % Extract all files via "etex xint.dtx" and do "make help" % or follow instructions from extracted README.md. %<*dtx> -\def\xintdtxtimestamp {Time-stamp: <19-02-2020 at 09:09:07 CET>} +\def\xintdtxtimestamp {Time-stamp: <25-02-2020 at 23:06:44 CET>} %</dtx> %<*drv> %% --------------------------------------------------------------- -\def\xintdocdate {2020/02/19} -\def\xintbndldate{2020/02/19} -\def\xintbndlversion {1.4a} +\def\xintdocdate {2020/02/25} +\def\xintbndldate{2020/02/25} +\def\xintbndlversion {1.4b} %</drv> %<readme>% README %<changes>% CHANGE LOG -%<readme|changes>% xint 1.4a -%<readme|changes>% 2020/02/19 +%<readme|changes>% xint 1.4b +%<readme|changes>% 2020/02/25 %<readme|changes> -%<readme|changes> Source: xint.dtx 1.4a 2020/02/19 (doc 2020/02/19) +%<readme|changes> Source: xint.dtx 1.4b 2020/02/25 (doc 2020/02/25) %<readme|changes> Author: Jean-Francois Burnol %<readme|changes> Info: Expandable operations on big integers, decimals, fractions %<readme|changes> License: LPPL 1.3c %<readme|changes> %<*!readme&!changes&!dohtmlsh&!makefile> %% --------------------------------------------------------------- -%% The xint bundle 1.4a 2020/02/19 +%% The xint bundle 1.4b 2020/02/25 %% Copyright (C) 2013-2020 by Jean-Francois Burnol %<xintkernel>%% xintkernel: Paraphernalia for the xint packages %<xinttools>%% xinttools: Expandable and non-expandable utilities @@ -46,27 +46,44 @@ Aim and usage ============= -The basic aim is provide *expandable* computations on integers, -fractions, and floating point numbers. For example, with fractions: +It is possible to use the package both with Plain (`\input xintexpr.sty`) +or with the LaTeX macro format (`\usepackage{xintexpr}`). + +The basic aim is provide *expandable* computations on (arbitrily big) +integers, fractions, and floating point numbers (at a user chosen +precision). The four operations and the square-root extraction achieve +so-called *correct rounding* for the given arbitrary precision. + +The syntax knows dummy variables, as in this example: + + \xinteval{reduce(add(x/(x+7), x = 1000..1010))} + +which expands to: + + 108959959329292321880648657/9974444716475301992902544 + +Trigonometrical functions are available: - \xinteval{reduce(37189719/183618963+11390170/17310720)^17} + \xintDigits*:=48\relax -The result has `462` characters (forward slash included.) -One can also work with dummy variables: + \xintfloateval{[-2] sind(37)} - \xinteval{mul(add(x(x+1)(x+2), x=y..y+15), y=171286,98762,9296)} +expands to: -and do computations with floating point numbers at an adjustable -precision (default `16`). + 0.6018150231520482799179770004414898414256377098 - \xintDigits:=48;\xintfloateval{123_456_789^10_000.5} - expands to 1.56866129625858270633170234772583710433908855336e80919 +The [-2] means to round the result to 2 digits less than float precision: +currently trigonometrical functions are mostly implemented at high level +via the user interface for declaring functions and variables and have no +way to use guard digits, hence the last two digits are often not +accurate. -Release `1.4` adds support for nested structures: +Release `1.4` adds support for nested structures. For example: \xintthealign\xintexpr ndseq(1/(i+j), i=1..5; j=1..5)\relax -will print on the page +will print on the page (this is customizable, e.g. to use a pmatrix +environnement rather): [[ 1/2, 1/3, 1/4, 1/5, 1/6 ], [ 1/3, 1/4, 1/5, 1/6, 1/7 ], @@ -74,15 +91,9 @@ will print on the page [ 1/5, 1/6, 1/7, 1/8, 1/9 ], [ 1/6, 1/7, 1/8, 1/9, 1/10 ]] -The four operations and the square-root extraction achieve so-called -*correct rounding* in the given arbitrary precision. - -Trigonometric functions (direct and inverse) are available up to a -maximal precision of about `58` digits. Logarithms and exponentials are -currently evaluated only with `8` or `9` digits precision. - -It is possible to use the package both with Plain (`\input xintexpr.sty`) -or with the LaTeX macro format (`\usepackage{xintexpr}`). +It is possible to declare "universal functions" (à la NumPy) which will +act itemwise on all leaves of such "arrays". More features are planned +such as providing an interface to algebra of matrices in this framework. Installation ============ @@ -123,8 +134,8 @@ Documentation Requirements ============ -Attention, since release `1.4` `xintexpr` requires the `\expanded` -primitive (it is provided by all major TeX engines since TeXLive 2019). +Since release `1.4`, `xintexpr` requires the `\expanded` primitive. This +is a functionality of all major TeX engines since TeXLive 2019. License ======= @@ -153,6 +164,49 @@ See `xint.pdf` for contact information. %</readme>-------------------------------------------------------- %<*changes>------------------------------------------------------- +`1.4b (2020/02/25)` +---- + +All changes regard the **xintexpr** module. + +### Future + + - `&`, `|`, (as Boolean operators) and `=` (as equality test) have long + been deprecated in favour of `&&`, `||` and `==`. They will be + removed at next major release. + + - At next major release the power operators `**` and `^` will turn from + left to right associative. I.e. `2**2**3` will give `256`, not `64`. + This is to match with Python and l3fp. + + - `\thexintexpr` et al. (introduced at `1.2h` but not documented + anymore for some time) will be removed at next major release. The + original `\xinttheexpr` et al. have always been so much better names. + Besides, since `1.4`, `\xintexpr` can be used directly in typesetting + flow. + +### New features + + - Function `zip()` is modeled on Python's function of the same name. + + - Function `flat()` removes all nesting to produce a "one-dimensional" + list having the exact same leaves (some possibly empty) as the + original (in the same order). + + - Chaining of comparison operators (e.g. `x<y<z`) as in Python (but all + comparisons are done even if one is found false) and l3fp. + + - Strangely, it was possible since `1.4`'s `\xintFracToSciE` to + configure the separator between mantissas and exponents in the output + of `\xinteval` but this did not modify the output of + `\xintfloateval`. This is now fixed via the added `\xintPFloatE`. + +### Bug fixes + + - `\xintieval{[D]...}` with a negative `D` (a feature added at `1.4a`) + used erroneously a catcode 12 `e` in output. And its customization + via `\xintFracToSciE` remained without effect. + `1.4a (2020/02/19)` ---- @@ -168,7 +222,7 @@ See `xint.pdf` for contact information. - **xintexpr**: the optional argument `[D]` to `\xintieval/\xintiexpr` can be negative, with the same meaning as the non-negative case, i.e. - *quantization* to an integer multiple of `10^(-D)`. + rounding to an integer multiple of `10^(-D)`. The same applies to the functions `trunc()` and `round()`. And to the `\xintTrunc`, `\xintRound`, `\xintiTrunc`, and `\xintiRound` macros @@ -189,13 +243,32 @@ See `xint.pdf` for contact information. ### Breaking changes -Please note that this list is currently incomplete. If not otherly +Please note that this list may still be incomplete. If not otherly specified all items regard the **xintexpr** module. - The `\expanded` primitive (TeXLive 2019) is **required**. This does not affect the macro layer **xintcore**, **xint**, **xintfrac**, **xinttools** (yet). + - Formerly square brackets `[...]` were, on their own, not different + from parentheses (and thus disappeared from the output), but they are + now a genuine constructor of nested lists. For example `\xinteval{1, + [2, [3, 4]], 5}` produces `1, [2, [3, 4]], 5` (recall this is free + bloatware). + + - The output of `\xinteval` has changed (besides containing brackets). + It does not use anymore the so-called *raw* **xintfrac** format, + i.e. things such as `A/B[N]` (which can still be used in input but + are discouraged in **xintexpr** context), but scientific notation + `AeN/B`. As formerly, the denominator is printed only if `B>1` and + the scientific part is dropped if the exponent vanishes. In this way + the output of `\xinteval` can be pasted to alternative software. + + - The output format of `\xinthe\xintboolexpr` also has changed. It uses + `True` and `False` (which are accepted on input), and this can + easily be configured otherwise (also `true` and `false` are accepted + on input). + - The "broadcasting" (as it turned out, à la `NumPy`) of scalar operations on one-dimensional "lists", e.g `3*[1,3,5,7]+10` acting itemwise is **dropped**. It is hoped to implement such operations @@ -203,11 +276,6 @@ specified all items regard the **xintexpr** module. syntax is available, also to produce the bracketed (cf. next item) `[13,19,25,31]` which will be the output in future. - - Formerly square brackets `[...]` were, on their own, not different - from parentheses, but they are now a genuine constructor of nested - lists. For example `\xinteval{1, [2, [3, 4]], 5}` produces `1, - [2, [3, 4]], 5` (recall this is free bloatware). - - The `divmod()` function now produces on output such a bracketed pair, but simultaneous assignment such as `\xintdefvar xq, xr = divmod(a,b);` will work transparently. @@ -217,19 +285,17 @@ specified all items regard the **xintexpr** module. branching operators whereas in the past it was explained that the syntax had to use the `if()` and `ifsgn()` functions. - - The output of `\xinteval` has changed (besides containing brackets). - It does not use anymore the so-called *raw* **xintfrac** format, - i.e. things such as `A/B[N]` (which can still be used in input but - are discouraged in **xintexpr** context), but scientific notation - `AeN/B`. As formerly, the denominator is printed only if `B>1` and - the scientific part is dropped if the exponent vanishes. In this way - the output of `\xinteval` can be pasted to alternative software. - - The output format of `\xinthe\xintboolexpr` has changed. It uses - `True` and `False` (which are accepted on input), and this can - easily be configured otherwise (also `true` and `false` are accepted - on input). - + - Macros `\xintGCD`, `\xintLCM`, `\xintGCDof` and `\xintLCMof` formerly + provided by **xintgcd** got moved to **xintfrac** (which is not + loaded by **xintgcd**). Moreover, they were extended to handle + general fractions on input but this also means that their output is + now obiding by the raw **xintfrac** format. The integer only + `\xintiiGCD`, `\xintiiLCM` also got moved out of **xintgcd**, but to + **xint** which is now loaded automatically by **xintgcd**. The few + remaining macros of **xintgcd** at least do not need other imports as + **xintgcd** now loads also automatically **xinttools** which is a + dependency for two of them. + ### Improvements and new features Please note that this list is currently incomplete. For more @@ -2914,7 +2980,7 @@ pdfpagemode=UseNone,% \itshape \xintListWithSep{\,}{#1}\ $\star$\quad }}}% \vskip\dp\strutbox }\strut\@esphack} -\def\retype #1{\@bsphack +\def\xtype #1{\@bsphack \vadjust{\vskip-\dp\strutbox \hbox{\smash{\hbox to 0pt {\hss\color[named]{PineGreen}% \itshape \xintListWithSep{\,}{#1}\ \ding{73}\quad }}}% @@ -2970,6 +3036,14 @@ pdfpagemode=UseNone,% \vtop{\noindent Unstable! #1}\ }}}% \vskip\dp\strutbox }\strut\@esphack} +\def\unstable#1{\@bsphack + \vadjust{\vskip-\dp\strutbox + \hbox{\smash{\hbox to 0pt {\hss\color[named]{Red}% + \normalfont\small\bfseries + \hsize 1.5cm\rightskip.5cm minus.5cm + \vtop{\noindent unstable? #1}\ }}}% + \vskip\dp\strutbox }\strut\@esphack} + \def\DEPRECATED #1{\@bsphack \vadjust{\vskip-\dp\strutbox \hbox{\smash{\hbox to 0pt {\hss\color[named]{PineGreen}% @@ -3205,8 +3279,11 @@ pdfpagemode=UseNone,% \def\everbatimindent {\z@} % voir plus loin atbegindocument -\def\endeverbatim {\if@newlist \leavevmode\fi\endtrivlist } -\expandafter\let\csname endeverbatim*\endcsname \endeverbatim +\def\endeverbatim {\if@newlist \leavevmode\fi\endtrivlist } + +\@namedef{endeverbatim*}{\endeverbatim\aftergroup\everbatimundoparskip} +%\def\everbatimundoparskip{\ifdim\parskip>\z@\vskip-\parskip\fi} +\def\everbatimundoparskip{\vbox{}\kern-\baselineskip\kern-\parskip} \def\s@everbatim {% % \ineverbtrue @@ -3221,7 +3298,9 @@ pdfpagemode=UseNone,% \let\do\do@noligs \verbatim@nolig@list \makestarlowast \everbatimhook - \trivlist\item\relax + \trivlist + \@topsepadd \z@skip + \item\relax \leftskip \@totalleftmargin \rightskip \z@skip \parindent \z@ @@ -3863,16 +3942,54 @@ quality of the document). Reports welcome.% \footnote{Thanks to Jürgen Gilg for keeping the author motivated and helping proof-read the documentation.} -\subsection{The \texttt{1.4a} release of \texttt{2020/02/19}} +\subsection{Features added since the \texttt{1.4} release} -It is mainly a bugfix release. Check |CHANGES.html| file (|texdoc --list -xint|). +For bugfixes and possibly more details check |CHANGES.html|: +\centeredline{|texdoc --list xint|} +\begin{itemize} + \item The function \func{zip}. + + \item The function \func{flat}. + + \item Chaining of \hyperlink{\detokenize{prec-10}}{comparison operators} à la + Python (no short-circuit, though) and |l3fp|. + + \item \csbxint{PFloatE} to specify like \csbxint{FracToSciE} does for + \csbxint{eval} since |1.4| the separator to use between mantissa and + exponent in the output of \csbxint{floateval} output. + + \item \csbxint{thespaceseparated} (serves to provide suitable input + to PS-Tricks |\listplot|). + + \item The optional argument |[D]| to \csbxint{iexpr} (or \csbxint{ieval}) + can be negative, with the same meaning as the non-negative case, i.e. + rounding to an integer multiple of |1e-D| (as formerly, for |D| positive + the output uses fixed point notation with decimal digits and with |D=0| the + output is an integer with no decimal separator; with |D<0| scientific + notation is used% +% +\footnote{This was introduced at |1.4a| but due to a bug the |e| was by error of + catcode 12, and \csbxint{FracToSciE} had no effect on it. Fixed at \texttt{1.4b}}% +% + ). + + \item The same applies to the functions \func{trunc} and \func{round}. And + matching updates to \csbxint{Trunc}, \csbxint{Round}, \csbxint{iTrunc}, + and \csbxint{iRound}. + + \item Support by \func{add} and \func{mul} for \keyword{omit}, \keyword{abort} + and \func{break}.% +% +\footnote{Feature supposedly added at |1.4| but broken there.} + +\end{itemize} \subsection{The \texttt{1.4} release of \texttt{2020/01/31}} -|1.4| was a major release with new features and breaking changes. See -|CHANGES.html| file (|texdoc --list xint|) which may contain information -not yet included in the PDF documentation. +|1.4| brought some new features (involving significant evolution of the +\xintexprname.sty source code) and a few (but important) breaking changes. +See |CHANGES.html| which contains information which may not yet have been +included into this PDF documentation. The main new feature was (initial) support for nested structures. For a quick idea of already available related abilities check for example \func{ndseq} or @@ -3880,15 +3997,38 @@ idea of already available related abilities check for example \func{ndseq} or author a few decades to finish absorbing Python/NumPy. \begin{framed} - The main breaking change is that \xintexprname |1.4| requires the - |\expanded| primitive. It is available with all major \TeX{} engines - since \TeX Live 2019. - - The macro packages \xintcorename, \xintname, - \xintfracname, \xinttoolsname et al. do not (yet) require |\expanded|. - - It is probable also |\pdfstrcmp| (|\strcmp|) will be required at some point - but it has been provided by major \TeX{} engines for a long time already. + The main breaking changes were: + \begin{itemize} + \item \xintexprname |1.4| requires the |\expanded| primitive, which is + provided by all major \TeX{} engines since \TeX Live 2019. The macro + packages \xintname, \xintfracname, \xinttoolsname et al. do not (yet) + require |\expanded|. + + It is probable also |\pdfstrcmp| (|\strcmp|) will be required at some point + but it has been provided by major \TeX{} engines for a long time already. + + \item \csbxint{eval} (and \csbxint{expr}) output does not use anymore the + \xintfracname ``raw'' format |A/B[N]|, rather it uses scientific notation + |AeN/B|, dropping the exponent and/or denominator if they are + respectively \dtt{0} and/or \dtt{1}. This means that output can now be + copied pasted directly to competing software on the market, such as Python + or Maple. The output format of \csbxint{floatexpr} (which uses macro + \csbxint{PFloat}) was left un-modified although the prettifying done by it + is not necessarily the best choice when displaying a nested structure via + \csbxint{thealign} (perhaps next major release will reconsider that + choice); and the way the zero value is output by \csbxint{floateval}, + currently \dtt{\xintfloateval{0}} is yet to be chosen definitely. The + used (\emph{expandable}) macro for output can be specified by user. + + \item Syntax such as |x*[a, b, c]| or |[a, b, c]+x| for itemwise operation + on «lists» has been (provisorily) dropped. Indeed, the brackets |[...]| + are now genuine constructors of nestable structures, and implementing the + feature (analogous to NumPy's concepts) will require overloading all + scalar infix operators. Alternative already exist in the syntax for + example |seq(x*y, y = a,b,c)|. Actually in future |x*[a, b, c]| will be + as |[x*a, x*b, x*c]| i.e.\@ will keep the brackets, which prior to |1.4| + on their own were no different from parentheses. + \end{itemize} \end{framed} \subsection{License and installation instructions} @@ -3901,9 +4041,18 @@ author a few decades to finish absorbing Python/NumPy. is probably no need for a custom install: just use the package manager to update if necessary \xintname to the latest version available. -On \TeX\ distributions with a |"texdoc"| or similar utility, +Else, \href{https://ctan.org/pkg/xint}{CTAN} access provides |xint.tds.zip| +which has all source code and documentation in a TDS-compliant archive, only +waiting to be |unzip -d <DIR>| into some suitable hierarchical structure. + +Else, |etex xint.dtx| extracts all source code. A |Makefile| is also provided +with targets such as |xint.pdf| or |sourcexint.pdf|. Even if your system does +not allow executing |make|, the rules it contains can be imitated manually +(if possible using |Latexmk|). + +Back to \TeX\ distributions with a |"texdoc"| or similar utility, \centeredline{|texdoc --list xint|} -will offer to display one of those files: +gives the choice to display one of: \begin{itemize}[nosep] \item |xint.pdf| (this file), \item |sourcexint.pdf| (source code), @@ -3939,7 +4088,7 @@ The rendering here uses extra decoration. \localtableofcontents -\subsection{Oples and nut-ples: terminology for a new \xintname generation} +\subsection{Oples and nut-ples: terminology for the \text{1.4} \xintname generation} \emph{Skip this on first reading, else you will never start using the package.} \fbox{SKIP THIS!} (understood?) @@ -3972,7 +4121,7 @@ Notes: \item We denote the empty set \dtt{$\emptyset$} by \emph{nil}. There is actually a built-in variable with this name. At |1.4|, |\xintexpr\relax| is -legal\NewWith{1.4} and also generates the \emph{nil}. +legal and also generates the \emph{nil}. \item Concatenation is represented in the syntax by the @@ -4189,21 +4338,24 @@ want to write the underlying software! \subsection{The three parsers} \xintexprname provides three numerical expression parsers and two subsidiary -ones. They are designed to be compatible with expansion only context; in -particular they can be nested arbitrarily one within the other, modifying on -the fly the context for computations (for such things, please use the core -syntax \csbxint{expr}|...\relax| as commented upon later on). - -The user can define variables and functions. Definition of functions is either -per parser (\csbxint{deffunc}, \csbxint{deffloatfunc}, ...), but there are -some restrictions, or generic (\csbxint{NewFunction}) but the latter is only -syntactic sugar for function-like disguise of a \TeX{} macro having not done -any pre-parsing. +ones. They are designed to be compatible with expansion only context. All +computations ultimately rely on (and reduce to) usage of the |\numexpr| +primitive from \eTeX{}% +% +\footnote{It can handle only integers, and they must be at most +$2^{31}-1={}$\dtt{\the\numexpr"7FFFFFFF\relax}. Thus some work has to be done +to handle arbitrarily big integers or arbitrary float precision.}. +% +These \eTeX{} extensions date +back to 1999 and are by default incorporated into the |pdftex| +etc... executables from major modern \TeX{} installations for more than +fifteen years now. \begin{itemize} \item \csbxint{eval}\marg{expression} handles integers, decimal numbers, numbers in scientific notation and fractions. The algebraic computations are - done \emph{exactly.} + done \emph{exactly}, and in particular \oper{/} simply constructs + fractions. Use \oper{//} for floored division. \begin{everbatim*} \xinteval{add(x/(x+1), x = 1000..1014)}\par \end{everbatim*} @@ -4214,20 +4366,54 @@ irreducible, but this is not always the case: smallest terms the output: |A/B| multiplied by |C/D| returns |AC/BD|, and |A/B| added to |C/D| uses |lcm(B, D)| as denominator. \end{snugframed} +Arbitrarily long numbers are allowed in the input. The space character +(contrarily to the situation inside |\numexpr|) and also the underscore +character (as allowed in Python too) can serve to separate groups of digits +for better readability. But the package currently provides no macros to let +the output be formatted with such separators. + +Formatting of numeric output is apart from some minimal facilities such as +\csbxint{Frac}, \csbxint{DecToString}, \csbxint{PRaw}, \csbxint{FracToSci} or \csbxint{PFloat} left +to user macros or third-party packages% +% +\footnote{For example I hesitated whether to let \csbxint{FracToSciE} be + actually a macro with one mandatory argument as this would give a hook to + customize formatting the scientific exponent. But then, why not also wrap + the mantissa or the denominator in hook macros? and should the |/| or the + decimal separator also be customizable? It was reasonable to provide a way + to use |E| in place of |e| for the scientific part, as |E| is accepted input + in \csbxint{eval} or \csbxint{floateval}. + % It is already possible for the no-argument macro \csbxint{FracToSciE} to + % probe the sign of the exponent and for example insert a |+| if desired, + % although there is no way (the exponent having no known delimiter) for it to + % act globally on the exponent. + It looked however better to leave additional + formatting to external utilities.}. +\begin{everbatim*} +\xinteval{123_456_789_012^5} +\end{everbatim*} \item \csbxint{iieval}\marg{expression} does exact computations \emph{on (big) - integers only.} The forward slash \dtt{/} does the \emph{rounded} integer - division to match behaviour of |\numexpr|. + integers only.} It is (of course) slightly faster than \csbxint{eval} for + equivalent operations. The forward slash \oper{/} does the \emph{rounded} + integer division to match behaviour of |\numexpr|. The \oper{//} operator + does floored division as in \csbxint{eval}. The \oper{/:} is the associated + modulo operator (we could easily let the catcode 12 |%| + character be an alias, but using such an unusual percent character would be + a bit cumbersome in a \TeX{} workflow, if only for matters of + syntax highlighting in \TeX-aware text editors). \begin{everbatim*} \xintiieval{add((i/:7)?{omit}{i^5}, i=1000..1020)}% only add fifth powers of multiples of 7 \end{everbatim*} \item \csbxint{floateval}\marg{expression} does floating point computations with a given precision \dtt{P}, as specified via a prior assignment - |\xintDigits:=P\relax |. + |\xintDigits:=P\relax |. The \oper{/} will compute the correct rounding of + the exact fraction. Again \oper{//} is floored division and \oper{/:} its + associated modulo (see also \func{divmod}). \begin{everbatim*} \begingroup -\xintDigits:=64; +\xintDigits:=64\relax \xintfloateval{sqrt(3)} \endgroup \end{everbatim*} @@ -4246,8 +4432,17 @@ irreducible, but this is not always the case: implementation of trigonometrical functions (\xinttrigname) is provisory and does not use guard digits, using |[-2]| will trim the last two, probably wrong, digits. + + On output, \csbxint{floateval} uses \csbxint{PFloat} for each number. This + can be modified (cf.\@ \csbxint{floatexprPrintOne}). \end{itemize} +The user can define variables and functions. Definition of functions is either +per parser (\csbxint{deffunc}, \csbxint{deffloatfunc}, ...), but there are +some restrictions, or generic (\csbxint{NewFunction}) but the latter is only +syntactic sugar for function-like disguise of a \TeX{} macro having not done +any pre-parsing. + Two derived parsers: \begin{itemize} \item \csbxint{ieval}\marg{expression} does all computations like \csbxint{eval} @@ -4257,14 +4452,19 @@ Two derived parsers: \item if |D>0|: the nearest fixed point number with |D| digits after the decimal mark, \item if |D=0|: the nearest integer, - \item if |D<0|: the nearest multiple of |10^(-D)| (i.e. \emph{quantization}, - this case is new with |1.4a|).\NewWith{1.4a} + \item if |D<0|: the\NewWith{1.4a} nearest multiple of |10^(-D)| (this case + is new with |1.4a| and uses scientific notation). \end{itemize} ATTENTION: the optional argument |[D]| is to be located \emph{within} the braces at the start of the expression. \item \csbxint{theboolexpr}\meta{expression}|\relax| does all computations like \csbxint{eval} - but converts the (itemwise) results to |True| or |False|. This - is configurable. There is no |\xintbooleval|. + then converts all (non-empty) leaves% +% +\footnote{Currently, empty leaves are output using \csbxint{exprEmptyItem}, + i.e.\@ default to \dtt{\xintexprEmptyItem}. This may change.} +% +to |True| or |False| + (cf.\@ \csbxint{boolexprPrintOne}). There is no |\xintbooleval|. \end{itemize} These macros are wrappers for a more core syntax: @@ -4275,20 +4475,24 @@ These macros are wrappers for a more core syntax: \item \csbxint{iexpr}\meta{expression}|\relax|, \item \csbxint{boolexpr}\meta{expression}|\relax|. \end{itemize} -This core syntax can be used directly in typesetting flow.\NewWith{1.4} But in an |\edef| -they expand to some braced nested data prefixed with some |\protected| -«typesetter» macros. When using \csbxint{eval} (in contrast to -\csbxint{expr}), the protection of the «typesetter» is removed and the expansion -gives explicit digits and other characters such as those of scientific -notation or brackets. +This core syntax can be used directly in typesetting flow.\NewWith{1.4} In an +|\edef| they expand to some braced nested data (all computations having been +done) prefixed with some |\protected| «typesetter» macros. When using +\csbxint{eval} (in contrast to \csbxint{expr}), the protection of the +«typesetter» is removed and its action gives (expandably, in two steps) +explicit digits and other characters such as those of scientific notation or +brackets. It is possible to use the core syntax\NewWith{1.4} -\csbxint{expr}\marg{expression}|\relax| also in so-called moving arguments, -because when written out to a file they use only standard catcodes and the -output will get retokenized and will expand as expected. +\csbxint{expr}\meta{expression}|\relax| also in so-called moving arguments, +because when written out to a file the final expansion result uses only +standard catcodes and thus will get retokenized and the typesetter macro +(which being |\protected| is there intact in external file) will expand +as expected. -One needs \csbxint{eval} et al. only if one really wants the final characters -of the typeset result. +One needs \csbxint{eval} et al. only if one really wants the final digits (and +other characters), for example in a context where \TeX{} expects a number or a +dimension. As alternative to \csbxint{eval}\marg{expression}, an equivalent is \csbxint{the}\csbxint{expr}\meta{expression}|\relax|. Similarly \csbxint{the} @@ -4345,14 +4549,23 @@ this will break the parser. The fix is to use in the macro definition thinking there is an optional argument and it will then disappear during expansion. - -\subsection{\csh{xintthealign} and output related customizations} +\begin{footnotesize} + If comparing to other languages able to handle floating point numbers or big + integers, such as Python, one should take into account that what the \xintname + packages manipulate are streams of ascii bytes, one per digit. At no time + (due to expandability) is it possible to store intermediate results in an + arithmetic CPU register; each elementary operation via |\the\numexpr| will + output digit tokens (hence as many bytes), not things such as handles to + memory locations where some numbers are stored as memory words. The process + can never put aside things but can only possibly permute them with upcoming + tokens, to use them later, or, via combinations of |\expanded| and + |\unexpanded| or some other more antiquated means grab some tokens and shift + the expansion to some distant locations to later come back. The process is a + never-ending one-dimensional one...\par +\end{footnotesize} + +\subsection{\csh{xintthealign} and its customization} \label{xintthealign} -\label{xintexprEmptyItem} -\label{xintexprPrintOne} -\label{xintiiexprPrintOne} -\label{xintfloatexprPrintOne} -\label{xintboolexprPrintOne} With \csbxint{thealign} one can get nested data use a \TeX{} alignment in the output. Attention, this must be followed by \csbxint{expr} et al., never by @@ -4364,7 +4577,13 @@ Here is an example : It is possible to customize the behaviour of |\xintthealign|.\CHANGED{1.4a} The helper macros, apart from |\xintexpralignbegin| and |\xintexpralignend| -will be subjected to a complete (|\expanded|) expansion (once). The package +will be subjected to a complete (|\expanded|) expansion (once).% +% +\footnote{\csa{xintexpralignend} is expanded once, after the body has been + submitted to exhaustive expansion, and prior to the expansion of + \csa{xintexpralignbegin}.} +% +The package uses here |\protected| with no strong reason, as the replacement tokens are not expanding anyhow, but the idea is that this allows to define a macro in an |\edef| and later change the meaning of the auxiliary macros depending on what @@ -4399,7 +4618,15 @@ Use for example this for outputting to a file or a terminal: \def\xintexpralignrightbracket{]}% \end{everbatim} -And here is an example using a |pmatrix| environment. +\medskip + +And here is an example using a |pmatrix| environment. But it will not break +across pages, contrarily to the display produced by the default +\csbxint{thealign} configuration which uses \TeX{}'s |\halign|. + +%\kern10\baselineskip +%\hbox{Big empty space here} +%\kern-11\baselineskip \begin{everbatim*} \[ \def\xintexpralignbegin {\begin{pmatrix}}% @@ -4414,19 +4641,23 @@ l.c.m.=\xintthealign\xintiiexpr ndmap(lcm, 1..12; 1..10)\relax \] \end{everbatim*} +\subsection{Customization of typesetting of individual items} +\label{xintexprEmptyItem} +\label{xintexprPrintOne} +\label{xintiiexprPrintOne} +\label{xintfloatexprPrintOne} +\label{xintboolexprPrintOne} + The way individual items are formatted (whether or not using -|\xintthealign|) is also customizable: +\csa{xintthealign}) is also customizable:\kern-2pt +% the \kern is to fix some extra white line from first line being a bit overfull \begin{everbatim} \def\xintexprEmptyItem{[]} -% The used macro (here \xintFracToSci) must understand the xintfrac.sty raw format \let\xintexprPrintOne\xintFracToSci \def\xintFracToSciE{e} -% In the integer-only parser, internal format coincides simply with the digit tokens -% Attention this may change in future \def\xintiiexprPrintOne #1{#1} -% The used macro (here \xintPFloat) must understand the xintfrac.sty raw format \def\xintfloatexprPrintOne#1#2{\xintPFloat[#1]{#2}} -% Same here +\def\xintPFloatE{e} \def\xintboolexprPrintOne#1{\xintiiifNotZero{#1}{True}{False}} \end{everbatim} Attention! The above macros convert from \xintexprname internal numeric data @@ -4435,6 +4666,27 @@ if the internal data format changes, which may happen at each release. Of course the default for |\xintexprPrintOne| etc... will be adjusted accordingly, but user custom definitions may break. +Currently, this means that the macros used in place of \csbxint{FracToSci} and +\csbxint{PFloat} must understand both the raw \xintfracname format |A/B[N]| +and the decimal format |A.ddddd..dd|.% +% +\footnote{Furthermore \csbxint{ieval}|{[D]...}| with a \emph{negative} |D| + (feature added at |1.4a|) relies on the \csbxint{exprPrintOne} ability to + react to a catcode 12 |e| (it is always used with detokenized + input). \csbxint{FracToSci} has this ability and uses catcode 11 |e| in + output (or rather whatever \csbxint{FracToSciE} expands to).} +% +The typesetter for +\csa{xintiiexpr} simply prints ``as is'', but this may change in future. + +The used macros must be compatible with expansion-only context, but do not +have to be \fexpan dable. + +Note: when not using \csbxint{thealign}, output of nested structures uses left +and right brackets, and commas and spaces in a non-customizable way, except +via \csa{xintexprEmptyItem}. Use the \csa{xintthealign} interface for full +customizability. + \subsection{Built-in operators and their precedences} @@ -4459,7 +4711,7 @@ user custom definitions may break. \hyperref[ssec:builtinfunctions]{built-in} or \hyperref[ssec:userfunctions]{user-defined} functions, \item \hyperref[ssec:uservariables]{variables}, - \item the \oper{\empty*} unpacking operator, + \item the \oper{\empty\lowast} unpacking operator, \item and intrinsic constituents of numbers: decimal mark \oper{\strut.}, \oper{e} and \oper{E} of scientific notation, hexadecimal prefix \oper{"}. @@ -4469,22 +4721,24 @@ user custom definitions may break. \hline \prec{20}& postfix \oper{!} and branching \oper{?}, \oper{??} operators\strut\\\hline % - \prec{-}& minus sign as unary operator\strut\\\hline + \prec{-}& minus sign as unary operator inherits the precedence of + the infix operator it follows, if that precedence is higher than the one of + binary \oper{+} and \oper{-}, else it inherits the latter\strut\\\hline % - \prec{18}& \oper{\string^} and \oper{**} are a priori synonymous (but see + \prec{18}& \oper{\string^} and \oper{\lowast\lowast} are a priori synonymous (but see \xintlogname)\strut\\\hline % \prec{16}& \hyperref[ssec:tacit multiplication]{Tacit multiplication} has an elevated precedence\strut\\\hline % - \prec{14}& \oper{*}, \oper{/}, \oper{//} (floored division), + \prec{14}& \oper{\lowast}, \oper{/}, \oper{//} (floored division), and \oper{/:} (associated modulo, alias \oper{'mod'})\strut\\\hline % \prec{12}& \oper{+}, \oper{-}\strut\\\hline % \prec{10}& \oper{<}, \oper{>}, \oper{==}, \oper{<=}, \oper{>=}, - \oper{!=}\strut\\\hline + \oper{!=} (they can be chained)\strut\\\hline % \prec{8}& Boolean conjunction \oper{\Ampersand\Ampersand} and its alias \oper{'and'}\strut\\\hline @@ -4523,7 +4777,7 @@ when using variables. \end{tabular} \caption{Precedence levels} \label{tab:precedences} -\etoctoccontentsline {table}{\textbf{(table)} \protect\emph{Precedence levels of operators}} +\etoctoccontentsline {table}{\protect\emph{Table of precedence levels of operators}} \restorehtdpstrutbox \end{table} @@ -4531,6 +4785,7 @@ The entries of \autoref{tab:precedences} are hyperlinked to the more detailed discussion at each level. \begin{description} +%[parsep=0pt, listparindent=\leftmarginiii] % [parsep=0pt,align=left,itemindent=0pt, % leftmargin=\leftmarginii, labelwidth=\leftmarginii, labelsep=0pt, % labelindent=0pt, listparindent=\leftmarginiii] @@ -4541,12 +4796,12 @@ discussion at each level. \item[{\hyperref[ssec:builtinfunctions]{functions} and \hyperref[ssec:uservariables]{variables}}] Functions (even the logic functions - \func{!} and \func{?} whose names consists of a single non-letter character) + \func{!} and \func{?} whose names consist of a single non-letter character) must be used with parentheses. These parentheses may arise from expansion after the function name is parsed (there are exceptions which are documented at the relevant locations.) - \operdesc{\empty*} Python-like «unpacking» prefix operator. Sometimes one + \operdesc{\empty\lowast} Python-like «unpacking» prefix operator. Sometimes one needs to use it as function |*()| (but I can't find an example right now) but most of the time parentheses are unneeded. @@ -4624,18 +4879,25 @@ discussion at each level. % % \end{description} -\precdesc{-} As prefix unary operator it inherits the precedence of - the infix operator it follows. +\precdesc{-} As unary operator, the minus sign inherits the precedence of + the infix operator it follows (plus signs as unary operators are simply ignored). \begin{everbatim*} \xintexpr -3-4*-5^-7, (-3)-(4*(-(5^(-7))))\relax\newline -\xintexpr -3^-4*-5-7, (-((3^(-4))*(-5)))-7\relax\par -\end{everbatim*} - |2^-10| is perfectly accepted input, no need for parentheses. +\xintexpr -3^-4*-5-7, (-((3^(-4))*(-5)))-7\relax\newline +|2^-10| gives \xintexpr 2^-10\relax\space +\end{everbatim*}and is thus perfectly legal, no need for parentheses. + + Note (|1.4b|): the above is what this documentation has always said, but it + has also always been only partially true. I.e.\@ it applies only when |-| + follows an infix binary operator having at least the precedence level of |+| + and |-|. When the unary |-| follows an infix operator (or operator word) of + less precedence, its precedence will be set to the one for the infix + operators |+| and |-|. «Seul |sourcexint.pdf| fait foi». \precdesc{18} \begin{description} \operdesc{\string^} -\operdesc{**} Both compute powers in left associative way. +\operdesc{\lowast\lowast} Both compute powers in left associative way. \begin{everbatim*} \xintiiexpr 2^2^3\relax \end{everbatim*} @@ -4651,7 +4913,7 @@ discussion at each level. \precdesc{14} \begin{description} -\operdesc{*} multiplication +\operdesc{\lowast} multiplication \operdesc{/} division: exact in \csbxint{eval}, correctly rounded in \csbxint{floateval} (numerator and denominator are rounded before the division is done), and rounded to an integer (like |\numexpr| does: @@ -4671,7 +4933,10 @@ discussion at each level. \xintexpr 100000/:13/13\relax \end{everbatim*} -\operdesc{'mod'} is same as \oper{/:} +\operdesc{'mod'} is same as \oper{/:}. + +Note: The enclosing (right) ticks are +mandatory part of all such infix operator «words». \end{description} @@ -4687,7 +4952,7 @@ case of equal precedence, it is \end{everbatim*} \end{description} -\precdesc{10} Comparison operators are currently all at the same level of +\precdesc{10} Comparison operators are (as in Python) all at the same level of precedence, use parentheses for disambiguation. \begin{description} \operdesc{<} |a<b| evaluates to \dtt{1} if the strict inequality holds to \dtt{0} @@ -4711,6 +4976,18 @@ precedence, use parentheses for disambiguation. if not. \end{description} + Comparisons\NewWith{1.4b} can be chained arbitrarily, e.g., |x < y <= z != + t| is equivalent to |x < y 'and' y <= z 'and' z != t| (and also to |all(x<y, + y<=z, z!=t)|), except that if |y| and |z| involve computations, they + are evaluated only once. Currently there is no short-circuit here, i.e.\@ + even if some intermediate comparison turns out false (in fact |0|), all the + remaining conditionals will still be evaluated. + +\begin{everbatim*} +\xintifboolexpr{1<=2!=3<4>1}{true}{\error}, \xintifboolexpr{1<=2>=3<4>1}{\error}{false} +\end{everbatim*} + + \precdesc{8} \begin{description} \operdesc{\Ampersand\Ampersand} logical conjunction. Evaluates to \dtt{1} if @@ -4792,10 +5069,7 @@ precedence, use parentheses for disambiguation. \operdesc{;} The semi-colon as involved as part of the syntax of \func{iter}, \func{rseq}, \func{ndseq}, \func{ndmap} has the same - precedence as a closing parenthesis. It also serves as syntax terminator for - \csbxint{defvar} and \csbxint{deffunc}. Inner semi-colons do not need to be - braced to avoid being mistaken for the terminator (but they may be which - speeds up by micro-second the parsing). + precedence as a closing parenthesis. \end{description} \item[|\relax|] This is the expression terminator for \csbxint{expr} et al. @@ -4804,6 +5078,11 @@ precedence, use parentheses for disambiguation. argument. \end{description} +The |;| also serves as syntax terminator for \csbxint{defvar} and +\csbxint{deffunc}. It can in this rôle not arise from expansion as the +expression body up to it is fetched by a delimited macro. But this is done in +a way which does not require any specific hiding for inner semi-colons as +involved in the syntax of \func{iter}, etc... \subsection{Built-in functions}\label{ssec:builtinfunctions} @@ -4819,13 +5098,13 @@ corresponding definitions. \begin{table}[htbp] \capstart \centering -\xintAssignArray\xintCSVtoList{!, ?, |`*`|, |`+`|, +\xintAssignArray\xintCSVtoList{!, ?, \textasciigrave\lowast\textasciigrave, \textasciigrave+\textasciigrave, abs, add, all, any, acos, acosd, Arg, Argd, asin, asind, atan, atand, atan2, atan2d, binomial, bool, ceil, cos, cosd, cot, cotd, cotg, csc, cscd, divmod, even, exp, -factorial, first, float, float\string_, floor, frac, gcd, +factorial, first, flat, float, float\string_, floor, frac, gcd, if, ifint, ifone, ifsgn, ilog10, isint, isone, iter, iterr, inv, last, lcm, len, log, log10, max, min, mod, mul, ndmap, ndseq, ndfillraw, @@ -4836,7 +5115,7 @@ random, randrange, rbit, reduce, rem, reversed, round, rrseq, rseq, sec, secd, seq, sgn, sin, sinc, sind, sqr, sqrt, sqrtr, subs, subsm, subsn, tan, tand, tg, togl, trunc, unpack, -xor} +xor, zip} \to\Functions \cnta\Functions{0} \cntb\xinttheexpr ceil(\cnta/7)\relax\space @@ -4857,7 +5136,7 @@ xor} \\\hline}% \end{tabular}} \caption{Functions (click on names)}\label{tab:functions} -\etoctoccontentsline {table}{\textbf{(table)} \protect\emph{Functions in expressions}} +\etoctoccontentsline {table}{\protect\emph{Table of functions in expressions}} \etocsetnexttocdepth{subsubsection} \localtableofcontents \end{table} @@ -4866,13 +5145,13 @@ xor} Miscellaneous notes: \begin{itemize}[nosep] \item since release |1.3d| \func{gcd} and \func{lcm} are extended to apply - to fractions too, and they do NOT require the loading of \xintgcdname, + to fractions too, and do NOT require the loading of \xintgcdname, \item The randomness related functions \func{random}, \func{qrand} and \func{randrange} require that the \TeX\ engine provides the \csa{uniformdeviate} or \csa{pdfuniformdeviate} primitive. This is - currently the case for |pdftex|, |(u)ptex|, |luatex|, and will be for - |xetex| starting with \TeX Live 2019.\IMPORTANT + currently the case for |pdftex|, |(u)ptex|, |luatex|, and also for + |xetex| since \TeX Live 2019.\IMPORTANT \item \func{togl} is provided for the case |etoolbox| package is loaded, @@ -4884,16 +5163,9 @@ Miscellaneous notes: \item Also \hyperlink{ssec:dummies}{functions with dummy variables} use delimited macros for some tasks. See the relevant explanations there. - \item A more prominent distinction should be made between built-in \emph{regular} and - \emph{pseudo} functions. But this documentation needs to be revamped at - a later time. - - \item Functions may be called with \emph{oples} as arguments as long as + \item Functions may be called with \emph{oples} as arguments as long as the total length is the number of arguments the function expects. - - \item Some descriptions may be obsolete to various degree due to changes - at 1.4. -\end{itemize} + \end{itemize} \subsubsection{Functions with no argument} @@ -5020,7 +5292,7 @@ Recall that this is NOT done automatically, for example when adding fractions. optional second argument for the precision. See \func{sqrt}. \funcdesc{sqrtr} available \emph{only} in |\xintiiexpr|, rounded square root. \item[factorial(x)]\hypertarget{func:factorial-ii} factorial function (like the - post-fix |!| operator.) When used in |\xintexpr| or + post-fix \oper{!} operator.) When used in |\xintexpr| or |\xintfloatexpr| there is an optional second argument. See \func{factorial}. \funcdesc{?} is the truth value, $1$ if non zero, $0$ if zero. Must use parentheses. \funcdesc{!} is logical not, $0$ if non zero, $1$ if zero. Must use parentheses. @@ -5130,8 +5402,22 @@ $\xintthefloatexpr subs(((x-1)/x, x/x, (x+1)/x), x=2**30)\relax \funcdesc{unpack} is alternative for |*| unpacking operator.\NewWith{1.4} \begin{everbatim*} -\xinteval{unpack(nuple(1,2,3))} +\xinteval{unpack([1,2,3])} +\end{everbatim*} + + \funcdesc[ople]{flat} removes\NewWith{1.4b} all nesting to produce a + (non-bracketed) ople having the same leaves (some possibly empty) but + located at depth 1. +\begin{everbatim*} +\xinteval{flat([[[[1,[],3],[4,[[[5,6,[]],[8,9],[[],11]],12],[13,14]]], [[],16]]], [])} \end{everbatim*} + + I almost\unstable{} delayed indefinitely release because I was hesitating + on the name: perhaps better with |flattened()|, but long names add + (negligible, but still) overhead compared to short names. For this reason, + consider that name may change. + + \end{description} \subsubsection{Functions with an alphanumeric argument} @@ -5248,8 +5534,8 @@ $\xintthefloatexpr subs(((x-1)/x, x/x, (x+1)/x), x=2**30)\relax \csbxint{floateval}, not \csbxint{eval}, the first argument (here |2^30/3^5|) would already have been computed as floating point number with numerator and denominator rounded separately first to the prevailing - precision. To avoid that, use |\xintexpr2^9/3^5\relax| wrapper. - Then the rounding or truncation will be applied to the exact fraction. + precision. To avoid that, use |\xintexpr...\relax| wrapper. + Then the rounding or truncation will be applied to an exact fraction. \funcdesc[{x[, n]}]{sfloat} It is the same as \func{float}, but in case of a short (non-fractional) input it gets stored internally @@ -5355,7 +5641,7 @@ $\xintthefloatexpr subs(((x-1)/x, x/x, (x+1)/x), x=2**30)\relax Prior to |1.2p| it computed |f - g*trunc(f/g)|. - The |/:| and |'mod'| infix operators are both mapped to the same underlying + The \oper{/:} and \oper{'mod'} infix operators are both mapped to the same underlying macro as this |mod(f, g)| function. At |1.3| this macro produces smaller denominators when handling fractions than formerly. \begin{everbatim*} @@ -5497,7 +5783,7 @@ explicit |\xinteval| wrapping. checks if |cond| is true or false and takes the corresponding branch. Any non zero number or fraction is logical true. The zero value is logical false. Both ``branches'' are evaluated (they are - not really branches but just numbers). See also the |?| operator. + not really branches but just numbers). See also the \oper{?} operator. \funcdesc[x,yes,no]{ifint} (twofold-way conditional)\mbox{} @@ -5514,20 +5800,23 @@ explicit |\xinteval| wrapping. \funcdesc[cond,<0,=0,>0]{ifsgn} (threefold-way conditional)\mbox{} checks the sign of |cond| and - proceeds correspondingly. All three are evaluated. See also the |??| + proceeds correspondingly. All three are evaluated. See also the \oper{??} operator. \end{description} \subsubsection{Functions with an arbitrary number of arguments} -At |1.4| functions |all()|, |any()|, |xor()|, |`+`|, |`*`|, |max()|, |min()|, -|gcd()|, |lcm()|, |first()|, |last()|, |reversed()| and |len()| admit: +At |1.4| \func{all}, \func{any}, \func{xor}, +\func{\textasciigrave+\textasciigrave}, +\func{\textasciigrave\lowast\textasciigrave}, +\func{max}, \func{min}, \func{gcd}, \func{lcm}, \func{first}, \func{last}, +\func{reversed} and \func{len} admit: \begin{itemize} \item at least two arguments, and then operate as expected in backward compatible way, \item or only one argument,\IMPORTANT{} which then \emph{must} be a |nut-ple|, i.e. a - variable or explicit bracketed list. In the case of |reversed()| the output + variable or explicit bracketed list. In the case of \func{reversed} the output is a |nut-ple| if the input was one. \end{itemize} Notice that this is breaking change as the functions do not work anymore with @@ -5563,12 +5852,12 @@ the resulting logical assertion, \xinteval{xor(1,1,1), xor([1,0,1]), xor([1,1,1])} \end{everbatim*} -\funcdesc[x, y, ...]{|`+`|} adds (left ticks mandatory): +\funcdesc[x, y, ...]{\textasciigrave+\textasciigrave} adds (left ticks mandatory): \begin{everbatim*} \xinttheexpr `+`(1,3,19), `+`(1**2,3**2,sqr(19)), `+`([1**2,3**2,sqr(19)])\relax \end{everbatim*} -\funcdesc[x, y, ...]{|`*`|} multiplies (left ticks mandatory): +\funcdesc[x, y, ...]{\textasciigrave\lowast\textasciigrave} multiplies (left ticks mandatory): \begin{everbatim*} \xinttheexpr `*`(1,3,19), `*`(1^2,3^2,19^2), `*`([1^2,3^2,19^2])\relax \end{everbatim*} @@ -5635,6 +5924,33 @@ the case here. \begin{everbatim*} \xinttheiiexpr len(1..50, [101..150], 1001..1050), len([1..10])\relax \end{everbatim*} + + \funcdesc[\lowast nutples]{zip} behaves\NewWith{1.4b} similarly to + the Python function of the same name: i.e. it produces \emph{an ople of nut-ples, + where the i-th nut-ple contains the i-th element from each of the argument + nut-ples. The ople ends when the shortest input nut-ple is exhausted. + With a single nut-ple argument, it returns an ople of 1-nutples. + With no arguments, it returns the empty ople.} + + As there is no exact match in \xintexprname of the concept of «iterator» object,% +% +\footnote{% +Speaking of iterators, I have some ideas about this: as \csbxint{expr} does not +have the global expression in its hands it is difficult to organize globally +expandably the idea of iterator, but locally via syntax like the one for +\func{seq} this is feasible. When one thinks about it, \func{seq} is closely related +to the iterator idea.} +% + there is a significant difference here that (for example) the |zip(x,x,x)| + Python idiom to cluster the iterator |x| into successive chunks of length 3 + does not apply. Consider for this reason even the name of the function as + work-in-progress, susceptible to change.\unstable{} +\begin{everbatim*} +\xintiieval{zip([1..9], [0, 1, 2], [11..29], [111..139])} +\end{everbatim*} + + See also \csbxint{thespaceseparated} for some possible usage in combination with \func{flat}. + \end{description} \subsubsection{Functions requiring dummy variables} @@ -5646,47 +5962,51 @@ The pseudo-functions \xintFor #1 in {subs, seq, subsm, subsn, iter, add, mul, \begin{itemize} \item for all of them, whenever a |<varname>=| chunk must be parsed into a (non-assigned) variable name, then the equal sign must be visible, -\item and if the syntax is with «|,<varname>=|» the initial comma also must be +\item and if the syntax is with |,<varname>=| the initial comma also must be visible (spaces do not matter), \item for all of them but \func{ndmap} and \func{ndfillraw} the final closing parenthesis must be visible. \end{itemize} -Although delimited macros involving commas are used to locate «|,<varname=|» -this is done in a way which will ignore commas located inside correctly -balanced parentheses. And the semi-colons involved in the syntax can -always arise from expansion alone. For \func{rseq}, \func{iter}, \func{rrseq} -and \func{iterr} the |,<varname>=| part may also be created from the expansion -which will generate the initial comma separated values delimited by a -semi-colon. +Although delimited macros involving commas are used to locate |,<varname=| +this is done in a way silently ignoring commas located inside correctly +balanced parentheses. Thus, as the examples will show, nesting works as +expected. + +The semi-colons involved in the syntax may arise from expansion alone. For +\func{rseq}, \func{iter}, \func{rrseq} and \func{iterr} the |,<varname>=| part +may also be created from the expansion which will generate the initial comma +separated values delimited by a semi-colon. Prior to |1.4|, semi-colons needed to be braced or otherwise hidden when -located in an expression parsed by \csbxint{defvar} or \csbxint{deffunc},\NewWith{1.4} to -not be confused with the expression terminator. This is not needed anymore. +located in an expression parsed by \csbxint{defvar} or +\csbxint{deffunc}, to not be confused with the expression +terminator. +This is not needed anymore.\NewWith{1.4} \func{seq}, \func{rseq}, \func{iter}, \func{rrseq}, \func{iterr} and also \func{add}, \func{mul}, but not \func{subs} admit the -\keyword{omit}, \keyword{abort}, and \keyword{break}|()| keywords. This is a -new feature for \func{add} and \func{mul}. +\keyword{omit}, \keyword{abort}, and \func{break} keywords. This is a +new feature at |1.4| for \func{add} and \func{mul}. In the case of a potentially infinite list generated by the |<integer>++| syntax, use of -\keyword{abort} or of \keyword{break}|()| is mandatory, naturally. +\keyword{abort} or of \func{break} is mandatory, naturally. All lowercase and uppercase Latin letters are pre-configured for usage as dummy variables. In Unicode engines one can use \csbxint{newdummy} to turn any letter into a usable dummy variable. -Since |1.4|,\NewWith{1.4} \csbxint{newdummy} works (in all engines) to turn a multi-letter -word into a dummy variable. +And since |1.4|,\NewWith{1.4} \csbxint{newdummy} works (in all engines) to +turn a multi-letter word into a dummy variable. In the descriptions, +|varname| stands for such a dummy variable, either single-letter or word. \begin{description} % [parsep=0pt,align=left, % leftmargin=0pt, itemindent=0pt, % labelwidth=-\fontdimen2\font, labelsep=\fontdimen2\font, labelindent=0pt, % listparindent=\leftmarginiii] - -\funcdesc[expr, letter=values]{subs} for variable substitution +\funcdesc[expr, varname=values]{subs} for variable substitution. \begin{everbatim*} \xinttheexpr subs(subs(seq(x*z,x=1..10),z=y^2),y=10)\relax\newline \end{everbatim*}% @@ -5704,55 +6024,58 @@ One should rather define auxiliary functions to compute intermediate results. Or one can use \func{seq}. See the documentation of \csbxint{deffunc}. -\funcdesc[expr, letter=values]{add} addition +\funcdesc[expr, varname=values]{add} addition \begin{everbatim*} \xintiiexpr add(x^3,x=1..20), add(x(x+1), x=1,3,19)\relax\newline +\xintiiexpr add(x^3, x = 1..[2]..20)\relax\newline % add only odd cubes \xintiiexpr add((odd(x))?{x^3}{omit}, x = 1..20)\relax\par % add only odd cubes \end{everbatim*} -\noindent At |1.4|,\NewWith {1.4a} the keywords \keyword{omit}, \keyword{abort} and -\keyword{break}|()| are allowed. But this was broken and got fixed at |1.4a|. -The |@| special variable holds the so-far accumulated value. Initially its -value is zero. +At |1.4| (fixed at |1.4a|),\NewWith {1.4a} the keywords \keyword{omit} (as in +example above), \keyword{abort} and \func{break} are allowed. +The meaning of \func{break} is specific: its argument serves as last +operand for the addition, not as ultimate value. \begin{everbatim*} -\xintiiexpr add(1 + @, i=1..10)\relax % iterates x <- 2x+1 +\xintiiexpr add((x>10)?{break(1000)}{x}, x = 1..15)\relax \end{everbatim*} -The meaning of \keyword{break}|()| is specific: its argument serves as last -operand for the addition, not as ultimate value. +The |@| special variable holds the so-far accumulated value. Initially its +value is zero. \begin{everbatim*} -\xintiiexpr add((x>10)?{break(1000)}{x}, x = 1..15)\relax +\xintiiexpr add(1 + @, i=1..10)\relax % iterates x <- 2x+1 \end{everbatim*} -See |`+`| for syntax without a dummy variable. +See \func{\textasciigrave+\textasciigrave} for syntax simply adding items of a +list without usage of a dummy variable. -\funcdesc[expr, letter=values]{mul} multiplication +\funcdesc[expr, varname=values]{mul} multiplication \begin{everbatim*} -\xintiiexpr mul(x^2, x=1,3,19), mul(2n+1,n=1..10)\relax +\xintiiexpr mul(x^2, x = 1, 3, 19, 37..50)\relax \end{everbatim*} -\noindent At |1.4|,\NewWith {1.4a} the keywords \keyword{omit}, \keyword{abort} and -\keyword{break}|()| are allowed. But this was broken and got fixed at |1.4a|. The |@| special variable holds the so-far accumulated value. Initially its value is one. -The meaning of \keyword{break}|()| is specific: its argument serves as last -operand for the multiplication, not as ultimate value. +At |1.4| (fixed at |1.4a|),\NewWith {1.4a} the keywords \keyword{omit}, +\keyword{abort} and \func{break} are allowed. The meaning of \func{break} is +specific: its argument serves as last operand for the multiplication, not as +ultimate value. \begin{everbatim*} \xintiieval{mul((i==100)?{break(i^4)}{i}, i = 98, 99, 100)} \end{everbatim*} -See |`*`| for syntax without a dummy variable. +See \func{\textasciigrave\lowast\textasciigrave} for syntax without a dummy variable. -\funcdesc[expr, letter=values]{seq} comma separated values generated according to a formula +\funcdesc[expr, varname=values]{seq} comma separated values generated according to a formula \begin{everbatim*} -\xinttheiiexpr seq(x(x+1)(x+2)(x+3),x=1..10), `*`(seq(3x+2,x=1..10))\relax +\xintiiexpr seq(x(x+1)(x+2)(x+3),x=1..10), `*`(seq(3x+2,x=1..10))\relax \end{everbatim*} \begin{everbatim*} -\xinttheiiexpr seq(seq(i^2+j^2, i=0..j), j=0..10)\relax +\smallskip +\leavevmode\vbox{\xintthealign\xintiiexpr [seq([seq(i^2+j^2, i=0..j)], j=0..10)]\relax} \end{everbatim*} -\funcdesc[initial value; expr, letter=values]{rseq} recursive sequence, |@| for the previous value. +\funcdesc[initial value; expr, varname=values]{rseq} recursive sequence, |@| for the previous value. \begin{everbatim*} \printnumber {\xintthefloatexpr subs(rseq (1; @/2+y/2@, i=1..10),y=1000)\relax }\newline \end{everbatim*}% @@ -5765,22 +6088,25 @@ iteration to the whole list. Use parentheses at each iteration to maintain this ``nuple''. For example: \begin{everbatim*} \printnumber{\xintthefloatexpr rseq(1,10^6; - (sqrt([@][0]*[@][1]),([@][0]+[@][1])/2), i=1..7)\relax } + (sqrt(@[0]*@[1]),(@[0]+@[1])/2), i=1..7)\relax } \end{everbatim*} -\funcdesc[initial value; expr, letter=values]{iter} is exactly like |rseq|, except that it only prints - the last iteration. Strangely it was lacking from |1.1| release, or rather - what was available from |1.1| to |1.2f| is what is called now \func{iterr} - (described below). +Prior to |1.4| the above example had to be written with |[@]|. This is still +possible (|@| stands for an ople with two items, bracketing then extracting is +like extracting directly), but it is leaner to drop the extra «packing». + +\funcdesc[initial value; expr, varname=values]{iter} is exactly like |rseq|, except that it only prints + the last iteration. + \hypertarget{BrentSalamin}{} - The new |iter()| is convenient to handle compactly higher order iterations. + |iter()| is convenient to handle compactly higher order iterations. We can illustrate its use with an expandable (!) implementation of the Brent-Salamin algorithm for the computation of $\pi$: \begin{everbatim*} \xintDigits:= 87\relax % Below 83 is 87-3-1 (3 guard digits, target 84=1+83 digits) and 43 is 84/2+1. -\xintdeffloatefunc BS(a, b, t, p):= 0.5*(a+b), sqrt(a*b), t-p*sqr(a-b), \xintiiexpr 2p\relax; +\xintdeffloatfunc BS(a, b, t, p):= 0.5*(a+b), sqrt(a*b), t-p*sqr(a-b), \xintiiexpr 2p\relax; \xinteval {trunc(% I feel truncation is better than rounding to display decimals of π \xintfloatexpr @@ -5806,7 +6132,7 @@ this ``nuple''. For example: Prior to |1.4| the above example had to use notation such as |[@][0]|; this would still work but |@[0]| is leaner. -\funcdesc[initial values; expr, letter=values]{rrseq} recursive sequence with multiple initial terms. Say, there are +\funcdesc[initial values; expr, varname=values]{rrseq} recursive sequence with multiple initial terms. Say, there are |K| of them. Then |@1|, ..., |@4| and then |@@(n)| up to |n=K| refer to the last |K| values. Notice the difference with |rseq()| for which |@| refers to a list of items in case the initial value is a list and not a single item.% @@ -5838,45 +6164,58 @@ this ``nuple''. For example: I implemented an |Rseq| which at all times keeps the memory of \emph{all} previous items, but decided to drop it as the package was becoming big. -\funcdesc[initial values; expr, letter=values]{iterr} same as |rrseq| but does not print any value until the last |K|. +\funcdesc[initial values; expr, varname=values]{iterr} same as |rrseq| but does not print any value until the last |K|. \begin{everbatim*} \xinttheiiexpr iterr(0,1; @1+@2, i=2..5, 6..10)\relax % the iterated over list is allowed to have disjoint defining parts. \end{everbatim*} -\funcdesc[expr, var1=value1; var2=value2; ....; varN=valueN]{subsm} -Simultaneous substitutions. The assigned values must not involve the +\funcdesc[expr, var1=value1; var2=value2; ....; varN=valueN{[;]}]{subsm} +Simultaneous\NewWith{1.4} +substitutions. The assigned values must not involve the variables. An optional final -semi-colon is allowed.\NewWith{1.4} +semi-colon is allowed. \begin{everbatim*} \xintiieval{subsm(x+2y+3z+4t, x=1; y=10; z=100; t=1000;)} \end{everbatim*} -\funcdesc[expr, var1=value1; var2=value2; ....; varN=valueN]{subsn} -Simultaneous substitutions. The assigned values may involve all variables +\funcdesc[expr, var1=value1; var2=value2; ....; varN=valueN{[;]}]{subsn} +Simultaneous\NewWith{1.4} +substitutions. The assigned values may involve all variables located further to its right. An optional final semi-colon is allowed. -\NewWith{1.4} \begin{everbatim*} \xintiieval{subsn(x+y+z+t, x=20y; y=20z; z=20t; t=1)} \end{everbatim*} -\funcdesc[function, values1; values2; ....; valuesN]{ndmap} Construction of an -|ndlist| with |N| dimensions from function values. The function must be an -|N|-variable function. Its value may be scalar... or not. An optional final -semi-colon is allowed. \NewWith{1.4} +\funcdesc[function, values1; values2; ....; valuesN{[;]}]{ndmap} +% +Construction\NewWith{1.4} of a nested list (a priori having |N| dimensions) from function +values. The function must be an |N|-variable function (or a function accepting +arbitrarily many arguments), but it is not constrained to produce only scalar +values. Only in the latter case is the output really an |N|-dimensional +«|ndlist|» type object. An optional final semi-colon in the input before the +closing parenthesis is +allowed. \begin{everbatim*} \xintdeffunc foo(a,b,c,d) = a+b+c+d; +\begin{multicols}{2} \xintthealign\xintexpr ndmap(foo, 1000,2000,3000; 100,200,300; 10,20,30; 1,2,3)\relax +\end{multicols} \end{everbatim*} -\funcdesc[function, var1=values1; var2=values2; ....; varN = valuesN]{ndseq} -Construction of an |ndlist| with |N| dimensions from simultaneous substitutions in an expression -in |N| variables. Its value may be scalar... or not. An optional final -semi-colon is allowed. -\NewWith{1.4} +\funcdesc[expr, var1=values1; var2=values2; ....; varN = valuesN{[;]}]{ndseq} +% +Constructs\NewWith{1.4} a nested list (a priori having |N| dimensions) from +substitutions in an expression involving |N| (dummy) variables. The +expression is not constrained to produce only scalar values. Only in the +latter case is the output really an |N|-dimensional «|ndlist|» type object. +An optional final semi-colon in the input before the closing parenthesis is +allowed. \begin{everbatim*} +\begin{multicols}{2} \xintthealign\xintexpr ndseq(a+b+c+d, a=1000,2000,3000; b=100,200,300; c=10,20,30; d=1,2,3;)\relax +\end{multicols}% in case of page break, this makes amusing zigzag rendering \end{everbatim*} \end{description} @@ -5892,10 +6231,10 @@ The following keywords are recognized: \keyworddesc{omit} it is a pseudo-variable which says to omit this value and go to next one. - \keyworddesc{break} it is a function |break(stuff)| which says to abort and have |stuff| as last value. + \funcdesc[stuff]{break} says to abort and insert |stuff| as last value. \keyworddesc{<integer>++} serves to generate a potentially infinite list. In - conjunction with an \keyword{abort} or \keyword{break}|()| this is often + conjunction with an \keyword{abort} or \func{break} this is often more efficient than iterating over a pre-established list of values. \begin{everbatim*} \xinttheiiexpr iter(1;(@>10^40)?{break(@)}{2@},i=1++)\relax @@ -5920,18 +6259,6 @@ if one also wants the previous Fibonacci number one only has to use |break(@2, \end{description} -All operations executed by the parsers are based on underlying macros from -packages \xintfracname and \xintname which are loaded automatically by -\xintexprname. With \xintbinhexname loaded the -parsers can handle hexadecimal notation on (even fractional) input. - -All macros doing computations ultimately rely on (and reduce to) the -|\numexpr| primitive from \eTeX{}. These \eTeX{} extensions date back to 1999 -and are by default incorporated into the |pdftex| etc... executables from -major modern \TeX{} installations since more than ten years now. - - - \subsection{Generators of arithmetic progressions} \label{ssec:arithseq} @@ -5987,7 +6314,7 @@ major modern \TeX{} installations since more than ten years now. \dtt{6} digits mantissas (in this example). \end{itemize} -\subsection{Python slicing and indexing of one-dimensional sequences} +\subsection{Python slicing and indexing of one-di\-men\-sional sequences} \label{ssec:lists} There are some breaking changes in the syntax at |1.4|,\CHANGED{1.4} because previously @@ -6188,129 +6515,144 @@ which is not at all the presumably hoped for: \label{xintdeffloatvar} Since release |1.1| it is possible to make an assignment to a variable name -and let it be known to the parsers of \xintexprname. -\begin{everbatim*} -% definitions -\xintdefvar Pi:=3.141592653589793238462643;% -\xintdefvar x_1 := 10;\xintdefvar x_2 := 20;\xintdefvar y@3 := 30;% -\xintdefiivar List := seq(x(x+1)/2, x=0..10);% -% usage -$x_1\cdot x_2\cdot y@3+1=\xinttheiiexpr x_1*x_2*y@3+1\relax$\newline -$\pi^{100}\approx\xintthefloatexpr Pi^100\relax$\newline -\xinttheiiexpr List\relax\ contains \xinttheiiexpr [List][7]\relax.\par -\end{everbatim*} - -For catcodes issues (particularly, for the semi-colon used to delimit the -fetched expression), see the discussion of \csbxint{exprSafeCatcodes}. -\begin{framed} - Both syntaxes |\xintdefvar foo := <expr>;| and |\xintdefvar foo = <expr>;| - are accepted. -\end{framed} -Spaces in the variable name or around the equal sign are removed and are -immaterial. +and let it be known to the parsers of \xintexprname. Since |1.2p| simultaneous +assignments are possible. +\begin{everbatim*} +\xintdefvar myPi:=3.141592653589793238462643;% +\xintdefvar x_1, x_2, x_3 := 10, 20, 30;% +\xintdefiivar List := seq(x(x+1)/2, x=0..10);% seq produces an «open» list +\xintdefiivar Nuple := ndmap(sqr, List);% ndmap produces a «bracketed» list +\xintdefiivar FourthPowers := ndmap(sqr, *Nuple);% "unpacking" is needed here. +$x_1 = \xinteval{x_1}, x_2 = \xinteval{x_2}, x_3 = \xinteval{x_3}$\newline +$\pi^{100}\approx\xintfloateval{myPi^100}$ is evaluated \fbox{after} having rounded myPi +to the prevailing float precision (which here is the default \xinttheDigits)\newline +$\xintDigits:=20\relax \pi^{100}\approx\xintfloateval{myPi^100}$ (this one first +rounded the variable to 20 digits before evaluating its 100th power)\newline +Open List: \xintiieval{List}\newline +Nuple: \xintiieval{Nuple}\newline +FourthPowers: \xintiieval{FourthPowers}\par +\end{everbatim*} + +By the way \xinttrigname defines indeed a variable |Pi|, but its value can be +modified at user level, with no impact whatsoever on the trigonometrical +functions. -As shown above a variable can be assigned a "list" value. -Simultaneous assignments are allowed: +Here is another example with simultaneous assignments: \begin{everbatim*} -\xintdefvar x1, x2, x3 := 3, 10^2, -1;% \xintdefiivar A, B := 1500, 135;% \xintloop \xintifboolexpr{B} {\xintdefiivar A, B := B, A 'mod' B;\iftrue} {\iffalse} \repeat -The last non zero remainder is \xinttheiiexpr A\relax. +The last non zero remainder is \xintiiexpr A\relax. \end{everbatim*} Note1: simultaneous assignments are more costly in terms of memory impact. -Note2:\NewWith{1.4} in case of simultaneous assignments, the right hand side will be -automatically unpacked if necessary. +Note2:\NewWith{1.4} in case of simultaneous assignments, the right hand side +will be automatically unpacked if necessary. + +For catcodes issues (particularly, for the semi-colon used to delimit the +fetched expression), see the discussion of \csbxint{exprSafeCatcodes}. +\begin{framed} + Both syntaxes |\xintdefvar foo := <expr>;| and |\xintdefvar foo = <expr>;| + are accepted. +\end{framed} +Spaces in the variable name or around the equal sign are removed and are +immaterial. The variable names are expanded in an |\edef| (and stripped of spaces). Example: \begin{everbatim} \xintdefvar x\xintListWithSep{, x}{\xintSeq{0}{10}} := seq(2**i, i = 0..10);% \end{everbatim} -This defines the variables |x0|, |x1|, \dots, |x10| for future usage. +This defines |x0|, |x1|, \dots, |x10| for future usage. Legal variable names are composed of letters, digits, |_| and |@| and characters. A variable name must start with a letter. Variable names starting with a |@| or |_| are reserved for internal usage. -|x_1x| is a licit variable name, as well as |x_1x_| and |x_1x_2| and |x_1x_2y| -etc... As the parser does not trace back its steps, it will raise an ``unknown -variable'' error in cases such as |x_1x_2| with defined variables |x_1| and -|x_2| but not |x_1x_2|. Input syntax must be |x_1*x_2| in such cases. +As |x_1x_2| or even |x_1x| are licit variable names, and as the parser does +not trace back its steps, input syntax must be |x_1*x_2| if the aim is to +multiply such variables. Single letter names |a..z| and |A..Z| are pre-declared by the package for use as special type of variables called ``dummy variables''. It is allowed to overwrite their original meanings and assign them values. See further \csbxint{unassignvar}. -The assignments are done with \csa{xintdefvar}, \csa{xintdefiivar}, or -\csa{xintdeffloatvar} and the variable value will be computed using respectively -\csbxint{expr}, \csbxint{iiexpr} or \csbxint{floatexpr}. It can then be used -in all three parsers if the parser understands the format. Currently this -means that variables using \csa{xintdefvar} or \csa{xintdeffloatvar} can not -be used in the \csbxint{iiexpr} parser, and variables defined via -\csa{xintdefiivar} can be used in all parsers. +Since |1.4| even assigned variables can be used in the signature of +function declarations. + +Using \csa{xintdefvar}, \csa{xintdefiivar}, or \csa{xintdeffloatvar} means +that the variable value will be computed using respectively \csa{xintexpr}, +\csa{xintiiexpr} or \csa{xintfloatexpr}. It can then be used in all three +parsers, as long as the parser understands the format. Currently this means +that variables using \csa{xintdefvar} or \csa{xintdeffloatvar} can be used +freely either with \csa{xintexpr} or \csa{xintfloatexpr} but not with +\csa{xintiiexpr}, and variables defined via \csa{xintdefiivar} can be used in +all parsers. When defining a variable with \csa{xintdeffloatvar}, it is important to know that the rounding to \csbxint{theDigits} digits of precision happens inside -\csa{xintfloatexpr} only if an operation is executed. Thus, for a variable -definition which uses no operations (and \emph{only} for them), the value is -recorded inside the variable with all its digits preserved. If -\csbxint{theDigits} changes afterwards, the variable will be rounded to that -precision in force at time of use. +\csa{xintfloatexpr} only if an operation is executed. Thus, for a declaration +using no operations (and \emph{only} for them), the value is recorded with all +its digits preserved. If \csbxint{theDigits} changes afterwards, the variable +will be rounded to that precision only at time of use. \begin{everbatim*} \xintdeffloatvar e:=2.7182818284590452353602874713526624977572470936999595749669676;% -\xinttheexpr e\relax\newline % shows the recorded value -\xintthefloatexpr e\relax\newline % output rounds -\xintthefloatexpr 1+e\relax\newline % the rounding was done by addition (trust me...) -\xintdeffloatvar e:=float(2.7182818284590452353602874713526624977572470936999595749669676);% -\xinttheexpr e\relax\par % use of float forced immediate rounding -\end{everbatim*} - -In the next examples we examine the effect of cumulated float operations on -rounding errors: -\begin{everbatim*} -\xintdefvar e_1:=add(1/i!, i=0..10);% exact sum -\xintdeffloatvar e_2:=add(1/i!, i=0..10);% float sum -\xintthefloatexpr e_1, e_2\relax\newline -\xintdefvar e_3:=e_1+add(1/i!, i=11..20);% exact sum -\xintdeffloatvar e_4:=e_2+add(1/i!, i=11..20);% float sum -\xintthefloatexpr e_3, e_4\relax\newline -\xintdeffloatvar e:=2.7182818284590452353602874713526624977572470936999595749669676;% -\xintDigits:=24\relax -\xintthefloatexpr[16] e, e^1000, e^1000000\relax (e rounded to 24 digits first)\newline -\xintDigits:=16\relax -\xintthefloatexpr e, e^1000, e^1000000\relax (e rounded to 16 digits first)\par -\end{everbatim*} +\xintexpr e\relax\newline % shows the recorded value +\xintfloatexpr e\relax\newline % typesetter rounds on output +\xintexpr \xintfloatexpr e\relax\relax\newline % here we see all digits again +\xintexpr \xintfloatexpr [16]e\relax\relax\newline % this forces rounding +\xintexpr \xintfloatexpr 0+e\relax\relax\newline % rounding here done by addition +\xintexpr float(e)\relax\newline % one more way to force rounding +\xintifboolfloatexpr{e == e+0}{\error}{Different! Comparisons do not pre-round.}\par +\end{everbatim*} + +% not so exciting example +% In the next examples we examine the effect of cumulated float operations on +% rounding errors: +% \begin{everbatim*} +% \xintdefvar e_1:=add(1/i!, i=0..10);% exact sum +% \xintdeffloatvar e_2:=add(1/i!, i=0..10);% float sum +% \xintthefloatexpr e_1, e_2\relax\newline +% \xintdefvar e_3:=e_1+add(1/i!, i=11..20);% exact sum +% \xintdeffloatvar e_4:=e_2+add(1/i!, i=11..20);% float sum +% \xintthefloatexpr e_3, e_4\relax\newline +% \xintdeffloatvar e:=2.7182818284590452353602874713526624977572470936999595749669676;% +% \xintDigits:=24\relax +% \xintthefloatexpr[16] e, e^1000, e^1000000\relax (e rounded to 24 digits first)\newline +% \xintDigits:=16\relax +% \xintthefloatexpr e, e^1000, e^1000000\relax (e rounded to 16 digits first)\par +% \end{everbatim*} -With |\xintverbosetrue| the values of the assigned variables will be written +With \csbxint{verbosetrue} the values of the assigned variables will be written to the log. For example like this (the line numbers here are artificial): - \begin{everbatim} -Package xintexpr Info: (on line 2875) - Variable "e" defined with value {271828182845904523536028747135266249775724 -70936999595749669676[-61]}. -Package xintexpr Info: (on line 2879) - Variable "e" defined with value {2718281828459045[-15]}. -Package xintexpr Info: (on line 2886) - Variable "e_1" defined with value {9864101/3628800[0]}. -Package xintexpr Info: (on line 2887) - Variable "e_2" defined with value {2718281801146385[-15]}. -Package xintexpr Info: (on line 2889) - Variable "e_3" defined with value {6613313319248080001/2432902008176640000[ -0]}. -Package xintexpr Info: (on line 2890) - Variable "e_4" defined with value {2718281828459046[-15]}. -Package xintexpr Info: (on line 2892) - Variable "e" defined with value {271828182845904523536028747135266249775724 -70936999595749669676[-61]}. +Package xintexpr Info: (on line 1) + Variable "myPi" defined with value {3141592653589793238462643[-24]}. +Package xintexpr Info: (on line 2) + Variable "x_1" defined with value {10}. +Package xintexpr Info: (on line 2) + Variable "x_2" defined with value {20}. +Package xintexpr Info: (on line 2) + Variable "x_3" defined with value {30}. +Package xintexpr Info: (on line 3) + Variable "List" defined with value {0}{1}{3}{6}{10}{15}{21}{28}{36}{45}{55} +. +Package xintexpr Info: (on line 4) + Variable "Nuple" defined with value {{0}{1}{9}{36}{100}{225}{441}{784}{1296 +}{2025}{3025}}. +Package xintexpr Info: (on line 5) + Variable "FourthPowers" defined with value {{0}{1}{81}{1296}{10000}{50625}{ +194481}{614656}{1679616}{4100625}{9150625}}. \end{everbatim} +Prior to |1.4| individual (scalar) values would not have been printed to the +log with the braces. + \subsubsection{\csh{xintunassignvar}} \label{xintunassignvar} @@ -6525,7 +6867,7 @@ case that the original expression has been \emph{entirely} parsed. See The main difficulty of \csbxint{deffunc} is with the pseudo-functions \func{seq}, \func{iter}, etc..., which admit the keywords \keyword{omit}, -\keyword{abort}, \keyword{break}|()|. We have no alternative for them, if the +\keyword{abort}, \func{break}. We have no alternative for them, if the iterated over values are not entirely numerical than to postpone expansion, but this means simply storing for later a possibly big sub-expression. @@ -6950,10 +7292,11 @@ some example here... \hyperlink{ssec:dummies}{Functions with dummy variables}, \autoref{ssec:moredummies} or \hyperref[sssec:recursive]{Recursive definitions}. \end{itemize} -Almost all of the computational results interspersed throughout the -documentation are not hard-coded in the source file of this document but are -obtained via the expansion of the package macros during the \TeX{} -run.% +% ça va sans dire +% Almost all of the computational results interspersed throughout the +% documentation are not hard-coded in the source file of this document but are +% obtained via the expansion of the package macros during the \TeX{} +% run.% \clearpage @@ -7126,8 +7469,8 @@ Python provides functions |degrees()| and |radians()|. But as most of the \xinttrigname functions are already defined for the two units, I felt this was not really needed. It is a oneliner to add them: \begin{everbatim} -\xintdeffloatefunc radians(x) := x * oneDegree; -\xintdeffloatefunc degrees(x) := x * oneRadian; +\xintdeffloatfunc radians(x) := x * oneDegree; +\xintdeffloatfunc degrees(x) := x * oneRadian; \xintdefefunc radians(x) := float_(x * oneDegree); \xintdefefunc degrees(x) := float_(x * oneRadian); \end{everbatim} @@ -7146,7 +7489,7 @@ precision. \begin{itemize} \item The package is almost entirely implemented using the high level user interface of \xintexprname, using - \csbxint{deffloatefunc} (and \csbxint{deffloatvar}), the main two exceptions + \csbxint{deffloatefunc} (merged with \csbxint{deffloatfunc} at |1.4|) (and \csbxint{deffloatvar}), the main two exceptions being for: \begin{enumerate}[nolistsep] \item the range reduction for the |sind()| and |cosd()| functions which @@ -8657,7 +9000,7 @@ copied over from \LaTeX3's |\prg_replicate:nn| with some minor changes.% available on an online site.} And \csa{xintReplicate}|{x}| integrates the -\csa{romannumeeral} prefix.\NewWith{1.4} +\csa{romannumeral} prefix.\NewWith{1.4} It does not do any expansion of its second argument but inserts it in the upcoming @@ -9929,7 +10272,7 @@ result from \csbxint{UniformDeviate}|{100000000}| but with less overhead. \subsection{(WIP) \csh{xintXRandomDigits}}\label{xintXRandomDigits} -|\xintXRandomDigits{N}|\retype{\numx} expands under exhaustive expansion +|\xintXRandomDigits{N}|\xtype{\numx} expands under exhaustive expansion (|\edef|, |\write|, |\csname| ...) to |N| random decimal digits. The argument must be non-negative. For example: @@ -10214,25 +10557,39 @@ from removing the |[N]| part if |N=0| and removing the |B| if |B=1|. \subsection{\csh{xintFracToSci}, \csh{xintFracToSciE}}\label{xintFracToSci} \label{xintFracToSciE} -\csa{xintFracToSci}\etype{\Ff} is not really part of public interface. It is a -macro used by \csbxint{expr} for output. +% je ne dois pas mettre \Ff car la macro n'utilise pas \XINT_infrac -\noindent\csa{xintFracToSciE}\NewWith{1.4} says what to use for the scientific -notation, its default definition is -\begin{everbatim} -\def\xintFracToSciE{e} -\end{everbatim} +\csa{xintFracToSci}\NewWith{1.4} is not really part of public interface. It is +a macro used by \csbxint{expr} and \csbxint{iexpr} for output. + +\noindent It\xtype{} is expandable but not \fexpan dable. -If using directly \csa{xintFracToSci}: attention that it expects input to -already be in raw \xintfracname format, apart from denominator and |[N]| -postfix parts being optional. Its output is like \csbxint{PRaw} except for -using scientific notation in place of raw \xintfracname format. +It has specific rules regarding the input format: it expects it argument +(after \fexpan ding it) to \emph{already} be either in raw \xintfracname +format |A/B[N]| (with optional denominator and |[N]| parts) or in decimal +format |A.ddd...ddd|. It does not accept scientific notation as input (or +rather, the |e| in input must be of catcode 12). + +Its output uses scientific notation (dropping unit demoninator or zero +exponent -- but not (as alas I have to tell the whole truth) in case input was +itself in scientific notation), except for decimal numbers. The latter pass +through ``as is''. \begin{everbatim*} \xintFracToSci {\xintRaw{123e10/321e10}}, \xintFracToSci {\xintRaw{123e9/321e10}}, -\xintFracToSci {\xintIrr{861/123}} +\xintFracToSci {\xintIrr{861/123}}, +\xintFracToSci {\xintTrunc{12}{1/3}} \end{everbatim*} +Not being \fexpan dable it can not be used as argument to the other package +macros without being wrapped in |\expanded{...}|. + +\noindent\csa{xintFracToSciE}\NewWith{1.4} says what to use for the scientific +notation, its default definition is +\begin{everbatim} +\def\xintFracToSciE{e} +\end{everbatim} + \subsection{\csh{xintDecToString}}\label{xintDecToString} @@ -10298,7 +10655,7 @@ Truncation is done towards zero. \subsection{\csh{xintXTrunc}}\label{xintXTrunc} -\csa{xintXTrunc}|{x}{f}|\retype{\numx\Ff} is similar to \csbxint{Trunc} with +\csa{xintXTrunc}|{x}{f}|\xtype{\numx\Ff} is similar to \csbxint{Trunc} with the following important differences: \begin{itemize}[nosep] \item it is completely expandable but not @@ -10930,47 +11287,50 @@ $\xintIsOne {21921379213/21921379213}\neq\xintIsOne {1.0000000000000000000000000 The greatest common divisor of its two arguments, which are possibly \emph{fractions}.\etype{\Ff\Ff} -A macro of the same name existed formerly in \xintgcdname but it truncated -its arguments to integers via \csbxint{Num}. +Prior to |1.4| a macro of the same name existed in \xintgcdname. But +it truncated its two arguments to integers via \csbxint{Num}. + +See \csbxint{iiGCD} for the integer only variant. \subsection{\csh{xintLCM}}\label{xintLCM} The least common multiple of its two arguments, which are possibly \emph{fractions}.\etype{\Ff\Ff} -A macro of the same name existed formerly in \xintgcdname but it truncated -its arguments to integers via \csbxint{Num}. +Prior to |1.4| a macro of the same name existed in \xintgcdname. But +it truncated its two arguments to integers via \csbxint{Num}. + +See \csbxint{iiLCM} for the integer only variant. \subsection{\csh{xintGCDof}}\label{xintGCDof} \csa{xintGCDof}|{{a}{b}{c}...}|\etype{f{$\to$}{\lowast\Ff}} computes the -greatest common divisor of a|a|, |b|, \dots{}, which are -possibly\emph{fractions} (i.e. the non-negative generator of the fractional -ideal they generate). The list argument may be a macro as it is \fexpan ded -first. It is a support macro for the |gcd()| function of -\xintexprname. +greatest common divisor of |a|, |b|, \dots{}. The arguments are allowed to be +\emph{fractions}: the macro produces the non-negative generator of the +fractional ideal they generate. The list argument may be a macro as it is +\fexpan ded first. If all arguments vanish, then also the output. -A macro of the same name existed formerly in \xintgcdname: it truncated all -its arguments to integers via \csbxint{Num}. It has now been removed and one -must load \xintfracname to get the macro. +Prior to |1.4| a macro of the same name existed in \xintgcdname. But +it truncated all its arguments to integers via \csbxint{Num} and then +proceeded with integer only computations. -Added this documentation. See \csbxint{iiGCDof} for the integer -only variant. +See \csbxint{iiGCDof} for the integer only variant (which is about |6X| faster +than this one for integer arguments). \subsection{\csh{xintLCMof}}\label{xintLCMof} \csa{xintLCMof}|{{a}{b}{c}...}|\etype{f{$\to$}{\lowast\Ff}} computes the least -common multiple of |a|, |b|, \dots{}, which are possibly \emph{fractions}. The -list argument may be a macro, it is \fexpan ded first. If one of the item -vanishes, then also the output. It is a support macro for the |lcm()| function -of \xintexprname. +common multiple of |a|, |b|, \dots{}. The arguments are allowed to be +\emph{fractions}: the macro produces the non-negative generator of the +intersection of the corresponding fractional ideals. The list argument may be +a macro, it is \fexpan ded first. If one of the item vanishes, then also the +output. -A macro of the same name existed formerly in \xintgcdname: it truncated all -its arguments to integers via \csbxint{Num}. It has now been removed and one -must load \xintfracname to get the macro. +Prior to |1.4| a macro of the same name existed in \xintgcdname. But +it truncated all its arguments to integers via \csbxint{Num}. -Added this documentation. See \csbxint{iiLCMof} for the integer -only variant. +See \csbxint{iiLCMof} for the integer only variant (which is about |9X| faster +than this one for integer arguments). \subsection{\csh{xintDigits}, \csh{xinttheDigits}} \label{xintDigits} @@ -11091,48 +11451,57 @@ transitive in the number of kept digits. -\subsection{\csh{xintPFloat}}\label{xintPFloat} +\subsection{\csh{xintPFloat}, \csh{xintPFloatE}} +\label{xintPFloat} +\label{xintPFloatE} -The macro |\xintPFloat [P]{f}|\etype{{\upshape[\numx]}\Ff} is like -\csbxint{Float} but ``pretty-prints'' the output. Its behaviour has changed -with release |1.2f|\IMPORTANT{}: there is only one simplification rule now -which is that decimal notation (with possibly needed extra zeros) is used in -place of scientific notation when the exponent would end up being between -\dtt{-5} and \dtt{5} inclusive. +|\xintPFloat [P]{f}|\etype{{\upshape[\numx]}\Ff} is like \csbxint{Float} but +``pretty-prints'' the output. The macro applies one simple rule: |x.yz...eN| +will drop scientific notation in favor of pure decimal notation if |-5<=N<=5| +(last time I checked Maple® proceeded this way). -If the input vanishes the output will be \dtt{\xintPFloat{0}} with a a decimal -mark.% -% -\footnote{Currently there are no subnormal numbers, and no underflow - because the exponent is only limited by the maximal \TeX\ number; thus - underflow situations would manifest themselves via low-level arithmetic - overflow errors.} +Currently trailing zeros are not trimmed. And if the input vanishes the output +will be \dtt{\xintPFloat{0}} with a decimal mark. Final decision however on +how zero value should be printed is yet to arrive... -\csbxint{thefloatexpr} applies this macro to its output (or each of -its outputs, if comma separated). +\csbxint{floateval} applies (via the default definition of +\csbxint{floatexprPrintOne}) this macro to each non-empty leaf of the output +ople. This is done in an |\expanded| context, but the macro is already \fexpan +dable. -Currently trailing zeros are not trimmed. +\csa{xintPFloatE}\NewWith{1.4b} was added to allow customizing the +symbol used on output for separating the significand from the exponent, if +output uses scientific notation. The separator defaults to |e|, according to +this definition: +\begin{everbatim} +\def\xintPFloatE{e} +\end{everbatim} +See in this context \csbxint{FracToSciE} which brings the analogous +customizability to \csbxint{eval}. \begin{everbatim*} \begingroup\def\test #1{#1${}\to{}$\xintPFloat{#1}}% \string\xintDigits\ at \xinttheDigits \begin{itemize}[nosep] \item \test {0} -\item \test {1.23456789e-7} -\item \test {1.23456789e-6} -\item \test {1.23456789e-5} -\item \test {1.23456789e-4} -\item \test {1.23456789e-3} -\item \test {1.23456789e-2} -\item \test {1.23456789e-1} -\item \test {1.23456789e0} -\item \test {1.23456789e1} -\item \test {1.23456789e2} -\item \test {1.23456789e3} -\item \test {1.23456789e4} -\item \test {1.23456789e5} -\item \test {1.23456789e6} -\item \test {1.23456789e7} +\item \test {1.234e-7} +\item \test {1.234e-6} +\item \test {1.234e-5} +\item \test {1.234e-4} +\item \test {1.234e-3} +\item \test {1.234e-2} +\item \test {1.234e-1} +\end{itemize} +\def\xintPFloatE{E}% test custom separator. Should impact \xintfloateval as well +\begin{itemize}[nosep] +\item \test {1.234e0} +\item \test {1.234e1} +\item \test {1.234e2} +\item \test {1.234e3} +\item \test {1.234e4} +\item \test {1.234e5} +\item \test {1.234e6} +\item \test {1.234e7} \end{itemize} \endgroup \end{everbatim*} @@ -11148,6 +11517,9 @@ value of |\xinttheDigits|. \xintFloatE {1.23e37}{53} \end{everbatim*} +There is since |1.4b| an unfortunate proximity in name with \csbxint{PFloatE} +despite the two things having absolutely nothing in common. + \subsection{\csh{xintFloatAdd}}\label{xintFloatAdd} @@ -14112,7 +14484,7 @@ efficiently) and does not stress the input save stack. \label{xintbreakloopanddo} \label{xintloopskiptonext} -|\xintloop|\meta{stuff}|\if<test>...\repeat|\retype{} is an expandable loop +|\xintloop|\meta{stuff}|\if<test>...\repeat|\xtype{} is an expandable loop compatible with nesting. However to break out of the loop one almost always need some un-expandable step. The cousin \csbxint{iloop} is \csbxint{loop} with an embedded expandable mechanism allowing to exit from the loop. The iterated @@ -14274,7 +14646,7 @@ illustrate use of the nesting capabilities of |\xintloop|.% \label{xintiloopindex} \label{xintouteriloopindex} -\csa{xintiloop}|[start+delta]|\meta{stuff}|\if<test> ... \repeat|\retype{} is a +\csa{xintiloop}|[start+delta]|\meta{stuff}|\if<test> ... \repeat|\xtype{} is a completely expandable nestable loop. complete expandability depends naturally on the actual iterated contents, and complete expansion will not be achievable under a sole \fexpan sion, as is indicated by the hollow star in the margin; @@ -15699,8 +16071,12 @@ It converts (in two expansion steps) the expansion result of % Notice: if x goes not take exactly value 1 or -1, the origin appears slightly % off the curve, not MY fault!!! -It is currently undecided how \csa{xintthecoords} should handle -bracketed data.\UNSTABLE{} +It is currently undecided how \csa{xintthecoords} should handle bracketed +data.\UNSTABLE{} Currently, it (or |TikZ|) will break it the input contains +nested structures. One can use it with \func{flat} which removes all nesting. +And in combination with \func{zip} it is easy to plot data given by some +mechanism in separate +lists of x- and y-coordinates (see an example in next section) \subsection{The \csh{xintthespaceseparated} macro} \label{xintthespaceseparated} @@ -15708,13 +16084,37 @@ bracketed data.\UNSTABLE{} It converts (in two expansion steps)\NewWith{1.4a} the expansion result of \csbxint{floatexpr} (or \csbxint{expr} or \csbxint{iiexpr}) into the space separated format suitable for usage with |PS-Tricks| |\listplot| macro. + +Here is for example some syntax (the replacement text of |\foo|, which is used +here only to show that indeed complete expansion is attained in two steps) +which can be used as argument to |\listplot|. Using 4 fractional decimal +digits is sufficient when unit is the centimeter (it gives a fixed point +precision of one micron, amply enough for plots...). \begin{everbatim*} -\oodef\foo{\xintthespaceseparated\xintfloatexpr [4] 1..10\relax} -\meaning\foo +\oodef\foo{% +\xintthespaceseparated\xintiexpr[4]\xintfloatexpr seq((i, log10(i)), i=1..[0.5]..10)\relax\relax +}\meaning\foo \end{everbatim*} +Here we don't really need the inner |\xintfloatexpr...\relax| because the +\func{log10} function works the same in the exact parser |\xintexpr| but in +general this is recommended. + It is currently undecided how \csa{xintthespaceseparated} should handle -bracketed data.\UNSTABLE{} +bracketed data.\UNSTABLE{} Currently, it (or |\listplot|) will break if the +input contains nested structures. One can use it with \func{flat} which +removes all nesting. And in combination with \func{zip} it is easy to plot +data given by some mechanism in separate lists of x- and y-coordinates. + +\begin{everbatim*} +% let's imagine we have something like this +\def\Xcoordinates{1, 3, 5, 7, 9} +\def\Ycoordinates{1, 9, 25, 49, 81} +% then: +|\xintthespaceseparated\xintexpr flat(zip([\Xcoordinates], [\Ycoordinates]))\relax| +is suitable to use as argument to |\listplot|, as it expands to +\xintthespaceseparated\xintexpr flat(zip([\Xcoordinates], [\Ycoordinates]))\relax +\end{everbatim*} \subsection{\csh{xintifboolexpr}, \csh{xintifboolfloatexpr}, \csh{xintifbooliiexpr}} \label{xintifboolexpr} @@ -16280,13 +16680,17 @@ One more recursion: The 3x+1 problem: \syr{231}\par \end{everbatim*} -OK, a final one: +OK, a final one:% +% +\footnote{Prior to |1.4|, the \func{break} worked differently and here one + used only |break(i/2)| for the same result. In retrospect this looks like a bug of + \func{break} inside an \func{iterr}.} \begin{everbatim*} -\def\syrMax #1{\xinttheiiexpr iterr(#1,#1;even(i)? - {(@2<=1)?{break(i/2)}{odd(@2)?{3@2+1}{@2//2}}} +\def\syrMax #1{\xintiiexpr iterr(#1,#1;even(i)? + {(@2<=1)?{break(@1,i//2)}{odd(@2)?{3@2+1}{@2//2}}} {(@1>@2)?{@1}{@2}},i=0++)\relax } -With initial value 1161, the maximal number attained is \syrMax{1161} and that latter -number is the number of steps which was needed to reach 1.\par +With initial value 1161, the maximal intermediate value and the number of steps +needed to reach 1 are respectively \syrMax{1161}.\par \end{everbatim*} Look at the @@ -16653,10 +17057,7 @@ then write a very fast expandable primality test for such numbers using only % We will always use it with 1 < x < n % % With xint 1.4 we should use ? and ?? (although in the case at hand ifsgn() -% and if() are ok; 1.4 still converts them to short-circuit branchers). -% The 1.4 xint.pdf was still giving here the code with ifone() and if() -% functions (given below after the one here using ? as demanded by the -% documentation) +% and if() would be ok but I should not say that). % \xintdefiifunc powmod_a(x, m, n) := isone(m)? @@ -16739,7 +17140,11 @@ then write a very fast expandable primality test for such numbers using only \xintNewFunction{isPseudoPrime}[1]{% n = #1 (#1<49)?% use ? syntax to evaluate only what is needed - {\IsVerySmallPrime{\xintthe#1}}% macro needs to be fed with #1 unlocked. +% prior to 1.4 we had \xintthe#1 here but the actual tokens represented +% by this #1 when isPseudoPrime() function expands have changed and +% the correct way is now \xintiieval{#1} to hand over explicit digits to +% the \IsVerySmallPrime macro. + {\IsVerySmallPrime{\xintiieval{#1}}} {(even(#1))? {0} {subs(% @@ -16779,7 +17184,7 @@ then write a very fast expandable primality test for such numbers using only %\def\IsPseudoPrime #1{\xinttheiiexpr isPseudoPrime(#1)\relax} \noindent The smallest prime number at least equal to 3141592653589 is -\xinttheiiexpr +\xintiiexpr seq(isPseudoPrime(3141592653589+n)? {break(3141592653589+n)}{omit}, n=0++)\relax. % we could not use 3141592653589++ syntax because it works only with TeX numbers @@ -17629,22 +18034,21 @@ currently this is implemented by using either |\xintifForFirst| or \makeatother -\section{History timeline} +\section{Timeline (in brief)} This is \expandafter|\xintbndlversion| of \expandafter|\xintbndldate|. -Please refer |CHANGES.html| for a (much more) detailed history. +Please refer to |CHANGES.html| for a (very) detailed history. \centeredline{Internet: \url{http://mirrors.ctan.org/macros/generic/xint/CHANGES.html}} \begin{itemize} -\item Release |1.4a| of |2020/02/19|: - fixes |1.4| known bugs. Improves documentation. \item Release |1.4| of |2020/01/31|: \xintexprnameimp overhaul to use - |\expanded| based expansion control. Many new features, in particular support - for input and output of nested structures. Breaking changes, main ones - being the (provisory) drop of |x*[a, b,...]|, |x+[a, b,...]| et al.\@ syntax and the - requirement of |\expanded| primitive (currently required only by \xintexprnameimp). + |\expanded| based expansion control. Many new features, in particular + support for input and output of nested structures. Breaking changes, main + ones being the (provisory) drop of |x*[a, b,...]|, |x+[a, b,...]| et al.\@ + syntax and the requirement of |\expanded| primitive (currently required only + by \xintexprnameimp). \item Release |1.3f| of |2019/09/10|: starred variant \csbxint{Digits*}. \item Release |1.3e| of |2019/04/05|: packages \xinttrignameimp, \xintlognameimp; \csa{xintdefefunc} ``non-protected'' variant of \csbxint{deffunc} (at |1.4| @@ -17914,7 +18318,7 @@ math shift catcode. \fi \XINT_providespackage \ProvidesPackage {xintkernel}% - [2020/02/19 v1.4a Paraphernalia for the xint packages (JFB)]% + [2020/02/25 v1.4b Paraphernalia for the xint packages (JFB)]% % \end{macrocode} % \subsection{Constants} % \begin{macrocode} @@ -18700,7 +19104,7 @@ math shift catcode. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xinttools}% - [2020/02/19 v1.4a Expandable and non-expandable utilities (JFB)]% + [2020/02/25 v1.4b Expandable and non-expandable utilities (JFB)]% % \end{macrocode} % \lverb|\XINT_toks is used in macros such as \xintFor. It is not used % elsewhere in the xint bundle.| @@ -19424,50 +19828,91 @@ math shift catcode. \long\def\XINT_apply_end\xint_bye\expandafter\XINT_apply_loop_b \expandafter #1#2#3{ #2}% % \end{macrocode} -% \subsection{\csh{xintApply:x} (not public)} -% \lverb|Done for 1.4, 2020/01/27. For usage in the NumPy-like slicing routines. +% \subsection{\csh{xintApply:x} (WIP, commented-out)} +% \lverb|Done for 1.4 (2020/01/27). For usage in the NumPy-like slicing +% routines. Well, actually, in the end I sticked with old-fashioned (quadratic +% cost) \xintApply for 1.4 2020/01/31 release. See comments there. % -% Supposed to expand in an \expanded context, does not need to +% (Comments mainly from 2020/01/27, but on 2020/02/24 I comment out +% the code and add an alternative) +% +% To expand in \expanded context, and does not need to % do any expansion of its second argument. % -% Uses techniques I had developed for 1.2i/1.2j Keep, Trim, Length, LastItem like -% macros, and I should revamp venerable \xintApply probably too. But the latter -% f-expandability (if it does not have \expanded at disposal) complicates -% significantly matters as it has to store material and release at very end. +% This uses techniques I had developed for 1.2i/1.2j Keep, Trim, Length, +% LastItem like macros, and I should revamp venerable \xintApply probably too. +% But the latter f-expandability (if it does not have \expanded at disposal) +% complicates significantly matters as it has to store material and release at +% very end. % % Here it is simpler and I am doing it quickly as I really want to release % 1.4. The \xint: token should not be located in looped over items. I could % use something more exotic like the null char with catcode 3... % -% Could be however that picking one by one would be better for small -% number of items. +%( \long\def\xintApply:x #1#2$% +%: {$% +%: \XINT_apply:x_loop {#1}#2$% +%: {\xint:\XINT_apply:x_loop_enda}{\xint:\XINT_apply:x_loop_endb}$% +%: {\xint:\XINT_apply:x_loop_endc}{\xint:\XINT_apply:x_loop_endd}$% +%: {\xint:\XINT_apply:x_loop_ende}{\xint:\XINT_apply:x_loop_endf}$% +%: {\xint:\XINT_apply:x_loop_endg}{\xint:\XINT_apply:x_loop_endh}\xint_bye +%: }$% +%: \long\def\XINT_apply:x_loop #1#2#3#4#5#6#7#8#9$% +%: {$% +%: \xint_gob_til_xint: #9\xint: +%: {#1{#2}}{#1{#3}}{#1{#4}}{#1{#5}}{#1{#6}}{#1{#7}}{#1{#8}}{#1{#9}}$% +%: \XINT_apply:x_loop {#1}$% +%: }$% +%: \long\def\XINT_apply:x_loop_endh\xint: #1\xint_bye{}$% +%: \long\def\XINT_apply:x_loop_endg\xint: #1#2\xint_bye{{#1}}$% +%: \long\def\XINT_apply:x_loop_endf\xint: #1#2#3\xint_bye{{#1}{#2}}$% +%: \long\def\XINT_apply:x_loop_ende\xint: #1#2#3#4\xint_bye{{#1}{#2}{#3}}$% +%: \long\def\XINT_apply:x_loop_endd\xint: #1#2#3#4#5\xint_bye{{#1}{#2}{#3}{#4}}$% +%: \long\def\XINT_apply:x_loop_endc\xint: #1#2#3#4#5#6\xint_bye{{#1}{#2}{#3}{#4}{#5}}$% +%: \long\def\XINT_apply:x_loop_endb\xint: #1#2#3#4#5#6#7\xint_bye{{#1}{#2}{#3}{#4}{#5}{#6}}$% +%: \long\def\XINT_apply:x_loop_enda\xint: #1#2#3#4#5#6#7#8\xint_bye{{#1}{#2}{#3}{#4}{#5}{#6}{#7}}$% +%) % -% And anyhow for small number of items gain with respect to \xintApply is little -% if any (might even be a loss).| -% \begin{macrocode} -\long\def\xintApply:x #1#2% -{% - \XINT_apply:x_loop {#1}#2% - {\xint:\XINT_apply:x_loop_enda}{\xint:\XINT_apply:x_loop_endb}% - {\xint:\XINT_apply:x_loop_endc}{\xint:\XINT_apply:x_loop_endd}% - {\xint:\XINT_apply:x_loop_ende}{\xint:\XINT_apply:x_loop_endf}% - {\xint:\XINT_apply:x_loop_endg}{\xint:\XINT_apply:x_loop_endh}\xint_bye -}% -\long\def\XINT_apply:x_loop #1#2#3#4#5#6#7#8#9% -{% - \xint_gob_til_xint: #9\xint: - {#1{#2}}{#1{#3}}{#1{#4}}{#1{#5}}{#1{#6}}{#1{#7}}{#1{#8}}{#1{#9}}% - \XINT_apply:x_loop {#1}% -}% -\long\def\XINT_apply:x_loop_endh\xint: #1\xint_bye{}% -\long\def\XINT_apply:x_loop_endg\xint: #1#2\xint_bye{{#1}}% -\long\def\XINT_apply:x_loop_endf\xint: #1#2#3\xint_bye{{#1}{#2}}% -\long\def\XINT_apply:x_loop_ende\xint: #1#2#3#4\xint_bye{{#1}{#2}{#3}}% -\long\def\XINT_apply:x_loop_endd\xint: #1#2#3#4#5\xint_bye{{#1}{#2}{#3}{#4}}% -\long\def\XINT_apply:x_loop_endc\xint: #1#2#3#4#5#6\xint_bye{{#1}{#2}{#3}{#4}{#5}}% -\long\def\XINT_apply:x_loop_endb\xint: #1#2#3#4#5#6#7\xint_bye{{#1}{#2}{#3}{#4}{#5}{#6}}% -\long\def\XINT_apply:x_loop_enda\xint: #1#2#3#4#5#6#7#8\xint_bye{{#1}{#2}{#3}{#4}{#5}{#6}{#7}}% -% \end{macrocode} +% For small number of items gain with respect to \xintApply is little if any +% (might even be a loss). +% +% Picking one by one is possibly better for small number of items. Like +% this for example, the natural simple minded thing: +% +%(\long\def\xintApply:x #1#2$% +%: {$% +%: \XINT_apply:x_loop {#1}#2\xint_bye\xint_bye +%: }$% +%: \long\def\XINT_apply:x_loop #1#2$% +%: {$% +%: \xint_bye #2\xint_bye {#1{#2}}$% +%: \XINT_apply:x_loop {#1}$% +%: }$% +%) +% +% Some variant on 2020/02/24 +% +%( \long\def\xint_Bbye#1\xint_Bye{}$% +%: \long\def\xintApply:x #1#2$% +%: {$% +%: \XINT_apply:x_loop {#1}#2$% +%: {\xint_bye}{\xint_bye}{\xint_bye}{\xint_bye}$% +%: {\xint_bye}{\xint_bye}{\xint_bye}{\xint_bye}\xint_bye +%: }$% +%: \long\def\XINT_apply:x_loop #1#2#3#4#5#6#7#8#9$% +%: {$% +%: \xint_Bye #2\xint_bye {#1{#2}}$% +%: \xint_Bye #3\xint_bye {#1{#3}}$% +%: \xint_Bye #4\xint_bye {#1{#4}}$% +%: \xint_Bye #5\xint_bye {#1{#5}}$% +%: \xint_Bye #6\xint_bye {#1{#6}}$% +%: \xint_Bye #7\xint_bye {#1{#7}}$% +%: \xint_Bye #8\xint_bye {#1{#8}}$% +%: \xint_Bye #9\xint_bye {#1{#9}}$% +%: \XINT_apply:x_loop {#1}$% +%: }$% +%) +% | % \subsection{\csh{xintApplyUnbraced}} % \lverb|\xintApplyUnbraced {\macro}{{a}{b}...{z}} returns \macro{a}...\macro{z} % where each instance of \macro is f-expanded using \romannumeral-`0. The second @@ -19495,63 +19940,187 @@ math shift catcode. \long\def\XINT_applyunbr_end\xint_bye\expandafter\XINT_applyunbr_loop_b \expandafter #1#2#3{ #2}% % \end{macrocode} -% \subsection{\csh{xintApplyUnbraced:x} (not public)} +% \subsection{\csh{xintApplyUnbraced:x} (WIP, commented-out)} % \lverb|Done for 1.4, 2020/01/27. For usage in the NumPy-like slicing % routines. % % The items should not contain \xint: and the applied macro should not contain -% \empty.| -% \begin{macrocode} -\long\def\xintApplyUnbraced:x #1#2% -{% - \XINT_applyunbraced:x_loop {#1}#2% - {\xint:\XINT_applyunbraced:x_loop_enda}{\xint:\XINT_applyunbraced:x_loop_endb}% - {\xint:\XINT_applyunbraced:x_loop_endc}{\xint:\XINT_applyunbraced:x_loop_endd}% - {\xint:\XINT_applyunbraced:x_loop_ende}{\xint:\XINT_applyunbraced:x_loop_endf}% - {\xint:\XINT_applyunbraced:x_loop_endg}{\xint:\XINT_applyunbraced:x_loop_endh}\xint_bye -}% -\long\def\XINT_applyunbraced:x_loop #1#2#3#4#5#6#7#8#9% -{% - \xint_gob_til_xint: #9\xint: - #1{#2}% - \empty#1{#3}% - \empty#1{#4}% - \empty#1{#5}% - \empty#1{#6}% - \empty#1{#7}% - \empty#1{#8}% - \empty#1{#9}% - \XINT_applyunbraced:x_loop {#1}% -}% -\long\def\XINT_applyunbraced:x_loop_endh\xint: #1\xint_bye{}% -\long\def\XINT_applyunbraced:x_loop_endg\xint: #1\empty#2\xint_bye{#1}% -\long\def\XINT_applyunbraced:x_loop_endf\xint: #1\empty - #2\empty#3\xint_bye{#1#2}% -\long\def\XINT_applyunbraced:x_loop_ende\xint: #1\empty - #2\empty - #3\empty#4\xint_bye{#1#2#3}% -\long\def\XINT_applyunbraced:x_loop_endd\xint: #1\empty - #2\empty - #3\empty - #4\empty#5\xint_bye{#1#2#3#4}% -\long\def\XINT_applyunbraced:x_loop_endc\xint: #1\empty - #2\empty - #3\empty - #4\empty - #5\empty#6\xint_bye{#1#2#3#4#5}% -\long\def\XINT_applyunbraced:x_loop_endb\xint: #1\empty - #2\empty - #3\empty - #4\empty - #5\empty - #6\empty#7\xint_bye{#1#2#3#4#5#6}% -\long\def\XINT_applyunbraced:x_loop_enda\xint: #1\empty - #2\empty - #3\empty - #4\empty - #5\empty - #6\empty - #7\empty#8\xint_bye{#1#2#3#4#5#6#7}% +% \empty. +% +% Finally, xintexpr.sty 1.4 code did not use this macro but the f-expandable +% one \xintApplyUnbraced. +% +% For 1.4b I prefer leave the code commented out, and classify it as WIP. +%( \long\def\xintApplyUnbraced:x #1#2$% +%: {$% +%: \XINT_applyunbraced:x_loop {#1}#2$% +%: {\xint:\XINT_applyunbraced:x_loop_enda}{\xint:\XINT_applyunbraced:x_loop_endb}$% +%: {\xint:\XINT_applyunbraced:x_loop_endc}{\xint:\XINT_applyunbraced:x_loop_endd}$% +%: {\xint:\XINT_applyunbraced:x_loop_ende}{\xint:\XINT_applyunbraced:x_loop_endf}$% +%: {\xint:\XINT_applyunbraced:x_loop_endg}{\xint:\XINT_applyunbraced:x_loop_endh}\xint_bye +%: }$% +%: \long\def\XINT_applyunbraced:x_loop #1#2#3#4#5#6#7#8#9$% +%: {$% +%: \xint_gob_til_xint: #9\xint: +%: #1{#2}$% +%: \empty#1{#3}$% +%: \empty#1{#4}$% +%: \empty#1{#5}$% +%: \empty#1{#6}$% +%: \empty#1{#7}$% +%: \empty#1{#8}$% +%: \empty#1{#9}$% +%: \XINT_applyunbraced:x_loop {#1}$% +%: }$% +%: \long\def\XINT_applyunbraced:x_loop_endh\xint: #1\xint_bye{}$% +%: \long\def\XINT_applyunbraced:x_loop_endg\xint: #1\empty#2\xint_bye{#1}$% +%: \long\def\XINT_applyunbraced:x_loop_endf\xint: #1\empty +%: #2\empty#3\xint_bye{#1#2}$% +%: \long\def\XINT_applyunbraced:x_loop_ende\xint: #1\empty +%: #2\empty +%: #3\empty#4\xint_bye{#1#2#3}$% +%: \long\def\XINT_applyunbraced:x_loop_endd\xint: #1\empty +%: #2\empty +%: #3\empty +%: #4\empty#5\xint_bye{#1#2#3#4}$% +%: \long\def\XINT_applyunbraced:x_loop_endc\xint: #1\empty +%: #2\empty +%: #3\empty +%: #4\empty +%: #5\empty#6\xint_bye{#1#2#3#4#5}$% +%: \long\def\XINT_applyunbraced:x_loop_endb\xint: #1\empty +%: #2\empty +%: #3\empty +%: #4\empty +%: #5\empty +%: #6\empty#7\xint_bye{#1#2#3#4#5#6}$% +%: \long\def\XINT_applyunbraced:x_loop_enda\xint: #1\empty +%: #2\empty +%: #3\empty +%: #4\empty +%: #5\empty +%: #6\empty +%: #7\empty#8\xint_bye{#1#2#3#4#5#6#7}$% +%) +% | +% \subsection{\csh{xintZip} (WIP, not public)} +% \lverb|1.4b. (2020/02/25) +% +% Support for zip(). Requires \expanded. +% +% The implementation here thus considers the argument is already completely +% expanded and is a sequence of nut-ples. I will come back at later date for +% more generic macros. +% +% Consider even the name of the function zip() as WIP. +% +% As per what this does, it imitates the zip() function. See xint-manual.pdf. +% +% I use lame terminators. Will think again later on this. I have to be careful +% with the used terminators, in particular with the NE context in mind. +% +% Generally speaking I will think another day about efficiency else I will +% never start this. +% +% OK, done. More compact than I initially thought. Various things should be +% commented upon here. Well, actually not so compact in the end as I basically +% had to double the whole thing simply to avoid the overhead of having to grab +% the final result delimited by some +% \xint_bye\xint_bye\xint_bye\xint_bye\empty terminator. Now actually rather +% \xint_bye\xint_bye\xint_bye\xint_bye\xint: | +% \begin{macrocode} +\def\xintZip #1{\expanded\XINT_zip_A#1\xint_bye\xint_bye}% +\def\XINT_zip_A#1% +{% + \xint_bye#1{\expandafter}\xint_bye + \expanded{\unexpanded{\XINT_ziptwo_A + #1\xint_bye\xint_bye\xint_bye\xint_bye\xint:}\expandafter}% + \expanded\XINT_zip_a +}% +\def\XINT_zip_a#1% +{% + \xint_bye#1\XINT_zip_terminator\xint_bye + \expanded{\unexpanded{\XINT_ziptwo_a + #1\xint_bye\xint_bye\xint_bye\xint_bye\xint:}\expandafter}% + \expanded\XINT_zip_a +}% +\def\XINT_zip_terminator\xint_bye#1\xint_bye{{}\empty\empty\empty\empty\xint:}% +\def\XINT_ziptwo_a #1#2#3#4#5\xint:#6#7#8#9% +{% + \bgroup + \xint_bye #1\XINT_ziptwo_e \xint_bye + \xint_bye #6\XINT_ziptwo_e \xint_bye {{#1}#6}% + \xint_bye #2\XINT_ziptwo_e \xint_bye + \xint_bye #7\XINT_ziptwo_e \xint_bye {{#2}#7}% + \xint_bye #3\XINT_ziptwo_e \xint_bye + \xint_bye #8\XINT_ziptwo_e \xint_bye {{#3}#8}% + \xint_bye #4\XINT_ziptwo_e \xint_bye + \xint_bye #9\XINT_ziptwo_e \xint_bye {{#4}#9}% + \ifx \empty#6\expandafter\XINT_zipone_a\fi + \XINT_ziptwo_b #5\xint: +}% +\def\XINT_zipone_a\XINT_ziptwo_b{\XINT_zipone_b}% +\def\XINT_ziptwo_b #1#2#3#4#5\xint:#6#7#8#9% +{% + \xint_bye #1\XINT_ziptwo_e \xint_bye + \xint_bye #6\XINT_ziptwo_e \xint_bye {{#1}#6}% + \xint_bye #2\XINT_ziptwo_e \xint_bye + \xint_bye #7\XINT_ziptwo_e \xint_bye {{#2}#7}% + \xint_bye #3\XINT_ziptwo_e \xint_bye + \xint_bye #8\XINT_ziptwo_e \xint_bye {{#3}#8}% + \xint_bye #4\XINT_ziptwo_e \xint_bye + \xint_bye #9\XINT_ziptwo_e \xint_bye {{#4}#9}% + \XINT_ziptwo_b #5\xint: +}% +\def\XINT_ziptwo_e #1\XINT_ziptwo_b #2\xint:#3\xint: + {\iffalse{\fi}\xint_bye\xint_bye\xint_bye\xint_bye\xint:}% +\def\XINT_zipone_b #1#2#3#4% +{% + \xint_bye #1\XINT_zipone_e \xint_bye {{#1}}% + \xint_bye #2\XINT_zipone_e \xint_bye {{#2}}% + \xint_bye #3\XINT_zipone_e \xint_bye {{#3}}% + \xint_bye #4\XINT_zipone_e \xint_bye {{#4}}% + \XINT_zipone_b +}% +\def\XINT_zipone_e #1\XINT_zipone_b #2\xint: + {\iffalse{\fi}\xint_bye\xint_bye\xint_bye\xint_bye\empty}% +\def\XINT_ziptwo_A #1#2#3#4#5\xint:#6#7#8#9% +{% + \bgroup + \xint_bye #1\XINT_ziptwo_end \xint_bye + \xint_bye #6\XINT_ziptwo_end \xint_bye {{#1}#6}% + \xint_bye #2\XINT_ziptwo_end \xint_bye + \xint_bye #7\XINT_ziptwo_end \xint_bye {{#2}#7}% + \xint_bye #3\XINT_ziptwo_end \xint_bye + \xint_bye #8\XINT_ziptwo_end \xint_bye {{#3}#8}% + \xint_bye #4\XINT_ziptwo_end \xint_bye + \xint_bye #9\XINT_ziptwo_end \xint_bye {{#4}#9}% + \ifx \empty#6\expandafter\XINT_zipone_A\fi + \XINT_ziptwo_B #5\xint: +}% +\def\XINT_zipone_A\XINT_ziptwo_B{\XINT_zipone_B}% +\def\XINT_ziptwo_B #1#2#3#4#5\xint:#6#7#8#9% +{% + \xint_bye #1\XINT_ziptwo_end \xint_bye + \xint_bye #6\XINT_ziptwo_end \xint_bye {{#1}#6}% + \xint_bye #2\XINT_ziptwo_end \xint_bye + \xint_bye #7\XINT_ziptwo_end \xint_bye {{#2}#7}% + \xint_bye #3\XINT_ziptwo_end \xint_bye + \xint_bye #8\XINT_ziptwo_end \xint_bye {{#3}#8}% + \xint_bye #4\XINT_ziptwo_end \xint_bye + \xint_bye #9\XINT_ziptwo_end \xint_bye {{#4}#9}% + \XINT_ziptwo_B #5\xint: +}% +\def\XINT_ziptwo_end #1\XINT_ziptwo_B #2\xint:#3\xint:{\iffalse{\fi}}% +\def\XINT_zipone_B #1#2#3#4% +{% + \xint_bye #1\XINT_zipone_end \xint_bye {{#1}}% + \xint_bye #2\XINT_zipone_end \xint_bye {{#2}}% + \xint_bye #3\XINT_zipone_end \xint_bye {{#3}}% + \xint_bye #4\XINT_zipone_end \xint_bye {{#4}}% + \XINT_zipone_B +}% +\def\XINT_zipone_end #1\XINT_zipone_B #2\xint:#3\xint:{\iffalse{\fi}}% % \end{macrocode} % \subsection{\csh{xintSeq}} % \lverb|1.09c. Without the optional argument puts stress on the input stack, @@ -20864,7 +21433,7 @@ math shift catcode. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintcore}% - [2020/02/19 v1.4a Expandable arithmetic on big integers (JFB)]% + [2020/02/25 v1.4b Expandable arithmetic on big integers (JFB)]% % \end{macrocode} % \subsection{(WIP!) Error conditions and exceptions} % \lverb|As per the Mike Cowlishaw/IBM's General Decimal Arithmetic Specification @@ -24166,7 +24735,7 @@ math shift catcode. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xint}% - [2020/02/19 v1.4a Expandable operations on big integers (JFB)]% + [2020/02/25 v1.4b Expandable operations on big integers (JFB)]% % \end{macrocode} % \subsection{More token management} % \begin{macrocode} @@ -26732,7 +27301,7 @@ math shift catcode. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintbinhex}% - [2020/02/19 v1.4a Expandable binary and hexadecimal conversions (JFB)]% + [2020/02/25 v1.4b Expandable binary and hexadecimal conversions (JFB)]% % \end{macrocode} % \subsection{Constants, etc...} % \lverb|1.2n switches to \csname-governed expansion at various places.| @@ -27404,7 +27973,7 @@ math shift catcode. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintgcd}% - [2020/02/19 v1.4a Euclide algorithm with xint package (JFB)]% + [2020/02/25 v1.4b Euclide algorithm with xint package (JFB)]% % \end{macrocode} % \subsection{\csh{xintBezout}} % \lverb|& @@ -28004,7 +28573,7 @@ math shift catcode. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintfrac}% - [2020/02/19 v1.4a Expandable operations on fractions (JFB)]% + [2020/02/25 v1.4b Expandable operations on fractions (JFB)]% % \end{macrocode} % \subsection{\csh{XINT_cntSgnFork}} % \lverb|1.09i. Used internally, #1 must expand to \m@ne, \z@, or \@ne or @@ -28563,32 +29132,17 @@ math shift catcode. \fi { #2}{ #2/#3}% }% % \end{macrocode} -% \subsection{\csh{xintSPRaw}, \csh{xintFracToSci}} +% \subsection{\csh{xintSPRaw}} % \lverb|This private macro was for usage by \xinttheexpr. It got moved here -% at 1.4. -% -% Attention that \xintSPRaw assumes that if the number has no [N] -% part it does not have a fraction part /B either. Indeed this was -% the case always with 1.3f (parsing of an integer by \xintexpr -% does not add the [0] because the code is shared with \xintiiexpr -% and when there is /B, \xintexpr always adds [0]; even qfrac() -% parses via \xintRaw; and reduce() internally uses \xintIrr -% whose outputs is A/B but it add [0]). -% -% \xintFracToSci is now used in its place. As reduce() does -% not anymore append the [0] at 1.4, \xintFracToSci has to recognize -% A, A[N], A/B and A/B[N] but does not have to parse multiple plus -% or minus signs or scientific part etc like \xintRaw knows. -% It has to identify say 0/5 (although I don't think that can -% arise) and -0 is never occuring. -% -% The difference with former case is that it outputs AeN/B hence -% does not anymore use the xintfrac.sty raw format. -% It will not printe the /B if B=1 and not print the «eN» if N is zero. -% -% If input is empty \xintFracToSci output is also empty, -% whereas \xintRaw produces 0/1[0] out of empty. But \XINTexprprint -% anyhow has it own special routine for empty input. +% at 1.4 and is not used anymore by the package. +% +% Attention that \xintSPRaw assumed that if the number has no [N] +% part it did not have a fraction part /B either. Indeed this was +% the case always with 1.3f: parsing of an integer by \xintexpr +% does not add the [0] as the code is shared with \xintiiexpr, +% and when there was /B \xintexpr always added postfix [0]; even qfrac() +% parses via \xintRaw; and reduce() internally used \xintIrr +% which outputs A/B but it added [0]. % | % % \begin{macrocode} @@ -28597,8 +29151,48 @@ math shift catcode. \def\XINT_spraw #1[#2#3]{\xint_gob_til_W #2\XINT_spraw_a\W\XINT_spraw_p #1[#2#3]}% \def\XINT_spraw_a\W\XINT_spraw_p #1[\W]{ #1}% \def\XINT_spraw_p #1[\W]{\xintpraw {#1}}% -\def\xintFracToSci #1% - {\expandafter\XINT_FracToSci\romannumeral`&&@#1/\W[\R]}% +% \end{macrocode} +% \subsection{\csh{xintFracToSci}, \csh{xintFracToSciE}} +% \lverb|1.4 +% +% This is the new macro used in place of \xintSPRaw (which basically was +% \xintPRaw) by \xintexpr typesetter. Attention that it is also used by +% \xintiexpr with inputs having being already converted to decimal form, hence +% must understand this input form. This means it must for example not think +% 0.123 is 0 because it starts with 0. +% +% And indeed the code here lets 0.123 go through as is. Identification of 0 as +% first digit is done only in case of A[N], A/B, and A/B[N] formats. +% +% As reduce() does not anymore append the [0] at 1.4, \xintFracToSci has +% indeed to recognize A, A[N], A/B and A/B[N] but does not have to parse +% multiple plus or minus signs or scientific part etc like \xintRaw does +% (delegating to \XINT_infrac like all other xintfrac macros). It has to +% identify say 0/5 (although I don't think that can arise) and -0 is never +% occuring. +% +% The difference with \xintSPRaw is that it outputs AeN/B. It will not print +% the /B if B=1 and eN if N is zero. +% +% If input is empty \xintFracToSci output is also empty, whereas \xintRaw +% produces 0/1[0] out of empty. But \XINTexprprint anyhow has it own special +% routine for empty input. +% +% 1.4b extends the macro to intercept scientific notation and thus allow +% customizability of the «e» via \xintFracToSciE. Without this \xintieval with +% a negative optional argument uses «e» in output with no possibility to +% modify it. +% +% The expansion context from \xinttheexpr, \xinttheiexpr, \xinteval, +% \xintieval is the scope of one \expanded. +% +% Attention indeed that this macro is not f-expandable only x-expandable. +% | +% +% \begin{macrocode} +\edef\xintFracToSci #1% + {\unexpanded{\expandafter\XINT_FracToSci\romannumeral`&&@}#1\string e% + \unexpanded{\Z/\W[\R]}}% \def\XINT_FracToSci #1/#2#3[#4% {% \xint_gob_til_W #2\XINT_FracToSci_no\W @@ -28610,18 +29204,39 @@ math shift catcode. \xint_gob_til_R #3\XINT_FracToSci_nono\R \XINT_FracToSci_noyes #2[#3% }% -\def\XINT_FracToSci_nono\R\XINT_FracToSci_noyes #1/\W[\R]{#1}% -\def\XINT_FracToSci_noyes #1#2[#3]/\W[\R]% +\edef\XINT_tmpa{##1\string e##2}% +\def\XINT_tmpb{\def\XINT_FracToSci_nono\R\XINT_FracToSci_noyes}% +\expandafter +\XINT_tmpb\XINT_tmpa +{% + #1\xint_gob_til_Z #2\XINT_FracToSci_nonono\Z + \XINT_FracToSci_nonoyes #2% +}% +\edef\XINT_tmpa{##1\string e}% + \def\XINT_tmpb{\def\XINT_FracToSci_nonoyes}% +\expandafter +\XINT_tmpb\XINT_tmpa\Z/\W[\R]{\xintFracToSciE#1}% +\def\XINT_FracToSci_nonono\Z\XINT_FracToSci_nonoyes\Z/\W[\R]{}% +\edef\XINT_tmpa{##1##2[##3]\string e}% + \def\XINT_tmpb{\def\XINT_FracToSci_noyes}% +\expandafter +\XINT_tmpb\XINT_tmpa\Z/\W[\R]% {% #1\xint_gob_til_zero#1\expandafter\iffalse\xint_gobble_ii0\iftrue #2\ifnum #3=\xint_c_\else\xintFracToSciE#3\fi\fi }% -\def\XINT_FracToSci_yesno\R\XINT_FracToSci_yesyes #1#2/#3/\W[\R]% +\edef\XINT_tmpa{##1##2/##3\string e}% + \def\XINT_tmpb{\def\XINT_FracToSci_yesno\R\XINT_FracToSci_yesyes}% +\expandafter +\XINT_tmpb\XINT_tmpa\Z/\W[\R]% {% #1\xint_gob_til_zero#1\expandafter\iffalse\xint_gobble_ii0\iftrue #2\if\XINT_isOne{#3}1\else/#3\fi\fi }% -\def\XINT_FracToSci_yesyes #1#2/#3[#4]/\W[\R]% +\edef\XINT_tmpa{##1##2/##3[##4]\string e}% + \def\XINT_tmpb{\def\XINT_FracToSci_yesyes}% +\expandafter +\XINT_tmpb\XINT_tmpa\Z/\W[\R]% {% #1\xint_gob_til_zero#1\expandafter\iffalse\xint_gobble_ii0\iftrue #2\ifnum #4=\xint_c_\else\xintFracToSciE#4\fi @@ -31224,10 +31839,9 @@ math shift catcode. }% \def\XINT_infloat_ZZ #1.#2.{ 1#2[#1]}% % \end{macrocode} -% \subsection{\csh{xintPFloat}} +% \subsection{\csh{xintPFloat}, \csh{xintPFloatE}} % \lverb|1.1. This is a prettifying printing macro for floats. % -% % The macro applies one simple rule: x.yz...eN will drop scientific notation in % favor of pure decimal notation if -5<=N<=5. This is the default behaviour of % Maple. The N here is as produced on output by \xintFloat. @@ -31237,6 +31851,16 @@ math shift catcode. % The coding got simpler with 1.2k as its \xintFloat always produces % a mantissa with exactly P digits (no more 10.0...0eN annoying exception). % +% 1.4b adds \xintPFloatE allowing to customize whether to use e or E (or +% something else). For usage with \xintfloateval{} (anyhow only catcode 11 e +% is recognized by xintfrac macros proper), and to match similar +% \xintFracToSciE. For reasons commented upon in user manual (section «The +% three parsers»), I did not make an effort to let the macro be usable as a +% hook to grab the exponent. +% +% Althout \xintfloateval{} will use \xintPFloat in an \expanded context +% we have to maintain f-expandability here. +% % | % \begin{macrocode} \def\xintPFloat {\romannumeral0\xintpfloat }% @@ -31280,6 +31904,8 @@ math shift catcode. \def\XINT_pfloat_neg-{\expandafter-\romannumeral0\XINT_pfloat_pos }% % \end{macrocode} % \lverb|& +% 1.4b modifies the replacement pattern here #1{#2}{#3} in order to +% facilitate injection of once-expanded \xintPFloatE. % | % \begin{macrocode} \def\XINT_pfloat_pos #1.#2e#3;#4.% @@ -31288,17 +31914,22 @@ math shift catcode. \ifnum #3<-\xint_c_v \xint_dothis\XINT_pfloat_no\fi \ifnum #3<\xint_c_ \xint_dothis\XINT_pfloat_N\fi \ifnum #3>\numexpr #4-\xint_c_i\relax \xint_dothis\XINT_pfloat_Ps\fi - \xint_orthat\XINT_pfloat_P #1#2e#3;% + \xint_orthat\XINT_pfloat_P #1{#2}{#3}% +}% +\def\XINT_pfloat_no +{% + \expandafter\XINT_pfloat_no_e\expandafter{\xintPFloatE}% }% -\def\XINT_pfloat_no #1#2;{ #1.#2}% +\def\XINT_pfloat_no_e #1#2#3#4{ #2.#3#1#4}% +\def\xintPFloatE{e}% % \end{macrocode} % \lverb|This is all simpler coded, now that 1.2k's \xintFloat always % outputs a mantissa with exactly one digits before decimal mark always. % | % \begin{macrocode} -\def\XINT_pfloat_N #1e-#2;% +\def\XINT_pfloat_N #1#2#3% {% - \csname XINT_pfloat_N_\romannumeral#2\endcsname #1% + \csname XINT_pfloat_N_\romannumeral-#3\endcsname #1#2% }% \def\XINT_pfloat_N_i { 0.}% \def\XINT_pfloat_N_ii { 0.0}% @@ -31309,9 +31940,9 @@ math shift catcode. % \lverb|& % | % \begin{macrocode} -\def\XINT_pfloat_P #1e#2;% +\def\XINT_pfloat_P #1#2#3% {% - \csname XINT_pfloat_P_\romannumeral#2\endcsname #1% + \csname XINT_pfloat_P_\romannumeral#3\endcsname #1#2% }% \def\XINT_pfloat_P_ #1{ #1.}% \def\XINT_pfloat_P_i #1#2{ #1#2.}% @@ -31323,9 +31954,9 @@ math shift catcode. % \lverb|& % | % \begin{macrocode} -\def\XINT_pfloat_Ps #1e#2;% +\def\XINT_pfloat_Ps #1#2#3% {% - \csname XINT_pfloat_Ps\romannumeral#2\endcsname #100000;% + \csname XINT_pfloat_Ps\romannumeral#3\endcsname #1#200000;% }% \def\XINT_pfloat_Psi #1#2#3;{ #1#2.}% \def\XINT_pfloat_Psii #1#2#3#4;{ #1#2#3.}% @@ -33131,7 +33762,7 @@ math shift catcode. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintseries}% - [2020/02/19 v1.4a Expandable partial sums with xint package (JFB)]% + [2020/02/25 v1.4b Expandable partial sums with xint package (JFB)]% % \end{macrocode} % \subsection{\csh{xintSeries}} % \begin{macrocode} @@ -33632,7 +34263,7 @@ math shift catcode. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintcfrac}% - [2020/02/19 v1.4a Expandable continued fractions with xint package (JFB)]% + [2020/02/25 v1.4b Expandable continued fractions with xint package (JFB)]% % \end{macrocode} % \subsection{\csh{xintCFrac}} % \begin{macrocode} @@ -34771,7 +35402,7 @@ math shift catcode. % \expanded primitive. This means that there is no more impact on the string % pool. And as internal storage now uses simply core \TeX{} syntax with braces % rather than comma separated items inside a csname dummy control sequence, -% it became possible to let the [...] syntax be associated to a true internal type of «tuple» +% it became much easier to let the [...] syntax be associated to a true internal type of «tuple» % or «list». % % The output of \xintexpr (after \romannumeral0 or \romannumeral-`0 triggered @@ -34797,10 +35428,11 @@ math shift catcode. % $xintcorenameimp macros supporting \xintiiexpr, they usually break if % exercised on some empty argument. % -% The above expansion result uses thus only normal catcodes are output, i.e. -% the backslash, regular braces, and catcode 12 characters (scientific +% The above expansion result \XINTfstop \XINTexprprint .{{<num1>}{<num2}...} +% uses only normal catcodes: +% the backslash, regular braces, and catcode 12 characters. Scientific % notation is internally converted to raw $xintfracnameimp representation -% [N]). +% [N]. % % Additional data may be located before the dot; this is the case only for % \xintfloatexpr currently. As @@ -34879,7 +35511,7 @@ math shift catcode. % because such things were only a single token! I do not describe here how % this is all articulated but it is not hard to see it from the code (the % hardest thing in all such matter was in 2013 to actually write how the -% expansion would be intially launched becasue to do that one basically has to +% expansion would be initially launched because to do that one basically has to % understand the mechanism in its whole and such things are not easy to % develop piecemeal). Another thing to keep in mind is that operators in truth % have a left precedence (i.e. the precedence they show to operators arising @@ -35023,7 +35655,7 @@ math shift catcode. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintexpr}% - [2020/02/19 v1.4a Expandable expression parser (JFB)]% + [2020/02/25 v1.4b Expandable expression parser (JFB)]% \catcode`! 11 \let\XINT_Cmp \xintiiCmp \def\XINTfstop{\noexpand\XINTfstop}% @@ -35045,7 +35677,8 @@ math shift catcode. % technique made very difficult implementation of nested structures. % \subsubsection{Bracketed list rendering with prettifying of leaves from nested % braced contents} -% \lverb|1.4| +% \lverb|1.4 The braces in \XINT:expr:toblistwith are there because there is +% an \expanded trigger.| % \begin{macrocode} \def\XINT:expr:toblistwith#1#2% {% @@ -35075,6 +35708,48 @@ math shift catcode. >% \catcode`{ 1 \catcode`} 2 \catcode`< 12 \catcode`> 12 % \end{macrocode} +% \subsubsection{Flattening nested +% braced contents} +% \lverb|1.4b I hesitated whether using this technique or some variation of +% the method of the ListSel macros. I chose this one which I downscaled from +% toblistwith, I will revisit later. I only have a few minutes right now. +% +% Call form is \expanded\XINT:expr:flatten +% +% See \XINT_expr_func_flat. I hesitated with «flattened», but short names +% are faster parsed. +% | +% \begin{macrocode} +\def\XINT:expr:flatten#1% +{% + {{\expandafter\XINT:expr:flatten_checkempty\detokenize{#1}^}}% +}% +\def\XINT:expr:flatten_checkempty #1% +{% + \if ^#1\expandafter\xint_gobble_i\else\expandafter\XINT:expr:flatten_a\fi + #1% +}% +\begingroup % should I check lccode s generally if corrupted context at load? +\catcode`[ 1 \catcode`] 2 \lccode`[`{ \lccode`]`} +\catcode`< 1 \catcode`> 2 \catcode`{ 12 \catcode`} 12 +\lowercase<\endgroup +\def\XINT:expr:flatten_a {#1% +<% + \if{#1\xint_dothis<\XINT:expr:flatten_a>\fi + \xint_orthat\XINT:expr:flatten_b #1% +>% +\def\XINT:expr:flatten_b #1}% +<% + [#1]\XINT:expr:flatten_c }% +>% +\def\XINT:expr:flatten_c }#1% +<% + \if ^#1\xint_dothis<\xint_gobble_i>\fi + \if{#1\xint_dothis<\XINT:expr:flatten_a>\fi + \xint_orthat<\XINT:expr:flatten_c>#1% +>% +>% back to normal catcodes +% \end{macrocode} % \subsubsection{Braced contents rendering via a \TeX{} alignment with prettifying of leaves} % \lverb|1.4. % @@ -35360,7 +36035,7 @@ math shift catcode. % \lverb|New with 1.2h. I have been for the last three years very strict % regarding macros with \xint or \XINT, but well. % -% 1.4. Definitely I don't like those. Don't use them, I will remove one day!| +% 1.4. Definitely I don't like those. I will remove them at 1.5.| % \begin{macrocode} \let\thexintexpr \xinttheexpr \let\thexintiexpr \xinttheiexpr @@ -35505,7 +36180,6 @@ math shift catcode. % «Mysterious stuff». % | % \begin{macrocode} -\def\XINT:NEhook:unpack{\xint_stop_atfirstofone}% \let\XINT:NEhook:f:one:from:one\expandafter \let\XINT:NEhook:f:one:from:one:direct\empty \let\XINT:NEhook:f:one:from:two\expandafter @@ -36579,6 +37253,7 @@ math shift catcode. \fi }% }% +\def\XINT:NEhook:unpack{\xint_stop_atfirstofone}% \xintFor* #1 in {{expr}{flexpr}{iiexpr}}: {\expandafter\XINT_tmpa\csname XINT_#1_op_0\expandafter\endcsname \csname XINT_#1_until_unpack\endcsname {#1}}% @@ -36588,25 +37263,34 @@ math shift catcode. % \localtableofcontents % % \lverb|1.2d adds the *** for tying via tacit multiplication, for example -% x/2y. Actually I don't need the _itself mechanism for ***, only a precedence.| +% x/2y. Actually I don't need the _itself mechanism for ***, only a +% precedence. +% +% 1.4b subtlety with catcode of ! in \XINT_expr_itself_!=, +% due to chaining of comparison operators +% which use it to reinject into stream, but we must then have it of catcode +% 12 there, whereas so far the itself macros were only expanded in csname context.| % \begin{macrocode} \catcode`& 12 -\xintFor* #1 in {{==}{<=}{>=}{!=}{&&}{||}{**}{//}{/:}{..}{..[}{].}{]..}}% +\xintFor* #1 in {{==}{<=}{>=}{&&}{||}{**}{//}{/:}{..}{..[}{].}{]..}}% \do {\expandafter\def\csname XINT_expr_itself_#1\endcsname {#1}}% \catcode`& 7 +\expandafter\edef\csname XINT_expr_itself_!=\endcsname{\string !=}% \expandafter\let\csname XINT_expr_precedence_***\endcsname \xint_c_xvi % \end{macrocode} -% \subsubsection{\&\&, \textbar\textbar, <, >, ==, <=, >=, !=, //, /:, +, +% \subsubsection{\&\&, \textbar\textbar, //, /:, +, % \textendash, \texorpdfstring{\protect\lowast}{*}, /, \textasciicircum, % \texorpdfstring{\protect\lowast\protect\lowast}{**}{}, \textquotesingle and\textquotesingle, \textquotesingle % or\textquotesingle, \textquotesingle xor\textquotesingle, and % \textquotesingle mod\textquotesingle} % % \lverb@& -% Usage of $& and | is deprecated and only $&$& and || should be used. +% Usage of single character Boolean operators $& and | is deprecated +% (for many years) and only $&$& and || should be used. $& and | will be removed +% at next major release after 1.4. % @ % \begin{macrocode} -\def\XINT_expr_defbin_c #1#2#3#4#5#6#7#8#9% +\def\XINT_expr_defbin_c #1#2#3#4#5#6#7#8% {% \def #1##1% \XINT_expr_op_<op> {% @@ -36616,7 +37300,7 @@ math shift catcode. \def #2##1##2##3##4% \XINT_expr_exec_<op> {% \expandafter##2\expandafter##3\expandafter - {#9{\romannumeral`&&@#6##1##4}}% + {\romannumeral`&&@\XINT:NEhook:f:one:from:two{\romannumeral`&&@#6##1##4}}% }% \def #3##1% \XINT_expr_check-_<op> {% @@ -36645,60 +37329,44 @@ math shift catcode. \csname XINT_#1_op_-#4\expandafter\endcsname \csname #5\expandafter\endcsname \csname XINT_expr_precedence_#2\endcsname - {#1}{\romannumeral`&&@\XINT:NEhook:f:one:from:two}% + {#1}% \expandafter % done 3 times but well \let\csname XINT_expr_precedence_#2\expandafter\endcsname \csname xint_c_#3\endcsname }% -\catcode`& 12 \XINT_expr_defbin_b {expr} {||} {vi}{xii} {xintOR}% \XINT_expr_defbin_b {flexpr}{||} {vi}{xii} {xintOR}% \XINT_expr_defbin_b {iiexpr}{||} {vi}{xii} {xintOR}% +\catcode`& 12 \XINT_expr_defbin_b {expr} {&&} {viii}{xii} {xintAND}% \XINT_expr_defbin_b {flexpr}{&&} {viii}{xii} {xintAND}% \XINT_expr_defbin_b {iiexpr}{&&} {viii}{xii} {xintAND}% +\catcode`& 7 \XINT_expr_defbin_b {expr} {xor}{vi}{xii} {xintXOR}% \XINT_expr_defbin_b {flexpr}{xor}{vi}{xii} {xintXOR}% \XINT_expr_defbin_b {iiexpr}{xor}{vi}{xii} {xintXOR}% -\XINT_expr_defbin_b {expr} < {x}{xii} {xintLt}% -\XINT_expr_defbin_b {flexpr} < {x}{xii} {xintLt}% -\XINT_expr_defbin_b {iiexpr} < {x}{xii} {xintiiLt}% -\XINT_expr_defbin_b {expr} > {x}{xii} {xintGt}% -\XINT_expr_defbin_b {flexpr} > {x}{xii} {xintGt}% -\XINT_expr_defbin_b {iiexpr} > {x}{xii} {xintiiGt}% -\XINT_expr_defbin_b {expr} {==} {x}{xii} {xintEq}% -\XINT_expr_defbin_b {flexpr}{==} {x}{xii} {xintEq}% -\XINT_expr_defbin_b {iiexpr}{==} {x}{xii} {xintiiEq}% -\XINT_expr_defbin_b {expr} {<=} {x}{xii} {xintLtorEq}% -\XINT_expr_defbin_b {flexpr}{<=} {x}{xii} {xintLtorEq}% -\XINT_expr_defbin_b {iiexpr}{<=} {x}{xii} {xintiiLtorEq}% -\XINT_expr_defbin_b {expr} {>=} {x}{xii} {xintGtorEq}% -\XINT_expr_defbin_b {flexpr}{>=} {x}{xii} {xintGtorEq}% -\XINT_expr_defbin_b {iiexpr}{>=} {x}{xii} {xintiiGtorEq}% -\XINT_expr_defbin_b {expr} {!=} {x}{xii} {xintNotEq}% -\XINT_expr_defbin_b {flexpr}{!=} {x}{xii} {xintNotEq}% -\XINT_expr_defbin_b {iiexpr}{!=} {x}{xii} {xintiiNotEq}% -\XINT_expr_defbin_b {expr} {//} {xiv}{xiv}{xintDivFloor}% CHANGED IN 1.2p! +\XINT_expr_defbin_b {expr} {//} {xiv}{xiv}{xintDivFloor}% \XINT_expr_defbin_b {flexpr}{//} {xiv}{xiv}{XINTinFloatDivFloor}% " \XINT_expr_defbin_b {iiexpr}{//} {xiv}{xiv}{xintiiDivFloor}% " \XINT_expr_defbin_b {expr} {/:} {xiv}{xiv}{xintMod}% " \XINT_expr_defbin_b {flexpr}{/:} {xiv}{xiv}{XINTinFloatMod}% " \XINT_expr_defbin_b {iiexpr}{/:} {xiv}{xiv}{xintiiMod}% " -\XINT_expr_defbin_b {expr} + {xii}{xii} {xintAdd}% -\XINT_expr_defbin_b {flexpr} + {xii}{xii} {XINTinFloatAdd}% -\XINT_expr_defbin_b {iiexpr} + {xii}{xii} {xintiiAdd}% -\XINT_expr_defbin_b {expr} - {xii}{xii} {xintSub}% -\XINT_expr_defbin_b {flexpr} - {xii}{xii} {XINTinFloatSub}% -\XINT_expr_defbin_b {iiexpr} - {xii}{xii} {xintiiSub}% +\XINT_expr_defbin_b {expr} + {xii}{xii}{xintAdd}% +\XINT_expr_defbin_b {flexpr} + {xii}{xii}{XINTinFloatAdd}% +\XINT_expr_defbin_b {iiexpr} + {xii}{xii}{xintiiAdd}% +\XINT_expr_defbin_b {expr} - {xii}{xii}{xintSub}% +\XINT_expr_defbin_b {flexpr} - {xii}{xii}{XINTinFloatSub}% +\XINT_expr_defbin_b {iiexpr} - {xii}{xii}{xintiiSub}% \XINT_expr_defbin_b {expr} * {xiv}{xiv}{xintMul}% \XINT_expr_defbin_b {flexpr} * {xiv}{xiv}{XINTinFloatMul}% \XINT_expr_defbin_b {iiexpr} * {xiv}{xiv}{xintiiMul}% \XINT_expr_defbin_b {expr} / {xiv}{xiv}{xintDiv}% \XINT_expr_defbin_b {flexpr} / {xiv}{xiv}{XINTinFloatDiv}% -\XINT_expr_defbin_b {iiexpr} / {xiv}{xiv}{xintiiDivRound}% CHANGED IN 1.1! -\XINT_expr_defbin_b {expr} ^ {xviii}{xviii} {xintPow}% -\XINT_expr_defbin_b {flexpr} ^ {xviii}{xviii} {XINTinFloatPowerH}% -\XINT_expr_defbin_b {iiexpr} ^ {xviii}{xviii} {xintiiPow}% +\XINT_expr_defbin_b {iiexpr} / {xiv}{xiv}{xintiiDivRound}% +\XINT_expr_defbin_b {expr} ^ {xviii}{xviii}{xintPow}% +\XINT_expr_defbin_b {flexpr} ^ {xviii}{xviii}{XINTinFloatPowerH}% +\XINT_expr_defbin_b {iiexpr} ^ {xviii}{xviii}{xintiiPow}% +\catcode`& 12 \xintFor #1 in {and,or,xor,mod} \do {% \expandafter\def\csname XINT_expr_itself_#1\endcsname {#1}% @@ -36718,8 +37386,6 @@ math shift catcode. \expandafter\let\csname XINT_#1_op_mod\expandafter\endcsname \csname XINT_#1_op_/:\endcsname }% -\expandafter\let\csname XINT_expr_precedence_=\expandafter\endcsname - \csname XINT_expr_precedence_==\endcsname \expandafter\let\csname XINT_expr_precedence_&\expandafter\endcsname \csname XINT_expr_precedence_&&\endcsname \expandafter\let\csname XINT_expr_precedence_|\expandafter\endcsname @@ -36728,8 +37394,6 @@ math shift catcode. \csname XINT_expr_precedence_^\endcsname \xintFor #1 in {expr, flexpr, iiexpr} \do {% - \expandafter\let\csname XINT_#1_op_=\expandafter\endcsname - \csname XINT_#1_op_==\endcsname \expandafter\let\csname XINT_#1_op_&\expandafter\endcsname \csname XINT_#1_op_&&\endcsname \expandafter\let\csname XINT_#1_op_|\expandafter\endcsname @@ -36739,39 +37403,133 @@ math shift catcode. }% \catcode`& 7 % \end{macrocode} -% \subsubsection{.., ..[, and ].. as infix operators} -% \lverb|1.2d needed some room between /, * and ^. Hence precedence for ^ -% is now at 9| +% \subsubsection{.., ..[, and ].. for a..b and a..[b]..c syntax} +% \lverb|The 1.4 exec_..[ macros (which do no further expansion!) had silly +% \expandafter doing nothing for the sole reason of sharing a common +% \XINT_expr_defbin_c as used previously for the +, - etc... operators. At +% 1.4b we take the time to set things straight and do other similar +% simplifications.| % \begin{macrocode} -\def\XINT_expr_defbin_b #1#2#3#4% +\def\XINT_expr_defbin_c #1#2#3#4#5#6#7% +{% + \def #1##1% \XINT_expr_op_..[ + {% + \expanded{\unexpanded{#2{##1}}\expandafter}% + \romannumeral`&&@\expandafter#3\romannumeral`&&@\XINT_expr_getnext + }% + \def #2##1##2##3##4% \XINT_expr_exec_..[ + {% + ##2##3{{##1##4}}% + }% + \def #3##1% \XINT_expr_check-_..[ + {% + \xint_UDsignfork + ##1{\expandafter#4\romannumeral`&&@#5}% + -{#4##1}% + \krof + }% + \def #4##1##2% \XINT_expr_checkp_..[ + {% + \ifnum ##1>#6% + \expandafter#4% + \romannumeral`&&@\csname XINT_#7_op_##2\expandafter\endcsname + \else + \expandafter ##1\expandafter ##2% + \fi + }% +}% +\def\XINT_expr_defbin_b #1% +{% + \expandafter\XINT_expr_defbin_c + \csname XINT_#1_op_..[\expandafter\endcsname + \csname XINT_#1_exec_..[\expandafter\endcsname + \csname XINT_#1_check-_..[\expandafter\endcsname + \csname XINT_#1_checkp_..[\expandafter\endcsname + \csname XINT_#1_op_-xii\expandafter\endcsname + \csname XINT_expr_precedence_..[\endcsname + {#1}% +}% +\XINT_expr_defbin_b {expr}% +\XINT_expr_defbin_b {flexpr}% +\XINT_expr_defbin_b {iiexpr}% +\expandafter\let\csname XINT_expr_precedence_..[\endcsname\xint_c_vi +\def\XINT_expr_defbin_c #1#2#3#4#5#6#7#8% +{% + \def #1##1% \XINT_expr_op_<op> + {% + \expanded{\unexpanded{#2{##1}}\expandafter}% + \romannumeral`&&@\expandafter#3\romannumeral`&&@\XINT_expr_getnext + }% + \def #2##1##2##3##4% \XINT_expr_exec_<op> + {% + \expandafter##2\expandafter##3\expanded + {{\XINT:NEhook:x:one:from:two#8##1##4}}% + }% + \def #3##1% \XINT_expr_check-_<op> + {% + \xint_UDsignfork + ##1{\expandafter#4\romannumeral`&&@#5}% + -{#4##1}% + \krof + }% + \def #4##1##2% \XINT_expr_checkp_<op> + {% + \ifnum ##1>#6% + \expandafter#4% + \romannumeral`&&@\csname XINT_#7_op_##2\expandafter\endcsname + \else + \expandafter ##1\expandafter ##2% + \fi + }% +}% +\def\XINT_expr_defbin_b #1#2#3% {% \expandafter\XINT_expr_defbin_c \csname XINT_#1_op_#2\expandafter\endcsname \csname XINT_#1_exec_#2\expandafter\endcsname \csname XINT_#1_check-_#2\expandafter\endcsname \csname XINT_#1_checkp_#2\expandafter\endcsname - \csname XINT_#1_op_-#4\expandafter\endcsname - \expandafter{\expandafter}% + \csname XINT_#1_op_-xii\expandafter\endcsname \csname XINT_expr_precedence_#2\endcsname - {#1}{\expandafter}% REVOIR - \expandafter - \let\csname XINT_expr_precedence_#2\expandafter\endcsname - \csname xint_c_#3\endcsname + {#1}#3% + \expandafter\let + \csname XINT_expr_precedence_#2\expandafter\endcsname\xint_c_vi +}% +\XINT_expr_defbin_b {expr} {..}\xintSeq:tl:x +\XINT_expr_defbin_b {flexpr} {..}\xintSeq:tl:x +\XINT_expr_defbin_b {iiexpr} {..}\xintiiSeq:tl:x +\XINT_expr_defbin_b {expr} {]..}\xintSeqB:tl:x +\XINT_expr_defbin_b {flexpr}{]..}\xintSeqB:tl:x +\XINT_expr_defbin_b {iiexpr}{]..}\xintiiSeqB:tl:x +% \end{macrocode} +% \subsubsection{<, >, ==, <=, >=, != with Python-like chaining} +% \lverb| +% Usage of single character comparison operator = is deprecated (since +% many years) and only == should be used. = will be removed at next major +% release after 1.4. +% | +% \lverb|1.4b +% This is preliminary implementation of chaining of comparison +% operators like Python and (I think) l3fp do. I am not too happy +% with how many times the (second) operand (already evaluated) is fetched. +% | +% \begin{macrocode} +\def\XINT_expr_defbin_d #1#2% +{% + \def #1##1##2##3##4% \XINT_expr_exec_<op> + {% + \expandafter##2\expandafter##3\expandafter + {\romannumeral`&&@\XINT:NEhook:f:one:from:two{\romannumeral`&&@#2##1##4}}% + }% }% -\XINT_expr_defbin_b {expr} {..[}{vi}{xii}% -\XINT_expr_defbin_b {flexpr}{..[}{vi}{xii}% -\XINT_expr_defbin_b {iiexpr}{..[}{vi}{xii}% \def\XINT_expr_defbin_c #1#2#3#4#5#6#7#8#9% {% \def #1##1% \XINT_expr_op_<op> {% \expanded{\unexpanded{#2{##1}}\expandafter}% + \romannumeral`&&@\expandafter#7% \romannumeral`&&@\expandafter#3\romannumeral`&&@\XINT_expr_getnext }% - \def #2##1##2##3##4% \XINT_expr_exec_<op> - {% - \expandafter##2\expandafter##3\expanded{{#9#6##1##4}}% - }% \def #3##1% \XINT_expr_check-_<op> {% \xint_UDsignfork @@ -36781,34 +37539,70 @@ math shift catcode. }% \def #4##1##2% \XINT_expr_checkp_<op> {% - \ifnum ##1>#7% + \ifnum ##1>#6% \expandafter#4% - \romannumeral`&&@\csname XINT_#8_op_##2\expandafter\endcsname - \else + \romannumeral`&&@\csname XINT_#9_op_##2\expandafter\endcsname + \else \expandafter ##1\expandafter ##2% \fi }% + \let #6\xint_c_x + \def #7##1% \XINT_expr_checkc_<op> + {% + \ifnum ##1=\xint_c_x\expandafter#8\fi ##1% + }% + \edef #8##1##2##3% \XINT_expr_execc_<op> + {% + \csname XINT_#9_precedence_\string&\string&\endcsname + \expandafter\noexpand\csname XINT_#9_itself_\string&\string&\endcsname + {##3}% + \XINTfstop.{##3}##2% + }% + \XINT_expr_defbin_d #2% \XINT_expr_exec_<op> }% -\def\XINT_expr_defbin_b #1#2#3#4#5#6% +\def\XINT_expr_defbin_b #1#2%#3% {% \expandafter\XINT_expr_defbin_c \csname XINT_#1_op_#2\expandafter\endcsname \csname XINT_#1_exec_#2\expandafter\endcsname \csname XINT_#1_check-_#2\expandafter\endcsname \csname XINT_#1_checkp_#2\expandafter\endcsname - \csname XINT_#1_op_-#4\expandafter\endcsname - \csname #5\expandafter\endcsname - \csname XINT_expr_precedence_#2\endcsname {#1}#6% - \expandafter\let + \csname XINT_#1_op_-xii\expandafter\endcsname \csname XINT_expr_precedence_#2\expandafter\endcsname - \csname xint_c_#3\endcsname + \csname XINT_#1_checkc_#2\expandafter\endcsname + \csname XINT_#1_execc_#2\endcsname + {#1}%#3% +}% +% \end{macrocode} +% \lverb|Attention that third token here is left in stream by defbin_b, then +% also by defbin_c and is picked up as #2 of defbin_d. Had to work around TeX +% accepting only 9 arguments. Why did it not start counting at #0 like all +% decent mathematicians do?| +% \begin{macrocode} +\XINT_expr_defbin_b {expr} <\xintLt +\XINT_expr_defbin_b {flexpr}<\xintLt +\XINT_expr_defbin_b {iiexpr}<\xintiiLt +\XINT_expr_defbin_b {expr} >\xintGt +\XINT_expr_defbin_b {flexpr}>\xintGt +\XINT_expr_defbin_b {iiexpr}>\xintiiGt +\XINT_expr_defbin_b {expr} {==}\xintEq +\XINT_expr_defbin_b {flexpr}{==}\xintEq +\XINT_expr_defbin_b {iiexpr}{==}\xintiiEq +\XINT_expr_defbin_b {expr} {<=}\xintLtorEq +\XINT_expr_defbin_b {flexpr}{<=}\xintLtorEq +\XINT_expr_defbin_b {iiexpr}{<=}\xintiiLtorEq +\XINT_expr_defbin_b {expr} {>=}\xintGtorEq +\XINT_expr_defbin_b {flexpr}{>=}\xintGtorEq +\XINT_expr_defbin_b {iiexpr}{>=}\xintiiGtorEq +\XINT_expr_defbin_b {expr} {!=}\xintNotEq +\XINT_expr_defbin_b {flexpr}{!=}\xintNotEq +\XINT_expr_defbin_b {iiexpr}{!=}\xintiiNotEq +\expandafter\let\csname XINT_expr_precedence_=\endcsname\xint_c_x +\xintFor #1 in {expr, flexpr, iiexpr} \do +{% + \expandafter\let\csname XINT_#1_op_=\expandafter\endcsname + \csname XINT_#1_op_==\endcsname }% -\XINT_expr_defbin_b {expr} {..} {vi}{xii}{xintSeq:tl:x}\XINT:NEhook:x:one:from:two -\XINT_expr_defbin_b {flexpr}{..} {vi}{xii}{xintSeq:tl:x}\XINT:NEhook:x:one:from:two -\XINT_expr_defbin_b {iiexpr}{..} {vi}{xii}{xintiiSeq:tl:x}\XINT:NEhook:x:one:from:two -\XINT_expr_defbin_b {expr} {]..}{vi}{xii}{xintSeqB:tl:x}\XINT:NEhook:x:one:from:twoandone -\XINT_expr_defbin_b {flexpr}{]..}{vi}{xii}{xintSeqB:tl:x}\XINT:NEhook:x:one:from:twoandone -\XINT_expr_defbin_b {iiexpr}{]..}{vi}{xii}{xintiiSeqB:tl:x}\XINT:NEhook:x:one:from:twoandone % \end{macrocode} % \subsubsection{Support macros for .., ..[ and ]..} % @@ -36970,7 +37764,7 @@ math shift catcode. % \begin{macrocode} \def\XINT_expr_itself_obracket{obracket}% \catcode`] 11 \catcode`[ 11 -\def\XINT_tmpa #1#2#3#4#5#6% +\def\XINT_expr_defbin_c #1#2#3#4#5#6% {% \def #1##1% {% @@ -36999,8 +37793,9 @@ math shift catcode. \fi }% }% -\xintFor #1 in {expr,flexpr,iiexpr} \do {% - \expandafter\XINT_tmpa +\def\XINT_expr_defbin_b #1% +{% + \expandafter\XINT_expr_defbin_c \csname XINT_#1_op_obracket\expandafter\endcsname \csname XINT_#1_op_]\expandafter\endcsname \csname XINT_#1_until_cbracket_a\expandafter\endcsname @@ -37008,6 +37803,9 @@ math shift catcode. \csname XINT_#1_op_-xii\endcsname {#1}% }% +\XINT_expr_defbin_b {expr}% +\XINT_expr_defbin_b {flexpr}% +\XINT_expr_defbin_b {iiexpr}% \def\XINT_expr_missing_] {\XINT_expandableerror{Ooops, looks like we are missing a ] here. Goodbye!}% \xint_c_ \XINT_expr_done}% @@ -37039,7 +37837,7 @@ math shift catcode. % There are some subtle things here with possibility of variables been passed % by reference.| % \begin{macrocode} -\def\XINT_tmpa #1#2#3#4#5#6% +\def\XINT_expr_defbin_c #1#2#3#4#5#6% {% \def #1##1% \XINT_expr_op_[ {% @@ -37074,8 +37872,9 @@ math shift catcode. }% }% \let\XINT_expr_precedence_[ \xint_c_xx -\xintFor #1 in {expr,flexpr,iiexpr} \do {% -\expandafter\XINT_tmpa +\def\XINT_expr_defbin_b #1% +{% + \expandafter\XINT_expr_defbin_c \csname XINT_#1_op_[\expandafter\endcsname \csname XINT_#1_exec_]\expandafter\endcsname \csname XINT_#1_check-_]\expandafter\endcsname @@ -37083,6 +37882,9 @@ math shift catcode. \csname XINT_#1_op_-xii\endcsname {#1}% }% +\XINT_expr_defbin_b {expr}% +\XINT_expr_defbin_b {flexpr}% +\XINT_expr_defbin_b {iiexpr}% \catcode`] 12 \catcode`[ 12 % \end{macrocode} % \lverb|At 1.4 the getnext, scanint, scanfunc, getop chain got revisited to @@ -37092,7 +37894,7 @@ math shift catcode. % also «:,» for example. Thus here we simply have to define the sole operator % «:» and it will be some sort of inert joiner preparing a slicing spec.| % \begin{macrocode} -\def\XINT_tmpa #1#2#3#4#5#6% +\def\XINT_expr_defbin_c #1#2#3#4#5#6% {% \def #1##1% \XINT_expr_op_: {% @@ -37120,14 +37922,18 @@ math shift catcode. }% }% \let\XINT_expr_precedence_: \xint_c_vi -\xintFor #1 in {expr,flexpr,iiexpr} \do {% -\expandafter\XINT_tmpa +\def\XINT_expr_defbin_b #1% +{% + \expandafter\XINT_expr_defbin_c \csname XINT_#1_op_:\expandafter\endcsname \csname XINT_#1_exec_:\expandafter\endcsname \csname XINT_#1_check-_:\expandafter\endcsname \csname XINT_#1_checkp_:\expandafter\endcsname \csname XINT_#1_op_-xii\endcsname {#1}% }% +\XINT_expr_defbin_b {expr}% +\XINT_expr_defbin_b {flexpr}% +\XINT_expr_defbin_b {iiexpr}% % \end{macrocode} % \subsubsection{Macro layer implementing indexing and slicing} % \lverb|xintexpr applies slicing not only to «objects» (which can be passed @@ -38934,8 +39740,8 @@ math shift catcode. % {all}{any}{xor} % {len}{first}{last}{reversed} % {if}{ifint}{ifone}{ifsgn} -% {nuple}}} -% and \noexpand\cshn{unpack()}} +% {nuple}{unpack}{flat}}} +% and \noexpand\cshn{zip()}} % \expandafter\subsection\expandafter{\zzz} % \begin{macrocode} \def\XINT:expr:f:one:and:opt #1#2#3!#4#5% @@ -39634,6 +40440,23 @@ math shift catcode. {\expandafter#1\expandafter#2\romannumeral0\XINT:NEhook:unpack}% \let\XINT_flexpr_func_unpack\XINT_expr_func_unpack \let\XINT_iiexpr_func_unpack\XINT_expr_func_unpack +\def\XINT_expr_func_flat #1#2%#3% +{% + \expandafter#1\expandafter#2\expanded + \XINT:NEhook:x:flatten\XINT:expr:flatten +}% +\let\XINT_flexpr_func_flat\XINT_expr_func_flat +\let\XINT_iiexpr_func_flat\XINT_expr_func_flat +\let\XINT:NEhook:x:flatten\empty +\def\XINT_expr_func_zip #1#2%#3% +{% + \expandafter#1\expandafter#2\romannumeral`&&@% + \XINT:NEhook:x:zip\XINT:expr:zip +}% +\let\XINT_flexpr_func_zip\XINT_expr_func_zip +\let\XINT_iiexpr_func_zip\XINT_expr_func_zip +\let\XINT:NEhook:x:zip\empty +\def\XINT:expr:zip#1{\expandafter{\expanded\XINT_zip_A#1\xint_bye\xint_bye}}% % \end{macrocode} % \subsection{User declared functions} % \lverb|& @@ -40458,6 +41281,43 @@ math shift catcode. \fi \XINT:expr:toblistwith{##1}{##2}% }}\expandafter\XINT:NE:x:toblist\string#% \def\XINT:NE:x:toblist:p\XINT:expr:toblistwith #1#2{{\XINTfstop.{#2}}}% +\def\XINT:NE:x:flatten#1{% +\def\XINT:NE:x:flatten\XINT:expr:flatten##1% +{% + \if 0\expandafter\XINT:NE:hastilde\detokenize{##1}~!\relax + \expandafter\XINT:NE:hashash \detokenize{##1}#1!\relax 0% + \else + \expandafter\XINT:NE:x:flatten:p + \fi \XINT:expr:flatten{##1}% +}}\expandafter\XINT:NE:x:flatten\string#% +\def\XINT:NE:x:flatten:p\XINT:expr:flatten #1% +{% + {{% + \detokenize + {% + \expandafter\XINT:expr:flatten_checkempty + \detokenize\expandafter{\expanded{#1}}$XINT_expr_caret%$ + }% + }}% +}% +\def\XINT:NE:x:zip#1{% +\def\XINT:NE:x:zip\XINT:expr:zip##1% +{% + \if 0\expandafter\XINT:NE:hastilde\detokenize{##1}~!\relax + \expandafter\XINT:NE:hashash \detokenize{##1}#1!\relax 0% + \else + \expandafter\XINT:NE:x:zip:p + \fi \XINT:expr:zip{##1}% +}}\expandafter\XINT:NE:x:zip\string#% +\def\XINT:NE:x:zip:p\XINT:expr:zip #1% +{% + \expandafter{% + \detokenize + {% + \expanded\expandafter\XINT_zip_A\expanded{#1}\xint_bye\xint_bye + }% + }% +}% \def\XINT:NE:x:mapwithin#1{% \def\XINT:NE:x:mapwithin\XINT:expr:mapwithin ##1##2% {% @@ -40608,6 +41468,8 @@ math shift catcode. \let\XINT:NEhook:rrseq \XINT:NE:rrseq \let\XINT:NEhook:iterr \XINT:NE:iterr \let\XINT:NEhook:x:toblist \XINT:NE:x:toblist + \let\XINT:NEhook:x:flatten \XINT:NE:x:flatten + \let\XINT:NEhook:x:zip \XINT:NE:x:zip \let\XINT:NEhook:x:mapwithin \XINT:NE:x:mapwithin \let\XINT:NEhook:x:ndmapx \XINT:NE:x:ndmapx \let\XINT:NEhook:userfunc \XINT:NE:userfunc @@ -40941,10 +41803,10 @@ math shift catcode. \expandafter\xint_secondoftwo \fi {\immediate\write-1{Reloading xinttrig library using Digits=\xinttheDigits.}}% -{\expandafter\gdef\csname xintlibver@trig\endcsname{2020/02/19 v1.4a}% +{\expandafter\gdef\csname xintlibver@trig\endcsname{2020/02/25 v1.4b}% \XINT_providespackage \ProvidesPackage{xinttrig}% -[2020/02/19 v1.4a Trigonometrical functions for xintexpr (JFB)]% +[2020/02/25 v1.4b Trigonometrical functions for xintexpr (JFB)]% }% % \end{macrocode} % \subsection{Ensure used letters are dummy letters} @@ -40991,59 +41853,25 @@ math shift catcode. % \lverb|& % Pre-compute 1/n! for n = 2, ..., 44 % -% The following example (among many, see below) shows that we must be careful -% when pre-computing the 1/i!. -%( Consider 35!=10333147966386144929666651337523200000000. -%: With \xintDigit:=26; \xintfloateval{35!} obtains 1.0333147966386144929666651e40 -%: which is the correct rounding to 26 digits. But \xintfloateval{1/35!} obtains -%: 9.6775929586318909920898167e-41 which differs by 3ulps from the correct rounding -%: of 1/35! to 26 places which is 9.6775929586318909920898164e-41. The problem -%: isn't in the factorial computations, but in the fact that the rounding of the -%: inverse of a quantity which is itself a rounding is not necessarily the rounding -%: of the exact inverse of the original. -%) -% Here is a little program to explore this phenomenon systematically: % -%( \xintDigits:=55;$% -%: \edef\tempNlist{\xintSeq{2}{39}}% -%: \xintFor*#1in{\tempNlist}\do{$% we precompute some rounding here to -%: $% speed up things in the next double loop. -%: \expandafter\edef\csname invfact#1\endcsname {\xintfloatexpr 1/#1!\relax}$% -%: }$% -%: \xintFor*#1in{\xintSeq{4}{50}}\do{$% -%: \xintDigits:=#1;$% -%: \xintFor*#2in{\tempNlist}\do{$% -%: (D=#1, N=#2) -%: $% attention to !== which is parsed as negation operator != followed by = (sigh...) -%: \xintifboolfloatexpr{(1/#2!)==0+\csname invfact#2\endcsname}$% -%: {ok} -%: {mismatch: \xintfloateval{1/#2!} vs (exact) -%: \xintfloateval{0+\csname invfact#2\endcsname}}$% -%: \par -%: }$% -%: }$% -%) +% We have to be careful that 1/i! in a float expression first evaluates i! +% as a floating point number then computes the inverse. Even if i! was +% computed exactly before being float-rounded, this process would not +% necessarily lead to the correct rounding of the exact fraction 1/i!. % -% We can see that for D=16, the problem is there with N=22, 25, 26, 27, -% 28...and more. If we were to use 1/i! directly in the \xintdeffloatfunc of -% sin_aux(X) and cos_aux(X) we would have this problem. +% We could use \xintexpr1/i!\relax encapsulation but then the actual +% rounding is delayed to the time when functions are used... this is bad. % -% If we use \xintexpr1/i!\relax encapsulation in the function declaration the -% rounding will be delayed to actual use of the function... which is bad, so -% we need it to happen now. We could use (0+\xintexpr1/i!\relax) inside the -% declaration of the sine and cosine series, which will give the expected -% result but for readability we use some temporary variables. We could use -% seq(0+\xintexpr1/i!\relax, i = 2..44) but opt for an rseq. The semi-colon -% must be braced to hide it from \xintdeffloatvar grabbing of the delimited -% argument. +% We need to get now the correct rounding of the exact 1/i!. % % 1.4 update: use \xintfloatexpr with optional argument for the rounding -% rather than «0+x» method. +% rather than «0+x» method. And there is no need now to hide within braces +% the inner semi-colon. % | % \begin{macrocode} \xintdeffloatvar invfact\xintListWithSep{, invfact}{\xintSeq{2}{44}}% := \xintfloatexpr [\XINTdigits] % force float rounding after exact evaluations - \xintexpr rseq(1/2{;}@/i, i=3..44)\relax % need to hide inner ; from \xintdeffloatvar + \xintexpr rseq(1/2; @/i, i=3..44)\relax % no need to hide this inner ; \relax;% % \end{macrocode} % \subsection{The sine and cosine series} @@ -41974,7 +42802,7 @@ math shift catcode. \xintexprSafeCatcodes\catcode`_ 11 \XINT_providespackage \ProvidesPackage{xintlog}% -[2020/02/19 v1.4a Logarithms and exponentials for xintexpr (JFB)]% +[2020/02/25 v1.4b Logarithms and exponentials for xintexpr (JFB)]% % \end{macrocode} % \subsection{Loading of \cshn{poormanlog} package} % \lverb|Attention to catcode regime when loading poormanlog. It matters less @@ -42171,34 +42999,34 @@ xint.sty:205 xintbinhex.sty:53 xintcfrac.sty:183 xintcore.sty:271 -xintexpr.sty:414 -xintfrac.sty:494 +xintexpr.sty:430 +xintfrac.sty:496 xintgcd.sty:41 xintkernel.sty:17 xintlog.sty:9 xintseries.sty:48 -xinttools.sty:153 +xinttools.sty:157 xinttrig.sty:31 \fi % grep -o "^{%" xint*sty | wc -l -\def\totala{ 1919} +\def\totala{ 1941} \iffalse % grep -c -e "^}%" xint*sty xint.sty:204 xintbinhex.sty:52 xintcfrac.sty:183 xintcore.sty:268 -xintexpr.sty:402 -xintfrac.sty:497 +xintexpr.sty:413 +xintfrac.sty:499 xintgcd.sty:43 xintkernel.sty:18 xintlog.sty:9 xintseries.sty:48 -xinttools.sty:152 +xinttools.sty:156 xinttrig.sty:32 \fi % grep -o "^}%" xint*sty | wc -l -\def\totalb{ 1908} +\def\totalb{ 1925} \cleardoublepage \section{Cumulative line count} @@ -42222,8 +43050,8 @@ xinttrig.sty:32 \TeX\strut. Version {\xintbndlversion} of {\xintbndldate}.\par } -\CheckSum {34648}% 1.4a -% 34575 pour 1.4 +\CheckSum {35103}% 1.4b +% 34648 pour 1.4a, 34575 pour 1.4 % 33497 pour 1.3f, 33274 pour 1.3e, 31601 pour 1.3d, 31122 pour 1.3c % 31069 pour 1.3b, 30482 pour 1.3a, 30621 pour 1.3, 30988 pour 1.2q, % 30982 pour 1.2p, 30524 pour 1.2o, 30303 pour 1.2h, 30403 pour 1.2i, |