summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/dvips/pst-func/pst-func.pro
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/dvips/pst-func/pst-func.pro')
-rw-r--r--Master/texmf-dist/dvips/pst-func/pst-func.pro221
1 files changed, 216 insertions, 5 deletions
diff --git a/Master/texmf-dist/dvips/pst-func/pst-func.pro b/Master/texmf-dist/dvips/pst-func/pst-func.pro
index 580e702c837..56b43d8c605 100644
--- a/Master/texmf-dist/dvips/pst-func/pst-func.pro
+++ b/Master/texmf-dist/dvips/pst-func/pst-func.pro
@@ -3,9 +3,9 @@
%%
%% IMPORTANT NOTICE:
%%
-%% Package `pst-func.tex'
+%% Package `pst-func'
%%
-%% Herbert Voss <voss _at_ perce.de>
+%% Herbert Voss <voss _at_ pstricks.de>
%%
%% This program can be redistributed and/or modified under the terms
%% of the LaTeX Project Public License Distributed from CTAN archives
@@ -15,13 +15,70 @@
%% `pst-func' is a PSTricks package to plot special math functions
%%
%%
-%% version 0.02 / 2004-11-08 Herbert Voss <voss _at_ pstricks.de>
+%% version 0.06 / 2006-04-16 Herbert Voss <voss _at_ pstricks.de>
%
-/tx@FuncDict 40 dict def
+/tx@FuncDict 100 dict def
tx@FuncDict begin
%
/eps1 1.0e-05 def
/eps2 1.0e-04 def
+/eps8 1.0e-08 def
+/Pi2 1.57079632679489661925640 def
+/CEuler 0.5772156649 def % Euler-Mascheroni constant
+%
+/factorial { % n on stack, returns n!
+ dup 0 eq { 1 }{
+ dup 1 gt { dup 1 sub factorial mul } if }
+ ifelse } def
+%
+/MoverN { % m n on stack, returns the binomial coefficient m over n
+ /n exch def /m exch def
+ n 0 eq { 1 }{
+ m n eq { 1 }{
+ m factorial n factorial m n sub factorial mul div } ifelse } ifelse
+} def
+%
+/Si { % integral sin from 0 to x (arg on stack)
+ /arg exch def
+ /Sum arg def
+ /sign -1 def
+ /index 3 def
+ {
+ arg index exp index div index factorial div sign mul
+ dup abs eps8 lt { pop exit } if
+ Sum add /Sum exch def
+ /sign sign neg def
+ /index index 2 add def
+ } loop
+ Sum
+} def
+/si { % integral sin from x to infty -> si(x)=Si(x)-pi/2
+ Si Pi2 sub
+} def
+/Ci { % integral cosin from x to infty (arg on stack)
+ abs /arg exch def
+ arg 0 eq { 0 } {
+ /argExp 1 def
+ /fact 1 def
+ /Sum CEuler arg ln add def
+ /sign -1 def
+ /index 2 def
+ {
+ /argExp argExp arg arg mul mul def
+ /fact fact index 1 sub index mul mul def
+ argExp index div fact div sign mul
+ dup abs exch Sum add /Sum exch def
+ eps8 lt { exit } if
+ /sign sign neg def
+ /index index 2 add def
+ } loop
+ Sum
+ } ifelse
+} def
+/ci { % integral cosin from x to infty -> ci(x)=-Ci(x)+ln(x)+CEuler
+ dup Ci neg exch abs ln add CEuler add
+} def
+%
/MaxIter 255 def
/func { coeff Derivation FuncValue } def
/func' { coeff Derivation 1 add FuncValue } def
@@ -54,7 +111,7 @@ tx@FuncDict begin
y0 F sub /Phi exch def
Phi func /F2 exch def
F2 abs eps2 le { exit }{
- Phi y0 sub dup mul Phi F2 sub 2 Phi mul sub y0 add div /Diff exch def
+ Phi y0 sub dup mul Phi F2 sub 2 Phi mul sub y0 add Div /Diff exch def
y0 Diff sub /y0 exch def
Diff abs eps1 le { exit } if
} ifelse
@@ -113,5 +170,159 @@ tx@FuncDict begin
} for
} def
%
+/Simpson { % on stack must be a b M
+% /SFunc must be defined
+ /M ED /b ED /a ED
+ /h b a sub M 2 mul div def
+ /s1 0 def
+ /s2 0 def
+ 1 1 M {
+ /k exch def
+ /x k 2 mul 1 sub h mul a add def
+ /s1 s1 x SFunc add def
+ } for
+ 1 1 M 1 sub {
+ /k exch def
+ /x k 2 mul h mul a add def
+ /s2 s2 x SFunc add def
+ } for
+ /I a SFunc b SFunc add s1 4 mul add s2 2 mul add 3 div h mul def
+} def
+
+%
+% subroutines for complex numbers, given as an array [a b]
+% which is a+bi = Real+i Imag
+%
+/cxadd { % [a1 b1] [a2 b2] = [a1+a2 b1+b2]
+ dup 0 get % [a1 b1] [a2 b2] a2
+ 3 -1 roll % [a2 b2] a2 [a1 b1]
+ dup 0 get % [a2 b2] a2 [a1 b1] a1
+ 3 -1 roll % [a2 b2] [a1 b1] a1 a2
+ add % [a2 b2] [a1 b1] a1+a2
+ 3 1 roll % a1+a2 [a2 b2] [a1 b1]
+ 1 get % a1+a2 [a2 b2] b1
+ exch 1 get % a1+a2 b1 b2
+ add 2 array astore
+} def
+%
+/cxneg { % [a b]
+ dup 1 get % [a b] b
+ exch 0 get % b a
+ neg exch neg % -a -b
+ 2 array astore
+} def
+%
+/cxsub { cxneg cxadd } def % same as negative addition
+%
+% [a1 b1][a2 b2] = [a1a2-b1b2 a1b2+b1a2] = [a3 b3]
+/cxmul { % [a1 b1] [a2 b2]
+ dup 0 get % [a1 b1] [a2 b2] a2
+ exch 1 get % [a1 b1] a2 b2
+ 3 -1 roll % a2 b2 [a1 b1]
+ dup 0 get % a2 b2 [a1 b1] a1
+ exch 1 get % a2 b2 a1 b1
+ dup % a2 b2 a1 b1 b1
+ 5 -1 roll dup % b2 a1 b1 b1 a2 a2
+ 3 1 roll mul % b2 a1 b1 a2 b1a2
+ 5 -2 roll dup % b1 a2 b1a2 b2 a1 a1
+ 3 -1 roll dup % b1 a2 b1a2 a1 a1 b2 b2
+ 3 1 roll mul % b1 a2 b1a2 a1 b2 a1b2
+ 4 -1 roll add % b1 a2 a1 b2 b3
+ 4 2 roll mul % b1 b2 b3 a1a2
+ 4 2 roll mul sub % b3 a3
+ exch 2 array astore
+} def
+%
+% [a b]^2 = [a^2-b^2 2ab] = [a2 b2]
+/cxsqr { % [a b] square root
+ dup 0 get exch 1 get % a b
+ dup dup mul % a b b^2
+ 3 -1 roll % b b^2 a
+ dup dup mul % b b^2 a a^2
+ 3 -1 roll sub % b a a2
+ 3 1 roll mul 2 mul % a2 b2
+ 2 array astore
+} def
+%
+/cxsqrt { % [a b]
+% dup cxnorm sqrt /r exch def
+% cxarg 2 div RadtoDeg dup cos r mul exch sin r mul cxmake2
+ cxlog % log[a b]
+ 2 cxrdiv % log[a b]/2
+ aload pop exch % b a
+ 2.781 exch exp % b exp(a)
+ exch cxconv exch % [Re +iIm] exp(a)
+ cxrmul %
+} def
+%
+/cxarg { % [a b]
+ aload pop % a b
+ exch atan % arctan b/a
+ DegtoRad % arg(z)=atan(b/a)
+} def
+%
+% log[a b] = [a^2-b^2 2ab] = [a2 b2]
+/cxlog { % [a b]
+ dup % [a b][a b]
+ cxnorm % [a b] |z|
+ log % [a b] log|z|
+ exch % log|z|[a b]
+ cxarg % log|z| Theta
+ cxmake2 % [log|z| Theta]
+} def
+%
+% square of magnitude of complex number
+/cxnorm2 { % [a b]
+ dup 0 get exch 1 get % a b
+ dup mul % a b^2
+ exch dup mul add % a^2+b^2
+} def
%
+/cxnorm { % [a b]
+ cxnorm2 sqrt
+} def
+%
+/cxconj { % conjugent complex
+ dup 0 get exch 1 get % a b
+ neg 2 array astore % [a -b]
+} def
+%
+/cxre { 0 get } def % real value
+/cxim { 1 get } def % imag value
+%
+% 1/[a b] = ([a -b]/(a^2+b^2)
+/cxrecip { % [a b]
+ dup cxnorm2 exch % n2 [a b]
+ dup 0 get exch 1 get % n2 a b
+ 3 -1 roll % a b n2
+ dup % a b n2 n2
+ 4 -1 roll exch div % b n2 a/n2
+ 3 1 roll div % a/n2 b/n2
+ neg 2 array astore
+} def
+%
+/cxmake1 { 0 2 array astore } def % make a complex number, real given
+/cxmake2 { 2 array astore } def % dito, both given
+%
+/cxdiv { cxrecip cxmul } def
+%
+% multiplikation by a real number
+/cxrmul { % [a b] r
+ exch aload pop % r a b
+ 3 -1 roll dup % a b r r
+ 3 1 roll mul % a r b*r
+ 3 1 roll mul % b*r a*r
+ exch 2 array astore % [a*r b*r]
+} def
+%
+% division by a real number
+/cxrdiv { % [a b] r
+ 1 exch div % [a b] 1/r
+ cxrmul
+} def
+%
+% exp(i theta) = cos(theta)+i sin(theta) polar<->cartesian
+/cxconv { % theta
+ RadtoDeg dup sin exch cos cxmake2
+} def
end