summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/generic/pst-3d/pst-3d.dtx
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/source/generic/pst-3d/pst-3d.dtx')
-rw-r--r--Master/texmf-dist/source/generic/pst-3d/pst-3d.dtx1608
1 files changed, 1608 insertions, 0 deletions
diff --git a/Master/texmf-dist/source/generic/pst-3d/pst-3d.dtx b/Master/texmf-dist/source/generic/pst-3d/pst-3d.dtx
new file mode 100644
index 00000000000..291524ae593
--- /dev/null
+++ b/Master/texmf-dist/source/generic/pst-3d/pst-3d.dtx
@@ -0,0 +1,1608 @@
+% \iffalse meta-comment, etc.
+%%
+%% Package `pst-3d.dtx'
+%%
+%% Timothy Van Zandt <tvz@nwu.edu> (tvz)
+%% Herbert Voss <voss@pstricks.de> (hv)
+%%
+%% September 03, 2005
+%%
+%% This file is under the LaTeX Project Public License
+%% See CTAN archives in directory macros/latex/base/lppl.txt.
+%%
+%% DESCRIPTION:
+%% `pst-3d' is a PSTricks package for tilting and other pseudo-3D tricks
+%%
+% \fi
+% \iffalse
+%<*driver>
+\documentclass{ltxdoc}
+\GetFileInfo{pst-3d.dtx}
+\usepackage[T1]{fontenc}
+\usepackage{textcomp,fancyvrb}
+\usepackage{graphics,showexpl}
+\usepackage{amsmath,array}
+\usepackage{multido}
+\usepackage{pstricks,pst-node,pst-plot}
+\usepackage{pst-3d}
+\AtBeginDocument{
+% \OnlyDescription % comment out for implementation details
+ \EnableCrossrefs
+ \RecordChanges
+ \CodelineIndex}
+\AtEndDocument{
+ \PrintChanges
+ \PrintIndex}
+\hbadness=7000 % Over and under full box warnings
+\hfuzz=3pt
+\begin{document}
+ \DocInput{pst-3d.dtx}
+\end{document}
+%</driver>
+% \fi
+%
+% \changes{v1.00}{2005/09/08}{%
+% using the extended pst-xkey instead of the old pst-key package;
+% creating a dtx file;
+% new \LaTeX\ wrapper file (hv)}
+% \changes{v0.90}{2001/02/16}{First public release. (tvz)}
+%
+% \DoNotIndex{\!,\",\#,\$,\%,\&,\',\(,\+,\*,\,,\-,\.,\/,\:,\;,\<,\=,\>,\?}
+% \DoNotIndex{\@,\@B,\@K,\@cTq,\@f,\@fPl,\@ifnextchar,\@nameuse,\@oVk}
+% \DoNotIndex{\[,\\,\],\^,\_,\ }
+% \DoNotIndex{\^,\\^,\\\^,$\^$,$\\^$,$\\^$}
+% \DoNotIndex{\0,\2,\4,\5,\6,\7,\8,}
+% \DoNotIndex{\A,\a}
+% \DoNotIndex{\B,\b,\Bc,\begin,\Bq,\Bqc}
+% \DoNotIndex{\C,\c,\catcode,\cJA,\CodelineIndex,\csname}
+% \DoNotIndex{\D,\def,\define@key,\Df,\divide,\DocInput,\documentclass,\pst@addfams}
+% \DoNotIndex{\eCN,\edef,\else,\eHd,\eMcj,\EnableCrossrefs,\end,\endcsname}
+% \DoNotIndex{\endCenterExample,\endExample,\endinput,\endpsclip}
+% \DoNotIndex{\PrintIndex,\PrintChanges,\ProvidesFile}
+% \DoNotIndex{\endpspicture,\endSideBySideExample,\Example}
+% \DoNotIndex{\F,\f,\FdUrr,\fi,\filedate,\fileversion,\FV@Environment}
+% \DoNotIndex{\FV@UseKeyValues,\FV@XRightMargin,\FVB@Example,\fvset}
+% \DoNotIndex{\G,\g,\GetFileInfo,\gr,\GradientLoaded,\gsFKrbK@o,\gsj,\gsOX}
+% \DoNotIndex{\hbadness,\hfuzz,\HLEmphasize,\HLMacro,\HLMacro@i}
+% \DoNotIndex{\HLReverse,\HLReverse@i,\hqcu,\HqY}
+% \DoNotIndex{\I,\i,\ifx,\input,\Ir,\IU}
+% \DoNotIndex{\j,\jl,\JT,\JVodH}
+% \DoNotIndex{\K,\k,\kfSlL}
+% \DoNotIndex{\L,\let}
+% \DoNotIndex{\message,\mHNa,\mIU}
+% \DoNotIndex{\N,\nB,\newcmykcolor,\newdimen,\newif,\nW}
+% \DoNotIndex{\O,\oCDJDo,\ocQhVI,\OnlyDescription,\oRKJ}
+% \DoNotIndex{\P,\p,\ProvidesPackage,\psframe,\pslinewidth,\psset}
+% \DoNotIndex{\PstAtCode,\PSTricksLoaded}
+% \DoNotIndex{\q,\Qr,\qssRXq,\qu,\qXjFQp,\qYL}
+% \DoNotIndex{\R,\r,\RecordChanges,\relax,\RlaYI,\rN,\Rp,\rp,\RPDXNn,\rput}
+% \DoNotIndex{\S,\scalebox,\SgY,\SideBySide@Example,\SideBySideExample}
+% \DoNotIndex{\SgY,\sk,\Sp,\space,\sZb}
+% \DoNotIndex{\T,\the,\tw@}
+% \DoNotIndex{\u,\UiSWGEf@,\uJi,\usepackage,\uVQdMM,\UYj}
+% \DoNotIndex{\VerbatimEnvironment,\VerbatimInput,\VrC@}
+% \DoNotIndex{\WhZ,\WjKCYb,\WNs}
+% \DoNotIndex{\XkN,\XW}
+% \DoNotIndex{\Z,\ZCM,\Ze}
+% \DoNotIndex{\addtocounter,\advance,\alph,\arabic,\AtBeginDocument,\AtEndDocument}
+% \DoNotIndex{\AtEndOfPackage,\begingroup,\bfseries,\bgroup,\box,\csname}
+% \DoNotIndex{\else,\endcsname,\endgroup,\endinput,\expandafter,\fi}
+% \DoNotIndex{\TeX,\z@,\p@,\@one,\xdef,\thr@@,\string,\sixt@@n,\reset,\or,\multiply,\repeat,\RequirePackage}
+% \DoNotIndex{\@cclvi,\@ne,\@ehpa,\@nil,\copy,\dp,\global,\hbox,\hss,\ht,\ifodd,\ifdim,\ifcase,\kern}
+% \DoNotIndex{\chardef,\loop,\leavevmode,\ifnum,\lower}
+% \setcounter{IndexColumns}{2}
+%
+% \let\pstIIIDFileVersion\fileversion
+% \let\pstIIIDFileDate\filedate
+% \newcommand{\PstIIIDPackage}{`\textsf{pst-3d}'}
+% \newcommand{\PstIIIDMacro}{\cs{Pst3d}}
+%
+% ^^A From ltugboat.cls
+%
+% ^^A Typeset the name of an environment
+% \providecommand\env[1]{\textsf{#1}}
+% \providecommand\clsname[1]{\textsf{#1}}
+% \providecommand\pkgname[1]{\textsf{#1}}
+% \providecommand\optname[1]{\textsf{#1}}
+% \providecommand\progname[1]{\textsf{#1}}
+%
+% ^^A A list of options for a package/class
+% \newenvironment{optlist}{\begin{description}%
+% \renewcommand\makelabel[1]{%
+% \descriptionlabel{\mdseries\optname{##1}}}%
+% \itemsep0.25\itemsep}%
+% {\end{description}}
+%
+% \makeatletter
+%
+% ^^A Utility macros
+%
+% ^^A Example macros - adapted from the `fvrb-ex' package
+% ^^A ---------------------------------------------------
+%
+% ^^A Take care that we use here the four /?_Z characters as escape
+% ^^A characters, so we can't use these characters in the examples!
+%
+% ^^A To highlight some verbatim sequences (comments, macro names, etc.)
+% \def\HLEmphasize#1{\textit{#1}}
+% \newcommand{\BS}{\texttt{\symbol{`\\}}}
+% \def\HLMacro#1{\BS{}def\HLMacro@i#1\@nil}
+% \def\HLMacro@i#1def#2\@nil{\HLReverse{#2}}
+% \def\HLReverse#1{{\setlength{\fboxsep}{1pt}\HLReverse@i{#1}}}
+% \def\HLReverse@i#1{\colorbox{black}{\textcolor{white}{\textbf{#1}}}}
+%
+% \def\Example{\FV@Environment{}{Example}}
+% \def\endExample{%
+% \end{VerbatimOut}
+% \Below@Example{\input{\jobname.tmp}}
+% \endgroup}
+%
+% \def\CenterExample{\FV@Environment{}{Example}}
+% \def\endCenterExample{%
+% \end{VerbatimOut}
+% \begin{center}
+% \Below@Example{\input{\jobname.tmp}}
+% \end{center}
+% \endgroup}
+%
+% \def\SideBySideExample{\FV@Environment{}{Example}}
+% \def\endSideBySideExample{%
+% \end{VerbatimOut}
+% \SideBySide@Example{\input{\jobname.tmp}}
+% \endgroup}
+%
+% \def\FVB@Example{%
+% \begingroup
+% \FV@UseKeyValues
+% \parindent=0pt
+% \multiply\topsep by 2
+% \VerbatimEnvironment
+% \begin{VerbatimOut}[gobble=4,codes={\catcode`\Z=12}]{\jobname.tmp}}
+%
+% \def\Below@Example#1{%
+% \VerbatimInput[gobble=0,commentchar=Z,commandchars=/?_,frame=single,
+% numbers=left,numbersep=3pt]{\jobname.tmp}
+% \catcode`\%=14\relax
+% \catcode`\Z=9\relax
+% ^^A We suppress the effect of the highlighting macros
+% \catcode`/=0\relax
+% \catcode`?=1\relax
+% \catcode`_=2\relax
+% \def\HLEmphasize##1{##1}%
+% \def\HLMacro##1{##1}%
+% \def\HLReverse##1{##1}%
+% #1
+% \par}
+%
+% \def\SideBySide@Example#1{%
+% \vskip 1mm
+% \@tempdimb=\FV@XRightMargin
+% \advance\@tempdimb -5mm
+% \begin{minipage}[c]{\@tempdimb}
+% \fvset{xrightmargin=0pt}
+% \catcode`\%=14\relax
+% \catcode`\Z=9\relax
+% ^^A We suppress the effect of the highlighting macros
+% \catcode`/=0\relax
+% \catcode`?=1\relax
+% \catcode`_=2\relax
+% \def\HLEmphasize##1{##1}%
+% \def\HLMacro##1{##1}%
+% \def\HLReverse##1{##1}%
+% #1
+% \end{minipage}%
+% \@tempdimb=\textwidth
+% \advance\@tempdimb -\FV@XRightMargin
+% \advance\@tempdimb 5mm
+% \begin{minipage}[c]{\@tempdimb}
+% \VerbatimInput[gobble=0,commentchar=Z,commandchars=/?_,
+% frame=single,numbers=left,numbersep=3pt,
+% xleftmargin=5mm,xrightmargin=0pt]{\jobname.tmp}
+% \end{minipage}
+% \vskip 1mm}
+%
+% ^^A End of example macros from `fvrb-ex'
+%
+% ^^A Customizations of the "Verbatim" environment
+% \RecustomVerbatimEnvironment{Verbatim}{Verbatim}%
+% {gobble=4,frame=single,numbers=left,numbersep=3pt,commandchars=/?_}
+%
+% ^^A For the possible index and changes log
+% \setlength{\columnseprule}{0.6pt}
+%
+%
+% \def\PiCTeX{PiC\TeX}
+% \def\arc{\texttt{arc}}
+% \def\sign{\texttt{sign}}
+%
+% ^^A Beginning of the documentation itself
+%
+% \title{The \PstIIIDPackage{} package\\Tilting and other pseudo-3D tricks with PSTricks}
+% \author{Timothy Van Zandt\\
+% Herbert Vo\ss}
+% \date{Version \pstIIIDFileVersion\ \pstIIIDFileDate\ \\
+% {\small Documentation revised \today\ (hv)}}
+%
+% \maketitle
+%
+% \begin{abstract}
+% \texttt{pst-3d} provides basic macros for shadows, tilting and
+% three dimensional representations of text or graphical objects.
+% \end{abstract}
+%
+% \clearpage
+% \tableofcontents
+%
+% \section{introduction}
+%
+% The base package \texttt{pstricks} already disposes of some macros with which three
+% dimensional effects can be obtained.
+% There are several packages though which support the creation of three
+% dimensional objects or functions. A compilation is shown in
+% table~\ref{tab:pst3d:pakete}. Here already several of the packages overlap, for
+% parallel developments are nothing unusual in the \TeX{} world. Although
+% \verb+pst-3d+ is one of the older packages, it shall be dealt with nevertheless,
+% for it also contains the preliminary stage of the 3D representations, that is
+% shadow creation and tilting.
+%
+% \begin{table}[htb]
+% \caption{Summary of all 3D packages}\label{tab:pst3d:pakete}
+% \centering
+% \begin{tabular}{ll}
+% \emph{package} & \emph{content}\\\hline
+% \texttt{pst-3d} & basic 3D operations\\
+% \texttt{pst-3dplot} & Three dimensional plots\\
+% \texttt{pst-fr3d} & Three dimensional framed Boxes\\
+% \texttt{pst-gr3d} & 3D grids\\
+% \texttt{pst-map3dII}& 3D Geographical Projection\\
+% \texttt{pst-ob3d} & Three dimensional basic objects\\
+% \texttt{pst-vue3d} & Three dimensional views\\
+% \end{tabular}
+% \end{table}
+%
+%
+% \section{Shadow}\label{sec:pst3d:schattenwurf}
+% \verb+pst-3d+ defines the macro \verb+\psshadow+ with the following syntax:
+% \begin{verbatim}
+% \psshadow[<parameters>]{<material>]
+% \end{verbatim}
+% As parameters the ones given in table~\ref{tab:pst-3d:schattenparameter} are
+% available next to all previously defined, if they have a meaning for the
+% material to be shadowed. This can be anything text-like, text, rules and
+% mathematical expressions in inline mode.
+%
+% \medskip
+% \begin{SideBySideExample}[xrightmargin=.35\linewidth]
+% \newgray{gray75}{.75}
+% \psset{Tshadowcolor=gray75}
+% \psshadow{\huge Shadow}\\[10pt]
+% \psshadow{\huge $f(x)=x^2$}\\[15pt]
+% \psshadow[Tshadowsize=2.5]{%
+% \rule{2cm}{10pt}}
+% \end{SideBySideExample}
+%
+% \subsection{Parameters}\label{subsec:pst3d:schattenparameter}
+% Table~\ref{tab:pst-3d:schattenparameter} shows a compilation of the used
+% parameters.
+%
+%
+%
+%
+% \begin{table}[htb]
+% \caption{Summary of all \texttt{shadow} parameters}\label{tab:pst-3d:schattenparameter}
+% \centering
+% \begin{tabular}{>{\ttfamily}l>{\ttfamily}l>{\ttfamily}l}
+% \textrm{\emph{name}} & \textrm{\emph{values}} & \textrm{\emph{default}}\\\hline
+% Tshadowangle & <angle> & 60\\
+% Tshadowcolor & <colour> & lightgray\\
+% Tshadowsize & <value> & 1
+% \end{tabular}
+% \end{table}
+%
+%
+% \subsubsection{\texttt{Tshadowangle}}\label{subsubsec:pst3d:tshadowangle}
+% \verb+Tshadowangle+ denotes the angle of the shadow,
+% referring to the perpendicular of the paper plane. The angle of $90$° therewith
+% corresponds to the text itself. Negative angles cause the shadow to arise
+% from the paper plane.
+
+% \medskip
+% \begin{SideBySideExample}[xrightmargin=.25\linewidth]
+% \newgray{gray75}{.75}
+% \psset{Tshadowcolor=gray75}
+% \psshadow{\huge shadow}\\[5pt]
+% \psshadow[Tshadowangle=30]{\huge shadow}\\[5pt]
+% \psshadow[Tshadowangle=70]{\huge shadow}\\[5pt]
+% \psshadow[Tshadowangle=-30]{\huge shadow}
+% \end{SideBySideExample}
+%
+% \medskip
+% \begin{itemize}
+% \item Angular values of $0$° and $180$° are not allowed.
+% \end{itemize}
+%
+%
+%
+% \subsubsection{\texttt{Tshadowcolor}}\label{subsubsec:pst3d:tshadowcolor}
+% \verb+Tshadowcolor+ deontes the shadow colour.
+%
+% \begin{SideBySideExample}[xrightmargin=.25\linewidth]
+% \psshadow{\huge shadow}\\[5pt]
+% \psshadow[Tshadowcolor=red]{\huge shadow}\\[5pt]
+% \psshadow[Tshadowcolor=green]{\huge shadow}\\[5pt]
+% \psshadow[Tshadowcolor=blue]{\huge shadow}
+% \end{SideBySideExample}
+%
+%
+% \subsubsection{\texttt{Tshadowsize}}\label{subsubsec:pst3d:tshadowsize}
+% \verb+Tshadowsize+ determines the size of the
+% shadow\index{shadow!size} as a scaling factor\index{scaling factor}.
+%
+% \begin{SideBySideExample}[xrightmargin=.25\linewidth]
+% \psshadow{\Huge shadow}\\[5pt]
+% \psshadow[Tshadowsize=0.5]{\Huge shadow}\\[10pt]
+% \psshadow[Tshadowsize=1.5]{\Huge shadow}\\[20pt]
+% \psshadow[Tshadowsize=2.5]{\Huge shadow}
+% \end{SideBySideExample}
+%
+%
+%
+%
+%
+% \section{Tilting}\label{sec:pst3d:kippen}
+% With the tilting of objects the
+% perspective views of three dimensional objects can be simulated. \verb+pst-3d+
+% defines two macros for this.
+%
+% \begin{verbatim}
+% \pstilt[<parameters>]{<angle>}{<material>}
+% \psTilt[<parameters>]{<angle>}{<material>}
+% \end{verbatim}
+%
+% Figure~\ref{fig:pst3d:demo} shows the difference between these two macros.
+% Principally everything can be given as argument to those macros and therewith
+% tilted. With vertical material, as distinguished formulae, eventually the
+% argument has to be put into a \verb+\parbox+ before (see
+% example),
+%
+% \begin{figure}[htb]
+% \centering
+% \bgroup
+% \begin{pspicture}(0,-0.2)(9,3)
+% \psline[linestyle=dashed](0,2)(9,2)
+% \psline{->}(9,0)
+% \def\Bar{\psframe*[linecolor=lightgray](0,0)(0.5,2)}
+% \rput(0.5,0){\Bar}
+% \psset{arrowscale=2,linewidth=0.1pt,tbarsize=2mm}
+% \psline{|<->|}(0.25,0)(0.25,2)\rput*{90}(0.25,1){\small 2cm}
+% \rput(2,0){\psTilt{30}{\Bar}}
+% \psarc{->}(2.2,0){2}{0}{26}\rput(4.5,0.5){30°}
+% \pnode(2,0.3){A}\pnode(5.3,2.25){B}
+% \ncline{|<->|}{A}{B}\ncput*[nrot=:U]{\small 4cm}
+% \rput(6,0){\pstilt{30}{\Bar}}
+% \psarc{->}(6.2,0){2}{0}{26}\rput(8.5,0.5){30°}
+% \pnode(6,0.3){A}\pnode(7.65,1.25){B}
+% \ncline{|<->|}{A}{B}\ncput*[nrot=:U]{\small 2cm}
+% \uput[90](0.5,2.5){\cs{Bar}}
+% \uput[90](3.75,2.5){\cs{psTilt\{30\}\{\textbackslash Bar\}}}
+% \uput[90](7.25,2.5){\cs{pstilt\{30\}\{\textbackslash Bar\}}}
+% \end{pspicture}
+% \egroup
+% \caption{Demonstration of the difference between \cs{pstilt} and \cs{psTilt}}\label{fig:pst3d:demo}
+% \end{figure}
+%
+% \medskip
+% \begin{itemize}
+% \item Angular values of $0$\textdegree\ and $180$\textdegree\ are not allowed.
+% \end{itemize}
+%
+% \subsection{\cs{pstilt}}\label{subsec:pst3d:pstilt}
+% \verb+\pstilt+ tilts objects that their original height appears
+% as new length of the tilted object, wherewith the object becomes smaller. The
+% hynotenuse of the triangle from nadir, height and perpendicular now corresponds
+% to the old height (see figure~\ref{fig:pst3d:demo}). At this the length is
+% calculated from the middle of the base side.
+%
+%
+% \medskip\noindent
+% \begin{SideBySideExample}[xrightmargin=.4\linewidth]
+% \def\Bar{\psframe(0,0)(0.25,2)}
+% \begin{pspicture}(5,2)
+% \multido{\nA=15+15}{11}{\rput(2.5,0){%
+% \pstilt{\nA}{\Bar}}}
+% \end{pspicture}
+% \end{SideBySideExample}
+%
+%
+%
+% \medskip\noindent
+% \begin{SideBySideExample}[xrightmargin=.4\linewidth]
+% \pstilt{60}{%
+% \begin{pspicture}(-0.5,-0.5)(2,2)
+% \psaxes[axesstyle=frame](2,2)
+% \end{pspicture}}
+% \end{SideBySideExample}
+%
+%
+% \medskip\noindent
+% \begin{SideBySideExample}[xrightmargin=.4\linewidth]
+% \newpsstyle{TCyan}{%
+% fillstyle=vlines,hatchcolor=cyan,
+% hatchwidth=0.1\pslinewidth,%
+% hatchsep=1.5\pslinewidth}
+% \begin{pspicture}(2,4)
+% \rput[lb](0,0){\pstilt{45}{%
+% \psframe[linestyle=dashed,%
+% fillstyle=solid,fillcolor=red](2,4)}}
+% \psframe[style=TCyan](0,0)(2,4)
+% \end{pspicture}
+% \end{SideBySideExample}
+%
+%
+% \medskip
+% With the package \verb+rotating+ macros to rotate text are
+% provided, to achieve slant table headings for example. It is more difficult when
+% they are provided with a frame. With \cs{pstilt} or \cs{psTilt} this is no
+% problem. The program listing given below only shows the application of
+% \cs{pstilt} for the macro only has to be replaced by \cs{psTilt} to obtain the
+% other example.
+
+% \begin{SideBySideExample}[xrightmargin=.3\linewidth]
+% \begin{tabular}{l}
+% \pstilt{60}{%
+% \begin{tabular}{|p{1em}|p{1em}|p{1em}|}\hline
+% \psrotateleft{column 1\ }
+% & \psrotateleft{column 2\ }
+% & \psrotateleft{column 3\ }
+% \end{tabular}}\\
+% \begin{tabular}{|p{1em}|p{1em}|p{1em}|}\hline
+% 1 & 2 & 3 \\\hline
+% 4 & 5 & 6 \\\hline
+% \end{tabular}
+% \end{tabular}
+% \end{SideBySideExample}
+%
+%
+% \subsection{\cs{psTilt}}\label{subsec:pst3d:psTilt}
+% \verb+\psTilt+ tilts objects that their original height is
+% preserved, so that the object could become infinitely long in theory (see
+% figure~\ref{fig:pst3d:demo}).
+%
+%
+% \medskip\noindent
+% \begin{CenterExample}
+% \begin{pspicture}(5,2)
+% \def\Bar{\psframe(0,0)(0.25,2)}
+% \multido{\nA=15+15}{11}{\rput(2.5,0){%
+% \psTilt{\nA}{\Bar}}}
+% \end{pspicture}
+% \end{CenterExample}
+%
+%
+%
+% \medskip\noindent
+% \begin{SideBySideExample}[xrightmargin=.4\linewidth]
+% \psTilt{60}{%
+% \begin{pspicture}(-0.5,-0.5)(2,2)
+% \psaxes[axesstyle=frame](2,2)
+% \end{pspicture}}
+% \end{SideBySideExample}
+%
+%
+% \medskip\noindent
+% \begin{SideBySideExample}[xrightmargin=.475\linewidth]
+% \newpsstyle{TCyan}{%
+% fillstyle=vlines,hatchcolor=cyan,
+% hatchwidth=0.1\pslinewidth,%
+% hatchsep=1.5\pslinewidth}
+% \begin{pspicture}(2,4)
+% \rput[lb](0,0){\psTilt{45}{%
+% \psframe[linestyle=dashed,%
+% fillstyle=solid,%
+% fillcolor=red](2,4)}}
+% \psframe[style=TCyan](0,0)(2,4)
+% \end{pspicture}
+% \end{SideBySideExample}
+%
+%
+% \section[Three dimensional representations]{%
+% Three dimensional representations\protect\footnote{Some of the examples were created by Manuel Luque.}}\label{sec:pst3d:3d}
+%
+%
+% \verb+pst-3d+ only supports parallel projections, so that geometrical objects
+% such as spheres or cylinders can only be displayed restricted. Although
+% \verb+pst-3d+ principally only defines one single macro for the 3D
+% projection, the package is very efficient in its
+% application and is also used as a base for other packages.\cite{pst-3dplot}\cite{pst-vue3d}
+%
+% \subsection{\cs{ThreeDput}}\label{subsec:pst3d:threedput}
+% \verb+pst-3d+ only defines this single macro, which can be
+% used to arbitrarily display line or area shaped objects in the three dimensional
+% space in the end though.
+%
+% \begin{verbatim}
+% \ThreeDput[<parameters>]{<material>}
+% \ThreeDput[<parameters>](<x,y,z>){<material>}
+% \end{verbatim}
+%
+% Without a specification of coordinates, $(0,0,0)$ is taken as origin of
+% ordinates as a rule. As ``material''{} anything is understood that can be put
+% into a box. If it is vertical material in the \TeX{} sense, it has to be put in
+% a \verb+\parbox+ or \verb+minipage+ before.
+%
+% To simplify the specified source code, the macro \verb+\IIIDKOSystem+ is used in
+% the following, which draws the coordinate axes with the grid and is not
+% specified in the following anymore.
+%
+%
+% \makeatletter
+% \newgray{gray75}{0.75}\newgray{gray80}{0.80}newgray{gray85}{0.85}
+% \newgray{gray90}{0.90}\newgray{gray95}{0.95}
+% \def\xyPlain#1{%
+% \ThreeDput[normal=0 0 1](0,0,0){%
+% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1)%
+% \psline{->}(0,0)(0,#1)\psline{->}(0,0)(#1,0)%
+% \ifdim\psk@gridlabels pt>\z@
+% \uput[180]{0.2}(0,#1){$y$}\uput[-90]{0.2}(#1,0){$x$}\fi}}
+% \def\xzPlain#1{%
+% \ThreeDput[normal=0 -1 0](0,0,0){%
+% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1)%
+% \psline{->}(0,0)(0,5) \psline{->}(0,0)(#1,0)%
+% \ifdim\psk@gridlabels pt>\z@%
+% \uput[180]{0.2}(0,#1){$z$}\uput[-90]{0.2}(#1,0){$x$}%
+% \fi}}
+% \def\yzPlain#1{%
+% \ThreeDput[normal=1 0 0](0,0,0){%
+% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1)%
+% \psline{->}(0,0)(0,#1) \psline{->}(0,0)(#1,0)%
+% \ifdim\psk@gridlabels pt>\z@%
+% \uput[180]{0.2}(0,#1){$z$}\uput[-90]{0.2}(#1,0){$y$}%
+% \fi}}
+% \def\IIIDKOSystem{\@ifnextchar[{\IIIDKOSystem@i}{\IIIDKOSystem@i[]}}
+% \def\IIIDKOSystem@i[#1]#2{%
+% \psset{#1}%
+% \xyPlain{#2}\xzPlain{#2}\yzPlain{#2}}
+% \makeatother
+%
+% \medskip\noindent
+% \begin{CenterExample}
+% \makeatletter
+% \def\xyPlain#1{%
+% \ThreeDput[normal=0 0 1](0,0,0){% xy-plane
+% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1)
+% \psline{->}(0,0)(0,#1) \psline{->}(0,0)(#1,0)
+% \ifdim\psk@gridlabels pt>\z@
+% \uput[180]{0.2}(0,#1){$y$}\uput[-90]{0.2}(#1,0){$x$}\fi }}
+% \def\xzPlain#1{%
+% \ThreeDput[normal=0 -1 0](0,0,0){% xz-plane
+% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1)
+% \psline{->}(0,0)(0,5) \psline{->}(0,0)(#1,0)
+% \ifdim\psk@gridlabels pt>\z@
+% \uput[180]{0.2}(0,#1){$z$}\uput[-90]{0.2}(#1,0){$x$}%
+% \fi }}
+% \def\yzPlain#1{%
+% \ThreeDput[normal=1 0 0](0,0,0){% yz-plane
+% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1)
+% \psline{->}(0,0)(0,#1) \psline{->}(0,0)(#1,0)
+% \ifdim\psk@gridlabels pt>\z@
+% \uput[180]{0.2}(0,#1){$z$}\uput[-90]{0.2}(#1,0){$y$}%
+% \fi }}
+% \def\IIIDKOSystem{\@ifnextchar[{\IIIDKOSystem@i}{\IIIDKOSystem@i[]}}
+% \def\IIIDKOSystem@i[#1]#2{%
+% \psset{#1}%
+% \xyPlain{#2}\xzPlain{#2}\yzPlain{#2}}
+% \makeatother
+% \newgray{gray75}{0.75}
+% \newgray{gray80}{0.8}
+% \newgray{gray85}{0.85}
+% \newgray{gray95}{0.95}
+% \begin{pspicture}(0,-1.25)(5,6)
+% \psset{viewpoint=1 -1 0.75}
+% \IIIDKOSystem{5}
+% \ThreeDput{\psframe*[linecolor=gray80](3,3)}
+% \ThreeDput(1.5,1.5,0){\Huge below}
+% \ThreeDput(0,0,1.5){\psframe*[linecolor=gray75](3,3)}
+% \ThreeDput(1.5,1.5,1.5){\Huge center}
+% \ThreeDput(0,0,3){\psframe*[linecolor=gray85](3,3)}
+% \ThreeDput(1.5,1.5,3){\Huge above}
+% \xzPlain{5}
+% \ThreeDput(4,4,0){\psframe*[linecolor=gray95](-1,-1)(1,1)}
+% \ThreeDput(4,4,0){\psdot[dotscale=3]}
+% \end{pspicture}
+% \end{CenterExample}
+%
+%
+% The coordinates of \verb+ThreeDput+ refer to the centre of the object, which
+% does not necessarily need to be the geometrical centre.
+% \begin{verbatim}
+% \psframe(2,2)% centre bottom left (0,0)
+% \psframe(-1,-1(1,1)% centre in the middle (0,0)
+% arbitrary text% centre in the middle of the base line
+% \end{verbatim}
+%
+% In the above example the smaller square with its centre $(0,0)$ has been set
+% exactly to the coordinated $(4,4,0)$.
+% The macro \verb+ThreeDput+ can be manifoldly applied, which is performed
+% especially by the package \verb+pst-vue3d+\cite{pst-vue3d}. By
+% specifying the normal vector $\vec{n}$ and a point $P(x,y,z)$ of the stright
+% line and/or the plane the posture in space can be determined definitely. Areas
+% can be provided with different levels of brightness to increase the spatial
+% impression.
+%
+%
+%
+% \medskip\noindent
+% \begin{CenterExample}
+% \newgray{gray75}{0.75}\newgray{gray85}{0.85}\newgray{gray95}{0.95}
+% \begin{pspicture}(-4.5,-3.5)(3,4.75)
+% \psset{viewpoint=1 1.5 1}
+% \IIIDKOSystem[gridlabels=0pt,gridcolor=lightgray,subgriddiv=0]{5}%
+% \ThreeDput[normal=0 0 1]{% xy-plane
+% \psline[linewidth=3pt,linecolor=blue]{->}(4,4)(4,5.5)%
+% \uput[90](4,5.5){\color{blue}$\vec{n}-{A}$}}%
+% \ThreeDput[normal=0 -1 0]{% xz-plane
+% \psline[linewidth=3pt,linecolor=green]{->}(4,0)(5.5,0)%
+% \uput[90](5.5,0){\psscalebox{-1 1}{%
+% \textcolor{green}{$\vec{n}-B$}}}}%
+% \ThreeDput[normal=1 0 0]{% yz-plane
+% \psline[linewidth=3pt,linecolor=red]{->}(0,4)(0,5.5)%
+% \uput[0](0,5.5){$\vec{n}-{top}$}}% cube and axes
+% \ThreeDput[normal=0 0 1](0,0,4){%
+% \psframe*[linecolor=gray75](4,4)\rput(2,2){\Huge\textbf{TOP}}}%
+% \ThreeDput[normal=0 1 0](4,4,0){%
+% \psframe*[linecolor=gray95](4,4)\rput(2,2){\Huge\textbf{side A}}}%
+% \ThreeDput[normal=1 0 0](4,0,0){%
+% \psframe*[linecolor=gray85](4,4)\rput(2,2){\Huge\textbf{side B}}}%
+% \ThreeDput[normal=0 0 1](0,0,4){%
+% \psline(4,0)\uput[90](3,0){$X-top$}\psline(0,4)\uput[0](0,3){$Y-top$}}%
+% \ThreeDput[normal=0 1 0](4,4,0){%
+% \psline(4,0)\uput[90](3,0){$X-A$}\psline(0,4)\uput[0](0,3){$Y-A$}}%
+% \ThreeDput[normal=1 0 0](4,0,0){%
+% \psline(4,0)\uput[90](3,0){$X-B$}\psline(0,4)\uput[0](0,3){$Y-B$}}%
+% \end{pspicture}
+% \end{CenterExample}
+%
+%
+% \subsection{3D parameters}\label{subsec:pst3d:3dParameter}
+% Table~\ref{tab:pst-3d:3dparameter} shows a compilation of
+% the parameters which can be used to influence 3D representations.
+%
+% \begin{table}[htb]
+% \caption{Summary of all 3D parameters}\label{tab:pst-3d:3dparameter}
+% \begin{tabular}{>{\ttfamily}l>{\ttfamily}l>{\ttfamily}l}
+% \textrm{name} & \textrm{values} & \textrm{default}\\\hline
+% viewpoint & <valuex valuey valuez> & 1 -1 1\\
+% viewangle & <angle> & 0\\
+% normal & <valuex valuey valuez> & 0 0 1\\
+% embedangle & <angle> & 0
+% \end{tabular}
+% \end{table}
+%
+% \subsubsection{\texttt{viewpoint}}\label{subsubsec:pst3d:viewpoint}
+% The viewing direction to the 3D object influences the
+% representation essentially. With \verb+viewpoint+ the $(x,y,z)$ coordinates
+% which denote the vector of the viewing direction are specified. Because of the
+% parallel projection the length of this vector is unimportant, so that
+% \verb+(10.5 1.5)+ and \verb+(2 1 3)+ yield the same representations.
+% Figure~\ref{fig:pst3d:viewpoint} shows who somebody would regard this
+% representation, whereat the representation itself is of course regarded from
+% another point in this case, otherwise one had to look directly onto the vector.
+%
+%
+% \SpecialCoor
+% \def\oeil{%
+% \pscurve(1;160)(0.8;180)(1;200)
+% \pscustom{\gsave\psarc(0,0){1}{165}{195}
+% \pscurve(1;195)(0.85;180)(1;165)
+% \fill[fillstyle=solid,fillcolor=blue]\grestore}
+% \pscurve[linewidth=.4pt](1;195)(0.85;180)(1;165)
+% {\psset{linewidth=2pt}
+% \psarc(0,1){1}{180}{270}
+% \psarc(0,-1){1}{90}{180}}
+% \psarc(0,0){1}{150}{210}
+% \psset{linewidth=4pt,linecolor=gray}
+% \pscurve(-.5,3.5)(-1,3)(-1.2,2.5)(-1.3,2)(-1.4,1)(-1.35,0.5)(-1.2,-.2)(-1.35,-.5)
+% (-1.4,-1)(-1.5,-1.5)(-1.8,-2)(-1.8,-2.3)(-1.65,-2.5)(-1.35,-2.55)(-.95,-2.8)
+% (-.95,-3.35)(-1,-3.65)(-.8,-4)(-.4,-4.1)
+% \pscurve(-.8,-4)(-.8,-4.2)(-.5,-4.5)(-.4,-5)(-.25,-5.5)(0,-5.8)(.5,-6)}
+%
+%
+% \begin{figure}[htb]
+% \centering
+% \begin{pspicture}(-5,-1)(5,6)
+% \psset{viewpoint=3 5 2}
+% \psset{unit=2}
+% \ThreeDput[normal=0 0 1](0,0,0){%
+% \psline{->}(0,0)(2,0)
+% \uput[90](2,0){$x$}
+% \qdisk(1,0.5){2pt}
+% \psline(1,0)(1,0.5)\psline(1,0.5)(0,0.5)
+% \psline[linestyle=dotted](0,0)(1,0.5)
+% \psset{fillstyle=solid,fillcolor=lightgray,linestyle=none}
+% \psframe(1,0)(1.15,.15)
+% \psframe(0,.5)(.15,.65)}
+% \ThreeDput[normal=1 0 0](0,0,0){%
+% \psline{->}(0,0)(2,0)
+% \uput[90](2,0){$y$}
+% \psline{->}(0,0)(0,2)
+% \uput[180](0,2){$z$}
+% \uput[90](0.5,0){0.5}
+% \uput[180](0,1.5){1.5}
+% \uput[135](0,0){0}
+% \rput(1.2,1.5){\large 3D representations}}
+% \ThreeDput[normal=0 1 0](0,0,0){%
+% \uput[90](-2,0){$x$}
+% \uput[90](-1,0){1}
+% \rput(-1.5,1){\texttt{pst-3d}}}
+% \ThreeDput[normal=.5 -1 0](0,0,0){%
+% \psframe[linestyle=none,fillstyle=hlines,hatchwidth=0.1pt,
+% hatchsep=2pt,hatchcolor=gray90](0,0)(1.118,1.5)
+% \psline[linewidth=3pt,linecolor=red,arrowinset=0]{->}(0,0)(1.118,1.5)
+% \psline[linestyle=dashed](0,0)(2.236,3)
+% \psline(1.118,0)(1.118,1.5)
+% \psline(1.118,1.5)(0,1.5)
+% \rput{53.3}(2.5348,3.4009){\psscalebox{0.2}{\oeil}}}
+% \end{pspicture}
+% \caption{Definition of the \texttt{viewpoints}}\label{fig:pst3d:viewpoint}
+% \end{figure}
+%
+%
+% For figure~\ref{fig:pst3d:viewpoint} a viewpoint of \verb+viewpoint=3 5 2+ was
+% defined. If one desires to regard it for instance from the $y$ axis from a
+% larger height, \verb+viewpoint=0 1 3+ could be chosen. The viewer has moved one
+% unit in $y$ direction and four units in $z$ direction from the centre (origin)
+% and regards everything from there.
+%
+%
+% \medskip
+% \begin{itemize}
+% \item The \verb+viewpoint+ principally \textbf{has} to be defined with
+% values not equal to zero, for this would lead to a division by zero.
+% Specifications of $0.001$ for a coordinate are already sufficing to
+% escape the division by zero and blind out the coordinate.
+% \end{itemize}
+%
+% A good value for the viewpoint would be \verb+viewpoint=1 1 0.5+ for instance,
+% which corresponds to a horizontal rotation by 45° and a vertical by ca. 20°.
+% Another meaningful point is also \verb+viewpoint=1.5 1 0.5+, which now
+% corresponds to a horizontal rotation by 33° and the same vertical rotation. Both
+% can be seen in the examples below.
+%
+% \medskip
+% \begin{CenterExample}
+% \begin{pspicture}(-3,-2.5)(-3,4)
+% \psset{unit=0.75}
+% \psset{viewpoint=1 1 0.5}
+% \IIIDKOSystem{5}
+% \end{pspicture}\hfill
+% \begin{pspicture}(-3,-2.5)(2.2,4)
+% \psset{unit=0.75}
+% \psset{viewpoint=1 1.5 0.5}
+% \psset{gridlabels=6pt}
+% \IIIDKOSystem{5}
+% \end{pspicture}
+% \end{CenterExample}
+%
+%
+% \subsubsection{\texttt{viewangle}}\label{subsubsec:pst3d:viewangle}
+% Additional to the \verb+viewpoint+ option one can rotate the object by another
+% option called \verb+viewangle+. This could also be done by the macro \verb+\rotatebox+,
+% but \verb+viewangle+ has some advantages .
+%
+%
+% \bigskip\noindent
+% \begin{CenterExample}
+% \begin{pspicture}(-1,-2.5)(4,4)
+% \psset{unit=0.7,viewpoint=1 1 0.5,viewangle=20}
+% \IIIDKOSystem{5}
+% \ThreeDput(0,0,0){\psframe*[linecolor=gray80](4,4)}
+% \ThreeDput(2,2,0){\Huge Unten}
+% \end{pspicture}
+% \begin{pspicture}(-3,-2.5)(1,4)
+% \psset{unit=0.7,viewpoint=1 1.5 0.5,viewangle=-30}
+% \IIIDKOSystem{5}
+% \ThreeDput(0,0,0){\psframe*[linecolor=gray80](4,4)}
+% \ThreeDput(2,2,0){\Huge Unten}
+% \end{pspicture}
+% \end{CenterExample}
+%
+%
+% \subsubsection{\texttt{normal}}\label{subsubsec:pst3d:normal}
+% \verb+normal+ denotes the direction of the normal
+% vector which is perpendicular to a corresponding area.
+% Therewith the posture of an object in three dimensional space is definitely
+% determined by the normal vector.
+%
+% \medskip\noindent
+% \begin{CenterExample}
+% \newgray{gray75}{0.75}\newgray{gray85}{0.85}\newgray{gray95}{0.95}
+% \begin{pspicture}(-3.5,-2.5)(-3,5)
+% \psset{viewpoint=1 1.5 0.5}
+% \IIIDKOSystem{5}
+% \ThreeDput(0,0,0){\psframe*[linecolor=gray80](4,4)}
+% \ThreeDput(2,2,0){\huge\psrotatedown{xy-plane}}
+% \ThreeDput[normal=0 -1 0](0,0,0){\psframe*[linecolor=gray85](4,4)}
+% \ThreeDput[normal=0 1 0](2,0,2){\huge xz-plane}
+% \ThreeDput[normal=1 0 0](0,0,0){\psframe*[linecolor=gray90](4,4)}
+% \ThreeDput[normal=1 0 0](0,2,2){\huge yz-plane}
+% \ThreeDput[normal=0 0 1](0,0,0){% xy-plane
+% \psline{->}(0,0)(0,5)\psline{->}(0,0)(5,0)}
+% \ThreeDput[normal=0 1 0](0,0,0){\psline{->}(0,0)(0,5)}
+% \end{pspicture}
+% \end{CenterExample}
+%
+%
+% Without a assignment through the normal vector the above example could not have
+% been created that easily. Let us step through the code for a better
+% understanding.
+%
+% \begin{description}
+% \item[\cs{psset\{viewpoint=1 1.5 0.5\}}:] the
+% \verb+viewpoint+ is set to the point $P(1,1.5,0.5)$.
+% \item[\cs{IIIDKOSystem\{5\}}:] first the coordinate system with the grid is
+% drawn, so that axes and grid remain visible on the areas, which makes a
+% better optical allocation possible.
+% \item[\cs{ThreeDput(0,0,0)\{\textbackslash psframe*[linecolor=gray80](4,4)\}}:]
+% puts a square with a side length of four into the origin of ordinates with
+% the lower left edge. Since no normal vector is specified here, the default
+% value $\vec{n}=(0,0,1)$ is taken, wherewith the area is positioned in the
+% first quadrant of the $xy$ plane.
+% \item[\cs{ThreeDput(2,2,0)\{\textbackslash huge\textbackslash psrotatedown\{xy-plane\}\}}:]
+% puts the text rotated by $180$° centric to the point $(2,2,0)$ in the
+% \verb+xy-plane+.
+% \item[\cs{ThreeDput[normal=0 -1 0](0,0,0)\{\textbackslash psframe*[linecolor=gray85](4,4)\}}:]
+% puts a square with a side length of four in the origin of ordinates with the
+% lower left edge. Since the normal vector is the ``negative''{} $y$ axis, the
+% square is positioned in the first quadrant of the $xz$ plane. With
+% \verb+normal=0 1 0+ it would have been the second quadrant.
+% \item[\cs{ThreeDput[normal=0 1 0](2,0,2)\{\textbackslash huge xz-plane\}}:]
+% puts the text in the \verb+xy-plane+ centric to the point $(2,0,2)$. Because
+% the $xz$ plane is regarded from the back from the viewpoint, the normal
+% vector of the area has to be reversed, otherwise the text would be read from
+% the ``back''{}.
+% \item[\cs{ThreeDput[normal=1 0 0](0,0,0)\{\textbackslash psframe*[linecolor=gray90](4,4)\}}:]
+% puts a square with a side length of four in the origin of ordinates with the
+% lower left edge. The unit vector is the ``positive''{} $x$ axis, therefore
+% the square is positioned in the first quadrant of the $yz$ plane.
+% \item[\cs{ThreeDput[normal=1 0 0](0,2,2)\{\textbackslash huge yz-plane\}}:]
+% puts the text in the \verb+yz-plane+ centric to the point $(0,2,2)$. Since
+% the text is written at the ``positive''{} side of the area, the normal
+% vector stays the same.
+% \item[\cs{ThreeDput[normal=0 0 1](0,0,0)}:] the coordinate axes have been
+% overwritten by the three areas and are redrawn now, first the $xy$ axes.
+% \item[\cs{ThreeDput[normal=0 1 0](0,0,0)}:] and now the $z$ axis is drawn.
+% \end{description}
+%
+% \subsubsection{\texttt{embedangle}}\label{subsubsec:pst3d:embedangle}
+% With \verb+viewangle+ a rotation perpendicular to the plane
+% of the viewer could be made. With \verb+embedangle+ a rotation perpendicular to
+% the normal vector can be made. The counting of the angles is made in the
+% mathematical sense, counterclockwise.
+%
+% \medskip
+% \begin{CenterExample}
+% \newgray{gray75}{0.75}\newgray{gray85}{0.85}\newgray{gray95}{0.95}
+% \def\tBlack#1#2{%
+% \psframe[style=#2](2,2)
+% \rput(1,1){\textcolor{#1}{\textbf{PSTricks}}}}
+% \newpsstyle{SolidYellow}{fillstyle=solid,fillcolor=yellow}
+% \newpsstyle{TransparencyRed}{fillstyle=vlines,hatchcolor=red,
+% hatchwidth=0.1\pslinewidth,hatchsep=1\pslinewidth}
+% \newpsstyle{TransparencyBlue}{fillstyle=vlines,hatchcolor=gray75,%
+% hatchwidth=0.1\pslinewidth,hatchsep=1\pslinewidth}
+% \begin{pspicture}(-1.2,-1.75)(4.8,3.7)
+% \ThreeDput{\psgrid[subgriddiv=0](-2,0)(4,3)}
+% \ThreeDput(-1,0,0){\tBlack{black}{SolidYellow}}
+% \ThreeDput(2,0,0){\tBlack{black}{SolidYellow}}
+% \ThreeDput[embedangle=50](-1,0,0){\tBlack{gray}{TransparencyRed}}
+% \ThreeDput[embedangle=50](2,0,0){\tBlack{gray}{TransparencyBlue}}
+% \ThreeDput[normal=0 1 0](-1,0,0){\psline[linewidth=0.1,linecolor=red](0,4)}
+% \ThreeDput[normal=0 1 0](2,0,0){\psline[linewidth=0.1,linecolor=blue](0,4)}
+% \end{pspicture}
+% \psset{viewpoint=1 1 100}
+% \begin{pspicture}(-2.5,-4.5)(2.8,1.7)
+% \ThreeDput{\psgrid[subgriddiv=0](-2,0)(4,3)}
+% \ThreeDput(-1,0,0){\tBlack{black}{SolidYellow}}
+% \ThreeDput(2,0,0){\tBlack{black}{SolidYellow}}
+% \ThreeDput[embedangle=50](-1,0,0){\tBlack{gray}{TransparencyRed}}
+% \ThreeDput[embedangle=50](2,0,0){\tBlack{gray}{TransparencyBlue}}
+% \ThreeDput[normal=0 1 0](-1,0,0){\psline[linewidth=0.1,linecolor=red](0,4)}
+% \ThreeDput[normal=0 1 0](2,0,0){\psline[linewidth=0.1,linecolor=blue](0,4)}
+% \end{pspicture}
+% \end{CenterExample}
+%
+%
+% \StopEventually{}
+%
+% ^^A .................... End of the documentation part ....................
+%
+% \section{Driver file}
+%
+% The next bit of code contains the documentation driver file for \TeX{},
+% i.e., the file that will produce the documentation you are currently
+% reading. It will be extracted from this file by the \texttt{docstrip}
+% program.
+%
+%
+% \section{\PstIIIDPackage{} \LaTeX{} wrapper}
+%
+% \begin{macrocode}
+%<*latex-wrapper>
+%%
+\RequirePackage{pstricks}
+\ProvidesPackage{pst-3d}[2005/09/02 package wrapper for
+ pst-3d.tex (hv)]
+\input{pst-3d.tex}
+\ProvidesFile{pst-3d.tex}
+ [\filedate\space v\fileversion\space `PST-3d' (tvz)]
+%</latex-wrapper>
+% \end{macrocode}
+%
+% \section{\PstIIIDPackage{} code}
+%
+%<*pst-3d>
+%
+% \verb+pst-3d+ Require the basic \verb+pstricks+ package and for the key value
+% operations the \verb+pst-xkey+ package.
+%
+% \begin{macrocode}
+\ifx\PSTricksLoaded\endinput\else\input pstricks.tex\fi
+\ifx\PSTXKeyLoaded\endinput\else\input pst-xkey \fi % (hv 2005-09-03)
+% \end{macrocode}
+%
+% Catcodes changes.
+%
+% \begin{macrocode}
+\edef\PstAtCode{\the\catcode`\@}
+\catcode`\@=11\relax
+% \end{macrocode}
+%
+% Add the key-family name to the xkeyval package
+%
+% \begin{macrocode}
+\pst@addfams{pst-3d}
+% \end{macrocode}
+%
+\def\fileversion{1.00}
+\def\filedate{2005/09/03}
+\message{`PST-3d' v\fileversion, \filedate\space (tvz)}
+%
+% Mark the package as loaded
+%
+% \begin{macrocode}
+\csname PSTthreeDLoaded\endcsname
+\let\PSTthreeDLoaded\endinput
+% \end{macrocode}
+%
+% \subsection{Basic 3D transformations}
+%
+% \begin{macro}{\tx@SetMatrixThreeD}
+% Viewpoint for 3D coordinates is given by three angles: $\alpha$, $\beta$ and
+% $\gamma$. $\alpha$ and $\beta$ determine the direction from which one is
+% looking. $\gamma$ then determines the orientation of the observing.
+% When $\alpha$, $\beta$ and $\gamma$ are all zero, the observer is looking
+% from the negative part of the $y$-axis, and sees the $xz$-plane the way in
+% 2D one sees the $xy$ plan. Hence, to convert the 3D coordinates to their 2D
+% project, $\langle x, y, z\rangle$ map to $\langle x, z\rangle$.
+% When the orientation is different, we rotate the coordinates, and then
+% perform the same projection.
+% We move up to latitude $\beta$, over to longitude $\alpha$, and then rotate
+% by $\gamma$. This means that we first rotate around $y$-axis by $\gamma$,
+% then around $x$-axis by $\beta$, and the around $z$-axis by $\alpha$.
+%
+% Here are the matrices:
+% \begin{eqnarray*}
+% R_z(\alpha) & = & \left[
+% \begin{array}{ccc}
+% \cos \alpha & -\sin \alpha & 0 \\
+% \sin \alpha & cos \alpha & 0 \\
+% 0 & 0 & 1
+% \end{array} \right] \\
+% R_x(\beta) & = & \left[
+% \begin{array}{ccc}
+% 1 & 0 & 0 \\
+% 0 & \cos \beta & \sin \beta \\
+% 0 & -\sin \beta & \cos \beta
+% \end{array} \right] \\
+% R_y(\gamma) & = & \left[
+% \begin{array}{ccc}
+% \cos \gamma & 0 & -\sin \gamma \\
+% 0 & 1 & 0 \\
+% \sin \gamma & 0 & \cos \gamma
+% \end{array} \right]
+% \end{eqnarray*}
+%
+% The rotation of a coordinate is then performed by the matrix $R_z(\alpha)
+% R_x(\beta) R_y(\gamma)$. The first and third columns of the matrix are the
+% basis vectors of the plan upon which the 3D coordinates are project (the old
+% basis vectors were $\langle 1, 0, 0\rangle$ and $\langle 0, 0, 1\rangle$; rotating these
+% gives the first and third columns of the matrix).
+%
+% These new base vectors are:
+% \begin{eqnarray*}
+% \tilde{x} & = & \left[
+% \begin{array}{c}
+% \cos\alpha \cos\gamma - \sin\beta \sin\alpha \sin\gamma \\
+% \sin\alpha \cos\gamma + \sin\beta \cos\alpha \sin\gamma \\
+% \cos\beta \sin\gamma
+% \end{array} \right] \\
+% \tilde{z} & = & \left[
+% \begin{array}{c}
+% -\cos\alpha \sin\gamma - \sin\beta \sin\alpha \cos\gamma \\
+% -\sin\alpha \sin\gamma + \sin\beta \cos\alpha \cos\gamma \\
+% \cos\beta \cos\gamma
+% \end{array} \right]
+% \end{eqnarray*}
+%
+% Rather than specifying the angles $\alpha$ and $\beta$, the user gives a
+% vector indicating where the viewpoint is. This new viewpoint is the rotation
+% o the old viewpoint. The old viewpoint is $\langle 0, -1, 0\rangle$, and so the new
+% viewpoint is
+% \[
+% R_z(\alpha) R_x(\beta) \left[ \begin{array}{c} 0\\-1\\0 \end{array} \right]
+% \, = \,
+% \left[ \begin{array}{c}
+% \cos\beta \sin\alpha \\
+% -\cos\beta \cos\alpha \\
+% \sin\beta
+% \end{array} \right]
+% \, = \,
+% \left[ \begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array} \right]
+% \]
+% Therefore,
+% \begin{eqnarray*}
+% \alpha & = & \arc\tan (v_1 / -v_2) \\
+% \beta & = & \arc\tan (v_3 \sin\alpha / v_1)
+% \end{eqnarray*}
+% Unless $p_1=p_2=0$, in which case $\alpha=0$ and $\beta=\sign(p_3)90$, or
+% $p_1=p_3=0$, in which case $\beta=0$.
+%
+% The syntax of \verb+SetMatrixThreeD+ is
+% \[
+% v_1\ v_2\ v_3\ \gamma\ \mathrm{SetMatrixThreeD}
+% \]
+% \verb+SetMatrixThreeD+ first computes
+% \[
+% \begin{array}{ll}
+% a=\sin\alpha & b=\cos\alpha\\
+% c=\sin\beta & d=\cos\beta\\
+% e=\sin\gamma & f=\cos\gamma
+% \end{array}
+% \]
+% and then sets \verb+Matrix3D+ to \verb+[+$\tilde{x}$ $\tilde{z}$\verb+]+.
+%
+% \begin{macrocode}
+\pst@def{SetMatrixThreeD}<%
+ dup sin /e ED cos /f ED
+ /p3 ED /p2 ED /p1 ED
+ p1 0 eq
+ { /a 0 def /b p2 0 le { 1 } { -1 } ifelse def
+ p3 p2 abs
+ }
+ { p2 0 eq
+ { /a p1 0 lt { -1 } { 1 } ifelse def /b 0 def
+ p3 p1 abs
+ }
+ { p1 dup mul p2 dup mul add sqrt dup
+ p1 exch div /a ED
+ p2 exch div neg /b ED
+ p3 p1 a div
+ }
+ ifelse
+ }
+ ifelse
+ atan dup sin /c ED cos /d ED
+ /Matrix3D
+ [
+ b f mul c a mul e mul sub
+ a f mul c b mul e mul add
+ d e mul
+ b e mul neg c a mul f mul sub
+ a e mul neg c b mul f mul add
+ d f mul
+ ] def>
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\tx@ProjThreeD}
+% The syntax of the macro \verb+tx@ProjThreeD+ is
+% \[
+% x\ y\ z\ \mathrm{ProjThreeD}\ x'\ y'
+% \]
+% where $x'=\langle x, y, z\rangle \cdot \tilde{x}$ and $y'=\langle x, y, z\rangle \cdot
+% \tilde{z}$.
+%
+% \begin{macrocode}
+\pst@def{ProjThreeD}<%
+ /z ED /y ED /x ED
+ Matrix3D aload pop
+ z mul exch y mul add exch x mul add
+ 4 1 roll
+ z mul exch y mul add exch x mul add
+ exch>
+% \end{macrocode}
+%
+% To embed 2D $\langle x, y\rangle$ coordinates in 3D, the user specifies the normal
+% vector and an angle. If we decompose this normal vector into an angle, as
+% when converting 3D coordinates to 2D coordinates, and let $\hat\alpha$,
+% $\hat\beta$ and $\hat\gamma$ be the three angles, then when these angles are
+% all zero the coordinate $\langle x, y\rangle$ gets mapped to $\langle x, 0, y\rangle$, and
+% otherwise $\langle x, y\rangle$ gets mapped to
+% \[
+% R_z(\hat\alpha) R_x(\hat\beta) R_y(\hat\gamma)
+% \left[ \begin{array}{c} x \\ 0 \\ y \end{array} \right]
+% \, = \,
+% \left[ \begin{array}{c}
+% \hat{x}_1 x + \hat{z}_1 y\\
+% \hat{x}_2 x + \hat{z}_2 y\\
+% \hat{x}_3 x + \hat{z}_3 y
+% \end{array} \right]
+% \]
+% where $\hat{x}$ and $\hat{z}$ are the first and third columns of $R_z(\hat\alpha) R_x(\hat\beta) R_y(\hat\gamma)$.
+%
+% Now add on a 3D-origin:
+% \[
+% \left[ \begin{array}{c}
+% \hat{x}_1 x + \hat{z}_1 y + x_0\\
+% \hat{x}_2 x + \hat{z}_2 y + y_0\\
+% \hat{x}_3 x + \hat{z}_3 y + z_0
+% \end{array} \right]
+% \]
+%
+% Now when we project back onto 2D coordinates, we get
+% \begin{align*}
+% x' & = \tilde{x}_1(\hat{x}_1 x + \hat{z}_1 y + x_0) +
+% \tilde{x}_2(\hat{x}_2 x + \hat{z}_2 y + y_0) +
+% \tilde{x}_3(\hat{x}_3 x + \hat{z}_3 y + z_0)\\
+% & =
+% (\tilde{x}_1\hat{x}_1 + \tilde{x}_2\hat{x}_2 + \tilde{x}_3\hat{x}_3) x
+% + (\tilde{x}_1\hat{z}_1 + \tilde{x}_2\hat{z}_2 + \tilde{x}_3\hat{z}_3) y
+% + \tilde{x}_1 x_0 + \tilde{x}_2 y_0 + \tilde{z}_3 z_0\\
+% y' & = \tilde{z}_1(\hat{x}_1 x + \hat{z}_1 y + x_0) +
+% \tilde{z}_2(\hat{x}_2 x + \hat{z}_2 y + y_0) +
+% \tilde{z}_3(\hat{x}_3 x + \hat{z}_3 y + z_0)\\
+% & =
+% (\tilde{z}_1\hat{x}_1 + \tilde{z}_2\hat{x}_2 + \tilde{z}_3\hat{x}_3) x
+% + (\tilde{z}_1\hat{z}_1 + \tilde{z}_2\hat{z}_2 + \tilde{z}_3\hat{z}_3) y
+% + \tilde{z}_1 x_0 + \tilde{z}_2 y_0 + \tilde{z}_3 z_0
+% \end{align*}
+% Hence, the transformation matrix is:
+% \[
+% \left[ \begin{array}{c}
+% \tilde{x}_1\hat{x}_1 + \tilde{x}_2\hat{x}_2 + \tilde{x}_3\hat{x}_3) \\
+% \tilde{z}_1\hat{x}_1 + \tilde{z}_2\hat{x}_2 + \tilde{z}_3\hat{x}_3) \\
+% \tilde{x}_1\hat{z}_1 + \tilde{x}_2\hat{z}_2 + \tilde{x}_3\hat{z}_3) \\
+% \tilde{z}_1\hat{z}_1 + \tilde{z}_2\hat{z}_2 + \tilde{z}_3\hat{z}_3) \\
+% \tilde{x}_1 x_0 + \tilde{x}_2 y_0 + \tilde{z}_3 z_0 \\
+% \tilde{z}_1 x_0 + \tilde{z}_2 y_0 + \tilde{z}_3 z_0
+% \end{array} \right]
+% \]
+% \end{macro}
+% \begin{macro}{\tx@SetMatrixEmbed}
+% The syntax of \verb+SetMatrixEmbed+ is
+% \begin{align*}
+% x_0\ y_0\ z_0\ \hat{v_1}\ \hat{v_2}\ \hat{v_3}\ \hat{\gamma}\\
+% v_1\ v_2\ v_3\ \gamma\ \mathrm{setMatrixEmbed}
+% \end{align*}
+% \verb+SetMatrixEmbed+ first sets \verb+<x1 x2 x3 y1 y2 y3>+ to the basis vectors for
+% the viewpoint projection (the tilde stuff above). Then it sets \verb+Matrix3D+ to
+% the basis vectors for the embedded plane. Finally, it sets the
+% transformation matrix to the matrix given above.
+%
+% \begin{macrocode}
+\pst@def{SetMatrixEmbed}<%
+ \tx@SetMatrixThreeD
+ Matrix3D aload pop
+ /z3 ED /z2 ED /z1 ED /x3 ED /x2 ED /x1 ED
+ \tx@SetMatrixThreeD
+ [
+ Matrix3D aload pop
+ z3 mul exch z2 mul add exch z1 mul add 4 1 roll
+ z3 mul exch z2 mul add exch z1 mul add
+ Matrix3D aload pop
+ x3 mul exch x2 mul add exch x1 mul add 4 1 roll
+ x3 mul exch x2 mul add exch x1 mul add
+ 3 -1 roll 3 -1 roll 4 -1 roll 8 -3 roll 3 copy
+ x3 mul exch x2 mul add exch x1 mul add 4 1 roll
+ z3 mul exch z2 mul add exch z1 mul add
+ ]
+ concat>
+% \end{macrocode}
+% \end{macro}
+%
+% \subsection{Parameter}
+%
+% \begin{macro}{\psk@viewpoint}
+% First we need a macro \verb+\pssetzlength+ for the third coordinate. It is adopted from
+% the definition of the y-axes:
+% \begin{macrocode}
+\let\pssetzlength\pssetylength
+% \end{macrocode}
+% The viewpoint is set by its three coordinates $(x\ y\ z)$. It is preset
+% to $x=1$, $y=-1$ and $z=1$.
+% \begin{macrocode}
+\define@key[psset]{pst-3d}{viewpoint}{%
+ \pst@expandafter\psset@@viewpoint#1 {} {} {} \@nil
+ \let\psk@viewpoint\pst@tempg}
+\def\psset@@viewpoint#1 #2 #3 #4\@nil{%
+ \begingroup
+ \pssetxlength\pst@dima{#1}%
+ \pssetylength\pst@dimb{#2}%
+ \pssetzlength\pst@dimc{#3}%
+ \xdef\pst@tempg{%
+ \pst@number\pst@dima \pst@number\pst@dimb \pst@number\pst@dimc}%
+ \endgroup}
+\psset[pst-3d]{viewpoint=1 -1 1}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\psk@viewangle}
+% \begin{macrocode}
+\define@key[psset]{pst-3d}{viewangle}{%
+ \pst@getangle{#1}\psk@viewangle}
+\psset[pst-3d]{viewangle=0}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\psk@normal}
+% \begin{macrocode}
+\define@key[psset]{pst-3d}{normal}{%
+ \pst@expandafter\psset@@viewpoint#1 {} {} {} \@nil
+ \let\psk@normal\pst@tempg}
+\psset[pst-3d]{normal=0 0 1}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\psk@embedangle}
+% \begin{macrocode}
+\define@key[psset]{pst-3d}{embedangle}{%
+ \pst@getangle{#1}\psk@embedangle}
+\psset[pst-3d]{embedangle=0}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\psTshadowsize}
+% \begin{macrocode}
+\define@key[psset]{pst-3d}{Tshadowsize}{%
+ \pst@checknum{#1}\psTshadowsize}
+\psset[pst-3d]{Tshadowsize=1}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\psk@Tshadowangle}
+% \begin{macrocode}
+\define@key[psset]{pst-3d}{Tshadowangle}{%
+ \pst@getangle{#1}\psk@Tshadowangle}
+\psset[pst-3d]{Tshadowangle=60}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\psTshadowcolor}
+% \begin{macrocode}
+\define@key[psset]{pst-3d}{Tshadowcolor}{%
+ \pst@getcolor{#1}\psTshadowcolor}
+\psset[pst-3d]{Tshadowcolor=lightgray}
+% \end{macrocode}
+% \end{macro}
+%
+
+% \subsection{\texttt{PostScript} code}
+%
+% \begin{macro}{\tx@TMSave}
+% \begin{macrocode}
+\pst@def{TMSave}<%
+ tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 } def } if
+ /TMatrix [ TMatrix CM ] cvx def>
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\tx@TMRestore}
+% \begin{macrocode}
+\pst@def{TMRestore}<%
+ CP /TMatrix [ TMatrix setmatrix ] cvx def moveto>
+%
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\tx@TMChange}
+% The syntax:
+% \begin{verbatim}
+% {<Proc for modifying tm>} TMChange
+% \end{verbatim}
+% \begin{macrocode}
+\pst@def{TMChange}<%
+ \tx@TMSave
+ /cp [ currentpoint ] cvx def % ??? Check this later.
+ CM
+% \end{macrocode}
+%
+% Set ''standard`` coordinate system , with \verb+pt+ units and origin at currentpoint.
+% This let's us rotate, or whatever, around \TeX's current point, without
+% having to worry about strange coordinate systems that the dvi-to-ps
+% driver might be using.
+% \begin{macrocode}
+ CP T \tx@STV
+% \end{macrocode}
+% Let M = old matrix (on stack), and M' equal current matrix. Then
+% go from M' to M by applying M Inv(M').
+% \begin{macrocode}
+ CM matrix invertmatrix % Inv(M')
+ matrix concatmatrix % M Inv(M')
+% \end{macrocode}
+% Now modify transformation matrix:
+% \begin{macrocode}
+ exch exec
+% \end{macrocode}
+% Now apply M Inv(M')
+% \begin{macrocode}
+ concat cp moveto>
+% \end{macrocode}
+% \end{macro}
+%
+% \subsection{Three dimensional operations}
+%
+% There is only one macro which collects all the basic operations for three dimansional representation
+% of a text or graphic object.
+%
+% \begin{macro}{\ThreeDput}
+% \begin{macrocode}
+\def\ThreeDput{\def\pst@par{}\pst@object{ThreeDput}}
+\def\ThreeDput@i{\@ifnextchar({\ThreeDput@ii}{\ThreeDput@ii(\z@,\z@,\z@)}}
+\def\ThreeDput@ii(#1,#2,#3){%
+ \pst@killglue\pst@makebox{\ThreeDput@iii(#1,#2,#3)}}
+\def\ThreeDput@iii(#1,#2,#3){%
+ \begingroup
+ \use@par
+ \if@star\pst@starbox\fi
+ \pst@makesmall\pst@hbox
+ \pssetxlength\pst@dima{#1}%
+ \pssetylength\pst@dimb{#2}%
+ \pssetzlength\pst@dimc{#3}%
+ \leavevmode
+ \hbox{%
+ \pst@Verb{%
+ { \pst@number\pst@dima
+ \pst@number\pst@dimb
+ \pst@number\pst@dimc
+ \psk@normal
+ \psk@embedangle
+ \psk@viewpoint
+ \psk@viewangle
+ \tx@SetMatrixEmbed
+ } \tx@TMChange}%
+ \box\pst@hbox
+ \pst@Verb{\tx@TMRestore}}%
+ \endgroup
+ \ignorespaces}
+% \end{macrocode}
+% \end{macro}
+%
+%
+% \subsection{Arithmetic\label{Arithmetic}}
+%
+% \begin{macro}{\pst@sinandcos}
+% Syntax:
+% \begin{LVerbatim}
+% \pst@sinandcos{<dim>}{<int>}
+% \end{LVerbatim}
+% <dim>, in "sp" units, should equal 100,000 times the angle, in degrees
+% between 0 and 90. <int> should equal the angle's quadrant (0, 1, 2 or 3).
+% \verb+\pst@dimg+ is set to $\sin(\theta)$ and \verb+\pst@dimh+ is set to
+% $\cos(\theta)$ (in pt's).
+%
+% The algorithms uses the usual McLaurin expansion.
+% \begin{macrocode}
+\def\pst@sinandcos#1{%
+ \begingroup
+ \pst@dima=#1\relax
+ \pst@dima=.366022\pst@dima %Now 1pt=1/32rad
+ \pst@dimb=\pst@dima % dimb->32sin(angle) in pts
+ \pst@dimc=32\p@ % dimc->32cos(angle) in pts
+ \pst@dimtonum\pst@dima\pst@tempa
+ \pst@cntb=\tw@
+ \pst@cntc=-\@ne
+ \pst@cntg=32
+ \loop
+ \ifnum\pst@dima>\@cclvi % 256
+ \pst@dima=\pst@tempa\pst@dima
+ \divide\pst@dima\pst@cntg
+ \divide\pst@dima\pst@cntb
+ \ifodd\pst@cntb
+ \advance\pst@dimb \pst@cntc\pst@dima
+ \pst@cntc=-\pst@cntc
+ \else
+ \advance\pst@dimc by \pst@cntc\pst@dima
+ \fi
+ \advance\pst@cntb\@ne
+ \repeat
+ \divide\pst@dimb\pst@cntg
+ \divide\pst@dimc\pst@cntg
+ \global\pst@dimg\pst@dimb
+ \global\pst@dimh\pst@dimc
+ \endgroup}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\pst@getsinandcos}
+% \verb+\pst@getsinandcos+ normalizes the angle to be in the first quadrant, sets
+% \verb+\pst@quadrant+ to 0 for the first quadrant, 1 for the second, 2 for the
+% third, and 3 for the fourth, invokes \verb+\pst@sinandcos+, and sets \verb+\pst@sin+
+% to the sine and \verb+\pst@cos+ to the cosine.
+% \begin{macrocode}
+\def\pst@getsinandcos#1{%
+ \pst@dimg=100000sp
+ \pst@dimg=#1\pst@dimg
+ \pst@dimh=36000000sp
+ \pst@cntg=0
+ \loop
+ \ifnum\pst@dimg<\z@
+ \advance\pst@dimg\pst@dimh
+ \repeat
+ \loop
+ \ifnum\pst@dimg>\pst@dimh
+ \advance\pst@dimg-\pst@dimh
+ \repeat
+ \pst@dimh=9000000sp
+ \def\pst@tempg{%
+ \ifnum\pst@dimg<\pst@dimh\else
+ \advance\pst@dimg-\pst@dimh
+ \advance\pst@cntg\@ne
+ \ifnum\pst@cntg>\thr@@ \advance\pst@cntg-4 \fi
+ \expandafter\pst@tempg
+ \fi}%
+ \pst@tempg
+ \chardef\pst@quadrant\pst@cntg
+ \ifdim\pst@dimg=\z@
+ \def\pst@sin{0}%
+ \def\pst@cos{1}%
+ \else
+ \pst@sinandcos\pst@dimg
+ \pst@dimtonum\pst@dimg\pst@sin
+ \pst@dimtonum\pst@dimh\pst@cos
+ \fi%
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \subsection{Tilting}
+%
+% \begin{macro}{\pstilt}
+% \begin{macrocode}
+\def\pstilt#1{\pst@makebox{\pstilt@{#1}}}
+\def\pstilt@#1{%
+ \begingroup
+ \leavevmode
+ \pst@getsinandcos{#1}%
+ \hbox{%
+ \ifcase\pst@quadrant
+ \kern\pst@cos\dp\pst@hbox
+ \pst@dima=\pst@cos\ht\pst@hbox
+ \ht\pst@hbox=\pst@sin\ht\pst@hbox
+ \dp\pst@hbox=\pst@sin\dp\pst@hbox
+ \or
+ \kern\pst@sin\ht\pst@hbox
+ \pst@dima=\pst@sin\dp\pst@hbox
+ \ht\pst@hbox=\pst@cos\ht\pst@hbox
+ \dp\pst@hbox=\pst@cos\dp\pst@hbox
+ \or
+ \kern\pst@cos\ht\pst@hbox
+ \pst@dima=\pst@sin\dp\pst@hbox
+ \pst@dimg=\pst@sin\ht\pst@hbox
+ \ht\pst@hbox=\pst@sin\dp\pst@hbox
+ \dp\pst@hbox=\pst@dimg
+ \or
+ \kern\pst@sin\dp\pst@hbox
+ \pst@dima=\pst@sin\ht\pst@hbox
+ \pst@dimg=\pst@cos\ht\pst@hbox
+ \ht\pst@hbox=\pst@cos\dp\pst@hbox
+ \dp\pst@hbox=\pst@dimg
+ \fi
+ \pst@Verb{%
+ { [ 1 0
+ \pst@cos\space \ifnum\pst@quadrant>\@ne neg \fi
+ \pst@sin\space
+ \ifnum\pst@quadrant>\z@\ifnum\pst@quadrant<\thr@@ neg \fi\fi
+ \ifodd\pst@quadrant exch \fi
+ 0 0
+ ] concat
+ } \tx@TMChange}%
+ \box\pst@hbox
+ \pst@Verb{\tx@TMRestore}%
+ \kern\pst@dima}%
+ \endgroup}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\psTilt}
+% \begin{macrocode}
+\def\psTilt#1{\pst@makebox{\psTilt@{#1}}}
+\def\psTilt@#1{%
+ \begingroup
+ \leavevmode
+ \pst@getsinandcos{#1}%
+ \hbox{%
+ \ifodd\pst@quadrant
+ \pst@@divide{\dp\pst@hbox}{\pst@cos\p@}%
+ \ifnum\pst@quadrant=\thr@@\kern\else\pst@dima=\fi\pst@sin\pst@dimg
+ \pst@@divide{\ht\pst@hbox}{\pst@cos\p@}%
+ \ifnum\pst@quadrant=\@ne\kern\else\pst@dima=\fi\pst@sin\pst@dimg
+ \else
+ \ifdim\pst@sin\p@=\z@
+ \@pstrickserr{\string\psTilt\space angle cannot be 0 or 180}\@ehpa
+ \def\pst@sin{.7071}%
+ \def\pst@cos{.7071}%
+ \fi
+ \pst@@divide{\dp\pst@hbox}{\pst@sin\p@}%
+ \ifnum\pst@quadrant=\z@\kern\else\pst@dima=\fi\pst@cos\pst@dimg
+ \pst@@divide{\ht\pst@hbox}{\pst@sin\p@}%
+ \ifnum\pst@quadrant=\tw@\kern\else\pst@dima=\fi\pst@cos\pst@dimg
+ \fi
+ \ifnum\pst@quadrant>\@ne
+ \pst@dimg=\ht\pst@hbox
+ \ht\pst@hbox=\dp\pst@hbox
+ \dp\pst@hbox=\pst@dimg
+ \fi
+ \pst@Verb{%
+ { [ 1 0
+ \pst@cos\space \pst@sin\space
+ \ifodd\pst@quadrant exch \fi
+ \tx@Div
+ \ifnum\pst@quadrant>\z@\ifnum\pst@quadrant<\thr@@ neg \fi\fi
+ \ifnum\pst@quadrant>\@ne -1 \else 1 \fi
+ 0 0
+ ] concat
+ } \tx@TMChange}%
+ \box\pst@hbox
+ \pst@Verb{\tx@TMRestore}%
+ \kern\pst@dima}%
+ \endgroup}
+% \end{macrocode}
+% \end{macro}
+%
+%
+% \subsection{Shadow}
+%
+% \begin{macro}{\psshadow}
+% \begin{macrocode}
+\def\psshadow{\pst@object{psshadow}}
+\def\psshadow@i{\pst@makebox{\psshadow@ii}}
+\def\psshadow@ii{%
+ \begingroup
+ \use@par
+ \leavevmode
+ \pst@getsinandcos{\psk@Tshadowangle}%
+ \hbox{%
+ \lower\dp\pst@hbox\hbox{%
+ \pst@Verb{%
+ { [ 1 0
+ \pst@cos\space \psTshadowsize mul
+ \ifnum\pst@quadrant>\@ne neg \fi
+ \pst@sin\space \psTshadowsize mul
+ \ifnum\pst@quadrant>\z@\ifnum\pst@quadrant<\thr@@ neg \fi\fi
+ \ifodd\pst@quadrant exch \fi
+ 0 0
+ ] concat
+ } \tx@TMChange}}%
+ \hbox to\z@{% patch 2 (hv), to get it run with xcolor _and_ TeX
+ \pst@Verb{ gsave \pst@usecolor\psTshadowcolor}%
+ \copy\pst@hbox
+ \pst@Verb{ grestore}\hss}%
+% \hbox to\z@{{\@nameuse{\psTshadowcolor}\copy\pst@hbox\hss}}%
+ \pst@Verb{\tx@TMRestore}%
+ \box\pst@hbox}%
+ \endgroup}
+% \end{macrocode}
+% \end{macro}
+%
+% \subsection{Closing}
+%
+% Catcodes restoration.
+%
+% \begin{macrocode}
+\catcode`\@=\PstAtCode\relax
+% \end{macrocode}
+%
+%</pst-3d>
+%
+\endinput
+%%
+%% END pst-3d.tex