diff options
Diffstat (limited to 'Master/texmf-dist/source/generic/pst-3d/pst-3d.dtx')
-rw-r--r-- | Master/texmf-dist/source/generic/pst-3d/pst-3d.dtx | 1608 |
1 files changed, 1608 insertions, 0 deletions
diff --git a/Master/texmf-dist/source/generic/pst-3d/pst-3d.dtx b/Master/texmf-dist/source/generic/pst-3d/pst-3d.dtx new file mode 100644 index 00000000000..291524ae593 --- /dev/null +++ b/Master/texmf-dist/source/generic/pst-3d/pst-3d.dtx @@ -0,0 +1,1608 @@ +% \iffalse meta-comment, etc. +%% +%% Package `pst-3d.dtx' +%% +%% Timothy Van Zandt <tvz@nwu.edu> (tvz) +%% Herbert Voss <voss@pstricks.de> (hv) +%% +%% September 03, 2005 +%% +%% This file is under the LaTeX Project Public License +%% See CTAN archives in directory macros/latex/base/lppl.txt. +%% +%% DESCRIPTION: +%% `pst-3d' is a PSTricks package for tilting and other pseudo-3D tricks +%% +% \fi +% \iffalse +%<*driver> +\documentclass{ltxdoc} +\GetFileInfo{pst-3d.dtx} +\usepackage[T1]{fontenc} +\usepackage{textcomp,fancyvrb} +\usepackage{graphics,showexpl} +\usepackage{amsmath,array} +\usepackage{multido} +\usepackage{pstricks,pst-node,pst-plot} +\usepackage{pst-3d} +\AtBeginDocument{ +% \OnlyDescription % comment out for implementation details + \EnableCrossrefs + \RecordChanges + \CodelineIndex} +\AtEndDocument{ + \PrintChanges + \PrintIndex} +\hbadness=7000 % Over and under full box warnings +\hfuzz=3pt +\begin{document} + \DocInput{pst-3d.dtx} +\end{document} +%</driver> +% \fi +% +% \changes{v1.00}{2005/09/08}{% +% using the extended pst-xkey instead of the old pst-key package; +% creating a dtx file; +% new \LaTeX\ wrapper file (hv)} +% \changes{v0.90}{2001/02/16}{First public release. (tvz)} +% +% \DoNotIndex{\!,\",\#,\$,\%,\&,\',\(,\+,\*,\,,\-,\.,\/,\:,\;,\<,\=,\>,\?} +% \DoNotIndex{\@,\@B,\@K,\@cTq,\@f,\@fPl,\@ifnextchar,\@nameuse,\@oVk} +% \DoNotIndex{\[,\\,\],\^,\_,\ } +% \DoNotIndex{\^,\\^,\\\^,$\^$,$\\^$,$\\^$} +% \DoNotIndex{\0,\2,\4,\5,\6,\7,\8,} +% \DoNotIndex{\A,\a} +% \DoNotIndex{\B,\b,\Bc,\begin,\Bq,\Bqc} +% \DoNotIndex{\C,\c,\catcode,\cJA,\CodelineIndex,\csname} +% \DoNotIndex{\D,\def,\define@key,\Df,\divide,\DocInput,\documentclass,\pst@addfams} +% \DoNotIndex{\eCN,\edef,\else,\eHd,\eMcj,\EnableCrossrefs,\end,\endcsname} +% \DoNotIndex{\endCenterExample,\endExample,\endinput,\endpsclip} +% \DoNotIndex{\PrintIndex,\PrintChanges,\ProvidesFile} +% \DoNotIndex{\endpspicture,\endSideBySideExample,\Example} +% \DoNotIndex{\F,\f,\FdUrr,\fi,\filedate,\fileversion,\FV@Environment} +% \DoNotIndex{\FV@UseKeyValues,\FV@XRightMargin,\FVB@Example,\fvset} +% \DoNotIndex{\G,\g,\GetFileInfo,\gr,\GradientLoaded,\gsFKrbK@o,\gsj,\gsOX} +% \DoNotIndex{\hbadness,\hfuzz,\HLEmphasize,\HLMacro,\HLMacro@i} +% \DoNotIndex{\HLReverse,\HLReverse@i,\hqcu,\HqY} +% \DoNotIndex{\I,\i,\ifx,\input,\Ir,\IU} +% \DoNotIndex{\j,\jl,\JT,\JVodH} +% \DoNotIndex{\K,\k,\kfSlL} +% \DoNotIndex{\L,\let} +% \DoNotIndex{\message,\mHNa,\mIU} +% \DoNotIndex{\N,\nB,\newcmykcolor,\newdimen,\newif,\nW} +% \DoNotIndex{\O,\oCDJDo,\ocQhVI,\OnlyDescription,\oRKJ} +% \DoNotIndex{\P,\p,\ProvidesPackage,\psframe,\pslinewidth,\psset} +% \DoNotIndex{\PstAtCode,\PSTricksLoaded} +% \DoNotIndex{\q,\Qr,\qssRXq,\qu,\qXjFQp,\qYL} +% \DoNotIndex{\R,\r,\RecordChanges,\relax,\RlaYI,\rN,\Rp,\rp,\RPDXNn,\rput} +% \DoNotIndex{\S,\scalebox,\SgY,\SideBySide@Example,\SideBySideExample} +% \DoNotIndex{\SgY,\sk,\Sp,\space,\sZb} +% \DoNotIndex{\T,\the,\tw@} +% \DoNotIndex{\u,\UiSWGEf@,\uJi,\usepackage,\uVQdMM,\UYj} +% \DoNotIndex{\VerbatimEnvironment,\VerbatimInput,\VrC@} +% \DoNotIndex{\WhZ,\WjKCYb,\WNs} +% \DoNotIndex{\XkN,\XW} +% \DoNotIndex{\Z,\ZCM,\Ze} +% \DoNotIndex{\addtocounter,\advance,\alph,\arabic,\AtBeginDocument,\AtEndDocument} +% \DoNotIndex{\AtEndOfPackage,\begingroup,\bfseries,\bgroup,\box,\csname} +% \DoNotIndex{\else,\endcsname,\endgroup,\endinput,\expandafter,\fi} +% \DoNotIndex{\TeX,\z@,\p@,\@one,\xdef,\thr@@,\string,\sixt@@n,\reset,\or,\multiply,\repeat,\RequirePackage} +% \DoNotIndex{\@cclvi,\@ne,\@ehpa,\@nil,\copy,\dp,\global,\hbox,\hss,\ht,\ifodd,\ifdim,\ifcase,\kern} +% \DoNotIndex{\chardef,\loop,\leavevmode,\ifnum,\lower} +% \setcounter{IndexColumns}{2} +% +% \let\pstIIIDFileVersion\fileversion +% \let\pstIIIDFileDate\filedate +% \newcommand{\PstIIIDPackage}{`\textsf{pst-3d}'} +% \newcommand{\PstIIIDMacro}{\cs{Pst3d}} +% +% ^^A From ltugboat.cls +% +% ^^A Typeset the name of an environment +% \providecommand\env[1]{\textsf{#1}} +% \providecommand\clsname[1]{\textsf{#1}} +% \providecommand\pkgname[1]{\textsf{#1}} +% \providecommand\optname[1]{\textsf{#1}} +% \providecommand\progname[1]{\textsf{#1}} +% +% ^^A A list of options for a package/class +% \newenvironment{optlist}{\begin{description}% +% \renewcommand\makelabel[1]{% +% \descriptionlabel{\mdseries\optname{##1}}}% +% \itemsep0.25\itemsep}% +% {\end{description}} +% +% \makeatletter +% +% ^^A Utility macros +% +% ^^A Example macros - adapted from the `fvrb-ex' package +% ^^A --------------------------------------------------- +% +% ^^A Take care that we use here the four /?_Z characters as escape +% ^^A characters, so we can't use these characters in the examples! +% +% ^^A To highlight some verbatim sequences (comments, macro names, etc.) +% \def\HLEmphasize#1{\textit{#1}} +% \newcommand{\BS}{\texttt{\symbol{`\\}}} +% \def\HLMacro#1{\BS{}def\HLMacro@i#1\@nil} +% \def\HLMacro@i#1def#2\@nil{\HLReverse{#2}} +% \def\HLReverse#1{{\setlength{\fboxsep}{1pt}\HLReverse@i{#1}}} +% \def\HLReverse@i#1{\colorbox{black}{\textcolor{white}{\textbf{#1}}}} +% +% \def\Example{\FV@Environment{}{Example}} +% \def\endExample{% +% \end{VerbatimOut} +% \Below@Example{\input{\jobname.tmp}} +% \endgroup} +% +% \def\CenterExample{\FV@Environment{}{Example}} +% \def\endCenterExample{% +% \end{VerbatimOut} +% \begin{center} +% \Below@Example{\input{\jobname.tmp}} +% \end{center} +% \endgroup} +% +% \def\SideBySideExample{\FV@Environment{}{Example}} +% \def\endSideBySideExample{% +% \end{VerbatimOut} +% \SideBySide@Example{\input{\jobname.tmp}} +% \endgroup} +% +% \def\FVB@Example{% +% \begingroup +% \FV@UseKeyValues +% \parindent=0pt +% \multiply\topsep by 2 +% \VerbatimEnvironment +% \begin{VerbatimOut}[gobble=4,codes={\catcode`\Z=12}]{\jobname.tmp}} +% +% \def\Below@Example#1{% +% \VerbatimInput[gobble=0,commentchar=Z,commandchars=/?_,frame=single, +% numbers=left,numbersep=3pt]{\jobname.tmp} +% \catcode`\%=14\relax +% \catcode`\Z=9\relax +% ^^A We suppress the effect of the highlighting macros +% \catcode`/=0\relax +% \catcode`?=1\relax +% \catcode`_=2\relax +% \def\HLEmphasize##1{##1}% +% \def\HLMacro##1{##1}% +% \def\HLReverse##1{##1}% +% #1 +% \par} +% +% \def\SideBySide@Example#1{% +% \vskip 1mm +% \@tempdimb=\FV@XRightMargin +% \advance\@tempdimb -5mm +% \begin{minipage}[c]{\@tempdimb} +% \fvset{xrightmargin=0pt} +% \catcode`\%=14\relax +% \catcode`\Z=9\relax +% ^^A We suppress the effect of the highlighting macros +% \catcode`/=0\relax +% \catcode`?=1\relax +% \catcode`_=2\relax +% \def\HLEmphasize##1{##1}% +% \def\HLMacro##1{##1}% +% \def\HLReverse##1{##1}% +% #1 +% \end{minipage}% +% \@tempdimb=\textwidth +% \advance\@tempdimb -\FV@XRightMargin +% \advance\@tempdimb 5mm +% \begin{minipage}[c]{\@tempdimb} +% \VerbatimInput[gobble=0,commentchar=Z,commandchars=/?_, +% frame=single,numbers=left,numbersep=3pt, +% xleftmargin=5mm,xrightmargin=0pt]{\jobname.tmp} +% \end{minipage} +% \vskip 1mm} +% +% ^^A End of example macros from `fvrb-ex' +% +% ^^A Customizations of the "Verbatim" environment +% \RecustomVerbatimEnvironment{Verbatim}{Verbatim}% +% {gobble=4,frame=single,numbers=left,numbersep=3pt,commandchars=/?_} +% +% ^^A For the possible index and changes log +% \setlength{\columnseprule}{0.6pt} +% +% +% \def\PiCTeX{PiC\TeX} +% \def\arc{\texttt{arc}} +% \def\sign{\texttt{sign}} +% +% ^^A Beginning of the documentation itself +% +% \title{The \PstIIIDPackage{} package\\Tilting and other pseudo-3D tricks with PSTricks} +% \author{Timothy Van Zandt\\ +% Herbert Vo\ss} +% \date{Version \pstIIIDFileVersion\ \pstIIIDFileDate\ \\ +% {\small Documentation revised \today\ (hv)}} +% +% \maketitle +% +% \begin{abstract} +% \texttt{pst-3d} provides basic macros for shadows, tilting and +% three dimensional representations of text or graphical objects. +% \end{abstract} +% +% \clearpage +% \tableofcontents +% +% \section{introduction} +% +% The base package \texttt{pstricks} already disposes of some macros with which three +% dimensional effects can be obtained. +% There are several packages though which support the creation of three +% dimensional objects or functions. A compilation is shown in +% table~\ref{tab:pst3d:pakete}. Here already several of the packages overlap, for +% parallel developments are nothing unusual in the \TeX{} world. Although +% \verb+pst-3d+ is one of the older packages, it shall be dealt with nevertheless, +% for it also contains the preliminary stage of the 3D representations, that is +% shadow creation and tilting. +% +% \begin{table}[htb] +% \caption{Summary of all 3D packages}\label{tab:pst3d:pakete} +% \centering +% \begin{tabular}{ll} +% \emph{package} & \emph{content}\\\hline +% \texttt{pst-3d} & basic 3D operations\\ +% \texttt{pst-3dplot} & Three dimensional plots\\ +% \texttt{pst-fr3d} & Three dimensional framed Boxes\\ +% \texttt{pst-gr3d} & 3D grids\\ +% \texttt{pst-map3dII}& 3D Geographical Projection\\ +% \texttt{pst-ob3d} & Three dimensional basic objects\\ +% \texttt{pst-vue3d} & Three dimensional views\\ +% \end{tabular} +% \end{table} +% +% +% \section{Shadow}\label{sec:pst3d:schattenwurf} +% \verb+pst-3d+ defines the macro \verb+\psshadow+ with the following syntax: +% \begin{verbatim} +% \psshadow[<parameters>]{<material>] +% \end{verbatim} +% As parameters the ones given in table~\ref{tab:pst-3d:schattenparameter} are +% available next to all previously defined, if they have a meaning for the +% material to be shadowed. This can be anything text-like, text, rules and +% mathematical expressions in inline mode. +% +% \medskip +% \begin{SideBySideExample}[xrightmargin=.35\linewidth] +% \newgray{gray75}{.75} +% \psset{Tshadowcolor=gray75} +% \psshadow{\huge Shadow}\\[10pt] +% \psshadow{\huge $f(x)=x^2$}\\[15pt] +% \psshadow[Tshadowsize=2.5]{% +% \rule{2cm}{10pt}} +% \end{SideBySideExample} +% +% \subsection{Parameters}\label{subsec:pst3d:schattenparameter} +% Table~\ref{tab:pst-3d:schattenparameter} shows a compilation of the used +% parameters. +% +% +% +% +% \begin{table}[htb] +% \caption{Summary of all \texttt{shadow} parameters}\label{tab:pst-3d:schattenparameter} +% \centering +% \begin{tabular}{>{\ttfamily}l>{\ttfamily}l>{\ttfamily}l} +% \textrm{\emph{name}} & \textrm{\emph{values}} & \textrm{\emph{default}}\\\hline +% Tshadowangle & <angle> & 60\\ +% Tshadowcolor & <colour> & lightgray\\ +% Tshadowsize & <value> & 1 +% \end{tabular} +% \end{table} +% +% +% \subsubsection{\texttt{Tshadowangle}}\label{subsubsec:pst3d:tshadowangle} +% \verb+Tshadowangle+ denotes the angle of the shadow, +% referring to the perpendicular of the paper plane. The angle of $90$° therewith +% corresponds to the text itself. Negative angles cause the shadow to arise +% from the paper plane. + +% \medskip +% \begin{SideBySideExample}[xrightmargin=.25\linewidth] +% \newgray{gray75}{.75} +% \psset{Tshadowcolor=gray75} +% \psshadow{\huge shadow}\\[5pt] +% \psshadow[Tshadowangle=30]{\huge shadow}\\[5pt] +% \psshadow[Tshadowangle=70]{\huge shadow}\\[5pt] +% \psshadow[Tshadowangle=-30]{\huge shadow} +% \end{SideBySideExample} +% +% \medskip +% \begin{itemize} +% \item Angular values of $0$° and $180$° are not allowed. +% \end{itemize} +% +% +% +% \subsubsection{\texttt{Tshadowcolor}}\label{subsubsec:pst3d:tshadowcolor} +% \verb+Tshadowcolor+ deontes the shadow colour. +% +% \begin{SideBySideExample}[xrightmargin=.25\linewidth] +% \psshadow{\huge shadow}\\[5pt] +% \psshadow[Tshadowcolor=red]{\huge shadow}\\[5pt] +% \psshadow[Tshadowcolor=green]{\huge shadow}\\[5pt] +% \psshadow[Tshadowcolor=blue]{\huge shadow} +% \end{SideBySideExample} +% +% +% \subsubsection{\texttt{Tshadowsize}}\label{subsubsec:pst3d:tshadowsize} +% \verb+Tshadowsize+ determines the size of the +% shadow\index{shadow!size} as a scaling factor\index{scaling factor}. +% +% \begin{SideBySideExample}[xrightmargin=.25\linewidth] +% \psshadow{\Huge shadow}\\[5pt] +% \psshadow[Tshadowsize=0.5]{\Huge shadow}\\[10pt] +% \psshadow[Tshadowsize=1.5]{\Huge shadow}\\[20pt] +% \psshadow[Tshadowsize=2.5]{\Huge shadow} +% \end{SideBySideExample} +% +% +% +% +% +% \section{Tilting}\label{sec:pst3d:kippen} +% With the tilting of objects the +% perspective views of three dimensional objects can be simulated. \verb+pst-3d+ +% defines two macros for this. +% +% \begin{verbatim} +% \pstilt[<parameters>]{<angle>}{<material>} +% \psTilt[<parameters>]{<angle>}{<material>} +% \end{verbatim} +% +% Figure~\ref{fig:pst3d:demo} shows the difference between these two macros. +% Principally everything can be given as argument to those macros and therewith +% tilted. With vertical material, as distinguished formulae, eventually the +% argument has to be put into a \verb+\parbox+ before (see +% example), +% +% \begin{figure}[htb] +% \centering +% \bgroup +% \begin{pspicture}(0,-0.2)(9,3) +% \psline[linestyle=dashed](0,2)(9,2) +% \psline{->}(9,0) +% \def\Bar{\psframe*[linecolor=lightgray](0,0)(0.5,2)} +% \rput(0.5,0){\Bar} +% \psset{arrowscale=2,linewidth=0.1pt,tbarsize=2mm} +% \psline{|<->|}(0.25,0)(0.25,2)\rput*{90}(0.25,1){\small 2cm} +% \rput(2,0){\psTilt{30}{\Bar}} +% \psarc{->}(2.2,0){2}{0}{26}\rput(4.5,0.5){30°} +% \pnode(2,0.3){A}\pnode(5.3,2.25){B} +% \ncline{|<->|}{A}{B}\ncput*[nrot=:U]{\small 4cm} +% \rput(6,0){\pstilt{30}{\Bar}} +% \psarc{->}(6.2,0){2}{0}{26}\rput(8.5,0.5){30°} +% \pnode(6,0.3){A}\pnode(7.65,1.25){B} +% \ncline{|<->|}{A}{B}\ncput*[nrot=:U]{\small 2cm} +% \uput[90](0.5,2.5){\cs{Bar}} +% \uput[90](3.75,2.5){\cs{psTilt\{30\}\{\textbackslash Bar\}}} +% \uput[90](7.25,2.5){\cs{pstilt\{30\}\{\textbackslash Bar\}}} +% \end{pspicture} +% \egroup +% \caption{Demonstration of the difference between \cs{pstilt} and \cs{psTilt}}\label{fig:pst3d:demo} +% \end{figure} +% +% \medskip +% \begin{itemize} +% \item Angular values of $0$\textdegree\ and $180$\textdegree\ are not allowed. +% \end{itemize} +% +% \subsection{\cs{pstilt}}\label{subsec:pst3d:pstilt} +% \verb+\pstilt+ tilts objects that their original height appears +% as new length of the tilted object, wherewith the object becomes smaller. The +% hynotenuse of the triangle from nadir, height and perpendicular now corresponds +% to the old height (see figure~\ref{fig:pst3d:demo}). At this the length is +% calculated from the middle of the base side. +% +% +% \medskip\noindent +% \begin{SideBySideExample}[xrightmargin=.4\linewidth] +% \def\Bar{\psframe(0,0)(0.25,2)} +% \begin{pspicture}(5,2) +% \multido{\nA=15+15}{11}{\rput(2.5,0){% +% \pstilt{\nA}{\Bar}}} +% \end{pspicture} +% \end{SideBySideExample} +% +% +% +% \medskip\noindent +% \begin{SideBySideExample}[xrightmargin=.4\linewidth] +% \pstilt{60}{% +% \begin{pspicture}(-0.5,-0.5)(2,2) +% \psaxes[axesstyle=frame](2,2) +% \end{pspicture}} +% \end{SideBySideExample} +% +% +% \medskip\noindent +% \begin{SideBySideExample}[xrightmargin=.4\linewidth] +% \newpsstyle{TCyan}{% +% fillstyle=vlines,hatchcolor=cyan, +% hatchwidth=0.1\pslinewidth,% +% hatchsep=1.5\pslinewidth} +% \begin{pspicture}(2,4) +% \rput[lb](0,0){\pstilt{45}{% +% \psframe[linestyle=dashed,% +% fillstyle=solid,fillcolor=red](2,4)}} +% \psframe[style=TCyan](0,0)(2,4) +% \end{pspicture} +% \end{SideBySideExample} +% +% +% \medskip +% With the package \verb+rotating+ macros to rotate text are +% provided, to achieve slant table headings for example. It is more difficult when +% they are provided with a frame. With \cs{pstilt} or \cs{psTilt} this is no +% problem. The program listing given below only shows the application of +% \cs{pstilt} for the macro only has to be replaced by \cs{psTilt} to obtain the +% other example. + +% \begin{SideBySideExample}[xrightmargin=.3\linewidth] +% \begin{tabular}{l} +% \pstilt{60}{% +% \begin{tabular}{|p{1em}|p{1em}|p{1em}|}\hline +% \psrotateleft{column 1\ } +% & \psrotateleft{column 2\ } +% & \psrotateleft{column 3\ } +% \end{tabular}}\\ +% \begin{tabular}{|p{1em}|p{1em}|p{1em}|}\hline +% 1 & 2 & 3 \\\hline +% 4 & 5 & 6 \\\hline +% \end{tabular} +% \end{tabular} +% \end{SideBySideExample} +% +% +% \subsection{\cs{psTilt}}\label{subsec:pst3d:psTilt} +% \verb+\psTilt+ tilts objects that their original height is +% preserved, so that the object could become infinitely long in theory (see +% figure~\ref{fig:pst3d:demo}). +% +% +% \medskip\noindent +% \begin{CenterExample} +% \begin{pspicture}(5,2) +% \def\Bar{\psframe(0,0)(0.25,2)} +% \multido{\nA=15+15}{11}{\rput(2.5,0){% +% \psTilt{\nA}{\Bar}}} +% \end{pspicture} +% \end{CenterExample} +% +% +% +% \medskip\noindent +% \begin{SideBySideExample}[xrightmargin=.4\linewidth] +% \psTilt{60}{% +% \begin{pspicture}(-0.5,-0.5)(2,2) +% \psaxes[axesstyle=frame](2,2) +% \end{pspicture}} +% \end{SideBySideExample} +% +% +% \medskip\noindent +% \begin{SideBySideExample}[xrightmargin=.475\linewidth] +% \newpsstyle{TCyan}{% +% fillstyle=vlines,hatchcolor=cyan, +% hatchwidth=0.1\pslinewidth,% +% hatchsep=1.5\pslinewidth} +% \begin{pspicture}(2,4) +% \rput[lb](0,0){\psTilt{45}{% +% \psframe[linestyle=dashed,% +% fillstyle=solid,% +% fillcolor=red](2,4)}} +% \psframe[style=TCyan](0,0)(2,4) +% \end{pspicture} +% \end{SideBySideExample} +% +% +% \section[Three dimensional representations]{% +% Three dimensional representations\protect\footnote{Some of the examples were created by Manuel Luque.}}\label{sec:pst3d:3d} +% +% +% \verb+pst-3d+ only supports parallel projections, so that geometrical objects +% such as spheres or cylinders can only be displayed restricted. Although +% \verb+pst-3d+ principally only defines one single macro for the 3D +% projection, the package is very efficient in its +% application and is also used as a base for other packages.\cite{pst-3dplot}\cite{pst-vue3d} +% +% \subsection{\cs{ThreeDput}}\label{subsec:pst3d:threedput} +% \verb+pst-3d+ only defines this single macro, which can be +% used to arbitrarily display line or area shaped objects in the three dimensional +% space in the end though. +% +% \begin{verbatim} +% \ThreeDput[<parameters>]{<material>} +% \ThreeDput[<parameters>](<x,y,z>){<material>} +% \end{verbatim} +% +% Without a specification of coordinates, $(0,0,0)$ is taken as origin of +% ordinates as a rule. As ``material''{} anything is understood that can be put +% into a box. If it is vertical material in the \TeX{} sense, it has to be put in +% a \verb+\parbox+ or \verb+minipage+ before. +% +% To simplify the specified source code, the macro \verb+\IIIDKOSystem+ is used in +% the following, which draws the coordinate axes with the grid and is not +% specified in the following anymore. +% +% +% \makeatletter +% \newgray{gray75}{0.75}\newgray{gray80}{0.80}newgray{gray85}{0.85} +% \newgray{gray90}{0.90}\newgray{gray95}{0.95} +% \def\xyPlain#1{% +% \ThreeDput[normal=0 0 1](0,0,0){% +% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1)% +% \psline{->}(0,0)(0,#1)\psline{->}(0,0)(#1,0)% +% \ifdim\psk@gridlabels pt>\z@ +% \uput[180]{0.2}(0,#1){$y$}\uput[-90]{0.2}(#1,0){$x$}\fi}} +% \def\xzPlain#1{% +% \ThreeDput[normal=0 -1 0](0,0,0){% +% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1)% +% \psline{->}(0,0)(0,5) \psline{->}(0,0)(#1,0)% +% \ifdim\psk@gridlabels pt>\z@% +% \uput[180]{0.2}(0,#1){$z$}\uput[-90]{0.2}(#1,0){$x$}% +% \fi}} +% \def\yzPlain#1{% +% \ThreeDput[normal=1 0 0](0,0,0){% +% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1)% +% \psline{->}(0,0)(0,#1) \psline{->}(0,0)(#1,0)% +% \ifdim\psk@gridlabels pt>\z@% +% \uput[180]{0.2}(0,#1){$z$}\uput[-90]{0.2}(#1,0){$y$}% +% \fi}} +% \def\IIIDKOSystem{\@ifnextchar[{\IIIDKOSystem@i}{\IIIDKOSystem@i[]}} +% \def\IIIDKOSystem@i[#1]#2{% +% \psset{#1}% +% \xyPlain{#2}\xzPlain{#2}\yzPlain{#2}} +% \makeatother +% +% \medskip\noindent +% \begin{CenterExample} +% \makeatletter +% \def\xyPlain#1{% +% \ThreeDput[normal=0 0 1](0,0,0){% xy-plane +% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1) +% \psline{->}(0,0)(0,#1) \psline{->}(0,0)(#1,0) +% \ifdim\psk@gridlabels pt>\z@ +% \uput[180]{0.2}(0,#1){$y$}\uput[-90]{0.2}(#1,0){$x$}\fi }} +% \def\xzPlain#1{% +% \ThreeDput[normal=0 -1 0](0,0,0){% xz-plane +% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1) +% \psline{->}(0,0)(0,5) \psline{->}(0,0)(#1,0) +% \ifdim\psk@gridlabels pt>\z@ +% \uput[180]{0.2}(0,#1){$z$}\uput[-90]{0.2}(#1,0){$x$}% +% \fi }} +% \def\yzPlain#1{% +% \ThreeDput[normal=1 0 0](0,0,0){% yz-plane +% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1) +% \psline{->}(0,0)(0,#1) \psline{->}(0,0)(#1,0) +% \ifdim\psk@gridlabels pt>\z@ +% \uput[180]{0.2}(0,#1){$z$}\uput[-90]{0.2}(#1,0){$y$}% +% \fi }} +% \def\IIIDKOSystem{\@ifnextchar[{\IIIDKOSystem@i}{\IIIDKOSystem@i[]}} +% \def\IIIDKOSystem@i[#1]#2{% +% \psset{#1}% +% \xyPlain{#2}\xzPlain{#2}\yzPlain{#2}} +% \makeatother +% \newgray{gray75}{0.75} +% \newgray{gray80}{0.8} +% \newgray{gray85}{0.85} +% \newgray{gray95}{0.95} +% \begin{pspicture}(0,-1.25)(5,6) +% \psset{viewpoint=1 -1 0.75} +% \IIIDKOSystem{5} +% \ThreeDput{\psframe*[linecolor=gray80](3,3)} +% \ThreeDput(1.5,1.5,0){\Huge below} +% \ThreeDput(0,0,1.5){\psframe*[linecolor=gray75](3,3)} +% \ThreeDput(1.5,1.5,1.5){\Huge center} +% \ThreeDput(0,0,3){\psframe*[linecolor=gray85](3,3)} +% \ThreeDput(1.5,1.5,3){\Huge above} +% \xzPlain{5} +% \ThreeDput(4,4,0){\psframe*[linecolor=gray95](-1,-1)(1,1)} +% \ThreeDput(4,4,0){\psdot[dotscale=3]} +% \end{pspicture} +% \end{CenterExample} +% +% +% The coordinates of \verb+ThreeDput+ refer to the centre of the object, which +% does not necessarily need to be the geometrical centre. +% \begin{verbatim} +% \psframe(2,2)% centre bottom left (0,0) +% \psframe(-1,-1(1,1)% centre in the middle (0,0) +% arbitrary text% centre in the middle of the base line +% \end{verbatim} +% +% In the above example the smaller square with its centre $(0,0)$ has been set +% exactly to the coordinated $(4,4,0)$. +% The macro \verb+ThreeDput+ can be manifoldly applied, which is performed +% especially by the package \verb+pst-vue3d+\cite{pst-vue3d}. By +% specifying the normal vector $\vec{n}$ and a point $P(x,y,z)$ of the stright +% line and/or the plane the posture in space can be determined definitely. Areas +% can be provided with different levels of brightness to increase the spatial +% impression. +% +% +% +% \medskip\noindent +% \begin{CenterExample} +% \newgray{gray75}{0.75}\newgray{gray85}{0.85}\newgray{gray95}{0.95} +% \begin{pspicture}(-4.5,-3.5)(3,4.75) +% \psset{viewpoint=1 1.5 1} +% \IIIDKOSystem[gridlabels=0pt,gridcolor=lightgray,subgriddiv=0]{5}% +% \ThreeDput[normal=0 0 1]{% xy-plane +% \psline[linewidth=3pt,linecolor=blue]{->}(4,4)(4,5.5)% +% \uput[90](4,5.5){\color{blue}$\vec{n}-{A}$}}% +% \ThreeDput[normal=0 -1 0]{% xz-plane +% \psline[linewidth=3pt,linecolor=green]{->}(4,0)(5.5,0)% +% \uput[90](5.5,0){\psscalebox{-1 1}{% +% \textcolor{green}{$\vec{n}-B$}}}}% +% \ThreeDput[normal=1 0 0]{% yz-plane +% \psline[linewidth=3pt,linecolor=red]{->}(0,4)(0,5.5)% +% \uput[0](0,5.5){$\vec{n}-{top}$}}% cube and axes +% \ThreeDput[normal=0 0 1](0,0,4){% +% \psframe*[linecolor=gray75](4,4)\rput(2,2){\Huge\textbf{TOP}}}% +% \ThreeDput[normal=0 1 0](4,4,0){% +% \psframe*[linecolor=gray95](4,4)\rput(2,2){\Huge\textbf{side A}}}% +% \ThreeDput[normal=1 0 0](4,0,0){% +% \psframe*[linecolor=gray85](4,4)\rput(2,2){\Huge\textbf{side B}}}% +% \ThreeDput[normal=0 0 1](0,0,4){% +% \psline(4,0)\uput[90](3,0){$X-top$}\psline(0,4)\uput[0](0,3){$Y-top$}}% +% \ThreeDput[normal=0 1 0](4,4,0){% +% \psline(4,0)\uput[90](3,0){$X-A$}\psline(0,4)\uput[0](0,3){$Y-A$}}% +% \ThreeDput[normal=1 0 0](4,0,0){% +% \psline(4,0)\uput[90](3,0){$X-B$}\psline(0,4)\uput[0](0,3){$Y-B$}}% +% \end{pspicture} +% \end{CenterExample} +% +% +% \subsection{3D parameters}\label{subsec:pst3d:3dParameter} +% Table~\ref{tab:pst-3d:3dparameter} shows a compilation of +% the parameters which can be used to influence 3D representations. +% +% \begin{table}[htb] +% \caption{Summary of all 3D parameters}\label{tab:pst-3d:3dparameter} +% \begin{tabular}{>{\ttfamily}l>{\ttfamily}l>{\ttfamily}l} +% \textrm{name} & \textrm{values} & \textrm{default}\\\hline +% viewpoint & <valuex valuey valuez> & 1 -1 1\\ +% viewangle & <angle> & 0\\ +% normal & <valuex valuey valuez> & 0 0 1\\ +% embedangle & <angle> & 0 +% \end{tabular} +% \end{table} +% +% \subsubsection{\texttt{viewpoint}}\label{subsubsec:pst3d:viewpoint} +% The viewing direction to the 3D object influences the +% representation essentially. With \verb+viewpoint+ the $(x,y,z)$ coordinates +% which denote the vector of the viewing direction are specified. Because of the +% parallel projection the length of this vector is unimportant, so that +% \verb+(10.5 1.5)+ and \verb+(2 1 3)+ yield the same representations. +% Figure~\ref{fig:pst3d:viewpoint} shows who somebody would regard this +% representation, whereat the representation itself is of course regarded from +% another point in this case, otherwise one had to look directly onto the vector. +% +% +% \SpecialCoor +% \def\oeil{% +% \pscurve(1;160)(0.8;180)(1;200) +% \pscustom{\gsave\psarc(0,0){1}{165}{195} +% \pscurve(1;195)(0.85;180)(1;165) +% \fill[fillstyle=solid,fillcolor=blue]\grestore} +% \pscurve[linewidth=.4pt](1;195)(0.85;180)(1;165) +% {\psset{linewidth=2pt} +% \psarc(0,1){1}{180}{270} +% \psarc(0,-1){1}{90}{180}} +% \psarc(0,0){1}{150}{210} +% \psset{linewidth=4pt,linecolor=gray} +% \pscurve(-.5,3.5)(-1,3)(-1.2,2.5)(-1.3,2)(-1.4,1)(-1.35,0.5)(-1.2,-.2)(-1.35,-.5) +% (-1.4,-1)(-1.5,-1.5)(-1.8,-2)(-1.8,-2.3)(-1.65,-2.5)(-1.35,-2.55)(-.95,-2.8) +% (-.95,-3.35)(-1,-3.65)(-.8,-4)(-.4,-4.1) +% \pscurve(-.8,-4)(-.8,-4.2)(-.5,-4.5)(-.4,-5)(-.25,-5.5)(0,-5.8)(.5,-6)} +% +% +% \begin{figure}[htb] +% \centering +% \begin{pspicture}(-5,-1)(5,6) +% \psset{viewpoint=3 5 2} +% \psset{unit=2} +% \ThreeDput[normal=0 0 1](0,0,0){% +% \psline{->}(0,0)(2,0) +% \uput[90](2,0){$x$} +% \qdisk(1,0.5){2pt} +% \psline(1,0)(1,0.5)\psline(1,0.5)(0,0.5) +% \psline[linestyle=dotted](0,0)(1,0.5) +% \psset{fillstyle=solid,fillcolor=lightgray,linestyle=none} +% \psframe(1,0)(1.15,.15) +% \psframe(0,.5)(.15,.65)} +% \ThreeDput[normal=1 0 0](0,0,0){% +% \psline{->}(0,0)(2,0) +% \uput[90](2,0){$y$} +% \psline{->}(0,0)(0,2) +% \uput[180](0,2){$z$} +% \uput[90](0.5,0){0.5} +% \uput[180](0,1.5){1.5} +% \uput[135](0,0){0} +% \rput(1.2,1.5){\large 3D representations}} +% \ThreeDput[normal=0 1 0](0,0,0){% +% \uput[90](-2,0){$x$} +% \uput[90](-1,0){1} +% \rput(-1.5,1){\texttt{pst-3d}}} +% \ThreeDput[normal=.5 -1 0](0,0,0){% +% \psframe[linestyle=none,fillstyle=hlines,hatchwidth=0.1pt, +% hatchsep=2pt,hatchcolor=gray90](0,0)(1.118,1.5) +% \psline[linewidth=3pt,linecolor=red,arrowinset=0]{->}(0,0)(1.118,1.5) +% \psline[linestyle=dashed](0,0)(2.236,3) +% \psline(1.118,0)(1.118,1.5) +% \psline(1.118,1.5)(0,1.5) +% \rput{53.3}(2.5348,3.4009){\psscalebox{0.2}{\oeil}}} +% \end{pspicture} +% \caption{Definition of the \texttt{viewpoints}}\label{fig:pst3d:viewpoint} +% \end{figure} +% +% +% For figure~\ref{fig:pst3d:viewpoint} a viewpoint of \verb+viewpoint=3 5 2+ was +% defined. If one desires to regard it for instance from the $y$ axis from a +% larger height, \verb+viewpoint=0 1 3+ could be chosen. The viewer has moved one +% unit in $y$ direction and four units in $z$ direction from the centre (origin) +% and regards everything from there. +% +% +% \medskip +% \begin{itemize} +% \item The \verb+viewpoint+ principally \textbf{has} to be defined with +% values not equal to zero, for this would lead to a division by zero. +% Specifications of $0.001$ for a coordinate are already sufficing to +% escape the division by zero and blind out the coordinate. +% \end{itemize} +% +% A good value for the viewpoint would be \verb+viewpoint=1 1 0.5+ for instance, +% which corresponds to a horizontal rotation by 45° and a vertical by ca. 20°. +% Another meaningful point is also \verb+viewpoint=1.5 1 0.5+, which now +% corresponds to a horizontal rotation by 33° and the same vertical rotation. Both +% can be seen in the examples below. +% +% \medskip +% \begin{CenterExample} +% \begin{pspicture}(-3,-2.5)(-3,4) +% \psset{unit=0.75} +% \psset{viewpoint=1 1 0.5} +% \IIIDKOSystem{5} +% \end{pspicture}\hfill +% \begin{pspicture}(-3,-2.5)(2.2,4) +% \psset{unit=0.75} +% \psset{viewpoint=1 1.5 0.5} +% \psset{gridlabels=6pt} +% \IIIDKOSystem{5} +% \end{pspicture} +% \end{CenterExample} +% +% +% \subsubsection{\texttt{viewangle}}\label{subsubsec:pst3d:viewangle} +% Additional to the \verb+viewpoint+ option one can rotate the object by another +% option called \verb+viewangle+. This could also be done by the macro \verb+\rotatebox+, +% but \verb+viewangle+ has some advantages . +% +% +% \bigskip\noindent +% \begin{CenterExample} +% \begin{pspicture}(-1,-2.5)(4,4) +% \psset{unit=0.7,viewpoint=1 1 0.5,viewangle=20} +% \IIIDKOSystem{5} +% \ThreeDput(0,0,0){\psframe*[linecolor=gray80](4,4)} +% \ThreeDput(2,2,0){\Huge Unten} +% \end{pspicture} +% \begin{pspicture}(-3,-2.5)(1,4) +% \psset{unit=0.7,viewpoint=1 1.5 0.5,viewangle=-30} +% \IIIDKOSystem{5} +% \ThreeDput(0,0,0){\psframe*[linecolor=gray80](4,4)} +% \ThreeDput(2,2,0){\Huge Unten} +% \end{pspicture} +% \end{CenterExample} +% +% +% \subsubsection{\texttt{normal}}\label{subsubsec:pst3d:normal} +% \verb+normal+ denotes the direction of the normal +% vector which is perpendicular to a corresponding area. +% Therewith the posture of an object in three dimensional space is definitely +% determined by the normal vector. +% +% \medskip\noindent +% \begin{CenterExample} +% \newgray{gray75}{0.75}\newgray{gray85}{0.85}\newgray{gray95}{0.95} +% \begin{pspicture}(-3.5,-2.5)(-3,5) +% \psset{viewpoint=1 1.5 0.5} +% \IIIDKOSystem{5} +% \ThreeDput(0,0,0){\psframe*[linecolor=gray80](4,4)} +% \ThreeDput(2,2,0){\huge\psrotatedown{xy-plane}} +% \ThreeDput[normal=0 -1 0](0,0,0){\psframe*[linecolor=gray85](4,4)} +% \ThreeDput[normal=0 1 0](2,0,2){\huge xz-plane} +% \ThreeDput[normal=1 0 0](0,0,0){\psframe*[linecolor=gray90](4,4)} +% \ThreeDput[normal=1 0 0](0,2,2){\huge yz-plane} +% \ThreeDput[normal=0 0 1](0,0,0){% xy-plane +% \psline{->}(0,0)(0,5)\psline{->}(0,0)(5,0)} +% \ThreeDput[normal=0 1 0](0,0,0){\psline{->}(0,0)(0,5)} +% \end{pspicture} +% \end{CenterExample} +% +% +% Without a assignment through the normal vector the above example could not have +% been created that easily. Let us step through the code for a better +% understanding. +% +% \begin{description} +% \item[\cs{psset\{viewpoint=1 1.5 0.5\}}:] the +% \verb+viewpoint+ is set to the point $P(1,1.5,0.5)$. +% \item[\cs{IIIDKOSystem\{5\}}:] first the coordinate system with the grid is +% drawn, so that axes and grid remain visible on the areas, which makes a +% better optical allocation possible. +% \item[\cs{ThreeDput(0,0,0)\{\textbackslash psframe*[linecolor=gray80](4,4)\}}:] +% puts a square with a side length of four into the origin of ordinates with +% the lower left edge. Since no normal vector is specified here, the default +% value $\vec{n}=(0,0,1)$ is taken, wherewith the area is positioned in the +% first quadrant of the $xy$ plane. +% \item[\cs{ThreeDput(2,2,0)\{\textbackslash huge\textbackslash psrotatedown\{xy-plane\}\}}:] +% puts the text rotated by $180$° centric to the point $(2,2,0)$ in the +% \verb+xy-plane+. +% \item[\cs{ThreeDput[normal=0 -1 0](0,0,0)\{\textbackslash psframe*[linecolor=gray85](4,4)\}}:] +% puts a square with a side length of four in the origin of ordinates with the +% lower left edge. Since the normal vector is the ``negative''{} $y$ axis, the +% square is positioned in the first quadrant of the $xz$ plane. With +% \verb+normal=0 1 0+ it would have been the second quadrant. +% \item[\cs{ThreeDput[normal=0 1 0](2,0,2)\{\textbackslash huge xz-plane\}}:] +% puts the text in the \verb+xy-plane+ centric to the point $(2,0,2)$. Because +% the $xz$ plane is regarded from the back from the viewpoint, the normal +% vector of the area has to be reversed, otherwise the text would be read from +% the ``back''{}. +% \item[\cs{ThreeDput[normal=1 0 0](0,0,0)\{\textbackslash psframe*[linecolor=gray90](4,4)\}}:] +% puts a square with a side length of four in the origin of ordinates with the +% lower left edge. The unit vector is the ``positive''{} $x$ axis, therefore +% the square is positioned in the first quadrant of the $yz$ plane. +% \item[\cs{ThreeDput[normal=1 0 0](0,2,2)\{\textbackslash huge yz-plane\}}:] +% puts the text in the \verb+yz-plane+ centric to the point $(0,2,2)$. Since +% the text is written at the ``positive''{} side of the area, the normal +% vector stays the same. +% \item[\cs{ThreeDput[normal=0 0 1](0,0,0)}:] the coordinate axes have been +% overwritten by the three areas and are redrawn now, first the $xy$ axes. +% \item[\cs{ThreeDput[normal=0 1 0](0,0,0)}:] and now the $z$ axis is drawn. +% \end{description} +% +% \subsubsection{\texttt{embedangle}}\label{subsubsec:pst3d:embedangle} +% With \verb+viewangle+ a rotation perpendicular to the plane +% of the viewer could be made. With \verb+embedangle+ a rotation perpendicular to +% the normal vector can be made. The counting of the angles is made in the +% mathematical sense, counterclockwise. +% +% \medskip +% \begin{CenterExample} +% \newgray{gray75}{0.75}\newgray{gray85}{0.85}\newgray{gray95}{0.95} +% \def\tBlack#1#2{% +% \psframe[style=#2](2,2) +% \rput(1,1){\textcolor{#1}{\textbf{PSTricks}}}} +% \newpsstyle{SolidYellow}{fillstyle=solid,fillcolor=yellow} +% \newpsstyle{TransparencyRed}{fillstyle=vlines,hatchcolor=red, +% hatchwidth=0.1\pslinewidth,hatchsep=1\pslinewidth} +% \newpsstyle{TransparencyBlue}{fillstyle=vlines,hatchcolor=gray75,% +% hatchwidth=0.1\pslinewidth,hatchsep=1\pslinewidth} +% \begin{pspicture}(-1.2,-1.75)(4.8,3.7) +% \ThreeDput{\psgrid[subgriddiv=0](-2,0)(4,3)} +% \ThreeDput(-1,0,0){\tBlack{black}{SolidYellow}} +% \ThreeDput(2,0,0){\tBlack{black}{SolidYellow}} +% \ThreeDput[embedangle=50](-1,0,0){\tBlack{gray}{TransparencyRed}} +% \ThreeDput[embedangle=50](2,0,0){\tBlack{gray}{TransparencyBlue}} +% \ThreeDput[normal=0 1 0](-1,0,0){\psline[linewidth=0.1,linecolor=red](0,4)} +% \ThreeDput[normal=0 1 0](2,0,0){\psline[linewidth=0.1,linecolor=blue](0,4)} +% \end{pspicture} +% \psset{viewpoint=1 1 100} +% \begin{pspicture}(-2.5,-4.5)(2.8,1.7) +% \ThreeDput{\psgrid[subgriddiv=0](-2,0)(4,3)} +% \ThreeDput(-1,0,0){\tBlack{black}{SolidYellow}} +% \ThreeDput(2,0,0){\tBlack{black}{SolidYellow}} +% \ThreeDput[embedangle=50](-1,0,0){\tBlack{gray}{TransparencyRed}} +% \ThreeDput[embedangle=50](2,0,0){\tBlack{gray}{TransparencyBlue}} +% \ThreeDput[normal=0 1 0](-1,0,0){\psline[linewidth=0.1,linecolor=red](0,4)} +% \ThreeDput[normal=0 1 0](2,0,0){\psline[linewidth=0.1,linecolor=blue](0,4)} +% \end{pspicture} +% \end{CenterExample} +% +% +% \StopEventually{} +% +% ^^A .................... End of the documentation part .................... +% +% \section{Driver file} +% +% The next bit of code contains the documentation driver file for \TeX{}, +% i.e., the file that will produce the documentation you are currently +% reading. It will be extracted from this file by the \texttt{docstrip} +% program. +% +% +% \section{\PstIIIDPackage{} \LaTeX{} wrapper} +% +% \begin{macrocode} +%<*latex-wrapper> +%% +\RequirePackage{pstricks} +\ProvidesPackage{pst-3d}[2005/09/02 package wrapper for + pst-3d.tex (hv)] +\input{pst-3d.tex} +\ProvidesFile{pst-3d.tex} + [\filedate\space v\fileversion\space `PST-3d' (tvz)] +%</latex-wrapper> +% \end{macrocode} +% +% \section{\PstIIIDPackage{} code} +% +%<*pst-3d> +% +% \verb+pst-3d+ Require the basic \verb+pstricks+ package and for the key value +% operations the \verb+pst-xkey+ package. +% +% \begin{macrocode} +\ifx\PSTricksLoaded\endinput\else\input pstricks.tex\fi +\ifx\PSTXKeyLoaded\endinput\else\input pst-xkey \fi % (hv 2005-09-03) +% \end{macrocode} +% +% Catcodes changes. +% +% \begin{macrocode} +\edef\PstAtCode{\the\catcode`\@} +\catcode`\@=11\relax +% \end{macrocode} +% +% Add the key-family name to the xkeyval package +% +% \begin{macrocode} +\pst@addfams{pst-3d} +% \end{macrocode} +% +\def\fileversion{1.00} +\def\filedate{2005/09/03} +\message{`PST-3d' v\fileversion, \filedate\space (tvz)} +% +% Mark the package as loaded +% +% \begin{macrocode} +\csname PSTthreeDLoaded\endcsname +\let\PSTthreeDLoaded\endinput +% \end{macrocode} +% +% \subsection{Basic 3D transformations} +% +% \begin{macro}{\tx@SetMatrixThreeD} +% Viewpoint for 3D coordinates is given by three angles: $\alpha$, $\beta$ and +% $\gamma$. $\alpha$ and $\beta$ determine the direction from which one is +% looking. $\gamma$ then determines the orientation of the observing. +% When $\alpha$, $\beta$ and $\gamma$ are all zero, the observer is looking +% from the negative part of the $y$-axis, and sees the $xz$-plane the way in +% 2D one sees the $xy$ plan. Hence, to convert the 3D coordinates to their 2D +% project, $\langle x, y, z\rangle$ map to $\langle x, z\rangle$. +% When the orientation is different, we rotate the coordinates, and then +% perform the same projection. +% We move up to latitude $\beta$, over to longitude $\alpha$, and then rotate +% by $\gamma$. This means that we first rotate around $y$-axis by $\gamma$, +% then around $x$-axis by $\beta$, and the around $z$-axis by $\alpha$. +% +% Here are the matrices: +% \begin{eqnarray*} +% R_z(\alpha) & = & \left[ +% \begin{array}{ccc} +% \cos \alpha & -\sin \alpha & 0 \\ +% \sin \alpha & cos \alpha & 0 \\ +% 0 & 0 & 1 +% \end{array} \right] \\ +% R_x(\beta) & = & \left[ +% \begin{array}{ccc} +% 1 & 0 & 0 \\ +% 0 & \cos \beta & \sin \beta \\ +% 0 & -\sin \beta & \cos \beta +% \end{array} \right] \\ +% R_y(\gamma) & = & \left[ +% \begin{array}{ccc} +% \cos \gamma & 0 & -\sin \gamma \\ +% 0 & 1 & 0 \\ +% \sin \gamma & 0 & \cos \gamma +% \end{array} \right] +% \end{eqnarray*} +% +% The rotation of a coordinate is then performed by the matrix $R_z(\alpha) +% R_x(\beta) R_y(\gamma)$. The first and third columns of the matrix are the +% basis vectors of the plan upon which the 3D coordinates are project (the old +% basis vectors were $\langle 1, 0, 0\rangle$ and $\langle 0, 0, 1\rangle$; rotating these +% gives the first and third columns of the matrix). +% +% These new base vectors are: +% \begin{eqnarray*} +% \tilde{x} & = & \left[ +% \begin{array}{c} +% \cos\alpha \cos\gamma - \sin\beta \sin\alpha \sin\gamma \\ +% \sin\alpha \cos\gamma + \sin\beta \cos\alpha \sin\gamma \\ +% \cos\beta \sin\gamma +% \end{array} \right] \\ +% \tilde{z} & = & \left[ +% \begin{array}{c} +% -\cos\alpha \sin\gamma - \sin\beta \sin\alpha \cos\gamma \\ +% -\sin\alpha \sin\gamma + \sin\beta \cos\alpha \cos\gamma \\ +% \cos\beta \cos\gamma +% \end{array} \right] +% \end{eqnarray*} +% +% Rather than specifying the angles $\alpha$ and $\beta$, the user gives a +% vector indicating where the viewpoint is. This new viewpoint is the rotation +% o the old viewpoint. The old viewpoint is $\langle 0, -1, 0\rangle$, and so the new +% viewpoint is +% \[ +% R_z(\alpha) R_x(\beta) \left[ \begin{array}{c} 0\\-1\\0 \end{array} \right] +% \, = \, +% \left[ \begin{array}{c} +% \cos\beta \sin\alpha \\ +% -\cos\beta \cos\alpha \\ +% \sin\beta +% \end{array} \right] +% \, = \, +% \left[ \begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array} \right] +% \] +% Therefore, +% \begin{eqnarray*} +% \alpha & = & \arc\tan (v_1 / -v_2) \\ +% \beta & = & \arc\tan (v_3 \sin\alpha / v_1) +% \end{eqnarray*} +% Unless $p_1=p_2=0$, in which case $\alpha=0$ and $\beta=\sign(p_3)90$, or +% $p_1=p_3=0$, in which case $\beta=0$. +% +% The syntax of \verb+SetMatrixThreeD+ is +% \[ +% v_1\ v_2\ v_3\ \gamma\ \mathrm{SetMatrixThreeD} +% \] +% \verb+SetMatrixThreeD+ first computes +% \[ +% \begin{array}{ll} +% a=\sin\alpha & b=\cos\alpha\\ +% c=\sin\beta & d=\cos\beta\\ +% e=\sin\gamma & f=\cos\gamma +% \end{array} +% \] +% and then sets \verb+Matrix3D+ to \verb+[+$\tilde{x}$ $\tilde{z}$\verb+]+. +% +% \begin{macrocode} +\pst@def{SetMatrixThreeD}<% + dup sin /e ED cos /f ED + /p3 ED /p2 ED /p1 ED + p1 0 eq + { /a 0 def /b p2 0 le { 1 } { -1 } ifelse def + p3 p2 abs + } + { p2 0 eq + { /a p1 0 lt { -1 } { 1 } ifelse def /b 0 def + p3 p1 abs + } + { p1 dup mul p2 dup mul add sqrt dup + p1 exch div /a ED + p2 exch div neg /b ED + p3 p1 a div + } + ifelse + } + ifelse + atan dup sin /c ED cos /d ED + /Matrix3D + [ + b f mul c a mul e mul sub + a f mul c b mul e mul add + d e mul + b e mul neg c a mul f mul sub + a e mul neg c b mul f mul add + d f mul + ] def> +% \end{macrocode} +% \end{macro} +% +% \begin{macro}{\tx@ProjThreeD} +% The syntax of the macro \verb+tx@ProjThreeD+ is +% \[ +% x\ y\ z\ \mathrm{ProjThreeD}\ x'\ y' +% \] +% where $x'=\langle x, y, z\rangle \cdot \tilde{x}$ and $y'=\langle x, y, z\rangle \cdot +% \tilde{z}$. +% +% \begin{macrocode} +\pst@def{ProjThreeD}<% + /z ED /y ED /x ED + Matrix3D aload pop + z mul exch y mul add exch x mul add + 4 1 roll + z mul exch y mul add exch x mul add + exch> +% \end{macrocode} +% +% To embed 2D $\langle x, y\rangle$ coordinates in 3D, the user specifies the normal +% vector and an angle. If we decompose this normal vector into an angle, as +% when converting 3D coordinates to 2D coordinates, and let $\hat\alpha$, +% $\hat\beta$ and $\hat\gamma$ be the three angles, then when these angles are +% all zero the coordinate $\langle x, y\rangle$ gets mapped to $\langle x, 0, y\rangle$, and +% otherwise $\langle x, y\rangle$ gets mapped to +% \[ +% R_z(\hat\alpha) R_x(\hat\beta) R_y(\hat\gamma) +% \left[ \begin{array}{c} x \\ 0 \\ y \end{array} \right] +% \, = \, +% \left[ \begin{array}{c} +% \hat{x}_1 x + \hat{z}_1 y\\ +% \hat{x}_2 x + \hat{z}_2 y\\ +% \hat{x}_3 x + \hat{z}_3 y +% \end{array} \right] +% \] +% where $\hat{x}$ and $\hat{z}$ are the first and third columns of $R_z(\hat\alpha) R_x(\hat\beta) R_y(\hat\gamma)$. +% +% Now add on a 3D-origin: +% \[ +% \left[ \begin{array}{c} +% \hat{x}_1 x + \hat{z}_1 y + x_0\\ +% \hat{x}_2 x + \hat{z}_2 y + y_0\\ +% \hat{x}_3 x + \hat{z}_3 y + z_0 +% \end{array} \right] +% \] +% +% Now when we project back onto 2D coordinates, we get +% \begin{align*} +% x' & = \tilde{x}_1(\hat{x}_1 x + \hat{z}_1 y + x_0) + +% \tilde{x}_2(\hat{x}_2 x + \hat{z}_2 y + y_0) + +% \tilde{x}_3(\hat{x}_3 x + \hat{z}_3 y + z_0)\\ +% & = +% (\tilde{x}_1\hat{x}_1 + \tilde{x}_2\hat{x}_2 + \tilde{x}_3\hat{x}_3) x +% + (\tilde{x}_1\hat{z}_1 + \tilde{x}_2\hat{z}_2 + \tilde{x}_3\hat{z}_3) y +% + \tilde{x}_1 x_0 + \tilde{x}_2 y_0 + \tilde{z}_3 z_0\\ +% y' & = \tilde{z}_1(\hat{x}_1 x + \hat{z}_1 y + x_0) + +% \tilde{z}_2(\hat{x}_2 x + \hat{z}_2 y + y_0) + +% \tilde{z}_3(\hat{x}_3 x + \hat{z}_3 y + z_0)\\ +% & = +% (\tilde{z}_1\hat{x}_1 + \tilde{z}_2\hat{x}_2 + \tilde{z}_3\hat{x}_3) x +% + (\tilde{z}_1\hat{z}_1 + \tilde{z}_2\hat{z}_2 + \tilde{z}_3\hat{z}_3) y +% + \tilde{z}_1 x_0 + \tilde{z}_2 y_0 + \tilde{z}_3 z_0 +% \end{align*} +% Hence, the transformation matrix is: +% \[ +% \left[ \begin{array}{c} +% \tilde{x}_1\hat{x}_1 + \tilde{x}_2\hat{x}_2 + \tilde{x}_3\hat{x}_3) \\ +% \tilde{z}_1\hat{x}_1 + \tilde{z}_2\hat{x}_2 + \tilde{z}_3\hat{x}_3) \\ +% \tilde{x}_1\hat{z}_1 + \tilde{x}_2\hat{z}_2 + \tilde{x}_3\hat{z}_3) \\ +% \tilde{z}_1\hat{z}_1 + \tilde{z}_2\hat{z}_2 + \tilde{z}_3\hat{z}_3) \\ +% \tilde{x}_1 x_0 + \tilde{x}_2 y_0 + \tilde{z}_3 z_0 \\ +% \tilde{z}_1 x_0 + \tilde{z}_2 y_0 + \tilde{z}_3 z_0 +% \end{array} \right] +% \] +% \end{macro} +% \begin{macro}{\tx@SetMatrixEmbed} +% The syntax of \verb+SetMatrixEmbed+ is +% \begin{align*} +% x_0\ y_0\ z_0\ \hat{v_1}\ \hat{v_2}\ \hat{v_3}\ \hat{\gamma}\\ +% v_1\ v_2\ v_3\ \gamma\ \mathrm{setMatrixEmbed} +% \end{align*} +% \verb+SetMatrixEmbed+ first sets \verb+<x1 x2 x3 y1 y2 y3>+ to the basis vectors for +% the viewpoint projection (the tilde stuff above). Then it sets \verb+Matrix3D+ to +% the basis vectors for the embedded plane. Finally, it sets the +% transformation matrix to the matrix given above. +% +% \begin{macrocode} +\pst@def{SetMatrixEmbed}<% + \tx@SetMatrixThreeD + Matrix3D aload pop + /z3 ED /z2 ED /z1 ED /x3 ED /x2 ED /x1 ED + \tx@SetMatrixThreeD + [ + Matrix3D aload pop + z3 mul exch z2 mul add exch z1 mul add 4 1 roll + z3 mul exch z2 mul add exch z1 mul add + Matrix3D aload pop + x3 mul exch x2 mul add exch x1 mul add 4 1 roll + x3 mul exch x2 mul add exch x1 mul add + 3 -1 roll 3 -1 roll 4 -1 roll 8 -3 roll 3 copy + x3 mul exch x2 mul add exch x1 mul add 4 1 roll + z3 mul exch z2 mul add exch z1 mul add + ] + concat> +% \end{macrocode} +% \end{macro} +% +% \subsection{Parameter} +% +% \begin{macro}{\psk@viewpoint} +% First we need a macro \verb+\pssetzlength+ for the third coordinate. It is adopted from +% the definition of the y-axes: +% \begin{macrocode} +\let\pssetzlength\pssetylength +% \end{macrocode} +% The viewpoint is set by its three coordinates $(x\ y\ z)$. It is preset +% to $x=1$, $y=-1$ and $z=1$. +% \begin{macrocode} +\define@key[psset]{pst-3d}{viewpoint}{% + \pst@expandafter\psset@@viewpoint#1 {} {} {} \@nil + \let\psk@viewpoint\pst@tempg} +\def\psset@@viewpoint#1 #2 #3 #4\@nil{% + \begingroup + \pssetxlength\pst@dima{#1}% + \pssetylength\pst@dimb{#2}% + \pssetzlength\pst@dimc{#3}% + \xdef\pst@tempg{% + \pst@number\pst@dima \pst@number\pst@dimb \pst@number\pst@dimc}% + \endgroup} +\psset[pst-3d]{viewpoint=1 -1 1} +% \end{macrocode} +% \end{macro} +% +% \begin{macro}{\psk@viewangle} +% \begin{macrocode} +\define@key[psset]{pst-3d}{viewangle}{% + \pst@getangle{#1}\psk@viewangle} +\psset[pst-3d]{viewangle=0} +% \end{macrocode} +% \end{macro} +% +% \begin{macro}{\psk@normal} +% \begin{macrocode} +\define@key[psset]{pst-3d}{normal}{% + \pst@expandafter\psset@@viewpoint#1 {} {} {} \@nil + \let\psk@normal\pst@tempg} +\psset[pst-3d]{normal=0 0 1} +% \end{macrocode} +% \end{macro} +% +% \begin{macro}{\psk@embedangle} +% \begin{macrocode} +\define@key[psset]{pst-3d}{embedangle}{% + \pst@getangle{#1}\psk@embedangle} +\psset[pst-3d]{embedangle=0} +% \end{macrocode} +% \end{macro} +% +% \begin{macro}{\psTshadowsize} +% \begin{macrocode} +\define@key[psset]{pst-3d}{Tshadowsize}{% + \pst@checknum{#1}\psTshadowsize} +\psset[pst-3d]{Tshadowsize=1} +% \end{macrocode} +% \end{macro} +% +% \begin{macro}{\psk@Tshadowangle} +% \begin{macrocode} +\define@key[psset]{pst-3d}{Tshadowangle}{% + \pst@getangle{#1}\psk@Tshadowangle} +\psset[pst-3d]{Tshadowangle=60} +% \end{macrocode} +% \end{macro} +% +% \begin{macro}{\psTshadowcolor} +% \begin{macrocode} +\define@key[psset]{pst-3d}{Tshadowcolor}{% + \pst@getcolor{#1}\psTshadowcolor} +\psset[pst-3d]{Tshadowcolor=lightgray} +% \end{macrocode} +% \end{macro} +% + +% \subsection{\texttt{PostScript} code} +% +% \begin{macro}{\tx@TMSave} +% \begin{macrocode} +\pst@def{TMSave}<% + tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 } def } if + /TMatrix [ TMatrix CM ] cvx def> +% \end{macrocode} +% \end{macro} +% \begin{macro}{\tx@TMRestore} +% \begin{macrocode} +\pst@def{TMRestore}<% + CP /TMatrix [ TMatrix setmatrix ] cvx def moveto> +% +% \end{macrocode} +% \end{macro} +% +% \begin{macro}{\tx@TMChange} +% The syntax: +% \begin{verbatim} +% {<Proc for modifying tm>} TMChange +% \end{verbatim} +% \begin{macrocode} +\pst@def{TMChange}<% + \tx@TMSave + /cp [ currentpoint ] cvx def % ??? Check this later. + CM +% \end{macrocode} +% +% Set ''standard`` coordinate system , with \verb+pt+ units and origin at currentpoint. +% This let's us rotate, or whatever, around \TeX's current point, without +% having to worry about strange coordinate systems that the dvi-to-ps +% driver might be using. +% \begin{macrocode} + CP T \tx@STV +% \end{macrocode} +% Let M = old matrix (on stack), and M' equal current matrix. Then +% go from M' to M by applying M Inv(M'). +% \begin{macrocode} + CM matrix invertmatrix % Inv(M') + matrix concatmatrix % M Inv(M') +% \end{macrocode} +% Now modify transformation matrix: +% \begin{macrocode} + exch exec +% \end{macrocode} +% Now apply M Inv(M') +% \begin{macrocode} + concat cp moveto> +% \end{macrocode} +% \end{macro} +% +% \subsection{Three dimensional operations} +% +% There is only one macro which collects all the basic operations for three dimansional representation +% of a text or graphic object. +% +% \begin{macro}{\ThreeDput} +% \begin{macrocode} +\def\ThreeDput{\def\pst@par{}\pst@object{ThreeDput}} +\def\ThreeDput@i{\@ifnextchar({\ThreeDput@ii}{\ThreeDput@ii(\z@,\z@,\z@)}} +\def\ThreeDput@ii(#1,#2,#3){% + \pst@killglue\pst@makebox{\ThreeDput@iii(#1,#2,#3)}} +\def\ThreeDput@iii(#1,#2,#3){% + \begingroup + \use@par + \if@star\pst@starbox\fi + \pst@makesmall\pst@hbox + \pssetxlength\pst@dima{#1}% + \pssetylength\pst@dimb{#2}% + \pssetzlength\pst@dimc{#3}% + \leavevmode + \hbox{% + \pst@Verb{% + { \pst@number\pst@dima + \pst@number\pst@dimb + \pst@number\pst@dimc + \psk@normal + \psk@embedangle + \psk@viewpoint + \psk@viewangle + \tx@SetMatrixEmbed + } \tx@TMChange}% + \box\pst@hbox + \pst@Verb{\tx@TMRestore}}% + \endgroup + \ignorespaces} +% \end{macrocode} +% \end{macro} +% +% +% \subsection{Arithmetic\label{Arithmetic}} +% +% \begin{macro}{\pst@sinandcos} +% Syntax: +% \begin{LVerbatim} +% \pst@sinandcos{<dim>}{<int>} +% \end{LVerbatim} +% <dim>, in "sp" units, should equal 100,000 times the angle, in degrees +% between 0 and 90. <int> should equal the angle's quadrant (0, 1, 2 or 3). +% \verb+\pst@dimg+ is set to $\sin(\theta)$ and \verb+\pst@dimh+ is set to +% $\cos(\theta)$ (in pt's). +% +% The algorithms uses the usual McLaurin expansion. +% \begin{macrocode} +\def\pst@sinandcos#1{% + \begingroup + \pst@dima=#1\relax + \pst@dima=.366022\pst@dima %Now 1pt=1/32rad + \pst@dimb=\pst@dima % dimb->32sin(angle) in pts + \pst@dimc=32\p@ % dimc->32cos(angle) in pts + \pst@dimtonum\pst@dima\pst@tempa + \pst@cntb=\tw@ + \pst@cntc=-\@ne + \pst@cntg=32 + \loop + \ifnum\pst@dima>\@cclvi % 256 + \pst@dima=\pst@tempa\pst@dima + \divide\pst@dima\pst@cntg + \divide\pst@dima\pst@cntb + \ifodd\pst@cntb + \advance\pst@dimb \pst@cntc\pst@dima + \pst@cntc=-\pst@cntc + \else + \advance\pst@dimc by \pst@cntc\pst@dima + \fi + \advance\pst@cntb\@ne + \repeat + \divide\pst@dimb\pst@cntg + \divide\pst@dimc\pst@cntg + \global\pst@dimg\pst@dimb + \global\pst@dimh\pst@dimc + \endgroup} +% \end{macrocode} +% \end{macro} +% +% \begin{macro}{\pst@getsinandcos} +% \verb+\pst@getsinandcos+ normalizes the angle to be in the first quadrant, sets +% \verb+\pst@quadrant+ to 0 for the first quadrant, 1 for the second, 2 for the +% third, and 3 for the fourth, invokes \verb+\pst@sinandcos+, and sets \verb+\pst@sin+ +% to the sine and \verb+\pst@cos+ to the cosine. +% \begin{macrocode} +\def\pst@getsinandcos#1{% + \pst@dimg=100000sp + \pst@dimg=#1\pst@dimg + \pst@dimh=36000000sp + \pst@cntg=0 + \loop + \ifnum\pst@dimg<\z@ + \advance\pst@dimg\pst@dimh + \repeat + \loop + \ifnum\pst@dimg>\pst@dimh + \advance\pst@dimg-\pst@dimh + \repeat + \pst@dimh=9000000sp + \def\pst@tempg{% + \ifnum\pst@dimg<\pst@dimh\else + \advance\pst@dimg-\pst@dimh + \advance\pst@cntg\@ne + \ifnum\pst@cntg>\thr@@ \advance\pst@cntg-4 \fi + \expandafter\pst@tempg + \fi}% + \pst@tempg + \chardef\pst@quadrant\pst@cntg + \ifdim\pst@dimg=\z@ + \def\pst@sin{0}% + \def\pst@cos{1}% + \else + \pst@sinandcos\pst@dimg + \pst@dimtonum\pst@dimg\pst@sin + \pst@dimtonum\pst@dimh\pst@cos + \fi% +} +% \end{macrocode} +% \end{macro} +% +% \subsection{Tilting} +% +% \begin{macro}{\pstilt} +% \begin{macrocode} +\def\pstilt#1{\pst@makebox{\pstilt@{#1}}} +\def\pstilt@#1{% + \begingroup + \leavevmode + \pst@getsinandcos{#1}% + \hbox{% + \ifcase\pst@quadrant + \kern\pst@cos\dp\pst@hbox + \pst@dima=\pst@cos\ht\pst@hbox + \ht\pst@hbox=\pst@sin\ht\pst@hbox + \dp\pst@hbox=\pst@sin\dp\pst@hbox + \or + \kern\pst@sin\ht\pst@hbox + \pst@dima=\pst@sin\dp\pst@hbox + \ht\pst@hbox=\pst@cos\ht\pst@hbox + \dp\pst@hbox=\pst@cos\dp\pst@hbox + \or + \kern\pst@cos\ht\pst@hbox + \pst@dima=\pst@sin\dp\pst@hbox + \pst@dimg=\pst@sin\ht\pst@hbox + \ht\pst@hbox=\pst@sin\dp\pst@hbox + \dp\pst@hbox=\pst@dimg + \or + \kern\pst@sin\dp\pst@hbox + \pst@dima=\pst@sin\ht\pst@hbox + \pst@dimg=\pst@cos\ht\pst@hbox + \ht\pst@hbox=\pst@cos\dp\pst@hbox + \dp\pst@hbox=\pst@dimg + \fi + \pst@Verb{% + { [ 1 0 + \pst@cos\space \ifnum\pst@quadrant>\@ne neg \fi + \pst@sin\space + \ifnum\pst@quadrant>\z@\ifnum\pst@quadrant<\thr@@ neg \fi\fi + \ifodd\pst@quadrant exch \fi + 0 0 + ] concat + } \tx@TMChange}% + \box\pst@hbox + \pst@Verb{\tx@TMRestore}% + \kern\pst@dima}% + \endgroup} +% \end{macrocode} +% \end{macro} +% +% \begin{macro}{\psTilt} +% \begin{macrocode} +\def\psTilt#1{\pst@makebox{\psTilt@{#1}}} +\def\psTilt@#1{% + \begingroup + \leavevmode + \pst@getsinandcos{#1}% + \hbox{% + \ifodd\pst@quadrant + \pst@@divide{\dp\pst@hbox}{\pst@cos\p@}% + \ifnum\pst@quadrant=\thr@@\kern\else\pst@dima=\fi\pst@sin\pst@dimg + \pst@@divide{\ht\pst@hbox}{\pst@cos\p@}% + \ifnum\pst@quadrant=\@ne\kern\else\pst@dima=\fi\pst@sin\pst@dimg + \else + \ifdim\pst@sin\p@=\z@ + \@pstrickserr{\string\psTilt\space angle cannot be 0 or 180}\@ehpa + \def\pst@sin{.7071}% + \def\pst@cos{.7071}% + \fi + \pst@@divide{\dp\pst@hbox}{\pst@sin\p@}% + \ifnum\pst@quadrant=\z@\kern\else\pst@dima=\fi\pst@cos\pst@dimg + \pst@@divide{\ht\pst@hbox}{\pst@sin\p@}% + \ifnum\pst@quadrant=\tw@\kern\else\pst@dima=\fi\pst@cos\pst@dimg + \fi + \ifnum\pst@quadrant>\@ne + \pst@dimg=\ht\pst@hbox + \ht\pst@hbox=\dp\pst@hbox + \dp\pst@hbox=\pst@dimg + \fi + \pst@Verb{% + { [ 1 0 + \pst@cos\space \pst@sin\space + \ifodd\pst@quadrant exch \fi + \tx@Div + \ifnum\pst@quadrant>\z@\ifnum\pst@quadrant<\thr@@ neg \fi\fi + \ifnum\pst@quadrant>\@ne -1 \else 1 \fi + 0 0 + ] concat + } \tx@TMChange}% + \box\pst@hbox + \pst@Verb{\tx@TMRestore}% + \kern\pst@dima}% + \endgroup} +% \end{macrocode} +% \end{macro} +% +% +% \subsection{Shadow} +% +% \begin{macro}{\psshadow} +% \begin{macrocode} +\def\psshadow{\pst@object{psshadow}} +\def\psshadow@i{\pst@makebox{\psshadow@ii}} +\def\psshadow@ii{% + \begingroup + \use@par + \leavevmode + \pst@getsinandcos{\psk@Tshadowangle}% + \hbox{% + \lower\dp\pst@hbox\hbox{% + \pst@Verb{% + { [ 1 0 + \pst@cos\space \psTshadowsize mul + \ifnum\pst@quadrant>\@ne neg \fi + \pst@sin\space \psTshadowsize mul + \ifnum\pst@quadrant>\z@\ifnum\pst@quadrant<\thr@@ neg \fi\fi + \ifodd\pst@quadrant exch \fi + 0 0 + ] concat + } \tx@TMChange}}% + \hbox to\z@{% patch 2 (hv), to get it run with xcolor _and_ TeX + \pst@Verb{ gsave \pst@usecolor\psTshadowcolor}% + \copy\pst@hbox + \pst@Verb{ grestore}\hss}% +% \hbox to\z@{{\@nameuse{\psTshadowcolor}\copy\pst@hbox\hss}}% + \pst@Verb{\tx@TMRestore}% + \box\pst@hbox}% + \endgroup} +% \end{macrocode} +% \end{macro} +% +% \subsection{Closing} +% +% Catcodes restoration. +% +% \begin{macrocode} +\catcode`\@=\PstAtCode\relax +% \end{macrocode} +% +%</pst-3d> +% +\endinput +%% +%% END pst-3d.tex |