summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc')
-rw-r--r--Master/texmf-dist/doc/fonts/mathdesign/MD-Adobe-Utopia-example.pdfbin0 -> 243164 bytes
-rw-r--r--Master/texmf-dist/doc/fonts/mathdesign/MD-Adobe-Utopia-example.tex271
-rw-r--r--Master/texmf-dist/doc/fonts/mathdesign/MD-Bitstream-Bitstream-Charter-example.pdfbin0 -> 235737 bytes
-rw-r--r--Master/texmf-dist/doc/fonts/mathdesign/MD-Bitstream-Bitstream-Charter-example.tex271
-rw-r--r--Master/texmf-dist/doc/fonts/mathdesign/MD-adobe-utopia-doc.pdfbin417780 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/fonts/mathdesign/MD-adobe-utopia-example.pdfbin111045 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/fonts/mathdesign/MD-bitstream-charter-doc.pdfbin395982 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/fonts/mathdesign/MD-bitstream-charter-example.pdfbin98713 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/fonts/mathdesign/MD-urw-garamond-doc.pdfbin453770 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/fonts/mathdesign/MD-urw-garamond-example.pdfbin124754 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/fonts/mathdesign/README156
-rw-r--r--Master/texmf-dist/doc/fonts/mathdesign/mathdesign-doc.pdfbin426058 -> 313756 bytes
-rw-r--r--Master/texmf-dist/doc/fonts/mathdesign/mathdesign-doc.tex1784
-rw-r--r--Master/texmf-dist/doc/latex/mathdesign/mathdesign-doc.pdfbin426058 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/mathdesign/mdbch/MD-bitstream-charter-doc.pdfbin395982 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/mathdesign/mdbch/mdbchtest.tex506
-rw-r--r--Master/texmf-dist/doc/latex/mathdesign/mdput/MD-adobe-utopia-doc.pdfbin417780 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/mathdesign/mdput/mdputtest.tex506
-rw-r--r--Master/texmf-dist/doc/latex/mathdesign/mdugm/MD-urw-garamond-doc.pdfbin453770 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/mathdesign/mdugm/mdugmtest.tex506
20 files changed, 2449 insertions, 1551 deletions
diff --git a/Master/texmf-dist/doc/fonts/mathdesign/MD-Adobe-Utopia-example.pdf b/Master/texmf-dist/doc/fonts/mathdesign/MD-Adobe-Utopia-example.pdf
new file mode 100644
index 00000000000..e46b144d052
--- /dev/null
+++ b/Master/texmf-dist/doc/fonts/mathdesign/MD-Adobe-Utopia-example.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/fonts/mathdesign/MD-Adobe-Utopia-example.tex b/Master/texmf-dist/doc/fonts/mathdesign/MD-Adobe-Utopia-example.tex
new file mode 100644
index 00000000000..1b81fefaab1
--- /dev/null
+++ b/Master/texmf-dist/doc/fonts/mathdesign/MD-Adobe-Utopia-example.tex
@@ -0,0 +1,271 @@
+\documentclass[12pt]{article}
+
+\usepackage[T1]{fontenc}
+\usepackage[latin1]{inputenc}
+% \usepackage[french]{babel}
+\usepackage{amsmath}
+\usepackage{amsthm}
+%\usepackage{mathrsfs}
+\newtheorem{theorem}{Theorem}[section]
+\newtheorem{definition}{Definition}[section]
+\newenvironment{demo}{\noindent {\bf Dem.}}{\qed}
+\newenvironment{remarque}{\noindent {\bf Rem.} \small \itshape}{}
+\newenvironment{exemple}{\noindent {\bf Example}}{}
+
+\newcommand{\Lu}{L^1(\Rset)}
+\newcommand{\tf}[1]{{\cal F}\left(#1\right)}
+\newcommand{\ii}{{\mathrm{i}}}
+\newcommand{\Cn}{{\cal C}^{n}}
+\newcommand{\dd}{\mathrm{d}}
+% ;; \newcommand{\Rset}{{\mathbb R}}
+\newcommand{\Rset}{R}
+\newcommand{\R}{\mathbb R}
+\newcommand{\C}{\mathbb R}
+\newcommand{\ex}{\mathrm{e}}
+\newcommand{\Cinf}{{\cal C}^{\infty}}
+\newcommand{\abs}[1]{\left| #1 \right|}
+\newcommand{\dx}{\dd x}
+\newcommand{\ds}{\displaystyle}
+\newcommand{\vect}[1]{\overrightarrow{#1}}
+\newcommand{\Boule}[2]{\mathscr B(#1,#2)}
+\newcommand{\Cercle}[2]{\mathscr C(#1,#2)}
+\DeclareMathOperator{\Arg}{Arg}
+
+\newcommand{\dep}[2]{\ds \frac{\partial #1}{\partial #2}}
+
+\title{Example of the \textsf{mdput} fonts.}
+
+\author{Paul Pichaureau}
+
+
+\usepackage[cal=scr,mdput,greekfamily = didot]{mathdesign}
+%% \usepackage{amssymb}
+
+\begin{document}
+
+\maketitle
+
+\begin{abstract}
+ The package \textsf{mdput} consists of a full set of
+ mathematical fonts, designed to be combined with Adobe
+ Utopia as the main text font.
+
+ This example is extracted from the excellent book {\em
+ Mathematics for Physics and Physicists}, {\sc W. Appel},
+ Princeton University Press, {\sc 2007}.
+
+\end{abstract}
+
+
+\section{Conformal maps}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\subsection{Preliminaries}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+Consider a change of variable $(x,y)\mapsto
+(u,v)=\big(u(x,y),v(x,y)\big)$ in the plane $\R^2$, identified
+with~$\C$. This change of variable really only deserves the name if
+$f$ is locally bijective (i.e., one-to-one); this is the case if the
+jacobian of the map is nonzero (then so is the jacobian of the
+inverse map):
+\begin{equation*}
+ \left| \frac{{D}(u,v)}{{D}(x,y)}\right| =
+ \begin{vmatrix}
+ \ds\frac{\displaystyle\partial u}{\displaystyle\partial x} &
+ \ds\frac{\displaystyle\partial u}{\displaystyle\partial y} \\[4mm]
+ \ds\frac{\displaystyle\partial v}{\displaystyle\partial x} &
+ \ds\frac{\displaystyle\partial v}{\displaystyle\partial y}
+ \end{vmatrix}\neq 0
+ \qquad\text{and}\qquad
+ \left| \frac{{D}(x,y)}{{D}(u,v)}\right|
+ =\begin{vmatrix}\ds\dep{x}{u} &\ds \dep{x}{v}\\[4mm]
+ \ds\dep{y}{u} &\ds \dep{y}{v}
+ \end{vmatrix}\neq 0.
+\end{equation*}
+\begin{theorem}
+In a complex change of variable
+\begin{equation*}
+ z= x+\ii y\longmapsto w=f(z)=u+\ii v,
+\end{equation*}
+and \emph{if $f$ is holomorphic}, then the jacobian of the map is equal to
+\begin{equation*}
+ J_f(z)=\left| \frac{{D}(u,v)}{{D}(x,y)}\right|=
+ \abs{f'(z)}^2.
+\end{equation*}
+\end{theorem}
+\begin{demo}
+ Indeed, we have $f'(z)=\dep{u}{x}+\ii\dep{v}{x}$ and hence, by the
+ Cauchy-Riemann relations,
+ \begin{align*}
+ \abs{f'(z)}^2 & =
+ \left(\dep{u}{x}\right)^2+\left(\dep{v}{x}\right)^2
+ =
+ \dep{u}{x}\dep{v}{y}-\dep{v}{x}\dep{u}{y}=J_f(z).
+ \end{align*}
+\end{demo}
+
+\begin{definition}
+ \index{Conformal map}%
+ \index{Transformation!conformal ---}%
+ A \emph{conformal map} or \emph{conformal transformation} of an
+ open subset $\Omega\subset\R^2$ into another open subset
+ $\Omega'\subset\R^2$ is any map $f:\Omega\mapsto \Omega'$, locally
+ bijective, that preserves angles and orientation.
+\end{definition}
+
+\begin{theorem}
+ Any conformal map is given by a holomorphic function $f$ such
+ that the derivative of $f$ does not vanish.
+\end{theorem}
+
+This justifies the next definition:
+%% ----------------------------------------------------------------------
+\begin{definition}
+ \index{Conformal map}%
+ \index{Transformation!conformal ---}%
+ A \emph{conformal transformation} or \emph{conformal map} of
+ an open subset
+ $\Omega\subset\C$ into another open subset
+ $\Omega'\subset\C$ is any holomorphic function
+ $f:\Omega\mapsto \Omega'$ such that
+ $f'(z)\neq 0$ for all $z\in\Omega$.
+\end{definition}
+%% ----------------------------------------------------------------------
+
+%% ----------------------------------------------------------------------
+\begin{demo}[that the definitions are equivalent]
+ We will denote in general $w=f(z)$. Consider, in the complex plane, two
+ line segments $\gamma_1$ and $\gamma_2$ contained inside the set $\Omega$
+ where $f$ is defined, and intersecting at a point $z_0$ in $\Omega$.
+ Denote by $\gamma'_1$ and $\gamma_2'$ their images by~$f$.
+
+ We want to show that if the angle between $\gamma_1$ and $\gamma_2$ is
+ equal to $\theta$, then the same holds for their images, which means that
+ the angle between the tangent lines to $\gamma'_1$ and $\gamma'_2$ at
+ $w_0=f(z_0)$ is also equal to $\theta$.
+
+ Consider a point $z\in\gamma_1$ close to~$z_0$. Its image $w=f(z)$
+ satisfies
+ \begin{equation*}
+ \lim_{z\to z_0} \frac{w-w_0}{z-z_0}=f'(z_0),
+ \end{equation*}
+ and hence
+ $$\displaystyle \lim_{z\to z_0} \Arg
+ (w-w_0)-\Arg(z-z_0) = \Arg f'(z_0), $$%
+ which shows that the angle between the curve $\gamma'_1$ and the real
+ axis is equal to the angle between the original segment $\gamma_1$ and
+ the real axis, plus the angle $\alpha=\Arg f'(z_0)$ (which is well
+ defined because $f'(z)\neq 0$).
+
+ Similarly, the angle between the image curve $\gamma'_2$ and the real
+ axis is equal to that between the segment $\gamma_2$ and the real axis,
+ plus the same~$\alpha$.
+
+ Therefore, the angle between the two image curves is the same as that
+ between the two line segments, namely, $\theta$.
+
+ Another way to see this is as follows: the tangent vectors of the curves
+ are transformed according to the rule $\vect{V}'=\dd f_{z_0}\vect{V}$. But the
+ differential of $f$ (when $f$ is seen as a map from $\R^2$ to~$\R^2$) is
+ of the form
+ \begin{equation}
+ \displaystyle \dd f_{z_0}=\begin{pmatrix}
+ \displaystyle \dep{P}{x} & \displaystyle \dep{P}{y} \\[4mm]
+ \displaystyle \dep{Q}{x} & \displaystyle \dep{Q}{y}\end{pmatrix}
+ =
+ \abs{f'(z_0)}\begin{pmatrix}\cos\alpha& -\sin\alpha
+ \\ \sin\alpha &\cos\alpha \end{pmatrix},
+ \label{eq:FSimil}
+ \end{equation}
+ where $\alpha$ is the argument of $f'(z_0)$. This is the matrix of a
+ rotation composed with a homothety, that is, a similitude.
+
+ \medskip
+%% ······································································
+ % {\begin{picture}(300,100)
+ % \put(0,0){\epsfig{file=\Figures/TC.\Ext,height=3.2cm}}
+ % \put(20,65){$\gamma_2$} \put(80,55){$\theta$}
+ % \put(100,80){$\gamma_1$} \put(195,85){$\gamma'_1$}
+ % \put(245,35){$\theta$} \put(270,60){$\gamma'_2$}
+ % \end{picture}}
+%% ······································································
+
+ Conversely, if $f$ is a map which is $\R^2$-differentiable and preserves
+ angles, then at any point $\dd f$ is an endomorphism of~$\R^2$ which
+ preserves angles. Since $f$ also preserves orientation, its determinant
+ is positive, so $\dd f$ is a similitude, and its matrix is exactly
+ as in equation~\eqref{eq:FSimil}. The Cauchy-Riemann equations are
+ immediate consequences.
+\end{demo}
+%% ----------------------------------------------------------------------
+
+%% ----------------------------------------------------------------------
+\begin{remarque}
+ \index{Antiholomorphic function}%
+ \index{Function!antiholomorphic ---}%
+ An \emph{antiholomorphic} map also preserves angles, but it
+ reverses the orientation.
+\end{remarque}
+%% ----------------------------------------------------------------------
+
+\newpage
+\subsection*{Calcul différentiel}
+
+
+
+Pour obtenir la différentielle totale de cette expression, considérée comme fonction de $x$, $y$, ..., donnons à $x$, $y$, ... des accroissements $d\!x$, $d\!y$, .... Soient $\Delta u$, $\Delta v$, ..., $\Delta f$ les accroissements correspondants de $u$, $v$, ...,$f$. On aura
+\begin{equation*}
+ \Delta f= \dfrac{\partial\! f}{\partial u} \Delta u + \dfrac{\partial\! f}{\partial v} \Delta v + \hdots + R\Delta u + R_1 \Delta v + \hdots,
+\end{equation*}
+$R$, $R_1$, ... tendant vers zéro avec $\Delta u$, $\Delta v$, ....
+
+Mais on a, d'autre part,
+\begin{align*}
+ \Delta u & = \dfrac{\partial u}{\partial x} d\! x + + \dfrac{\partial u}{\partial y} \Delta y + \hdots + S\Delta x + S_1 \Delta y + \hdots \\
+& = du + Sd\! x + S_1 d\! y + \hdots \\
+ \Delta v & = \dfrac{\partial v}{\partial x} d\! x + + \dfrac{\partial v}{\partial y} \Delta y + \hdots + T\Delta x + T_1 \Delta y + \hdots \\
+& = dv + Td\! x + T_1 d\! y + \hdots \\
+\hdots
+\end{align*}
+$S$, $S_1$, ..., $T$, $T_1$,... tendant vers zéro avec $d\! x$, $d\! y$, ....
+
+Substituant ces valeurs dans l'expression de $\Delta f$, il vient
+\begin{equation*}
+\begin{array}{rcl}
+ \vbox to 25pt {} \Delta f & = &\dfrac{\partial\! f}{\partial u} d u + \dfrac{\partial\! f}{\partial v} d v + \hdots + \rho d\! x + \rho_1 d\! y + \hdots \\
+\vbox to 25pt {}& = & \phantom{+} \left( \dfrac{\partial\! f}{\partial u} \dfrac{\partial u}{\partial x} + \dfrac{\partial\! f}{\partial v} \dfrac{\partial v}{\partial x} + \hdots \right) d\! x \\
+\vbox to 25pt {}& & + \left( \dfrac{\partial\! f}{\partial u} \dfrac{\partial u}{\partial y} + \dfrac{\partial\! f}{\partial v} \dfrac{\partial v}{\partial y} + \hdots \right) d\! y \\
+\vbox to 25pt {}&& + \hdots + \rho d\! x + \rho_1 d\! y + \hdots
+\end{array}
+\end{equation*}
+$\rho$, $\rho_1$, ... tendant vers zéro avec $d\! x$, $d\! y$, ....
+
+On aura donc
+\begin{align*}
+ \dfrac{\partial\! f}{\partial x}& = \dfrac{\partial\! f}{\partial u} \dfrac{\partial u}{\partial x} + \dfrac{\partial\! f}{\partial v} \dfrac{\partial v}{\partial x} + \hdots, \\
+ \dfrac{\partial\! f}{\partial y}& = \dfrac{\partial\! f}{\partial u} \dfrac{\partial u}{\partial y} + \dfrac{\partial\! f}{\partial v} \dfrac{\partial v}{\partial y} + \hdots, \\
+\hdots
+\end{align*}
+et, d'autre part,
+\begin{equation*}
+ df = \dfrac{\partial\! f}{\partial u} {\mathrm d} u + \dfrac{\partial\! f}{\partial v} {\mathrm d} v + \hdots ;
+\end{equation*}
+d'où les deux propositions suivantes :
+
+{\em La dérivée, par rapport à une variable indépendante $x$, d'une fonction composée $f(u,v,\hdots)$ s'obtient en ajoutant ensemble les dérivées partielles $\dfrac{\partial\! f}{\partial u}$, $\dfrac{\partial\! f}{\partial v}$, ..., respectivement multipliées par les dérivées de $u$, $v$, ... par rapport à $x$.
+
+La différentielle totale $df$ s'exprimer au moyen de $u$, $v$, ..., $du$, $dv$, ..., de la même manière que si $u$, $v$, ... étaient des variables indépendantes.
+}
+
+\hbox to \textwidth { \hfill
+ {\sc Camille Jordan}, {\em Cours d'analyse de l'\'Ecole polytechnique}
+}
+
+\end{document}
diff --git a/Master/texmf-dist/doc/fonts/mathdesign/MD-Bitstream-Bitstream-Charter-example.pdf b/Master/texmf-dist/doc/fonts/mathdesign/MD-Bitstream-Bitstream-Charter-example.pdf
new file mode 100644
index 00000000000..bf3aab58bff
--- /dev/null
+++ b/Master/texmf-dist/doc/fonts/mathdesign/MD-Bitstream-Bitstream-Charter-example.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/fonts/mathdesign/MD-Bitstream-Bitstream-Charter-example.tex b/Master/texmf-dist/doc/fonts/mathdesign/MD-Bitstream-Bitstream-Charter-example.tex
new file mode 100644
index 00000000000..2ed4f0185ba
--- /dev/null
+++ b/Master/texmf-dist/doc/fonts/mathdesign/MD-Bitstream-Bitstream-Charter-example.tex
@@ -0,0 +1,271 @@
+\documentclass[12pt]{article}
+
+\usepackage[T1]{fontenc}
+\usepackage[latin1]{inputenc}
+% \usepackage[french]{babel}
+\usepackage{amsmath}
+\usepackage{amsthm}
+%\usepackage{mathrsfs}
+\newtheorem{theorem}{Theorem}[section]
+\newtheorem{definition}{Definition}[section]
+\newenvironment{demo}{\noindent {\bf Dem.}}{\qed}
+\newenvironment{remarque}{\noindent {\bf Rem.} \small \itshape}{}
+\newenvironment{exemple}{\noindent {\bf Example}}{}
+
+\newcommand{\Lu}{L^1(\Rset)}
+\newcommand{\tf}[1]{{\cal F}\left(#1\right)}
+\newcommand{\ii}{{\mathrm{i}}}
+\newcommand{\Cn}{{\cal C}^{n}}
+\newcommand{\dd}{\mathrm{d}}
+% ;; \newcommand{\Rset}{{\mathbb R}}
+\newcommand{\Rset}{R}
+\newcommand{\R}{\mathbb R}
+\newcommand{\C}{\mathbb R}
+\newcommand{\ex}{\mathrm{e}}
+\newcommand{\Cinf}{{\cal C}^{\infty}}
+\newcommand{\abs}[1]{\left| #1 \right|}
+\newcommand{\dx}{\dd x}
+\newcommand{\ds}{\displaystyle}
+\newcommand{\vect}[1]{\overrightarrow{#1}}
+\newcommand{\Boule}[2]{\mathscr B(#1,#2)}
+\newcommand{\Cercle}[2]{\mathscr C(#1,#2)}
+\DeclareMathOperator{\Arg}{Arg}
+
+\newcommand{\dep}[2]{\ds \frac{\partial #1}{\partial #2}}
+
+\title{Example of the \textsf{mdbch} fonts.}
+
+\author{Paul Pichaureau}
+
+
+\usepackage[cal=scr,mdbch,greekfamily = didot]{mathdesign}
+%% \usepackage{amssymb}
+
+\begin{document}
+
+\maketitle
+
+\begin{abstract}
+ The package \textsf{mdbch} consists of a full set of
+ mathematical fonts, designed to be combined with Bitstream
+ Bitstream Charter as the main text font.
+
+ This example is extracted from the excellent book {\em
+ Mathematics for Physics and Physicists}, {\sc W. Appel},
+ Princeton University Press, {\sc 2007}.
+
+\end{abstract}
+
+
+\section{Conformal maps}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\subsection{Preliminaries}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+Consider a change of variable $(x,y)\mapsto
+(u,v)=\big(u(x,y),v(x,y)\big)$ in the plane $\R^2$, identified
+with~$\C$. This change of variable really only deserves the name if
+$f$ is locally bijective (i.e., one-to-one); this is the case if the
+jacobian of the map is nonzero (then so is the jacobian of the
+inverse map):
+\begin{equation*}
+ \left| \frac{{D}(u,v)}{{D}(x,y)}\right| =
+ \begin{vmatrix}
+ \ds\frac{\displaystyle\partial u}{\displaystyle\partial x} &
+ \ds\frac{\displaystyle\partial u}{\displaystyle\partial y} \\[4mm]
+ \ds\frac{\displaystyle\partial v}{\displaystyle\partial x} &
+ \ds\frac{\displaystyle\partial v}{\displaystyle\partial y}
+ \end{vmatrix}\neq 0
+ \qquad\text{and}\qquad
+ \left| \frac{{D}(x,y)}{{D}(u,v)}\right|
+ =\begin{vmatrix}\ds\dep{x}{u} &\ds \dep{x}{v}\\[4mm]
+ \ds\dep{y}{u} &\ds \dep{y}{v}
+ \end{vmatrix}\neq 0.
+\end{equation*}
+\begin{theorem}
+In a complex change of variable
+\begin{equation*}
+ z= x+\ii y\longmapsto w=f(z)=u+\ii v,
+\end{equation*}
+and \emph{if $f$ is holomorphic}, then the jacobian of the map is equal to
+\begin{equation*}
+ J_f(z)=\left| \frac{{D}(u,v)}{{D}(x,y)}\right|=
+ \abs{f'(z)}^2.
+\end{equation*}
+\end{theorem}
+\begin{demo}
+ Indeed, we have $f'(z)=\dep{u}{x}+\ii\dep{v}{x}$ and hence, by the
+ Cauchy-Riemann relations,
+ \begin{align*}
+ \abs{f'(z)}^2 & =
+ \left(\dep{u}{x}\right)^2+\left(\dep{v}{x}\right)^2
+ =
+ \dep{u}{x}\dep{v}{y}-\dep{v}{x}\dep{u}{y}=J_f(z).
+ \end{align*}
+\end{demo}
+
+\begin{definition}
+ \index{Conformal map}%
+ \index{Transformation!conformal ---}%
+ A \emph{conformal map} or \emph{conformal transformation} of an
+ open subset $\Omega\subset\R^2$ into another open subset
+ $\Omega'\subset\R^2$ is any map $f:\Omega\mapsto \Omega'$, locally
+ bijective, that preserves angles and orientation.
+\end{definition}
+
+\begin{theorem}
+ Any conformal map is given by a holomorphic function $f$ such
+ that the derivative of $f$ does not vanish.
+\end{theorem}
+
+This justifies the next definition:
+%% ----------------------------------------------------------------------
+\begin{definition}
+ \index{Conformal map}%
+ \index{Transformation!conformal ---}%
+ A \emph{conformal transformation} or \emph{conformal map} of
+ an open subset
+ $\Omega\subset\C$ into another open subset
+ $\Omega'\subset\C$ is any holomorphic function
+ $f:\Omega\mapsto \Omega'$ such that
+ $f'(z)\neq 0$ for all $z\in\Omega$.
+\end{definition}
+%% ----------------------------------------------------------------------
+
+%% ----------------------------------------------------------------------
+\begin{demo}[that the definitions are equivalent]
+ We will denote in general $w=f(z)$. Consider, in the complex plane, two
+ line segments $\gamma_1$ and $\gamma_2$ contained inside the set $\Omega$
+ where $f$ is defined, and intersecting at a point $z_0$ in $\Omega$.
+ Denote by $\gamma'_1$ and $\gamma_2'$ their images by~$f$.
+
+ We want to show that if the angle between $\gamma_1$ and $\gamma_2$ is
+ equal to $\theta$, then the same holds for their images, which means that
+ the angle between the tangent lines to $\gamma'_1$ and $\gamma'_2$ at
+ $w_0=f(z_0)$ is also equal to $\theta$.
+
+ Consider a point $z\in\gamma_1$ close to~$z_0$. Its image $w=f(z)$
+ satisfies
+ \begin{equation*}
+ \lim_{z\to z_0} \frac{w-w_0}{z-z_0}=f'(z_0),
+ \end{equation*}
+ and hence
+ $$\displaystyle \lim_{z\to z_0} \Arg
+ (w-w_0)-\Arg(z-z_0) = \Arg f'(z_0), $$%
+ which shows that the angle between the curve $\gamma'_1$ and the real
+ axis is equal to the angle between the original segment $\gamma_1$ and
+ the real axis, plus the angle $\alpha=\Arg f'(z_0)$ (which is well
+ defined because $f'(z)\neq 0$).
+
+ Similarly, the angle between the image curve $\gamma'_2$ and the real
+ axis is equal to that between the segment $\gamma_2$ and the real axis,
+ plus the same~$\alpha$.
+
+ Therefore, the angle between the two image curves is the same as that
+ between the two line segments, namely, $\theta$.
+
+ Another way to see this is as follows: the tangent vectors of the curves
+ are transformed according to the rule $\vect{V}'=\dd f_{z_0}\vect{V}$. But the
+ differential of $f$ (when $f$ is seen as a map from $\R^2$ to~$\R^2$) is
+ of the form
+ \begin{equation}
+ \displaystyle \dd f_{z_0}=\begin{pmatrix}
+ \displaystyle \dep{P}{x} & \displaystyle \dep{P}{y} \\[4mm]
+ \displaystyle \dep{Q}{x} & \displaystyle \dep{Q}{y}\end{pmatrix}
+ =
+ \abs{f'(z_0)}\begin{pmatrix}\cos\alpha& -\sin\alpha
+ \\ \sin\alpha &\cos\alpha \end{pmatrix},
+ \label{eq:FSimil}
+ \end{equation}
+ where $\alpha$ is the argument of $f'(z_0)$. This is the matrix of a
+ rotation composed with a homothety, that is, a similitude.
+
+ \medskip
+%% ······································································
+ % {\begin{picture}(300,100)
+ % \put(0,0){\epsfig{file=\Figures/TC.\Ext,height=3.2cm}}
+ % \put(20,65){$\gamma_2$} \put(80,55){$\theta$}
+ % \put(100,80){$\gamma_1$} \put(195,85){$\gamma'_1$}
+ % \put(245,35){$\theta$} \put(270,60){$\gamma'_2$}
+ % \end{picture}}
+%% ······································································
+
+ Conversely, if $f$ is a map which is $\R^2$-differentiable and preserves
+ angles, then at any point $\dd f$ is an endomorphism of~$\R^2$ which
+ preserves angles. Since $f$ also preserves orientation, its determinant
+ is positive, so $\dd f$ is a similitude, and its matrix is exactly
+ as in equation~\eqref{eq:FSimil}. The Cauchy-Riemann equations are
+ immediate consequences.
+\end{demo}
+%% ----------------------------------------------------------------------
+
+%% ----------------------------------------------------------------------
+\begin{remarque}
+ \index{Antiholomorphic function}%
+ \index{Function!antiholomorphic ---}%
+ An \emph{antiholomorphic} map also preserves angles, but it
+ reverses the orientation.
+\end{remarque}
+%% ----------------------------------------------------------------------
+
+\newpage
+\subsection*{Calcul différentiel}
+
+
+
+Pour obtenir la différentielle totale de cette expression, considérée comme fonction de $x$, $y$, ..., donnons à $x$, $y$, ... des accroissements $d\!x$, $d\!y$, .... Soient $\Delta u$, $\Delta v$, ..., $\Delta f$ les accroissements correspondants de $u$, $v$, ...,$f$. On aura
+\begin{equation*}
+ \Delta f= \dfrac{\partial\! f}{\partial u} \Delta u + \dfrac{\partial\! f}{\partial v} \Delta v + \hdots + R\Delta u + R_1 \Delta v + \hdots,
+\end{equation*}
+$R$, $R_1$, ... tendant vers zéro avec $\Delta u$, $\Delta v$, ....
+
+Mais on a, d'autre part,
+\begin{align*}
+ \Delta u & = \dfrac{\partial u}{\partial x} d\! x + + \dfrac{\partial u}{\partial y} \Delta y + \hdots + S\Delta x + S_1 \Delta y + \hdots \\
+& = du + Sd\! x + S_1 d\! y + \hdots \\
+ \Delta v & = \dfrac{\partial v}{\partial x} d\! x + + \dfrac{\partial v}{\partial y} \Delta y + \hdots + T\Delta x + T_1 \Delta y + \hdots \\
+& = dv + Td\! x + T_1 d\! y + \hdots \\
+\hdots
+\end{align*}
+$S$, $S_1$, ..., $T$, $T_1$,... tendant vers zéro avec $d\! x$, $d\! y$, ....
+
+Substituant ces valeurs dans l'expression de $\Delta f$, il vient
+\begin{equation*}
+\begin{array}{rcl}
+ \vbox to 25pt {} \Delta f & = &\dfrac{\partial\! f}{\partial u} d u + \dfrac{\partial\! f}{\partial v} d v + \hdots + \rho d\! x + \rho_1 d\! y + \hdots \\
+\vbox to 25pt {}& = & \phantom{+} \left( \dfrac{\partial\! f}{\partial u} \dfrac{\partial u}{\partial x} + \dfrac{\partial\! f}{\partial v} \dfrac{\partial v}{\partial x} + \hdots \right) d\! x \\
+\vbox to 25pt {}& & + \left( \dfrac{\partial\! f}{\partial u} \dfrac{\partial u}{\partial y} + \dfrac{\partial\! f}{\partial v} \dfrac{\partial v}{\partial y} + \hdots \right) d\! y \\
+\vbox to 25pt {}&& + \hdots + \rho d\! x + \rho_1 d\! y + \hdots
+\end{array}
+\end{equation*}
+$\rho$, $\rho_1$, ... tendant vers zéro avec $d\! x$, $d\! y$, ....
+
+On aura donc
+\begin{align*}
+ \dfrac{\partial\! f}{\partial x}& = \dfrac{\partial\! f}{\partial u} \dfrac{\partial u}{\partial x} + \dfrac{\partial\! f}{\partial v} \dfrac{\partial v}{\partial x} + \hdots, \\
+ \dfrac{\partial\! f}{\partial y}& = \dfrac{\partial\! f}{\partial u} \dfrac{\partial u}{\partial y} + \dfrac{\partial\! f}{\partial v} \dfrac{\partial v}{\partial y} + \hdots, \\
+\hdots
+\end{align*}
+et, d'autre part,
+\begin{equation*}
+ df = \dfrac{\partial\! f}{\partial u} {\mathrm d} u + \dfrac{\partial\! f}{\partial v} {\mathrm d} v + \hdots ;
+\end{equation*}
+d'où les deux propositions suivantes :
+
+{\em La dérivée, par rapport à une variable indépendante $x$, d'une fonction composée $f(u,v,\hdots)$ s'obtient en ajoutant ensemble les dérivées partielles $\dfrac{\partial\! f}{\partial u}$, $\dfrac{\partial\! f}{\partial v}$, ..., respectivement multipliées par les dérivées de $u$, $v$, ... par rapport à $x$.
+
+La différentielle totale $df$ s'exprimer au moyen de $u$, $v$, ..., $du$, $dv$, ..., de la même manière que si $u$, $v$, ... étaient des variables indépendantes.
+}
+
+\hbox to \textwidth { \hfill
+ {\sc Camille Jordan}, {\em Cours d'analyse de l'\'Ecole polytechnique}
+}
+
+\end{document}
diff --git a/Master/texmf-dist/doc/fonts/mathdesign/MD-adobe-utopia-doc.pdf b/Master/texmf-dist/doc/fonts/mathdesign/MD-adobe-utopia-doc.pdf
deleted file mode 100644
index b17e359abb8..00000000000
--- a/Master/texmf-dist/doc/fonts/mathdesign/MD-adobe-utopia-doc.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/fonts/mathdesign/MD-adobe-utopia-example.pdf b/Master/texmf-dist/doc/fonts/mathdesign/MD-adobe-utopia-example.pdf
deleted file mode 100644
index 436ad5a78f2..00000000000
--- a/Master/texmf-dist/doc/fonts/mathdesign/MD-adobe-utopia-example.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/fonts/mathdesign/MD-bitstream-charter-doc.pdf b/Master/texmf-dist/doc/fonts/mathdesign/MD-bitstream-charter-doc.pdf
deleted file mode 100644
index ff9ae1fc797..00000000000
--- a/Master/texmf-dist/doc/fonts/mathdesign/MD-bitstream-charter-doc.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/fonts/mathdesign/MD-bitstream-charter-example.pdf b/Master/texmf-dist/doc/fonts/mathdesign/MD-bitstream-charter-example.pdf
deleted file mode 100644
index 4f5c93db068..00000000000
--- a/Master/texmf-dist/doc/fonts/mathdesign/MD-bitstream-charter-example.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/fonts/mathdesign/MD-urw-garamond-doc.pdf b/Master/texmf-dist/doc/fonts/mathdesign/MD-urw-garamond-doc.pdf
deleted file mode 100644
index 89d4426fdcb..00000000000
--- a/Master/texmf-dist/doc/fonts/mathdesign/MD-urw-garamond-doc.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/fonts/mathdesign/MD-urw-garamond-example.pdf b/Master/texmf-dist/doc/fonts/mathdesign/MD-urw-garamond-example.pdf
deleted file mode 100644
index 3af104a2542..00000000000
--- a/Master/texmf-dist/doc/fonts/mathdesign/MD-urw-garamond-example.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/fonts/mathdesign/README b/Master/texmf-dist/doc/fonts/mathdesign/README
index 9077ef5fd1c..1af8ec38033 100644
--- a/Master/texmf-dist/doc/fonts/mathdesign/README
+++ b/Master/texmf-dist/doc/fonts/mathdesign/README
@@ -9,26 +9,28 @@ By now, three fonts families are available:
* mdugm family corresponds to URW Garamond text fonts
* mdbch family corresponds to Bitstream Charter text fonts
-These text fonts are available on CTAN:
+The following commercial families are also supported:
-CTAN directory of Adobe Utopia : fonts/utopia
-CTAN directory of URW Garamond : nonfree/fonts/urw/garamond
-CTAN directory of Bitstream Charter : fonts/charter
+* mdpgd family corresponds to Adobe Garamond Pro text fonts
+* mdpus family corresponds to Adobe Utopia Std text fonts
+* mdici family corresponds to ITC Charter text fonts
-The fonts provided by the Math Design project are free; you
-can redistribute it and/or modify it under the terms of the GNU
-General Public License as published by the Free Software Foundation;
-either version 2 of the License, or (at your option) any later
-version.
+The fonts provided by the Math Design project are free; you can
+redistribute it and/or modify it under the terms of the GNU General
+Public License as published by the Free Software Foundation; either
+version 2 of the License, or (at your option) any later version.
NOTES ON UPGRADING
~~~~~~~~~~~~~~~~~~
When you install a new version of the Math Design fonts, be sure to
delete all the pk files that has been automatically created by xdvi or
-yap. If you forget to do that, your document could seem ugly if you
-read them with xdvi or yap. Anyway, pdf versions and printing will be
-fine.
+yap. If you forget to do that, any document read with xdvi or yap will
+look ugly. Anyway, pdf versions and printing will be fine.
+
+Each new version of the fonts introduces small changes in font
+metrics. This can lead to important change in existing document,
+including unexpected line and page breaks.
SMALL CAPITALS
~~~~~~~~~~~~~~
@@ -39,13 +41,13 @@ fonts, you must:
1) Obtain the corresponding commercial fonts from your favorite font
seller. This is the font you'll need :
- Charter : Charter Small Cap (bchrc8a.pfb)
+ Charter : Charter Small Cap (bchrc8a.pfb)
Charter Bold Small Cap (bchbc8a.pfb)
Utopia : Utopia Expert Regular (putr8x.pfb)
Utopia Expert Bold (putb8x.pfb)
- You need the Windows Postscript versions of the fonts.
+ You need the Windows Postscript versions of the fonts.
2) Rename the preceding font files. I have indicated in
parenthesis the new name of each file.
@@ -57,7 +59,7 @@ fonts, you must:
or
$TEXMF/fonts/type1/adobe/utopia
-
+
should be fine.
4) Refresh your texmf file database, by running an utility like
@@ -67,9 +69,90 @@ fonts, you must:
"expert". Small caps and oldstyle figure are available with the
command \textsc{...}.
+OBTAINING TEXT FONTS
+~~~~~~~~~~~~~~~~~~~~
+
+You can find these free text fonts on CTAN:
+
+CTAN directory of Adobe Utopia : fonts/utopia
+CTAN directory of URW Garamond : nonfree/fonts/urw/garamond
+CTAN directory of Bitstream Charter : fonts/charter
+
+You have to obtain the commercial text fonts from your favorite
+reseller. Only the opentype version of these fonts are supported. You
+will need the following files:
+
+* For Adobe Garamond Pro
+ AGaramondPro-Regular.otf
+ AGaramondPro-Italic.otf
+ AGaramondPro-Semibold.otf
+ AGaramondPro-SemiboldItalic.otf
+* For Adobe Utopia Std
+ UtopiaStd-Regular.otf
+ UtopiaStd-Italic.otf
+ UtopiaStd-Semibold.otf
+ UtopiaStd-SemiboldIt.otf
+* For ITC Charter
+ CharterITCStd-Regular.otf
+ CharterITCStd-Italic.otf
+ CharterITCStd-Bold.otf
+ CharterITCStd-BoldItalic.otf
+
+Put them in your TEXMF tree in the directory
+
+ ${TEXMF}/fonts/opentype/<supplier>/<fontname>
+
+(Supplier is adobe or itc. The fontname is basically what you want.)
+
+You don't need to rename the files. The 'expert' options is useless,
+since this fonts are provided with small caps and oldstyle figures.
+
+
CHANGES
~~~~~~~
+v 2.31 * removed Windows-type end of line in text files
+ * URW Garamond is now a "non-free" fonts
+
+v 2.3 * distribution splitted in "free" and "non-free"
+ * fontdimen corrected (for fractions)
+ * infinity symbol redesigned
+ * afm files no longer distributed
+
+v 2.25 * \nexists is now correct
+ * typo corrected in mathdesign.sty
+
+v 2.22 * Double bracket corrected
+ * Punctuation in math mode is now in roman shape
+
+v 2.21 * Incorrect ffi and ffl ligatures in some small caps fonts
+
+v 2.2 * Glyph blackboard bold 1 added.
+ * text dot accent is now correct
+
+v 2.16 * Missing files included
+
+v 2.15 * Weight of mdugm family slightly changed
+ * Blackboard glyphs corrected
+
+v 2.1 * Bracket and double brackets modified
+ * Change of name of some internal files
+
+v 2.0 * The commercial Adobe Garamond font is now supported.
+ * The commercial Adobe Utopia Std font is now supported.
+ * The commercial ITC Charter font is now supported.
+ * New option 'greekfamily' added. The greek letters can be taken
+ from GFS Didot and GFS Bodoni.
+ * the \varkappa \varkappaup and \varkappait gives the expected results * many glyphs revised
+ * the 'scaled' option is no longer supported
+ * the fontsite Garamond font is no longer supported.
+
+v 1.57 * New option 'lowercase' added
+ * Oriented contour integral signs are now corrects
+
+v 1.56 * The kerning between L and ' in charter has been fixed
+ * New option 'scaled' added
+
v 1.55 * The emplacement of some files has changed
* 'faked' small caps are now avalaible
@@ -86,7 +169,7 @@ v 1.41 * Corrected a bug in option parsing of mathdesign.sty
v 1.4 * Dimensions of large delimiters are now correct
* Indices and exposant of script letters correctly placed
* Overshoot of greek letters corrected (muchas gracias a Ricard
- Torres por haberme señalado el problema)
+ Torres por haberme señalado el problema)
* Slanted font have now correct names in map files (merci à
Jean-Michel Sarlat)
* Symbols added (\smallin, various multiple integrals)
@@ -138,31 +221,36 @@ the free fonts are probably already installed on your system.
INSTALLATION
~~~~~~~~~~~~
+If you use a recent TeX distribution (miktex, tetex, ...), you should
+use the tools furnished with the distribution.
+
+If you want to install the package by yourself:
+
0) First, you must choose the texmf tree where you want to install the
Math Design fonts. This tree is probably some local or personal tree
- (for example: "c:/localtexmf" with miktex v2.3>).
-
-1) Install now the core files, required by all the Math Design
- package. Download the archive mdcore.zip and unzip it in the root
- directory of the texmf tree you have chosen.
+ (for example: "c:/localtexmf" with miktex >2.3).
-2) Download the archive of each family and unzip it in the root
- directory of the texmf tree you have chosen.
+1) Download the archive mathdesign-tds.zip and unzip it in this
+ directory. The mathdesign-tds.zip file is located in the
+ install/fonts of any ctan repository.
-3) Now refresh your texmf file database, by running an utility
+2) Now refresh your texmf file database, by running an utility
like "mktexlsr" or "texconfig rehash".
-4) Update the configuration files of your favourite drivers
+3) Update the configuration files of your favourite drivers
(e.g. dvips, xdvi, yap, pdftex, etc.).
On recent distributions, a script called 'updmap' does all the job
- for you.
-
+ for you.
+
Add the following lines at the end of the file 'updmap.cfg':
Map mdput.map
Map mdugm.map
Map mdbch.map
+ Map mdpus.map
+ Map mdpgd.map
+ Map mdici.map
and then run 'updmap' from a command line.
@@ -170,26 +258,28 @@ INSTALLATION
ENJOY
~~~~~
-To use the package, simply add the following line in the preamble of
+To use the package, simply add the following line in the preamble of
your source file:
\usepackage[supplier-typeface]{mathdesign}
Where supplier-typeface is one the following:
- adobe-utopia
+ adobe-utopia
urw-garamond
bitsream-charter
+ adobe-garamond
+ adobe-utopiastd
+ itc-charter
+
Please read the documentation for more options and commands.
-Thank you for using the Math Design fonts and happy TeXing :-)
+Thank you for using the Math Design fonts and happy TeXing :-)
-Paul Pichaureau, paul.pichaureau@alcandre.net
+ Paul Pichaureau, paul.pichaureau@alcandre.net
Paris, Easter 2005
-
-
diff --git a/Master/texmf-dist/doc/fonts/mathdesign/mathdesign-doc.pdf b/Master/texmf-dist/doc/fonts/mathdesign/mathdesign-doc.pdf
index 28f972af485..f6c2630457d 100644
--- a/Master/texmf-dist/doc/fonts/mathdesign/mathdesign-doc.pdf
+++ b/Master/texmf-dist/doc/fonts/mathdesign/mathdesign-doc.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/fonts/mathdesign/mathdesign-doc.tex b/Master/texmf-dist/doc/fonts/mathdesign/mathdesign-doc.tex
new file mode 100644
index 00000000000..b41651bc12a
--- /dev/null
+++ b/Master/texmf-dist/doc/fonts/mathdesign/mathdesign-doc.tex
@@ -0,0 +1,1784 @@
+\documentclass[10pt]{article}
+
+\usepackage[english]{babel}
+
+\usepackage[euro, mdput, expert, ttscaled=true, sfscaled=true]{mathdesign}
+
+\usepackage{textcomp}
+
+%% -------------------------------------------------------------------
+
+\usepackage{url}
+\usepackage{texlogos}
+\usepackage{xspace}
+
+%% -------------------------------------------------------------------
+
+% Logical styles.
+\newcommand{\pkgname}[1]{%
+ \textsf{#1}%
+ }
+\newcommand{\optname}[1]{%
+ \textsf{#1}%
+ }
+\newcommand{\filename}[1]{%
+ \texttt{#1}%
+}
+\newcommand{\PSfont}[1]{%
+ #1%
+}
+\newcommand{\PSchar}[1]{%
+ \texttt{#1}%
+}
+
+
+%% -------------------------------------------------------------------
+
+%% Margins, etc.
+
+%% \setlength\hoffset{-1in}
+%% \setlength\voffset{-1in}
+
+\setlength\oddsidemargin{28pt}
+\setlength\textwidth{398pt}
+
+\setlength\headsep{24pt}
+\setlength\topmargin{-33pt}
+
+\setlength\footskip{36pt}
+\setlength\textheight{626pt}
+
+
+
+%\DeclareRobustCommand{\person}[2]{#1\index{#2, #1} #2}
+
+%% -------------------------------------------------------------------
+
+\usepackage{hyperref}
+
+% Scott Pakin Comprehensive code
+\makeatletter
+\newcommand{\notpredefinedmessage}{%
+ \begin{tablenote}[*]
+ Not predefined in \LaTeX.
+ \end{tablenote}
+}
+\newcommand{\notpredefinedmessageextra}{%
+ \begin{tablenote}[*]
+ Not predefined in \LaTeX.
+ \end{tablenote}
+}
+
+% Redefine the LaTeX commands that are replaced by textcomp.
+% This was swiped right out of ltoutenc.dtx, but with "\text..."
+% changed to "\ltext...".
+\DeclareTextCommandDefault{\ltextcopyright}{\textcircled{c}}
+\DeclareTextCommandDefault{\ltextregistered}{\textcircled{\scshape r}}
+\DeclareTextCommandDefault{\ltexttrademark}{\textsuperscript{TM}}
+\DeclareTextCommandDefault{\ltextordfeminine}{\textsuperscript{a}}
+\DeclareTextCommandDefault{\ltextordmasculine}{\textsuperscript{o}}
+
+% Define an environment in which to write a single table of symbols. The
+% environment looks a lot like a table, but it doesn't float, and it gets
+% an entry in the table of contents (as a subsubsection that looks like a
+% subsection), as opposed to the list of tables.
+%
+% The first argument is a conditional. The table will appear only if
+% the value of the conditional is true. The second argument is the
+% table's caption.
+
+% Sometimes, we need a little more horizontal spacing, too.
+\def\qqquad{\hskip3em\relax}
+\def\dquad{\hskip.5em\relax}
+
+\def\fnum@table{\textbf{\tablename}~\thetable}
+
+\newcommand{\savecaption}[1]{\global\def\currentcaption{#1}}
+
+\newenvironment{symtable}[1]{%
+ \noindent%
+ \begin{minipage}[t]{\linewidth} % Prevent page breaks
+ \begin{center}
+ \addtocounter{table}{1}%
+ \protected@edef\@currentlabel{\thetable}%
+ \addcontentsline{toc}{subsubsection}{%
+ \protect\numberline{\tablename~\thetable:}{\quad #1}}%
+ \savecaption{#1}
+ }{%
+\@makecaption{\fnum@table}{\currentcaption}\end{center}
+\end{minipage}
+\bigskip
+}
+
+
+% Same as the above, but allows page breaks.
+
+\newenvironment{longsymtable}[2][true]{%
+ \expandafter\global\expandafter\let%
+ \expandafter\ifshowsymtable\csname if#1\endcsname
+ \ifshowsymtable
+ \mbox{}%
+ \begin{center}%
+ \addtocounter{table}{1}%
+ \protected@edef\@currentlabel{\thetable}%
+ \addcontentsline{toc}{subsubsection}{%
+ \protect\numberline{\tablename~\thetable:}{#2}}%
+ \@makecaption{\fnum@table}{#2}%
+ \def\lt@indexed{}%
+ \let\next=\relax
+ \else
+ % The following was taken verbatim from verbatim.sty.
+ \let\do\@makeother\dospecials\catcode`\^^M\active
+ \let\verbatim@startline\relax
+ \let\verbatim@addtoline\@gobble
+ \let\verbatim@processline\relax
+ \let\verbatim@finish\relax
+ \let\next=\verbatim@
+ \fi
+ \next
+}{%
+ \ifshowsymtable
+ \let\@elt=\index\lt@indexed % Close our index ranges.
+ \end{center}
+ \addtocounter{table}{-1} % Make up for longtable's counter increment.
+ \vskip 8ex minus 2ex
+ \fi
+}
+
+
+% Many tables have notes beneath them. Define an environment in which to
+% display such a note, with an optional, superscripted math symbol
+% preceding it.
+\newenvironment{tablenote}[1][]{
+ \makebox[1em]{\ensuremath{^{#1}}}%
+ \begin{minipage}[t]{0.75\textwidth}%
+ \setlength{\parskip}{2ex}
+}{%
+ \end{minipage}%
+}
+
+
+\def\docttfamily{\ttfamily\small}
+
+\def\N@opt@arg[#1]#2{$#1$ & $\Big#1$ &\docttfamily\string#2}
+\def\N@no@opt@arg#1{$#1$ & $\Big#1$ &\docttfamily\string#1}
+\def\N{\@ifnextchar[{\N@opt@arg}{\N@no@opt@arg}}
+ % We use \displaystyle so that variable-sized symbols will be big.
+
+\def\Q#1{ #1{A} \dquad #1{a} &
+ \docttfamily\string#1\string{A\string}\string#1\string{a\string}}
+
+\def\QQ#1{ #1{AA} \dquad #1{aa} &
+ \docttfamily\string#1\string{AA\string}\string#1\string{aa\string}}
+
+\def\R@opt@arg[#1]#2{$#1$ & $\displaystyle#1$ &\docttfamily\string#2}
+\def\R@no@opt@arg#1{$#1$ & $\displaystyle#1$ &\docttfamily\string#1}
+\def\R{\@ifnextchar[{\R@opt@arg}{\R@no@opt@arg}}
+
+\newcommand{\V}[2][]{#1 & #2 &\docttfamily\string#2}
+ \def\W@opt@arg[#1]#2#3{%
+ $#1{#3}$ &\docttfamily\string#2\string{#3\string}}
+ \def\W@no@opt@arg#1#2{%
+ $#1{#2}$ &\docttfamily\string#1\string{#2\string}}
+ \def\W{\@ifnextchar[{\W@opt@arg}{\W@no@opt@arg}}
+\def\DX#1{$\displaystyle#1$ &\docttfamily\string#1}
+\def\X#1{$#1$ &\docttfamily\string#1}
+\def\T#1{#1 &\docttfamily\string#1}
+
+\def\Y#1{$\big#1$ & $\Bigg#1$ &\docttfamily\string#1}
+
+\def\C#1{{\docttfamily\string#1}~($#1$)\xspace}
+\def\CC#1#2{{\docttfamily\string#1}~($#2$)\xspace}
+\def\CT#1{{\docttfamily\string#1}~(#1)\xspace}
+
+
+
+% TXfonts code
+
+\newcount\curchar \newcount\currow \newcount\curcol
+\newdimen\indexwd \newdimen\tempcellwd
+\setbox0\hbox{\sffamily D\kern.2em}
+\indexwd=\wd0
+
+\def\hexnumber#1{\ifcase\expandafter\ident\expandafter{\number#1} 0\or
+1\or 2\or 3\or 4\or 5\or 6\or 7\or 8\or 9\or A\or B\or C\or D\or E\or
+F\else ?\fi}
+
+\def\ident#1{#1}
+\def\rownumber{\sffamily\hexnumber\currow}
+\def\colnumber{\sffamily\hexnumber\curcol \global\advance\curcol 1 }
+\def\colnumbers{\hbox to\hsize{\global\curcol 0
+ \def\1{\hbox to\cellwd{\curcol}{\hfil\colnumber\hfil}}%
+ \kern\indexwd\hfil\hfil
+ \1\1\1\1\hfil\hfil \1\1\1\1\hfil\hfil
+ \1\1\1\1\hfil\hfil \1\1\1\1\hfil\hfil
+ \kern\indexwd}%
+}
+
+\def\charnumber{\setbox0=\hbox{\char\curchar}%
+ \ifdim\ht0>7.5pt\reposition
+ \else\ifdim\dp0>2.5pt\reposition\fi\fi
+ \box0 \global\advance\curchar1 }
+\def\reposition{\setbox0=\hbox{$\vcenter{\kern1.5pt\box0\kern1.5pt}$}}
+\def\measurecolwidths#1{%
+ \tempcellwd\hsize \advance\tempcellwd-2\indexwd
+ \advance\tempcellwd -12pt
+ \divide\tempcellwd 16
+ \xdef\cellwd##1{\the\tempcellwd}%
+}
+
+\def\dochartA#1{%
+ \begingroup
+ \global\curchar=0 \global\currow=0 \global\curcol=0
+ \def\hline{\kern2pt\hrule\kern3pt }%
+ \setbox0\vbox{#1%
+ \def\0{\hbox to\cellwd{\curcol}{\hss\charnumber\hss}}%
+ \colnumbers
+ \hline
+ \setrow\setrow\setrow\setrow
+ \hline
+ \setrow\setrow\setrow\setrow
+ \hline
+ \setrow\setrowX\setrow\setrowX %
+% \hline %
+%% \setrowX\setrowX\setrowX\setrowX %
+ \hline %
+ \colnumbers
+ }%
+ \null\hfil\hbox{\vbox{%
+ \hbox to\hsize{\kern\indexwd
+ \def\fullrule{\hfil\vrule height\ht0 depth\dp0\hfil}%
+ \fullrule\kern\cellwd{0}\kern\cellwd{1}\kern\cellwd{2}\kern\cellwd{3}%
+ \fullrule\kern\cellwd{4}\kern\cellwd{5}\kern\cellwd{6}\kern\cellwd{7}%
+ \fullrule\kern\cellwd{8}\kern\cellwd{9}\kern\cellwd{10}\kern\cellwd{11}%
+ \fullrule\kern\cellwd{12}\kern\cellwd{13}\kern\cellwd{14}\kern\cellwd{15}%
+ \fullrule\kern\indexwd}%
+ \kern-\ht0 \kern-\dp0 \unvbox0}}\hfil%
+ \endgroup
+}
+\def\dochartB#1{%
+ \begingroup
+ \global\curchar=0 \global\currow=0 \global\curcol=0
+ \def\hline{\kern2pt\hrule\kern3pt }%
+ \setbox0\vbox{#1%
+ \def\0{\hbox to\cellwd{\curcol}{\hss\charnumber\hss}}%
+ \colnumbers
+ \hline
+ \setrow\setrow\setrow\setrow
+ \hline
+ \setrow\setrow\setrow\setrow
+ \hline
+ \setrow\setrow\setrow\setrow %
+ \hline %
+ \setrow\setrow\setrow\setrow %
+ \hline %
+ \colnumbers
+ }%
+ \vbox{%
+ \hbox to\hsize{\kern\indexwd
+ \def\fullrule{\hfil\vrule height\ht0 depth\dp0\hfil}%
+ \fullrule\kern\cellwd{0}\kern\cellwd{1}\kern\cellwd{2}\kern\cellwd{3}%
+ \fullrule\kern\cellwd{4}\kern\cellwd{5}\kern\cellwd{6}\kern\cellwd{7}%
+ \fullrule\kern\cellwd{8}\kern\cellwd{9}\kern\cellwd{10}\kern\cellwd{11}%
+ \fullrule\kern\cellwd{12}\kern\cellwd{13}\kern\cellwd{14}\kern\cellwd{15}%
+ \fullrule\kern\indexwd}%
+ \kern-\ht0 \kern-\dp0 \unvbox0}%
+ \endgroup
+}
+\def\dochartC#1{%
+ \begingroup
+ \global\curchar=0 \global\currow=0 \global\curcol=0
+ \def\hline{\kern2pt\hrule\kern3pt }%
+ \setbox0\vbox{#1%
+ \def\0{\hbox to\cellwd{\curcol}{\hss\charnumber\hss}}%
+ \colnumbers
+ \hline
+ \setrow\setrow\setrow\setrow
+ \hline
+ \setrow\setrow\setrow\setrow
+%% \hline
+%% \setrow\setrow\setrow\setrow %
+%% \hline %
+%% \setrowX\setrow\setrowX\setrow %
+ \hline %
+ \colnumbers
+ }%
+ \vbox{%
+ \hbox to\hsize{\kern\indexwd
+ \def\fullrule{\hfil\vrule height\ht0 depth\dp0\hfil}%
+ \fullrule\kern\cellwd{0}\kern\cellwd{1}\kern\cellwd{2}\kern\cellwd{3}%
+ \fullrule\kern\cellwd{4}\kern\cellwd{5}\kern\cellwd{6}\kern\cellwd{7}%
+ \fullrule\kern\cellwd{8}\kern\cellwd{9}\kern\cellwd{10}\kern\cellwd{11}%
+ \fullrule\kern\cellwd{12}\kern\cellwd{13}\kern\cellwd{14}\kern\cellwd{15}%
+ \fullrule\kern\indexwd}%
+ \kern-\ht0 \kern-\dp0 \unvbox0}%
+ \endgroup
+}
+
+\def\setrow{\hbox to\hsize{%
+ \hbox to\indexwd{\hfil\rownumber\kern.2em}\hfil\hfil
+ \0\0\0\0\hfil\hfil \0\0\0\0\hfil\hfil
+ \0\0\0\0\hfil\hfil \0\0\0\0\hfil\hfil
+ \hbox to\indexwd{\sffamily\kern.2em \rownumber\hfil}}%
+ \global\advance\currow 1 }%
+
+\def\setrowX{\global\advance\curchar16\global\advance\currow 1\relax}
+
+\def\cellwd#1{20pt}% initialize
+
+\def\measurecolwidths#1{%
+ \tempcellwd\hsize \advance\tempcellwd-2\indexwd
+ \advance\tempcellwd -12pt
+ \divide\tempcellwd 16
+ \xdef\cellwd##1{\the\tempcellwd}%
+}
+\def \tableA #1#2#3{\par\penalty-200 \bigskip
+ \font #1=#2 \relax
+ \centerline{\vbox{\hsize=29pc
+ \measurecolwidths{#1}%
+ \centerline{#3}%
+ \medskip
+ \dochartA{#1}%
+}}}
+\def \tableB #1#2#3{\par\penalty-200 \bigskip
+ \font #1=#2 \relax
+ \centerline{\vbox{\hsize=29pc
+ \measurecolwidths{#1}%
+ \centerline{#3}%
+ \medskip
+ \dochartB{#1}%
+}}}
+\def \tableC #1#2#3{\par\penalty-200 \bigskip
+ \font #1=#2 \relax
+ \centerline{\vbox{\hsize=29pc
+ \measurecolwidths{#1}%
+ \centerline{#3}%
+ \medskip
+ \dochartC{#1}%
+}}}
+
+\def\comment#1{\begingroup \small \noindent {\textit{Comment:}} #1 \endgroup}
+
+%% \renewcommand*\descriptionlabel[1]{\hspace\labelsep
+%% \normalfont#1}
+
+\def\FSS#1#2{\fontfamily{#1}\selectfont #1
+ & \quad \fontfamily{#1}\selectfont #2}
+
+\def\FTT#1#2{\fontfamily{#1}\selectfont #1 &
+ \quad \fontfamily{#1}\selectfont #2}
+
+\newcommand\slightsize{\@setfontsize\slightsize{27}{30}}
+\makeatother
+
+\renewcommand\sfdefault{fvs}
+\renewcommand\ttdefault{fvm}
+
+\begin{document}
+
+\title{The \pkgname{mathdesign} package}
+
+\author{Paul Pichaureau\footnote{\texttt{paul.pichaureau@alcandre.net}} \\
+{\Large \mdlogo} }
+
+\date{\today}
+
+\maketitle
+
+
+\section{Introduction}
+
+The package \pkgname{mathdesign} replaces all the default mathematical
+fonts of \TeX\ with a complete set of mathematical fonts, designed to
+be combined with a text font of your choice.
+
+Provided fonts cover the full family of symbol of plain \TeX{} and
+\LaTeX{}, the full set of the American Mathematical Society (\AmS)
+symbols, the Ralph Smith's Formal Script symbol fonts (RSFS). Some
+symbol used by the package \pkgname{textcomp}. Some extra symbols are
+also defined.
+
+More fonts will be created and shared in the future!
+
+\subsection{Requirements}
+
+A complete \TeX{} installation is required. In particular, the text
+fonts you want to use must be already present on your system.
+
+A \emph{recent} \TeX{} distribution is recommended (e.g. Mik\TeX{}\
+v2.2 or later, te\TeX{} v3.0 or later) as the configuration is
+really simple with the \pkgname{updmap} utility.
+
+%% \subsection{The Math Design project}
+
+%% The main goal of the Math Design project is to provide
+%% mathematical fonts for most of the text font freely available.
+
+%% All comments, glyph requests, piece of advice, opinions about these
+%% fonts, will be warmly welcomed.
+
+\section{Installation}
+
+This package alone is useless. You have to install one of the full
+set of fonts available. Please consult the provided README file. It deals
+with all the installation and system configuration process.
+
+\section{Interesting features}
+
+\begin{itemize}
+ \item All the symbols are provided in normal and bold versions.
+ \item Support of all \LaTeX and \AmS symbols including
+ blackboard bold letters ($\mathbb Q$, $\mathbb R$, $\mathbb Z$).
+ \item Extra symbols, including \CT\euro \C\smallin \C\intclockwise
+ \C\ointclockwise \C\oiint \C\oiiint.
+ \item Various greek alphabets available.
+ \item Support of scaled sans serif and typewriter fonts.
+\end{itemize}
+
+\pagebreak
+
+\section{Usage and configuration}
+
+To use one the font in your document call the \pkgname{mathdesign}
+package with the appropriate option.
+
+\begin{center}
+ \begin{tabular}{p{3.5cm}|p{5.5cm}p{3cm}}
+ {\bf Text fonts} & \textbf{Option name} & \textbf{Package name }\\
+ \hline \hline
+ Adobe Utopia & \optname{adobe-utopia}, \optname{utopia}
+ & \pkgname{mdput} \\
+ URW Garamond & \optname{urw-garamond}, \optname{garamond}
+ & \pkgname{mdugm} \\
+ Bitstream Charter& \optname{bitstream-charter}, \optname{charter}
+ & \pkgname{mdbch}
+ \end{tabular}
+\end{center}
+
+In the preceding table, option on the same line are equivalent. Then,
+the following lines are equivalent:
+\begin{verbatim}
+ \usepackage[adobe-utopia]{mathdesign}
+ \usepackage[utopia]{mathdesign}
+\end{verbatim}
+
+The package tries to redefine all the commands related to the glyphs
+present in the fonts. As far as I know, they work fine, but you
+shouldn't use package like \pkgname{amsfonts} or \pkgname{mathrsfs} in
+conjunction with \pkgname{mathdesign}. A package warning will be
+emitted in such case.
+
+Don't forget that many packages redefine the same command than
+\pkgname{mathdesign} (the euro currency symbol is the worst example of
+this situation). You have to take care of the possible
+package clashes.
+
+The default encoding is automatically set to T1.
+
+\subsection{Options}
+
+\label{sec:options}
+
+Some \pkgname{mathdesign} options use the \pkgname{keyval} interface. As usual with \pkgname{keyval}, any spaces between words are ignored and multiple lines are allowed. Moreover, options are order-independent.
+
+For example, the following line asks for Bitstream Charter and upright
+capitals letters :
+\begin{verbatim}
+ \usepackage[charter, uppercase=upright]{mathdesign}
+\end{verbatim}
+
+The following options are available:
+\begin{description}
+ \item[\optname{greekfamily} = <value>] three greek fonts are
+ available : the default mathdesign font, \texttt{didot} which came
+ from GFS Didot, and \texttt{bodoni} taken from GFS Bodoni. These two fonts
+ are released by the Greek Font
+ Society\footnote{\texttt{http://greekfontsociety.gr/}}.
+
+ % The last font is extracted from the commercial font Adobe Minion
+ % Pro. This family is shipped with recent versions of Adobe Acrobat Reader
+
+ \item[\optname{expert}] if the corresponding postscript font
+ are available on your system, this option activates them. See
+ section \ref{sec:sc} for more informations.
+
+ \item[\optname{euro}] activates the \pkgname{mathdesign}
+ version of the euro currency symbol (\CT{\euro}). This
+ redefinition takes place \verb:\AtBeginDocument:. Default value:
+ \texttt{true}.
+
+ \item[\optname{scaled}= <value> {true}] Scale all the
+ mathdesign fonts (including math and small caps when available).
+ Default value: \texttt{1.0}.
+
+ \item[\optname{sfscaled}= \texttt{true} \emph{or}
+ \texttt{false}] Use a scaled version of common sans serif fonts
+ (see explanations in section \ref{sec:scaled}). Default value:
+ \texttt{true}.
+
+ \item[\optname{ttscaled}= \texttt{true} \emph{or}
+ \texttt{false}] Use a scaled version of common typewriter fonts
+ (see explanations in section \ref{sec:scaled}). Default value:
+ \texttt{true}.
+
+%% \item[\optname{extrasymb}] activates some extra symbols and
+%% commands. See section \ref{sec:extras}.
+%% \item[\optname{fraktur}] defines a scaled version of the \AmS{}
+%% Euler Fraktur font. This font is available \emph{via} the
+%% \verb|\mathfrak| command:
+%% \begin{quotation}
+%% \verb|$\mathfrak{AC}$| \qquad gives \qquad $\mathfrak{AC}$
+%% \end{quotation}
+
+ \item[\optname{uppercase}\ = \texttt{upright} \emph{or}
+ \texttt{italicized}] \par
+ In math mode, use \texttt{upright} or \texttt{italicized}
+ uppercase letters. Default value: \texttt{italicized}.
+
+ \item[\optname{lowercase}\ = \texttt{upright} \emph{or}
+ \texttt{italicized}] \par
+ In math mode, use \texttt{upright} or \texttt{italicized}
+ lowercase letters. Default value: \texttt{italicized}.
+
+ \item[\optname{greekuppercase}= \texttt{upright} \emph{or}
+ \texttt{italicized}]
+
+ In math mode, use \texttt{upright} or \texttt{italicized}
+ uppercase greek letters. Default value: \texttt{upright}.
+
+ \item[\optname{greeklowercase}= \texttt{upright} \emph{or}
+ \texttt{italicized}]
+
+ In math mode, use \texttt{upright} or \texttt{italicized}
+ lowercase greek letters. Default value: \texttt{italicized}.
+
+%% \item[\optname{mdcal}] the \verb|\mathcal| command points to
+%% the formal script letters:
+%% \begin{quotation}
+%% \verb|$\mathcal{AC}$| \qquad gives \qquad $\mathscr{AC}$
+%% \end{quotation}
+
+%% \item[\optname{cmcal}] the \verb|\mathcal| command points to
+%% a scaled version of the \TeX{} calligraphic font:
+%% \begin{quotation}
+%% \verb|$\mathcal{AC}$| \qquad gives \qquad $\mathcal{AC}$
+%% \end{quotation}
+%% this is the default behaviour. Whatever the option, the
+%% \verb|\mathscr| command produces formal script letters (i.e.
+%% \verb|$\mathscr{AC}$| gives $\mathscr{AC}$ with both options).
+
+\end{description}
+
+In french traditional typography, uppercase letters and lowercase
+greek letters are not italicised contrary to the english usage. For
+example
+$$ \forall t \in [0,1], \qquad (1-t)\mathrm{A} + t \mathrm{B} \in
+[\mathrm{AB}] $$
+$$ \mathrm{R} = a^2 + b^2, \qquad \thetaup = \arctan \frac{a}{b} \quad
+\Longrightarrow \quad a\cos \alphaup + b \sin \alphaup = \mathrm{R} \cos
+(\alphaup + \thetaup)$$
+are the ``french'' version of
+$$ \forall t \in [0,1], \qquad (1-t)A + t B \in [AB] $$
+$$ R = a^2 + b^2, \qquad \theta = \arctan \frac{a}{b} \quad
+ \Longrightarrow \quad a\cos \alpha + b \sin \alpha = R \cos
+ (\alpha + \theta)$$
+
+ If you want to typeset a document in the old french traditions, use
+ the following options:
+\begin{verbatim}
+ \usepackage[uppercase=upright, greeklowercase=upright, garamond]{mathdesign}
+\end{verbatim}
+
+Please, note that upright and slanted versions of the greek letters
+are always available, using commands $\verb|\alphaup|$,
+$\verb|\alphait|$, etc. (see tables \ref{tab:greekup} and
+\ref{tab:greekit}).
+
+\subsection{Small capitals and oldstyle figures}
+
+\subsubsection{Faked small capitals}
+
+\label{sec:sc}
+
+It is not in the goals of the Math Design project to provide small
+capitals and typographic refinements of this sort. Anyway, ``faked''
+small caps are defined by default\footnote{Two new \textsf{nfss} shape
+ are defined and associated with these faked small capitals :
+ \texttt{\textbackslash fscshape} (variant \texttt{fsc}) for the
+ upright faked small capitals and \texttt{\textbackslash ficshape}
+ (variante \texttt{fix}) for the slanted faked small caps}. If you
+don't load the package with the option \optname{expert} then these
+small capitals will be used in your document.
+
+\subsubsection{Commercial small capitals}
+
+Alternatively you can buy the corresponding commercial fonts and use
+them with the \pkgname{mathdesign} package.
+
+To use commercial small capitals with the charter and utopia version of the
+fonts, you must:
+\begin{enumerate}
+ \item Obtain the corresponding commercial fonts from your favorite font
+ seller. This is the font you'll need :
+
+ \begin{tabular}{l|ll}
+ Bitstream Charter \qquad
+ & Charter Small Cap \qquad &(bchrc8a.pfb) \\
+ & Charter Bold Small Cap \qquad & (bchbc8a.pfb) \\[12 pt]
+ Adobe Utopia \qquad
+ & Utopia Expert Regular \qquad & (putr8x.pfb) \\
+ & Utopia Expert Bold \qquad & (putb8x.pfb)
+ \end{tabular}
+
+You need the Windows Postscript versions of the fonts.
+
+ \item Rename the preceding font files. I have indicated in
+parenthesis the new name of each file.
+
+ \item Put the renamed file somewhere \TeX will be able to find
+them: \verb|$TEXMF/fonts/type1/bitsrea/charter| or \verb|$TEXMF/fonts/type1/adobe/utopia| should be fine.
+
+ \item Refresh your texmf file database, by running an utility like
+\texttt{mktexlsr} or \texttt{texconfig rehash}.
+
+ \item \textsc{That's it !} Now use the \pkgname{mathdesign}
+package with the option \optname{expert}. Small caps and oldstyle
+figure are available with the command \verb|\textsc{...}|.
+
+\end{enumerate}
+
+\textbf{Disclaimer} The preceding informations are only
+\emph{indications} of a possible way to install and use commercial
+products. I'm not responsible for any damage caused, in whole or in
+part, by following these instructions.
+
+Anyway, I'll try to help you the best I can to properly install any
+commercial fonts you have.
+
+\subsection{Sans serif and typewriter fonts}
+\label{sec:scaled}
+
+\begin{table}[t]
+ \label{tab:scaledfont}
+ \centering
+ \begin{tabular}{l|l}
+ \textbf{Nickname} & \textbf{Font} \\ \hline \hline
+ \FSS{cmss} {Computer Modern Sans Serif} \\
+ \FSS{fvs} {Bera sans (aka Bitstream Vera Sans)} \\
+ \FSS{phv} {Adobe Helvetica} \\
+%% \FSS{uag} {URW Gothic} \\
+%% \FSS{uhv} {URW Helvetica} \\
+ \\
+ \FSS{fvm} {Bera mono (aka Bitstream Vera Mono)} \\
+ \FTT{cmtt} {Computer Modern Typewriter} \\
+ \FTT{pcr} {Adobe Courier} \\
+%% \FTT{ucr} {URW Courier} \\
+ \end{tabular}
+ \caption{Scaled fonts defined.}
+\end{table}
+
+In addition to the mathematical fonts, the \pkgname{mathdesign}
+package defines ``scaled'' versions of the common sans serif and
+typewriter fonts.
+
+For example, in \LaTeX, if you want to set Adobe Helvetica as your
+main sans serif font, you use the following command
+\begin{quotation}
+ \verb|\renewcommand{\sfdefault}{phv}|
+\end{quotation}
+where \texttt{phv} is the name of Adobe Helvetica using Karl Berry's
+fontname convention.
+
+\renewcommand{\sfdefault}{phv}
+
+But Adobe Helvetica will not fit well with your text font. Letters
+have different heights:
+\begin{quotation}
+\Huge a{\slightsize\textsf{a}}%
+\Huge b{\slightsize\textsf{b}}%
+\Huge A{\slightsize\textsf{A}}%
+\Huge e{\slightsize\textsf{e}}%
+\Huge D{\slightsize\textsf{D}}
+\end{quotation}
+
+\pkgname{mathdesign} defines a scaled version of this font. This version automatically replace the normal one. So, with the option \optname{sfscaled}, the usual command
+\begin{quotation}
+ \verb|\renewcommand{\sfdefault}{phv}|
+\end{quotation}
+will give you an optically adjusted version of Adobe Helvetica:
+\begin{quotation}
+ \Huge a\textsf{a}b\textsf{b}A\textsf{A}c\textsf{c}D\textsf{D}
+\end{quotation}
+As you can see on the above example, lowercase letters have now the
+same height. It is not necessary the case of uppercase letters.
+
+Don't expect amazing result of these feature. If you mix sans serif
+and typewriter fonts in the text, then the design disparities will be
+become quickly obvious.
+
+The table \ref{tab:scaledfont} enumerates all the scaled fonts defined by
+the mathdesign package.
+
+\subsection{Configuration file}
+
+Each family has its own configuration file (e.g.
+\filename{mdput.cfg}). You can put in these file all the commands
+that \LaTeX{} should load with the family. Consult the provided files
+for more informations.
+
+\section{More fonts and symbols}
+
+\begin{table}[t]
+
+ \centering
+ \begin{tabular}{*3{ll}}
+\X\alphaup & \X\iotaup & \X\sigmaup \\
+\X\betaup & \X\kappaup & \X\varsigmaup \\
+\X\gammaup & \X\lambdaup & \X\tauup \\
+\X\deltaup & \X\muup & \X\upsilonup \\
+\X\epsilonup & \X\nuup & \X\phiup \\
+\X\varepsilonup & \X\xiup & \X\varphiup \\
+\X\zetaup & \X\piup & \X\chiup \\
+\X\etaup & \X\varpiup & \X\psiup \\
+\X\thetaup & \X\rhoup & \X\omegaup \\
+\X\varthetaup & \X\varrhoup \\
+\\
+\X \varkappaup$^{\dagger}$ & \X\digammaup$^{\dagger}$\\
+\\
+\\
+ \X\Gammaup & \X\Xiup & \X\Phiup \\
+ \X\Deltaup & \X\Piup & \X\Psiup \\
+ \X\Thetaup & \X\Sigmaup & \X\Omegaup \\
+ \X\Lambdaup & \X\Upsilonup \\
+\end{tabular}
+\caption{Upright Greek Letters \label{tab:greekup}}
+\end{table}
+\begin{table}[t]
+
+ \centering
+ \begin{tabular}{*3{ll}}
+\X\alphait & \X\iotait & \X\sigmait \\
+\X\betait & \X\kappait & \X\varsigmait \\
+\X\gammait & \X\lambdait & \X\tauit \\
+\X\deltait & \X\muit & \X\upsilonit \\
+\X\epsilonit & \X\nuit & \X\phiit \\
+\X\varepsilonit & \X\xiit & \X\varphiit \\
+\X\zetait & \X\piit & \X\chiit \\
+\X\etait & \X\varpiit & \X\psiit \\
+\X\thetait & \X\rhoit & \X\omegait \\
+\X\varthetait & \X\varrhoit \\
+\\
+\X \varkappait$^{\dagger}$ & \X\digammait$^{\dagger}$\\
+\\
+ \X\Gammait & \X\Xiit & \X\Phiit \\
+ \X\Deltait & \X\Piit & \X\Psiit \\
+ \X\Thetait & \X\Sigmait & \X\Omegait \\
+ \X\Lambdait & \X\Upsilonit \\
+\end{tabular}
+ \caption{Italicised Greek Letters \label{tab:greekit}}
+\end{table}
+
+\subsection{Script and fraktur alphabets}
+
+The commands \verb|\mathfrak|, \verb|\mathscr| and \verb|\mathbb| are
+defined by \pkgname{mathdesign} and have the usual meanings:
+\begin{itemize}
+ \item \verb|\mathfrak| for fraktur letters \emph{e.g.}
+ \verb|\mathfrak{A, B, S, a, b, s}| gives $\mathfrak{A}, \mathfrak{B},
+ \mathfrak{S}, \mathfrak{a}, \mathfrak{b}, \mathfrak{s}$
+ \item \verb|\mathscr| for script letters \emph{e.g.}
+ \verb|\mathscr{A, B, S }| gives $\mathscr{A}, \mathscr{B}, \mathscr{S}$
+ \item \verb|\mathbb| for blackboard letters \emph{e.g.}
+ \verb|\mathbb{A, B, S }| gives $\mathbb{A}, \mathbb{B}, \mathbb{S}$
+\end{itemize}
+
+\subsection{Extra symbols}\label{sec:extras}
+
+For completeness, some commands and symbols have been added:
+\begin{itemize}
+ \item The command \C\iddots typesets diagonal dots, similar to
+ \AmS's \C\ddots.
+
+ \item Two new big delimiters are available,
+ \CC\leftwave{\leftwave\right.} and \CC\leftevaw{\leftevaw\right.}
+(and the corresponding right delimiters, of course). This is an example:
+$$ \leftwave \frac{a+b+c}{3} \rightwave $$
+
+ \item The commands \C\utimes, \C\dtimes and \C\udtimes are
+ similar to \AmS's \C\ltimes, \C\rtimes and \C\Join.
+
+ \item The \C\in symbol has now a small version \C\smallin,
+ which can be negated (\C\notsmallin). \C\owns has also a small
+ version (\C\smallowns and \C\notsmallowns).
+
+ \item Various new integrals are defined : \C\intclockwise
+ \C\ointclockwise \C\oiint \C\oiiint.
+
+ \item The {\docttfamily\string\figurecircled} command is the
+equivalent of \verb|\textcircled| circled command, but the circle is
+especially designed for figures : \verb|\figurecircled{1}| gives
+\figurecircled{1} (better than \verb|\textcircled{1}| :
+\textcircled{1}).
+
+\end{itemize}
+
+Some Text Companion symbols are also defined, including \CT\texteuro
+(see table \ref{text-comp}). To use them, you must load the
+\pkgname{textcomp} package.
+
+
+\subsection{Copyright notice}
+
+The fonts provided by the Math Design project are free software;
+you can redistribute it and/or modify it under the terms of the GNU
+General Public License as published by the Free Software Foundation;
+either version 2 of the License, or (at your option) any later
+version.
+
+This program is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License (appendix \ref{app:gpl} of this document) for
+more details.
+
+\subsection{Acknowledgements}
+
+I have borrowed many codes, ideas, glyphs from various sources, and I
+would like to thanks all the authors of the original material, among
+others Alan Jeffrey and Jeremy Gibbons (\pkgname{stmaryrd}), Yannis
+Haralambous (\pkgname{yhmath} and the great greek fonts from $\Omega$),
+Young Ryu (\pkgname{txfonts/pxfonts}), Antony Phan (\pkgname{mathabx})
+and the \AmS.
+
+I would like to thank in particular C\'eline Chevalier, S\'ebastien
+Desvreux and Walter Appel for their kind support and friendly help.
+
+%% horizontal brace
+
+%% wave
+
+% llbracket
+
+% wide accents
+
+%% \subsection{Technical extra}
+
+%% Following an idea of the \pkgname{fontinst} package, the following
+%% \verb|fontdimen| have been defined. These parameters concerns the text font:
+%% \smallskip
+%% \begin{center}
+%% \begin{tabular}[t]{c|c|l}
+%% \hline
+%% \textbf{Parameter} & \textbf{Name} & \textbf{Description} \\\hline\hline
+%% \verb|fontdimen8| & capheight & \quad Postscript CapHeight \\
+%% \verb|fontdimen9| & ascender & \quad Postscript Ascender \\
+%% \verb|fontdimen10| & acccapheight & \quad accented cap height \\
+%% \verb|fontdimen11| & descender & \quad Postscript Descender \\
+%% \verb|fontdimen12| & maxheight & \quad max height (from Postscript
+%% FontBBox) \\
+%% \verb|fontdimen13| & maxdepth & \quad max depth (from Postscript
+%% FontBBox)\\
+%% \verb|fontdimen14| & digitwidth & \quad digit width (width of the 6)\\
+%% %% \verb|fontdimen15| & verticalstem & dominant width of verical stems \\
+%% \verb|fontdimen16| & baselineskip & \quad baselineskip (12pt)
+%% \end{tabular}
+%% \end{center}
+
+
+%% \section{Known issues and workarounds}
+
+%% Some fonts use
+
+\setcounter{tocdepth}{2}
+\tableofcontents
+
+\appendix
+
+\section{Commands available}
+
+This is a remind of all the commands redefined in the
+\pkgname{mathdesign} package\footnote{The following table are strongly
+ inspired from the excellent Scoot Pakin's \emph{Comprehensive
+ \LaTeX{} Symbol List}
+ \url{http://www.ctan.org/tex-archive/help/Catalogue/entries/comprehe
+ nsive.html}}.
+
+\begin{symtable}{Math Design extra symbols}
+\label{mdbin}
+\begin{tabular}{*4{cl}}
+\X\smallin &
+\X\smallowns &
+\X\notsmallin &
+\X\notsmallowns \\
+\X\rightangle
+\end{tabular}
+
+%% \bigskip
+%% \notpredefinedmessage
+\end{symtable}
+
+\begin{symtable}{Variable-sized Math Design Operators}
+\label{mdop}
+\renewcommand{\arraystretch}{1.75}
+\begin{tabular}{*2{c@{$\:$}cl@{\qquad}}c@{$\:$}cl}
+\R\intclockwise &
+\R\ointclockwise &
+\R\ointctrclockwise \\
+\R\oiint &
+\R\oiiint \\
+\end{tabular}
+\end{symtable}
+
+
+\begin{symtable}{Binary Operators}
+\label{bin}
+\begin{tabular}{*4{cl}}
+\X\amalg & \X\cup & \X\oplus & \X\times \\
+\X\ast & \X\dagger & \X\oslash & \X\triangleleft \\
+\X\bigcirc & \X\ddagger & \X\otimes & \X\triangleright \\
+\X\bigtriangledown & \X\diamond & \X\pm & \X\unlhd$^*$ \\
+\X\bigtriangleup & \X\div & \X\rhd$^*$ & \X\unrhd$^*$ \\
+\X\bullet & \X\lhd$^*$ & \X\setminus & \X\uplus \\
+\X\cap & \X\mp & \X\sqcap & \X\vee \\
+\X\cdot & \X\odot & \X\sqcup & \X\wedge \\
+\X\circ & \X\ominus & \X\star & \X\wr \\
+\end{tabular}
+
+\bigskip
+\notpredefinedmessage
+\end{symtable}
+
+
+\begin{symtable}{Variable-sized Math Operators}
+\label{op}
+\renewcommand{\arraystretch}{1.75}
+\begin{tabular}{*2{c@{$\:$}cl@{\qquad}}c@{$\:$}cl}
+\R\bigcap & \R\bigotimes & \R\bigwedge \\
+\R\bigcup & \R\bigsqcup & \R\sum \\
+\R\bigodot & \R\biguplus & \R\int \\
+\R\bigoplus & \R\bigvee & \R\oint \\
+\R\prod & \R\coprod \end{tabular}
+\end{symtable}
+
+
+\begin{symtable}{Binary Relations}
+\label{rel}
+\begin{tabular}{*4{cl}}
+\X\approx & \X\equiv & \X\perp & \X\smile \\
+\X\asymp & \X\frown & \X\prec & \X\succ \\
+\X\bowtie & \X\Join$^*$
+& \X\preceq & \X\succeq \\
+\X\cong & \X\mid & \X\propto & \X\vdash \\
+\X\dashv & \X\models & \X\sim \\
+\X\doteq & \X\parallel & \X\simeq \\
+\end{tabular}
+\bigskip
+\notpredefinedmessage
+\end{symtable}
+
+
+
+\begin{symtable}{Subset and Superset Relations}
+\label{subsets}
+\begin{tabular}{*3{cl}}
+\X\sqsubset$^*$
+& \X\sqsupseteq & \X\supset \\
+\X\sqsubseteq & \X\subset & \X\supseteq \\
+\X\sqsupset$^*$
+& \X\subseteq \\
+\end{tabular}
+\bigskip
+\notpredefinedmessage
+\end{symtable}
+
+\begin{symtable}{Inequalities}
+\label{inequal-rel}
+\begin{tabular}{*5{cl}}
+\X\geq & \X\gg & \X\leq & \X\ll & \X\neq \\
+\end{tabular}
+\end{symtable}
+
+
+
+\begin{symtable}{Arrows}
+\label{arrow}
+\begin{tabular}{*3{cl}}
+\X\Downarrow & \X\longleftarrow & \X\nwarrow \\
+\X\downarrow & \X\Longleftarrow & \X\Rightarrow \\
+\X\hookleftarrow & \X\longleftrightarrow & \X\rightarrow \\
+\X\hookrightarrow & \X\Longleftrightarrow & \X\searrow \\
+\X\leadsto$^*$ & \X\longmapsto & \X\swarrow \\
+\X\leftarrow & \X\Longrightarrow & \X\uparrow \\
+\X\Leftarrow & \X\longrightarrow & \X\Uparrow \\
+\X\Leftrightarrow & \X\mapsto & \X\updownarrow \\
+\X\leftrightarrow & \X\nearrow & \X\Updownarrow \\
+\end{tabular}
+\notpredefinedmessage
+\end{symtable}
+
+
+\begin{symtable}{Harpoons}
+\label{harpoons}
+\begin{tabular}{*2{cl}}
+\X\leftharpoondown & \X\rightharpoondown \\
+\X\leftharpoonup & \X\rightharpoonup \\
+ \X\rightleftharpoons
+\end{tabular}
+\end{symtable}
+
+
+\begin{symtable}{Letter-like Symbols}
+\label{letter-like}
+\begin{tabular}{*5{cl}}
+\X\bot & \X\forall & \X\imath & \X\ni & \X\top \\
+\X\ell & \X\hbar & \X\in & \X\partial & \X\wp \\
+\X\exists & \X\Im & \X\jmath & \X\Re \\
+\end{tabular}
+\end{symtable}
+
+
+
+\begin{symtable}{Extension Characters}
+\label{ext}
+\begin{tabular}{*2{cl}}
+\X\relbar & \X\Relbar \\
+\end{tabular}
+\end{symtable}
+
+
+
+
+\begin{symtable}{Variable-sized Delimiters}
+\label{dels}
+\renewcommand{\arraystretch}{1.75}
+\begin{tabular}{ccl@{\quad}ccl@{\quad}ccl@{\quad}ccl}
+\N\downarrow & \N\Downarrow & \N{[} & \N{]} \\
+\N\langle & \N\rangle & \N| & \N\| \\
+\N\lceil & \N\rceil & \N\uparrow & \N\Uparrow \\
+\N\lfloor & \N\rfloor & \N\updownarrow & \N\Updownarrow \\
+\N( & \N) & \N\{ & \N\} \\
+\N/ & \N\backslash \\
+\end{tabular}
+\end{symtable}
+
+\begin{symtable}{Large, Variable-sized Delimiters}
+\label{ldels}
+\renewcommand{\arraystretch}{2.5}
+\begin{tabular}{*3{ccl@{\qquad}}ccl}
+\Y\lmoustache & \Y\rmoustache & \Y\lgroup & \Y\rgroup \\
+\Y\arrowvert & \Y\Arrowvert & \Y\bracevert
+\end{tabular}
+\end{symtable}
+
+\begin{symtable}{Math-mode Accents}
+\label{math-accents}
+\begin{tabular}{*4{cl}}
+\W\acute{a} & \W\check{a} & \W\grave{a} & \W\tilde{a} \\
+\W\bar{a} & \W\ddot{a} & \W\hat{a} & \W\vec{a} \\
+\W\breve{a} & \W\dot{a} & \W\mathring{a} \\
+\end{tabular}
+
+\end{symtable}
+
+
+
+\begin{symtable}{Extensible Accents}
+\label{extensible-accents}
+\renewcommand{\arraystretch}{1.5}
+\begin{tabular}{*4l}
+\W\widetilde{abc}$^*$ & \W\widehat{abc}$^*$ \\
+\W\overleftarrow{abc}$^\dag$ & \W\overrightarrow{abc}$^\dag$ \\
+\W\overline{abc} & \W\underline{abc} \\
+\W\overbrace{abc} & \W\underbrace{abc} \\[5pt]
+\W\sqrt{abc} \\
+\end{tabular}
+\end{symtable}
+
+
+\begin{symtable}{\AmS\ Extensible Accents}
+\label{extensible-arrows}
+\renewcommand{\arraystretch}{1.5}
+\begin{tabular}{cl@{\qquad}cl}
+\W\overleftrightarrow{abcde} & \W\underleftrightarrow{abcde} \\
+\W\underleftarrow{abcde} & \W\underrightarrow{abcde} \\
+\W\xleftarrow{abcde} & \W\xrightarrow{abcde} \\
+\end{tabular}
+\end{symtable}
+
+\begin{symtable}{Dots}
+\begin{tabular}{*{3}{cl@{\hspace*{1.5cm}}}cl}
+\X\cdotp & \X\colon & \X\ldotp & \X\vdots \\
+\X\cdots & \X\ddots & \X\ldots & \X\iddots$^*$ \\
+\end{tabular}
+\bigskip
+\notpredefinedmessage
+\end{symtable}
+
+
+
+
+\begin{symtable}{Miscellaneous \LaTeX {} Symbols}
+\label{ord}
+\begin{tabular}{*4{cl}}
+\X\aleph & \X\Diamond$^*$ & \X\infty & \X\prime \\
+\X\angle & \X\diamondsuit & \X\mho$^*$ & \X\sharp \\
+\X\backslash & \X\emptyset & \X\nabla & \X\spadesuit \\
+\X\Box$^{*}$ & \X\flat & \X\natural & \X\surd \\
+\X\clubsuit & \X\heartsuit & \X\neg & \X\triangle \\
+\end{tabular}
+\bigskip
+\notpredefinedmessage
+\end{symtable}
+
+\begin{symtable}{\LaTeX{} Commands Defined to Work in Both Math and Text Mode}
+\label{math-text}
+\begin{tabular}{*3{ccl@{\qqquad}}ccl}
+\V\$ & \V\_ & \V\ddag & \V\{ \\
+\V\P & \V\copyright & \V\dots & \V\} \\
+\V\S & \V\dag & \V\pounds \\
+\end{tabular}
+\end{symtable}
+
+
+\begin{symtable}{Predefined \LaTeX{} Text-mode Commands}
+\label{text-predef}
+\begin{tabular}{ccl@{\qqquad}ccl}
+\V\textasciicircum & \V\textless \\
+\V\textasciitilde & \V\textordfeminine \\
+\V\textasteriskcentered & \V\textordmasculine \\
+\V\textbackslash & \V\textparagraph \\
+\V\textbar & \V\textperiodcentered \\
+\V\textbraceleft & \V\textquestiondown \\
+\V\textbraceright & \V\textquotedblleft \\
+\V\textbullet & \V\textquotedblright \\
+\V\textcopyright
+ & \V\textquoteleft \\
+\V\textdagger & \V\textquoteright \\
+\V\textdaggerdbl & \V\textregistered \\
+\V\textdollar & \V\textsection \\
+\V\textellipsis & \V\textsterling \\
+\V\textemdash & \V\texttrademark \\
+\V\textendash & \V\textunderscore \\
+\V\textexclamdown & \V\textvisiblespace \\
+\V\textgreater \\
+\end{tabular}
+\end{symtable}
+
+\begin{symtable}{Text-mode Accents}
+\label{text-accents}
+ \begin{tabular}{*3{cl@{\hspace*{3em}}}cl}
+ \Q\" & \Q\` & \Q\k \\
+ \Q\' & \Q\b & \Q\r \\
+ \Q\. & \Q\c & \QQ\t \\
+ \Q\= & \Q\d & \Q\u \\
+ \Q\^ & \Q\H & \Q\v \\
+ \Q\~ \\
+ \end{tabular}
+\par\medskip
+\begin{tabular}{cl@{\hspace*{3em}}cl}
+ \Q\textcircled
+\end{tabular}
+\end{symtable}
+
+\begin{symtable}{\AmS\ Commands Defined to Work in Both Math and Text Mode}
+\label{ams-math-text}
+\begin{tabular}{*2{cl@{\qquad}}cl}
+\X\checkmark & \X\circledR & \X\maltese
+\end{tabular}
+\end{symtable}
+
+\begin{symtable}{\AmS\ Binary Operators}
+\label{ams-bin}
+\begin{tabular}{*3{cl}}
+\X\barwedge & \X\circledcirc & \X\intercal \\
+\X\boxdot & \X\circleddash & \X\Join \\
+\X\boxminus & \X\Cup & \X\leftthreetimes \\
+\X\boxplus & \X\curlyvee & \X\ltimes \\
+\X\boxtimes & \X\curlywedge & \X\rightthreetimes \\
+\X\Cap & \X\divideontimes & \X\rtimes \\
+\X\centerdot & \X\dotplus & \X\smallsetminus \\
+\X\circledast & \X\doublebarwedge & \X\veebar \\
+\end{tabular}
+\end{symtable}
+
+\begin{symtable}{\AmS\ Extra Binary Operators (see section~\ref{sec:extras})}
+\label{ams-extra-bin}
+\begin{tabular}{*3{cl}}
+\X\utimes & \X\dtimes & \X\udtimes \\
+\end{tabular}
+\end{symtable}
+
+\begin{symtable}{\AmS\ Variable-sized Math Operators}
+\label{ams-large}
+\renewcommand{\arraystretch}{1.85}
+\begin{tabular}{c@{$\:$}cl@{\qquad}c@{$\:$}cl}
+\R\idotsint & \R\iiint \\[12pt]
+\R\iiiint & \R\iint \\
+\end{tabular}
+\end{symtable}
+
+\begin{symtable}{\AmS\ Binary Relations}
+\label{ams-rel}
+\begin{tabular}{*3{cl}}
+\X\approxeq & \X\eqcirc & \X\succapprox \\
+\X\backepsilon & \X\fallingdotseq & \X\succcurlyeq \\
+\X\backsim & \X\multimap & \X\succsim \\
+\X\backsimeq & \X\pitchfork & \X\therefore \\
+\X\because & \X\precapprox & \X\thickapprox \\
+\X\between & \X\preccurlyeq & \X\thicksim \\
+\X\Bumpeq & \X\precsim & \X\varpropto \\
+\X\bumpeq & \X\risingdotseq & \X\Vdash \\
+\X\circeq & \X\shortmid & \X\vDash \\
+\X\curlyeqprec & \X\shortparallel & \X\Vvdash \\
+\X\curlyeqsucc & \X\smallfrown & \\
+\X\doteqdot & \X\smallsmile & \\
+\end{tabular}
+\end{symtable}
+
+
+\begin{symtable}{\AmS\ Negated Binary Relations}
+\label{ams-nrel}
+\begin{tabular}{*3{cl}}
+\X\ncong & \X\nshortparallel & \X\nVDash \\
+\X\nmid & \X\nsim & \X\precnapprox \\
+\X\nparallel & \X\nsucc & \X\precnsim \\
+\X\nprec & \X\nsucceq & \X\succnapprox \\
+\X\npreceq & \X\nvDash & \X\succnsim \\
+\X\nshortmid & \X\nvdash \\
+\end{tabular}
+\end{symtable}
+
+\begin{symtable}{\AmS\ Subset and Superset Relations}
+\label{ams-subsets}
+\begin{tabular}{*3{cl}}
+\X\nsubseteq & \X\subseteqq & \X\supsetneqq \\
+\X\nsupseteq & \X\subsetneq & \X\varsubsetneq \\
+\X\nsupseteqq & \X\subsetneqq & \X\varsubsetneqq \\
+\X\sqsubset & \X\Supset & \X\varsupsetneq \\
+\X\sqsupset & \X\supseteqq & \X\varsupsetneqq \\
+\X\Subset & \X\supsetneq \\
+\end{tabular}
+\end{symtable}
+
+\begin{symtable}{\AmS\ Inequalities}
+\label{ams-inequal-rel}
+\begin{tabular}{*3{cl}}
+\X\eqslantgtr & \X\gtrless & \X\lneq \\
+\X\eqslantless & \X\gtrsim & \X\lneqq \\
+\X\geqq & \X\gvertneqq & \X\lnsim \\
+\X\geqslant & \X\leqq & \X\lvertneqq \\
+\X\ggg & \X\leqslant & \X\ngeq \\
+\X\gnapprox & \X\lessapprox & \X\ngeqq \\
+\X\gneq & \X\lessdot & \X\ngeqslant \\
+\X\gneqq & \X\lesseqgtr & \X\ngtr \\
+\X\gnsim & \X\lesseqqgtr & \X\nleq \\
+\X\gtrapprox & \X\lessgtr & \X\nleqq \\
+\X\gtrdot & \X\lesssim & \X\nleqslant \\
+\X\gtreqless & \X\lll & \X\nless \\
+\X\gtreqqless & \X\lnapprox \\
+\end{tabular}
+\end{symtable}
+
+\begin{symtable}{\AmS\ Triangle Relations}
+\label{ams-triangle-rel}
+\begin{tabular}{*4{cl}}
+\X\blacktriangleleft & \X\ntriangleright & \X\trianglerighteq & \\
+\X\blacktriangleright & \X\ntrianglerighteq & \X\vartriangleleft \\
+\X\ntriangleleft &\X\ntrianglelefteq & \X\vartriangleright \\
+\X\trianglelefteq & \X\triangleq \\
+\end{tabular}
+\end{symtable}
+
+\begin{symtable}{\AmS\ Arrows}
+\label{ams-arrows}
+\begin{tabular}{*3{cl}}
+\X\circlearrowleft & \X\leftleftarrows & \X\rightleftarrows \\
+\X\circlearrowright & \X\leftrightarrows & \X\rightrightarrows \\
+\X\curvearrowleft & \X\leftrightsquigarrow & \X\rightsquigarrow \\
+\X\curvearrowright & \X\Lleftarrow & \X\Rsh \\
+\X\dashleftarrow & \X\looparrowleft & \X\twoheadleftarrow \\
+\X\dashrightarrow & \X\looparrowright & \X\twoheadrightarrow \\
+\X\downdownarrows & \X\Lsh & \X\upuparrows \\
+\X\leftarrowtail & \X\rightarrowtail & \\
+\end{tabular}
+\end{symtable}
+
+
+\begin{symtable}{\AmS\ Negated Arrows}
+\label{ams-narrows}
+\begin{tabular}{*3{cl}}
+\X\nLeftarrow & \X\nLeftrightarrow & \X\nRightarrow \\
+\X\nleftarrow & \X\nleftrightarrow & \X\nrightarrow \\
+\end{tabular}
+\end{symtable}
+
+
+\begin{symtable}{\AmS\ Harpoons}
+\label{ams-harpoons}
+\begin{tabular}{*3{cl}}
+\X\downharpoonleft & \X\leftrightharpoons & \X\upharpoonleft \\
+\X\downharpoonright & \X\rightleftharpoons & \X\upharpoonright \\
+\end{tabular}
+\end{symtable}
+
+\begin{symtable}{\AmS\ Hebrew Letters}
+\label{ams-hebrew}
+\begin{tabular}{*6l}
+\X\beth & \X\gimel & \X\daleth
+\end{tabular}
+\end{symtable}
+
+\begin{symtable}{\AmS\ Letter-like Symbols}
+\label{ams-letter-like}
+\begin{tabular}{*3{cl}}
+\X\Bbbk & \X\complement & \X\hbar \\
+\X\circledR & \X\Finv & \X\hslash \\
+\X\circledS & \X\Game & \X\nexists \\
+\end{tabular}
+\end{symtable}
+
+\begin{symtable}{\AmS\ Delimiters}
+\label{ams-del}
+\begin{tabular}{*2{cl}}
+\X\ulcorner & \X\urcorner \\
+\X\llcorner & \X\lrcorner
+\end{tabular}
+\end{symtable}
+
+\begin{symtable}{\AmS\ Math-mode Accents}
+\label{ams-math-accents}
+\begin{tabular}{cl@{\hspace*{2em}}cl}
+\W\dddot{a} & \W\ddddot{a} \\
+\end{tabular}
+\end{symtable}
+
+
+\begin{symtable}{Miscellaneous \AmS\ Symbols}
+\label{ams-misc}
+\begin{tabular}{*3{cl}}
+\X\angle & \X\blacktriangledown & \X\mho \\
+\X\backprime & \X\diagdown & \X\sphericalangle \\
+\X\bigstar & \X\diagup & \X\square \\
+\X\blacklozenge & \X\eth & \X\triangledown \\
+\X\blacksquare & \X\lozenge & \X\varnothing \\
+\X\blacktriangle & \X\measuredangle & \X\vartriangle \\
+
+\end{tabular}
+\end{symtable}
+
+\begin{symtable}{Text Companion symbols (Not predefined in \LaTeX. Use the package \pkgname{textcomp})}
+\label{text-comp}
+\begin{tabular}{*2{cl}}
+\T\textbardbl &
+\T\textbigcircle \\
+\T\textborn &
+\T\textbrokenbar \\
+\T\textbullet &
+\T\textcelsius \\
+\T\textcent &
+\T\textcentoldstyle \\
+\T\textcopyright &
+\T\textdagger \\
+\T\textdaggerdbl &
+\T\textdegree \\
+\T\textdied &
+\T\textdivorced \\
+\T\textdollar &
+\T\textdollaroldstyle \\
+\T\textdownarrow &
+\T\texteightoldstyle \\
+\T\textestimated &
+\T\textfiveoldstyle \\
+\T\textfouroldstyle &
+\T\textguarani \\
+\T\textlbrackdbl &
+\T\textleftarrow \\
+\T\textlira &
+\T\textmarried \\
+\T\textmu &
+\T\textnineoldstyle \\
+\T\textnumero &
+\T\textohm \\
+\T\textonehalf &
+\T\textoneoldstyle \\
+\T\textonequarter &
+\T\textopenbullet \\
+\T\textordfeminine &
+\T\textordmasculine \\
+\T\textpertenthousand &
+\T\textperthousand \\
+\T\textpm &
+\T\textrbrackdbl \\
+\T\textregistered &
+\T\textrightarrow \\
+\T\textsection &
+\T\textsevenoldstyle \\
+\T\textsixoldstyle &
+\T\textsterling \\
+\T\textsurd &
+\T\textthreeoldstyle \\
+\T\textthreequarters &
+\T\texttrademark \\
+\T\texttwooldstyle &
+\T\textuparrow \\
+\T\textuparrow &
+\T\textzerooldstyle \\
+\T\texteuro
+\end{tabular}
+\end{symtable}
+
+
+\newpage
+
+\section*{The GNU General Public License}
+
+\label{app:gpl}
+
+\begin{center}
+{\parindent 0in
+
+Version 2, June 1991
+
+Copyright \copyright\ 1989, 1991 Free Software Foundation, Inc.
+
+\bigskip
+
+59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
+
+\bigskip
+
+Everyone is permitted to copy and distribute verbatim copies
+of this license document, but changing it is not allowed.
+}
+\end{center}
+
+\begin{center}
+{\bf\large Preamble}
+\end{center}
+
+
+The licenses for most software are designed to take away your freedom to
+share and change it. By contrast, the GNU General Public License is
+intended to guarantee your freedom to share and change free software---to
+make sure the software is free for all its users. This General Public
+License applies to most of the Free Software Foundation's software and to
+any other program whose authors commit to using it. (Some other Free
+Software Foundation software is covered by the GNU Library General Public
+License instead.) You can apply it to your programs, too.
+
+When we speak of free software, we are referring to freedom, not price.
+Our General Public Licenses are designed to make sure that you have the
+freedom to distribute copies of free software (and charge for this service
+if you wish), that you receive source code or can get it if you want it,
+that you can change the software or use pieces of it in new free programs;
+and that you know you can do these things.
+
+To protect your rights, we need to make restrictions that forbid anyone to
+deny you these rights or to ask you to surrender the rights. These
+restrictions translate to certain responsibilities for you if you
+distribute copies of the software, or if you modify it.
+
+For example, if you distribute copies of such a program, whether gratis or
+for a fee, you must give the recipients all the rights that you have. You
+must make sure that they, too, receive or can get the source code. And
+you must show them these terms so they know their rights.
+
+We protect your rights with two steps: (1) copyright the software, and (2)
+offer you this license which gives you legal permission to copy,
+distribute and/or modify the software.
+
+Also, for each author's protection and ours, we want to make certain that
+everyone understands that there is no warranty for this free software. If
+the software is modified by someone else and passed on, we want its
+recipients to know that what they have is not the original, so that any
+problems introduced by others will not reflect on the original authors'
+reputations.
+
+Finally, any free program is threatened constantly by software patents.
+We wish to avoid the danger that redistributors of a free program will
+individually obtain patent licenses, in effect making the program
+proprietary. To prevent this, we have made it clear that any patent must
+be licensed for everyone's free use or not licensed at all.
+
+The precise terms and conditions for copying, distribution and
+modification follow.
+
+\begin{center}
+{\Large Terms and Conditions For Copying, Distribution and
+ Modification}
+\end{center}
+
+
+%\renewcommand{\theenumi}{\alpha{enumi}}
+\begin{enumerate}
+
+\addtocounter{enumi}{-1}
+
+\item
+
+This License applies to any program or other work which contains a notice
+placed by the copyright holder saying it may be distributed under the
+terms of this General Public License. The ``Program'', below, refers to
+any such program or work, and a ``work based on the Program'' means either
+the Program or any derivative work under copyright law: that is to say, a
+work containing the Program or a portion of it, either verbatim or with
+modifications and/or translated into another language. (Hereinafter,
+translation is included without limitation in the term ``modification''.)
+Each licensee is addressed as ``you''.
+
+Activities other than copying, distribution and modification are not
+covered by this License; they are outside its scope. The act of
+running the Program is not restricted, and the output from the Program
+is covered only if its contents constitute a work based on the
+Program (independent of having been made by running the Program).
+Whether that is true depends on what the Program does.
+
+\item You may copy and distribute verbatim copies of the Program's source
+ code as you receive it, in any medium, provided that you conspicuously
+ and appropriately publish on each copy an appropriate copyright notice
+ and disclaimer of warranty; keep intact all the notices that refer to
+ this License and to the absence of any warranty; and give any other
+ recipients of the Program a copy of this License along with the Program.
+
+You may charge a fee for the physical act of transferring a copy, and you
+may at your option offer warranty protection in exchange for a fee.
+
+\item
+
+You may modify your copy or copies of the Program or any portion
+of it, thus forming a work based on the Program, and copy and
+distribute such modifications or work under the terms of Section 1
+above, provided that you also meet all of these conditions:
+
+\begin{enumerate}
+
+\item
+
+You must cause the modified files to carry prominent notices stating that
+you changed the files and the date of any change.
+
+\item
+
+You must cause any work that you distribute or publish, that in
+whole or in part contains or is derived from the Program or any
+part thereof, to be licensed as a whole at no charge to all third
+parties under the terms of this License.
+
+\item
+If the modified program normally reads commands interactively
+when run, you must cause it, when started running for such
+interactive use in the most ordinary way, to print or display an
+announcement including an appropriate copyright notice and a
+notice that there is no warranty (or else, saying that you provide
+a warranty) and that users may redistribute the program under
+these conditions, and telling the user how to view a copy of this
+License. (Exception: if the Program itself is interactive but
+does not normally print such an announcement, your work based on
+the Program is not required to print an announcement.)
+
+\end{enumerate}
+
+
+These requirements apply to the modified work as a whole. If
+identifiable sections of that work are not derived from the Program,
+and can be reasonably considered independent and separate works in
+themselves, then this License, and its terms, do not apply to those
+sections when you distribute them as separate works. But when you
+distribute the same sections as part of a whole which is a work based
+on the Program, the distribution of the whole must be on the terms of
+this License, whose permissions for other licensees extend to the
+entire whole, and thus to each and every part regardless of who wrote it.
+
+Thus, it is not the intent of this section to claim rights or contest
+your rights to work written entirely by you; rather, the intent is to
+exercise the right to control the distribution of derivative or
+collective works based on the Program.
+
+In addition, mere aggregation of another work not based on the Program
+with the Program (or with a work based on the Program) on a volume of
+a storage or distribution medium does not bring the other work under
+the scope of this License.
+
+\item
+You may copy and distribute the Program (or a work based on it,
+under Section 2) in object code or executable form under the terms of
+Sections 1 and 2 above provided that you also do one of the following:
+
+\begin{enumerate}
+
+\item
+
+Accompany it with the complete corresponding machine-readable
+source code, which must be distributed under the terms of Sections
+1 and 2 above on a medium customarily used for software interchange; or,
+
+\item
+
+Accompany it with a written offer, valid for at least three
+years, to give any third party, for a charge no more than your
+cost of physically performing source distribution, a complete
+machine-readable copy of the corresponding source code, to be
+distributed under the terms of Sections 1 and 2 above on a medium
+customarily used for software interchange; or,
+
+\item
+
+Accompany it with the information you received as to the offer
+to distribute corresponding source code. (This alternative is
+allowed only for noncommercial distribution and only if you
+received the program in object code or executable form with such
+an offer, in accord with Subsection b above.)
+
+\end{enumerate}
+
+
+The source code for a work means the preferred form of the work for
+making modifications to it. For an executable work, complete source
+code means all the source code for all modules it contains, plus any
+associated interface definition files, plus the scripts used to
+control compilation and installation of the executable. However, as a
+special exception, the source code distributed need not include
+anything that is normally distributed (in either source or binary
+form) with the major components (compiler, kernel, and so on) of the
+operating system on which the executable runs, unless that component
+itself accompanies the executable.
+
+If distribution of executable or object code is made by offering
+access to copy from a designated place, then offering equivalent
+access to copy the source code from the same place counts as
+distribution of the source code, even though third parties are not
+compelled to copy the source along with the object code.
+
+\item
+You may not copy, modify, sublicense, or distribute the Program
+except as expressly provided under this License. Any attempt
+otherwise to copy, modify, sublicense or distribute the Program is
+void, and will automatically terminate your rights under this License.
+However, parties who have received copies, or rights, from you under
+this License will not have their licenses terminated so long as such
+parties remain in full compliance.
+
+\item
+You are not required to accept this License, since you have not
+signed it. However, nothing else grants you permission to modify or
+distribute the Program or its derivative works. These actions are
+prohibited by law if you do not accept this License. Therefore, by
+modifying or distributing the Program (or any work based on the
+Program), you indicate your acceptance of this License to do so, and
+all its terms and conditions for copying, distributing or modifying
+the Program or works based on it.
+
+\item
+Each time you redistribute the Program (or any work based on the
+Program), the recipient automatically receives a license from the
+original licensor to copy, distribute or modify the Program subject to
+these terms and conditions. You may not impose any further
+restrictions on the recipients' exercise of the rights granted herein.
+You are not responsible for enforcing compliance by third parties to
+this License.
+
+\item
+If, as a consequence of a court judgment or allegation of patent
+infringement or for any other reason (not limited to patent issues),
+conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot
+distribute so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you
+may not distribute the Program at all. For example, if a patent
+license would not permit royalty-free redistribution of the Program by
+all those who receive copies directly or indirectly through you, then
+the only way you could satisfy both it and this License would be to
+refrain entirely from distribution of the Program.
+
+If any portion of this section is held invalid or unenforceable under
+any particular circumstance, the balance of the section is intended to
+apply and the section as a whole is intended to apply in other
+circumstances.
+
+It is not the purpose of this section to induce you to infringe any
+patents or other property right claims or to contest validity of any
+such claims; this section has the sole purpose of protecting the
+integrity of the free software distribution system, which is
+implemented by public license practices. Many people have made
+generous contributions to the wide range of software distributed
+through that system in reliance on consistent application of that
+system; it is up to the author/donor to decide if he or she is willing
+to distribute software through any other system and a licensee cannot
+impose that choice.
+
+This section is intended to make thoroughly clear what is believed to
+be a consequence of the rest of this License.
+
+\item
+If the distribution and/or use of the Program is restricted in
+certain countries either by patents or by copyrighted interfaces, the
+original copyright holder who places the Program under this License
+may add an explicit geographical distribution limitation excluding
+those countries, so that distribution is permitted only in or among
+countries not thus excluded. In such case, this License incorporates
+the limitation as if written in the body of this License.
+
+\item
+The Free Software Foundation may publish revised and/or new versions
+of the General Public License from time to time. Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+Each version is given a distinguishing version number. If the Program
+specifies a version number of this License which applies to it and ``any
+later version'', you have the option of following the terms and conditions
+either of that version or of any later version published by the Free
+Software Foundation. If the Program does not specify a version number of
+this License, you may choose any version ever published by the Free Software
+Foundation.
+
+\item
+If you wish to incorporate parts of the Program into other free
+programs whose distribution conditions are different, write to the author
+to ask for permission. For software which is copyrighted by the Free
+Software Foundation, write to the Free Software Foundation; we sometimes
+make exceptions for this. Our decision will be guided by the two goals
+of preserving the free status of all derivatives of our free software and
+of promoting the sharing and reuse of software generally.
+
+\begin{center}
+{\Large
+No Warranty
+}
+\end{center}
+
+\item
+\textbf { Because the program is licensed free of charge, there is no warranty
+for the program, to the extent permitted by applicable law. Except when
+otherwise stated in writing the copyright holders and/or other parties
+provide the program ``as is'' without warranty of any kind, either expressed
+or implied, including, but not limited to, the implied warranties of
+merchantability and fitness for a particular purpose. The entire risk as
+to the quality and performance of the program is with you. Should the
+program prove defective, you assume the cost of all necessary servicing,
+repair or correction.}
+
+\item
+\textbf {In no event unless required by applicable law or agreed to in writing
+will any copyright holder, or any other party who may modify and/or
+redistribute the program as permitted above, be liable to you for damages,
+including any general, special, incidental or consequential damages arising
+out of the use or inability to use the program (including but not limited
+to loss of data or data being rendered inaccurate or losses sustained by
+you or third parties or a failure of the program to operate with any other
+programs), even if such holder or other party has been advised of the
+possibility of such damages.}
+
+\end{enumerate}
+
+
+\begin{center}
+{\Large End of Terms and Conditions}
+\end{center}
+
+
+
+
+
+\end{document}
diff --git a/Master/texmf-dist/doc/latex/mathdesign/mathdesign-doc.pdf b/Master/texmf-dist/doc/latex/mathdesign/mathdesign-doc.pdf
deleted file mode 100644
index 28f972af485..00000000000
--- a/Master/texmf-dist/doc/latex/mathdesign/mathdesign-doc.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/mathdesign/mdbch/MD-bitstream-charter-doc.pdf b/Master/texmf-dist/doc/latex/mathdesign/mdbch/MD-bitstream-charter-doc.pdf
deleted file mode 100644
index ff9ae1fc797..00000000000
--- a/Master/texmf-dist/doc/latex/mathdesign/mdbch/MD-bitstream-charter-doc.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/mathdesign/mdbch/mdbchtest.tex b/Master/texmf-dist/doc/latex/mathdesign/mdbch/mdbchtest.tex
deleted file mode 100644
index 3d1f354edf3..00000000000
--- a/Master/texmf-dist/doc/latex/mathdesign/mdbch/mdbchtest.tex
+++ /dev/null
@@ -1,506 +0,0 @@
-\documentclass[fleqn]{article}
-
-\usepackage[fraktur,mdbch]{mathdesign}
-
-\title{A \LaTeX\ math test document}
-\author{for fonts created by Math Design}
-
-\raggedbottom
-
-\newcommand{\testsize}[1]{
- #1 \texttt{\string#1}: \(a_{c_e}, b_{d_f}, C_{E_G}, 0_{1_2},
- a_{0_a}, 0_{a_0},
- \sum_{i=0}^\infty\) \\
-}
-
-\newcommand{\testdelims}[3]{\sqrt{
- #1|#1\|#1\uparrow
- #1\downarrow#1\updownarrow#1\Uparrow#1\Downarrow
- #1\Updownarrow#1\lfloor#1\lceil
- #1(#1\{#1[#1\langle
- #3
- #2\rangle#2]#2\}#2)
- #2\rceil#2\rfloor#2\Updownarrow#2\Downarrow
- #2\Uparrow#2\updownarrow#2\downarrow#2\uparrow
- #2\|#2|
-}\\}
-
-\newcommand{\testglyphs}[1]{
-\begin{quote}
- #1a#1b#1c#1d#1e#1f#1g#1h#1i#1j#1k#1l#1m
- #1n#1o#1p#1q#1r#1s#1t#1u#1v#1w#1x#1y#1z
- #1A#1B#1C#1D#1E#1F#1G#1H#1I#1J#1K#1L#1M
- #1N#1O#1P#1Q#1R#1S#1T#1U#1V#1W#1X#1Y#1Z
- #10#11#12#13#14#15#16#17#18#19
- #1\Gammait#1\Deltait#1\Thetait#1\Lambdait#1\Xiit
- #1\Piit#1\Sigmait#1\Upsilonit#1\Phiit#1\Psiit#1\Omegait
- #1\alpha#1\beta#1\gamma#1\digamma#1\delta#1\epsilon
- #1\varepsilon#1\zeta#1\eta#1\theta#1\vartheta
- #1\iota#1\kappa#1\varkappa#1\lambda#1\mu#1\nu#1\xi#1\omicron
- #1\pi#1\varpi#1\rho#1\varrho
- #1\sigma#1\varsigma#1\tau#1\upsilon#1\phi
- #1\varphi#1\chi#1\psi#1\omega
- #1\Gamma#1\Delta#1\Theta#1\Lambda#1\Xi
- #1\Pi#1\Sigma#1\Upsilon#1\Phi#1\Psi#1\Omega
- #1\alphaup#1\betaup#1\gammaup#1\digammaup#1\deltaup#1\epsilonup
- #1\varepsilonup#1\zetaup#1\etaup#1\thetaup#1\varthetaup
- #1\iotaup#1\kappaup#1\varkappaup#1\lambdaup#1\muup#1\nuup#1\xiup#1\omicron
- #1\piup#1\varpiup#1\rhoup#1\varrhoup
- #1\sigmaup#1\varsigmaup#1\tauup#1\upsilonup#1\phiup
- #1\varphiup#1\chiup#1\psiup#1\omegaup
- #1\partial#1\ell#1\imath#1\jmath#1\wp
-\end{quote}
-}
-
-\newcommand{\parenthesis}[1]{ $(#1)$ }
-\newcommand{\sidebearings}[1]{ $|#1|$ }
-\newcommand{\subscripts}[1]{ $#1_\circ$ }
-\newcommand{\supscripts}[1]{ $#1^\_$ }
-\newcommand{\scripts}[1]{ $#1^2_\circ$ }
-\newcommand{\vecaccents}[1]{ $\vec#1$ }
-\newcommand{\tildeaccents}[1]{ $\tilde#1$ }
-
-
-\ifx\omicron\undefined
- \let\omicron=o
-\fi
-
-\parindent 0pt
-\mathindent 1em
-
-\def\test#1{#1}
-
-\def\testnums{%
- \test 0 \test 1 \test 2 \test 3 \test 4 \test 5 \test 6 \test 7
- \test 8 \test 9 }
-\def\testupperi{%
- \test A \test B \test C \test D \test E \test F \test G \test H
- \test I \test J \test K \test L \test M }
-\def\testupperii{%
- \test N \test O \test P \test Q \test R \test S \test T \test U
- \test V \test W \test X \test Y \test Z }
-\def\testupper{%
- \testupperi\testupperii}
-
-\def\testloweri{%
- \test a \test b \test c \test d \test e \test f \test g \test h
- \test \imath \test \jmath \test k \test l \test m }
-\def\testlowerii{%
- \test n \test o \test p \test q \test r \test s \test t \test u
- \test v \test w \test x \test y \test z
- \test\imath \test\jmath }
-\def\testlower{%
- \testloweri\testlowerii}
-
-\def\testupgreeki{%
- \test A \test B \test\Gamma \test\Delta \test E \test Z \test H
- \test\Theta \test I \test K \test\Lambda \test M }
-\def\testupgreekii{%
- \test N \test\Xi \test O \test\Pi \test P \test\Sigma \test T
- \test\Upsilon \test\Phi \test X \test\Psi \test\Omega
- \test\nabla }
-\def\testupgreek{%
- \testupgreeki\testupgreekii}
-
-\def\testlowgreeki{%
- \test\alpha \test\beta \test\gamma \test\delta \test\epsilon
- \test\zeta \test\eta \test\theta \test\iota \test\kappa \test\lambda
- \test\mu }
-\def\testlowgreekii{%
- \test\nu \test\xi \test o \test\pi \test\rho \test\sigma \test\tau
- \test\upsilon \test\phi \test\chi \test\psi \test\omega }
-\def\testlowgreekiii{%
- \test\varepsilon \test\vartheta \test\varpi \test\varrho
- \test\varsigma \test\varphi}
-\def\testlowgreek{%
- \testlowgreeki\testlowgreekii\testlowgreekiii}
-
-\DeclareMathSymbol{\dit}{\mathord}{letters}{`d}
-\DeclareMathSymbol{\dup}{\mathord}{operators}{`d}
-
-\newenvironment{boldface}{\bgroup\mathversion{bold}%
- \def\it{\fontseries{b}\fontshape{it}\selectfont}%
- \fontseries{b}\selectfont }{\egroup}
-
-\begin{document}
-
-\maketitle
-
-\section*{Introduction}
-
-This document tests the math capabilities of the mdbchpackage, and is
-strongly modelled after a similar document by Alan Jeffrey.
-
-This test exercises the {\tt MathDesign mdbch} math fonts combined with the
-{\tt bch} text fonts.
-
-\section*{Math Alphabets}
-
-Math italic:
-$$
- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz
-$$
-Text italic:
-$$
- \mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz}
-$$
-Roman:
-$$
- \mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz}
-$$
-Bold:
-$$
- \mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz}
-$$
-Typewriter:
-$$
- \mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz}
-$$
-
-AMS like Symbol:
-$$
- \yen \geqq \circeq \daleth \varkappa \leftarrowtail \because
- \eqslantless \eqslantgtr \curlyeqprec
-$$
-
-Greek:
-$$
- \Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega
- \alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta
- \iota\kappa\lambda\mu\nu\xi\omicron\pi\varpi\rho\varrho
- \sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega
-$$
-{\mathversion{bold}
-$$
- \Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega
- \alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta
- \iota\kappa\lambda\mu\nu\xi\omicron\pi\varpi\rho\varrho
- \sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega
-$$}
-
-Calligraphic:
-$$A\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z$$
-Sans:
-$$
- A\mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z \quad
- a\mathsf{abcdefghijklmnopqrstuvwxyz}z
-$$
-Fraktur:
-$$
- A\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z
-$$
-$$
- a\mathfrak{abcdefghijklmnopqrstuvwxyz}z
-$$
-
-Blackboard Bold:
-$$
- A\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z
-$$
-
-\section*{Symbols}
-
-$$ \frac{\partial f}{\partial x} $$
-
-$$
- a \hookrightarrow b \hookleftarrow c \longrightarrow d
- \longleftarrow e \Longrightarrow f \Longleftarrow g
- \longleftrightarrow h \Longleftrightarrow i
- \mapsto j
-$$
-$$\textstyle
- \oint \int \quad
- \bigodot \bigoplus \bigotimes \sum \prod
- \bigcup \bigcap \biguplus \bigwedge \bigvee \coprod
-$$
-$$
- \oint \int \quad
- \bigodot \bigoplus \bigotimes \sum \prod
- \bigcup \bigcap \biguplus \bigwedge \bigvee \coprod
-$$
-$$ \bigodot_{i=1}^n \gamma_i = \bigoplus_{i=1}^n \gamma_i
-=\bigotimes_{i=1}^n \gamma_i = \sum_{i=1}^n \gamma_i = \prod_{i=1}^n
-\gamma_i = \bigcup_{i=1}^n \gamma_i = \bigcap_{i=1}^n \gamma_i =
-\biguplus_{i=1}^n \gamma_i = \bigwedge_{i=1}^n \gamma_i=
-\bigvee_{i=1}^n \gamma_i = \coprod_{i=1}^n \gamma_i
-$$
-
-\clearpage
-
-\section*{Big operators}
-
-\def\testop#1{#1_{i=1}^{n} x^{n} \quad}
-\begin{displaymath}
- \testop\sum
- \testop\prod
- \testop\coprod
- \testop\int
- \testop\oint
-\end{displaymath}
-\begin{displaymath}
- \testop\bigotimes
- \testop\bigoplus
- \testop\bigodot
- \testop\bigwedge
- \testop\bigvee
- \testop\biguplus
- \testop\bigcup
- \testop\bigcap
- \testop\bigsqcup
-% \testop\bigsqcap
-\end{displaymath}
-
-
-\section*{Radicals}
-
-\begin{displaymath}
- \sqrt{x+y} \qquad \sqrt{x^{2}+y^{2}} \qquad
- \sqrt{x_{i}^{2}+y_{j}^{2}} \qquad
- \sqrt{\left(\frac{\cos x}{2}\right)} \qquad
- \sqrt{\left(\frac{\sin x}{2}\right)}
-\end{displaymath}
-
-\begingroup
-\delimitershortfall-1pt
-\begin{displaymath}
- \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{x+y}}}}}}}
-\end{displaymath}
-\endgroup % \delimitershortfall
-
-
-\section*{Over- and underbraces}
-
-\begin{displaymath}
- \overbrace{x} \quad
- \overbrace{x+y} \quad
- \overbrace{x^{2}+y^{2}} \quad
- \overbrace{x_{i}^{2}+y_{j}^{2}} \quad
- \underbrace{x} \quad
- \underbrace{x+y} \quad
- \underbrace{x_{i}+y_{j}} \quad
- \underbrace{x_{i}^{2}+y_{j}^{2}} \quad
-\end{displaymath}
-
-
-\section*{Normal and wide accents}
-
-\begin{displaymath}
- \dot{x} \quad
- \ddot{x} \quad
- \vec{x} \quad
- \bar{x} \quad
- \overline{x} \quad
- \overline{xx} \quad
- \tilde{x} \quad
- \widetilde{x} \quad
- \widetilde{xx} \quad
- \widetilde{xxx} \quad
- \hat{x} \quad
- \widehat{x} \quad
- \widehat{xx} \quad
- \widehat{xxx} \quad
-\end{displaymath}
-
-\def\testwilde#1{
- \begin{displaymath}
- #1{a} \quad
- #1{ab} \quad
- #1{abc} \quad
- #1{abcde} \quad
- #1{abcdefg} \quad
- #1{abcdefghi} \quad
- #1{abcdefghijk} \quad
- \end{displaymath}}
-
-\testwilde\widehat
-\testwilde\widetilde
-\testwilde\widetriangle
-\testwilde\wideparen
-
-
-\section*{Long arrows}
-
-\begin{displaymath}
- \leftrightarrow \quad
- \longleftarrow \quad
- \longrightarrow \quad
- \longleftrightarrow \quad
- \Leftrightarrow \quad
- \Longleftarrow \quad
- \Longrightarrow \quad
- \Longleftrightarrow \quad
-\end{displaymath}
-
-
-\section*{Left and right delimters}
-
-\def\testdelim#1#2{ - #1 f #2 - }
-\begin{displaymath}
- \testdelim()
- \testdelim[]
- \testdelim\lfloor\rfloor
- \testdelim\lceil\rceil
- \testdelim\langle\rangle
- \testdelim\{\}
-\end{displaymath}
-
-\clearpage
-\section*{Big-g-g delimters}
-
-\def\testdelim#1#2{
- -
- \left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1
- #1 -
- #2 \right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2 -}
-
-\begingroup
-\delimitershortfall-1pt
-\begin{displaymath}
- \testdelim\lfloor\rfloor
- \qquad
- \testdelim()
-\end{displaymath}
-\begin{displaymath}
- \testdelim\lceil\rceil
- \qquad
- \testdelim\{\}
-\end{displaymath}
-\begin{displaymath}
- \testdelim\llbracket\rrbracket
- \qquad
- \testdelim\lwave\rwave
-\end{displaymath}
-\begin{displaymath}
- \testdelim[]
- \qquad
- \testdelim\lgroup\rgroup
-\end{displaymath}
-\begin{displaymath}
- \testdelim\langle\rangle
- \qquad
- \testdelim\lmoustache\rmoustache
-\end{displaymath}
-\begin{displaymath}
- \testdelim\uparrow\downarrow \quad
- \testdelim\Uparrow\Downarrow \quad
-\end{displaymath}
-\endgroup % \delimitershortfall
-
-\section*{Delimiters}
-
-Each row should be a different size, but within each row the delimiters
-should be the same size. First with \verb|\big|, etc:
-$$\begin{array}{c}
- \testdelims\relax\relax{J}
- \testdelims\bigl\bigr{J}
- \testdelims\Bigl\Bigr{J}
- \testdelims\biggl\biggr{J}
- \testdelims\Biggl\Biggr{J}
-\end{array}$$
-Then with \verb|\left| and \verb|\right|:
-$$\begin{array}{c}
- \testdelims\left\right{\begin{array}{c} f \end{array}}
- \testdelims\left\right{\begin{array}{c} a\\f \end{array}}
- \testdelims\left\right{\begin{array}{c} a\\a\\f \end{array}}
- \testdelims\left\right{\begin{array}{c} a\\a\\a\\f \end{array}}
-\end{array}$$
-
-\section*{Sizing}
-
-$$
- abcde + x^{abcde} + 2^{x^{abcde}}
-$$
-
-The subscripts should be appropriately sized:
-\begin{quote}
-\testsize\tiny
-\testsize\scriptsize
-\testsize\footnotesize
-\testsize\small
-\testsize\normalsize
-\testsize\large
-\testsize\Large
-\testsize\LARGE
-\testsize\huge
-\testsize\Huge
-
-\end{quote}
-
-\clearpage
-
-\section*{Spacing}
-
-This paragraph should appear to be a monotone grey texture. Suppose
-\(f \in \mathcal{S}_n\) and \(g(x) = (-1)^{|\alpha|}x^\alpha
-f(x)\). Then \(g \in \mathcal{S}_n\); now (\emph{c}) implies
-that \(\hat g = D_\alpha \hat f\) and \(P \cdot D_\alpha\hat
-f = P \cdot \hat g = (P(D)g)\hat{}\), which is a bounded function,
-since \(P(D)g \in L^1(R^n)\). This proves that \(\hat f \in
-\mathcal S_n\). If \(f_i \rightarrow f\) in \(\mathcal S_n\),
-then \(f_i \rightarrow f\) in \(L^1(R^n)\). Therefore \(\hat
-f_i(t) \rightarrow \hat f(t)\) for all \(t \in R^n\). That \(f
-\rightarrow \hat f\) is a \emph{continuous} mapping of
-\(\mathcal S_n\) into \(\mathcal S_n\) follows now from the
-closed graph theorem. And thus for \(x_1\) through \(x_i\).
-\emph{Functional Analysis}, W.~Rudin,
-McGraw--Hill, 1973.
-
-\begin{boldface}
-This paragraph should appear to be a monotone dark texture. Suppose
-\(f \in \mathcal{S}_n\) and \(g(x) = (-1)^{|\alpha|}x^\alpha
-f(x)\). Then \(g \in \mathcal{S}_n\); now (\emph{c}) implies
-that \(\hat g = D_\alpha \hat f\) and \(P \cdot D_\alpha\hat
-f = P \cdot \hat g = (P(D)g)\hat{}\), which is a bounded function,
-since \(P(D)g \in L^1(R^n)\). This proves that \(\hat f \in
-\mathcal S_n\). If \(f_i \rightarrow f\) in \(\mathcal S_n\),
-then \(f_i \rightarrow f\) in \(L^1(R^n)\). Therefore \(\hat
-f_i(t) \rightarrow \hat f(t)\) for all \(t \in R^n\). That \(f
-\rightarrow \hat f\) is a \emph{continuous} mapping of
-\(\mathcal S_n\) into \(\mathcal S_n\) follows now from the
-closed graph theorem. And thus for \(x_1\) through \(x_i\).
-\emph{Functional Analysis}, W.~Rudin, McGraw--Hill, 1973.
-\end{boldface}
-
-{\itshape This paragraph should appear to be a monotone grey texture.
-Suppose \(f \in \mathcal{S}_n\) and \(g(x) =
-(-1)^{|\alpha|}x^\alpha f(x)\). Then \(g \in \mathcal{S}_n\);
-now (\emph{c}) implies that \(\hat g = D_\alpha \hat f\) and
-\(P \cdot D_\alpha\hat f = P \cdot \hat g = (P(D)g)\hat{}\),
-which is a bounded function, since \(P(D)g \in L^1(R^n)\). This
-proves that \(\hat f \in \mathcal S_n\). If \(f_i \rightarrow
-f\) in \(\mathcal S_n\), then \(f_i \rightarrow f\) in
-\(L^1(R^n)\). Therefore \(\hat f_i(t) \rightarrow \hat f(t)\)
-for all \(t \in R^n\). That \(f \rightarrow \hat f\) is a
-\emph{continuous} mapping of \(\mathcal S_n\) into \(\mathcal
-S_n\) follows now from the closed graph theorem. \emph{Functional
-Analysis}, W.~Rudin, McGraw--Hill, 1973.}
-
-The text in these boxes should spread out as much as the math does:
-$$\begin{array}{c}
- \framebox[.95\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[.975\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.025\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.05\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.075\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.1\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.125\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
-\end{array}$$
-\end{document}
-
-%% Local Variables:
-%% mode: latex
-%% End:
diff --git a/Master/texmf-dist/doc/latex/mathdesign/mdput/MD-adobe-utopia-doc.pdf b/Master/texmf-dist/doc/latex/mathdesign/mdput/MD-adobe-utopia-doc.pdf
deleted file mode 100644
index b17e359abb8..00000000000
--- a/Master/texmf-dist/doc/latex/mathdesign/mdput/MD-adobe-utopia-doc.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/mathdesign/mdput/mdputtest.tex b/Master/texmf-dist/doc/latex/mathdesign/mdput/mdputtest.tex
deleted file mode 100644
index b9bfd974c0a..00000000000
--- a/Master/texmf-dist/doc/latex/mathdesign/mdput/mdputtest.tex
+++ /dev/null
@@ -1,506 +0,0 @@
-\documentclass[fleqn]{article}
-
-\usepackage[fraktur,mdput]{mathdesign}
-
-\title{A \LaTeX\ math test document}
-\author{for fonts created by Math Design}
-
-\raggedbottom
-
-\newcommand{\testsize}[1]{
- #1 \texttt{\string#1}: \(a_{c_e}, b_{d_f}, C_{E_G}, 0_{1_2},
- a_{0_a}, 0_{a_0},
- \sum_{i=0}^\infty\) \\
-}
-
-\newcommand{\testdelims}[3]{\sqrt{
- #1|#1\|#1\uparrow
- #1\downarrow#1\updownarrow#1\Uparrow#1\Downarrow
- #1\Updownarrow#1\lfloor#1\lceil
- #1(#1\{#1[#1\langle
- #3
- #2\rangle#2]#2\}#2)
- #2\rceil#2\rfloor#2\Updownarrow#2\Downarrow
- #2\Uparrow#2\updownarrow#2\downarrow#2\uparrow
- #2\|#2|
-}\\}
-
-\newcommand{\testglyphs}[1]{
-\begin{quote}
- #1a#1b#1c#1d#1e#1f#1g#1h#1i#1j#1k#1l#1m
- #1n#1o#1p#1q#1r#1s#1t#1u#1v#1w#1x#1y#1z
- #1A#1B#1C#1D#1E#1F#1G#1H#1I#1J#1K#1L#1M
- #1N#1O#1P#1Q#1R#1S#1T#1U#1V#1W#1X#1Y#1Z
- #10#11#12#13#14#15#16#17#18#19
- #1\Gammait#1\Deltait#1\Thetait#1\Lambdait#1\Xiit
- #1\Piit#1\Sigmait#1\Upsilonit#1\Phiit#1\Psiit#1\Omegait
- #1\alpha#1\beta#1\gamma#1\digamma#1\delta#1\epsilon
- #1\varepsilon#1\zeta#1\eta#1\theta#1\vartheta
- #1\iota#1\kappa#1\varkappa#1\lambda#1\mu#1\nu#1\xi#1\omicron
- #1\pi#1\varpi#1\rho#1\varrho
- #1\sigma#1\varsigma#1\tau#1\upsilon#1\phi
- #1\varphi#1\chi#1\psi#1\omega
- #1\Gamma#1\Delta#1\Theta#1\Lambda#1\Xi
- #1\Pi#1\Sigma#1\Upsilon#1\Phi#1\Psi#1\Omega
- #1\alphaup#1\betaup#1\gammaup#1\digammaup#1\deltaup#1\epsilonup
- #1\varepsilonup#1\zetaup#1\etaup#1\thetaup#1\varthetaup
- #1\iotaup#1\kappaup#1\varkappaup#1\lambdaup#1\muup#1\nuup#1\xiup#1\omicron
- #1\piup#1\varpiup#1\rhoup#1\varrhoup
- #1\sigmaup#1\varsigmaup#1\tauup#1\upsilonup#1\phiup
- #1\varphiup#1\chiup#1\psiup#1\omegaup
- #1\partial#1\ell#1\imath#1\jmath#1\wp
-\end{quote}
-}
-
-\newcommand{\parenthesis}[1]{ $(#1)$ }
-\newcommand{\sidebearings}[1]{ $|#1|$ }
-\newcommand{\subscripts}[1]{ $#1_\circ$ }
-\newcommand{\supscripts}[1]{ $#1^\_$ }
-\newcommand{\scripts}[1]{ $#1^2_\circ$ }
-\newcommand{\vecaccents}[1]{ $\vec#1$ }
-\newcommand{\tildeaccents}[1]{ $\tilde#1$ }
-
-
-\ifx\omicron\undefined
- \let\omicron=o
-\fi
-
-\parindent 0pt
-\mathindent 1em
-
-\def\test#1{#1}
-
-\def\testnums{%
- \test 0 \test 1 \test 2 \test 3 \test 4 \test 5 \test 6 \test 7
- \test 8 \test 9 }
-\def\testupperi{%
- \test A \test B \test C \test D \test E \test F \test G \test H
- \test I \test J \test K \test L \test M }
-\def\testupperii{%
- \test N \test O \test P \test Q \test R \test S \test T \test U
- \test V \test W \test X \test Y \test Z }
-\def\testupper{%
- \testupperi\testupperii}
-
-\def\testloweri{%
- \test a \test b \test c \test d \test e \test f \test g \test h
- \test \imath \test \jmath \test k \test l \test m }
-\def\testlowerii{%
- \test n \test o \test p \test q \test r \test s \test t \test u
- \test v \test w \test x \test y \test z
- \test\imath \test\jmath }
-\def\testlower{%
- \testloweri\testlowerii}
-
-\def\testupgreeki{%
- \test A \test B \test\Gamma \test\Delta \test E \test Z \test H
- \test\Theta \test I \test K \test\Lambda \test M }
-\def\testupgreekii{%
- \test N \test\Xi \test O \test\Pi \test P \test\Sigma \test T
- \test\Upsilon \test\Phi \test X \test\Psi \test\Omega
- \test\nabla }
-\def\testupgreek{%
- \testupgreeki\testupgreekii}
-
-\def\testlowgreeki{%
- \test\alpha \test\beta \test\gamma \test\delta \test\epsilon
- \test\zeta \test\eta \test\theta \test\iota \test\kappa \test\lambda
- \test\mu }
-\def\testlowgreekii{%
- \test\nu \test\xi \test o \test\pi \test\rho \test\sigma \test\tau
- \test\upsilon \test\phi \test\chi \test\psi \test\omega }
-\def\testlowgreekiii{%
- \test\varepsilon \test\vartheta \test\varpi \test\varrho
- \test\varsigma \test\varphi}
-\def\testlowgreek{%
- \testlowgreeki\testlowgreekii\testlowgreekiii}
-
-\DeclareMathSymbol{\dit}{\mathord}{letters}{`d}
-\DeclareMathSymbol{\dup}{\mathord}{operators}{`d}
-
-\newenvironment{boldface}{\bgroup\mathversion{bold}%
- \def\it{\fontseries{b}\fontshape{it}\selectfont}%
- \fontseries{b}\selectfont }{\egroup}
-
-\begin{document}
-
-\maketitle
-
-\section*{Introduction}
-
-This document tests the math capabilities of the mdputpackage, and is
-strongly modelled after a similar document by Alan Jeffrey.
-
-This test exercises the {\tt MathDesign mdput} math fonts combined with the
-{\tt put} text fonts.
-
-\section*{Math Alphabets}
-
-Math italic:
-$$
- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz
-$$
-Text italic:
-$$
- \mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz}
-$$
-Roman:
-$$
- \mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz}
-$$
-Bold:
-$$
- \mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz}
-$$
-Typewriter:
-$$
- \mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz}
-$$
-
-AMS like Symbol:
-$$
- \yen \geqq \circeq \daleth \varkappa \leftarrowtail \because
- \eqslantless \eqslantgtr \curlyeqprec
-$$
-
-Greek:
-$$
- \Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega
- \alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta
- \iota\kappa\lambda\mu\nu\xi\omicron\pi\varpi\rho\varrho
- \sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega
-$$
-{\mathversion{bold}
-$$
- \Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega
- \alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta
- \iota\kappa\lambda\mu\nu\xi\omicron\pi\varpi\rho\varrho
- \sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega
-$$}
-
-Calligraphic:
-$$A\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z$$
-Sans:
-$$
- A\mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z \quad
- a\mathsf{abcdefghijklmnopqrstuvwxyz}z
-$$
-Fraktur:
-$$
- A\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z
-$$
-$$
- a\mathfrak{abcdefghijklmnopqrstuvwxyz}z
-$$
-
-Blackboard Bold:
-$$
- A\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z
-$$
-
-\section*{Symbols}
-
-$$ \frac{\partial f}{\partial x} $$
-
-$$
- a \hookrightarrow b \hookleftarrow c \longrightarrow d
- \longleftarrow e \Longrightarrow f \Longleftarrow g
- \longleftrightarrow h \Longleftrightarrow i
- \mapsto j
-$$
-$$\textstyle
- \oint \int \quad
- \bigodot \bigoplus \bigotimes \sum \prod
- \bigcup \bigcap \biguplus \bigwedge \bigvee \coprod
-$$
-$$
- \oint \int \quad
- \bigodot \bigoplus \bigotimes \sum \prod
- \bigcup \bigcap \biguplus \bigwedge \bigvee \coprod
-$$
-$$ \bigodot_{i=1}^n \gamma_i = \bigoplus_{i=1}^n \gamma_i
-=\bigotimes_{i=1}^n \gamma_i = \sum_{i=1}^n \gamma_i = \prod_{i=1}^n
-\gamma_i = \bigcup_{i=1}^n \gamma_i = \bigcap_{i=1}^n \gamma_i =
-\biguplus_{i=1}^n \gamma_i = \bigwedge_{i=1}^n \gamma_i=
-\bigvee_{i=1}^n \gamma_i = \coprod_{i=1}^n \gamma_i
-$$
-
-\clearpage
-
-\section*{Big operators}
-
-\def\testop#1{#1_{i=1}^{n} x^{n} \quad}
-\begin{displaymath}
- \testop\sum
- \testop\prod
- \testop\coprod
- \testop\int
- \testop\oint
-\end{displaymath}
-\begin{displaymath}
- \testop\bigotimes
- \testop\bigoplus
- \testop\bigodot
- \testop\bigwedge
- \testop\bigvee
- \testop\biguplus
- \testop\bigcup
- \testop\bigcap
- \testop\bigsqcup
-% \testop\bigsqcap
-\end{displaymath}
-
-
-\section*{Radicals}
-
-\begin{displaymath}
- \sqrt{x+y} \qquad \sqrt{x^{2}+y^{2}} \qquad
- \sqrt{x_{i}^{2}+y_{j}^{2}} \qquad
- \sqrt{\left(\frac{\cos x}{2}\right)} \qquad
- \sqrt{\left(\frac{\sin x}{2}\right)}
-\end{displaymath}
-
-\begingroup
-\delimitershortfall-1pt
-\begin{displaymath}
- \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{x+y}}}}}}}
-\end{displaymath}
-\endgroup % \delimitershortfall
-
-
-\section*{Over- and underbraces}
-
-\begin{displaymath}
- \overbrace{x} \quad
- \overbrace{x+y} \quad
- \overbrace{x^{2}+y^{2}} \quad
- \overbrace{x_{i}^{2}+y_{j}^{2}} \quad
- \underbrace{x} \quad
- \underbrace{x+y} \quad
- \underbrace{x_{i}+y_{j}} \quad
- \underbrace{x_{i}^{2}+y_{j}^{2}} \quad
-\end{displaymath}
-
-
-\section*{Normal and wide accents}
-
-\begin{displaymath}
- \dot{x} \quad
- \ddot{x} \quad
- \vec{x} \quad
- \bar{x} \quad
- \overline{x} \quad
- \overline{xx} \quad
- \tilde{x} \quad
- \widetilde{x} \quad
- \widetilde{xx} \quad
- \widetilde{xxx} \quad
- \hat{x} \quad
- \widehat{x} \quad
- \widehat{xx} \quad
- \widehat{xxx} \quad
-\end{displaymath}
-
-\def\testwilde#1{
- \begin{displaymath}
- #1{a} \quad
- #1{ab} \quad
- #1{abc} \quad
- #1{abcde} \quad
- #1{abcdefg} \quad
- #1{abcdefghi} \quad
- #1{abcdefghijk} \quad
- \end{displaymath}}
-
-\testwilde\widehat
-\testwilde\widetilde
-\testwilde\widetriangle
-\testwilde\wideparen
-
-
-\section*{Long arrows}
-
-\begin{displaymath}
- \leftrightarrow \quad
- \longleftarrow \quad
- \longrightarrow \quad
- \longleftrightarrow \quad
- \Leftrightarrow \quad
- \Longleftarrow \quad
- \Longrightarrow \quad
- \Longleftrightarrow \quad
-\end{displaymath}
-
-
-\section*{Left and right delimters}
-
-\def\testdelim#1#2{ - #1 f #2 - }
-\begin{displaymath}
- \testdelim()
- \testdelim[]
- \testdelim\lfloor\rfloor
- \testdelim\lceil\rceil
- \testdelim\langle\rangle
- \testdelim\{\}
-\end{displaymath}
-
-\clearpage
-\section*{Big-g-g delimters}
-
-\def\testdelim#1#2{
- -
- \left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1
- #1 -
- #2 \right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2 -}
-
-\begingroup
-\delimitershortfall-1pt
-\begin{displaymath}
- \testdelim\lfloor\rfloor
- \qquad
- \testdelim()
-\end{displaymath}
-\begin{displaymath}
- \testdelim\lceil\rceil
- \qquad
- \testdelim\{\}
-\end{displaymath}
-\begin{displaymath}
- \testdelim\llbracket\rrbracket
- \qquad
- \testdelim\lwave\rwave
-\end{displaymath}
-\begin{displaymath}
- \testdelim[]
- \qquad
- \testdelim\lgroup\rgroup
-\end{displaymath}
-\begin{displaymath}
- \testdelim\langle\rangle
- \qquad
- \testdelim\lmoustache\rmoustache
-\end{displaymath}
-\begin{displaymath}
- \testdelim\uparrow\downarrow \quad
- \testdelim\Uparrow\Downarrow \quad
-\end{displaymath}
-\endgroup % \delimitershortfall
-
-\section*{Delimiters}
-
-Each row should be a different size, but within each row the delimiters
-should be the same size. First with \verb|\big|, etc:
-$$\begin{array}{c}
- \testdelims\relax\relax{J}
- \testdelims\bigl\bigr{J}
- \testdelims\Bigl\Bigr{J}
- \testdelims\biggl\biggr{J}
- \testdelims\Biggl\Biggr{J}
-\end{array}$$
-Then with \verb|\left| and \verb|\right|:
-$$\begin{array}{c}
- \testdelims\left\right{\begin{array}{c} f \end{array}}
- \testdelims\left\right{\begin{array}{c} a\\f \end{array}}
- \testdelims\left\right{\begin{array}{c} a\\a\\f \end{array}}
- \testdelims\left\right{\begin{array}{c} a\\a\\a\\f \end{array}}
-\end{array}$$
-
-\section*{Sizing}
-
-$$
- abcde + x^{abcde} + 2^{x^{abcde}}
-$$
-
-The subscripts should be appropriately sized:
-\begin{quote}
-\testsize\tiny
-\testsize\scriptsize
-\testsize\footnotesize
-\testsize\small
-\testsize\normalsize
-\testsize\large
-\testsize\Large
-\testsize\LARGE
-\testsize\huge
-\testsize\Huge
-
-\end{quote}
-
-\clearpage
-
-\section*{Spacing}
-
-This paragraph should appear to be a monotone grey texture. Suppose
-\(f \in \mathcal{S}_n\) and \(g(x) = (-1)^{|\alpha|}x^\alpha
-f(x)\). Then \(g \in \mathcal{S}_n\); now (\emph{c}) implies
-that \(\hat g = D_\alpha \hat f\) and \(P \cdot D_\alpha\hat
-f = P \cdot \hat g = (P(D)g)\hat{}\), which is a bounded function,
-since \(P(D)g \in L^1(R^n)\). This proves that \(\hat f \in
-\mathcal S_n\). If \(f_i \rightarrow f\) in \(\mathcal S_n\),
-then \(f_i \rightarrow f\) in \(L^1(R^n)\). Therefore \(\hat
-f_i(t) \rightarrow \hat f(t)\) for all \(t \in R^n\). That \(f
-\rightarrow \hat f\) is a \emph{continuous} mapping of
-\(\mathcal S_n\) into \(\mathcal S_n\) follows now from the
-closed graph theorem. And thus for \(x_1\) through \(x_i\).
-\emph{Functional Analysis}, W.~Rudin,
-McGraw--Hill, 1973.
-
-\begin{boldface}
-This paragraph should appear to be a monotone dark texture. Suppose
-\(f \in \mathcal{S}_n\) and \(g(x) = (-1)^{|\alpha|}x^\alpha
-f(x)\). Then \(g \in \mathcal{S}_n\); now (\emph{c}) implies
-that \(\hat g = D_\alpha \hat f\) and \(P \cdot D_\alpha\hat
-f = P \cdot \hat g = (P(D)g)\hat{}\), which is a bounded function,
-since \(P(D)g \in L^1(R^n)\). This proves that \(\hat f \in
-\mathcal S_n\). If \(f_i \rightarrow f\) in \(\mathcal S_n\),
-then \(f_i \rightarrow f\) in \(L^1(R^n)\). Therefore \(\hat
-f_i(t) \rightarrow \hat f(t)\) for all \(t \in R^n\). That \(f
-\rightarrow \hat f\) is a \emph{continuous} mapping of
-\(\mathcal S_n\) into \(\mathcal S_n\) follows now from the
-closed graph theorem. And thus for \(x_1\) through \(x_i\).
-\emph{Functional Analysis}, W.~Rudin, McGraw--Hill, 1973.
-\end{boldface}
-
-{\itshape This paragraph should appear to be a monotone grey texture.
-Suppose \(f \in \mathcal{S}_n\) and \(g(x) =
-(-1)^{|\alpha|}x^\alpha f(x)\). Then \(g \in \mathcal{S}_n\);
-now (\emph{c}) implies that \(\hat g = D_\alpha \hat f\) and
-\(P \cdot D_\alpha\hat f = P \cdot \hat g = (P(D)g)\hat{}\),
-which is a bounded function, since \(P(D)g \in L^1(R^n)\). This
-proves that \(\hat f \in \mathcal S_n\). If \(f_i \rightarrow
-f\) in \(\mathcal S_n\), then \(f_i \rightarrow f\) in
-\(L^1(R^n)\). Therefore \(\hat f_i(t) \rightarrow \hat f(t)\)
-for all \(t \in R^n\). That \(f \rightarrow \hat f\) is a
-\emph{continuous} mapping of \(\mathcal S_n\) into \(\mathcal
-S_n\) follows now from the closed graph theorem. \emph{Functional
-Analysis}, W.~Rudin, McGraw--Hill, 1973.}
-
-The text in these boxes should spread out as much as the math does:
-$$\begin{array}{c}
- \framebox[.95\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[.975\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.025\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.05\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.075\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.1\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.125\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
-\end{array}$$
-\end{document}
-
-%% Local Variables:
-%% mode: latex
-%% End:
diff --git a/Master/texmf-dist/doc/latex/mathdesign/mdugm/MD-urw-garamond-doc.pdf b/Master/texmf-dist/doc/latex/mathdesign/mdugm/MD-urw-garamond-doc.pdf
deleted file mode 100644
index 89d4426fdcb..00000000000
--- a/Master/texmf-dist/doc/latex/mathdesign/mdugm/MD-urw-garamond-doc.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/mathdesign/mdugm/mdugmtest.tex b/Master/texmf-dist/doc/latex/mathdesign/mdugm/mdugmtest.tex
deleted file mode 100644
index 5a700e21dbb..00000000000
--- a/Master/texmf-dist/doc/latex/mathdesign/mdugm/mdugmtest.tex
+++ /dev/null
@@ -1,506 +0,0 @@
-\documentclass[fleqn]{article}
-
-\usepackage[fraktur,mdugm]{mathdesign}
-
-\title{A \LaTeX\ math test document}
-\author{for fonts created by Math Design}
-
-\raggedbottom
-
-\newcommand{\testsize}[1]{
- #1 \texttt{\string#1}: \(a_{c_e}, b_{d_f}, C_{E_G}, 0_{1_2},
- a_{0_a}, 0_{a_0},
- \sum_{i=0}^\infty\) \\
-}
-
-\newcommand{\testdelims}[3]{\sqrt{
- #1|#1\|#1\uparrow
- #1\downarrow#1\updownarrow#1\Uparrow#1\Downarrow
- #1\Updownarrow#1\lfloor#1\lceil
- #1(#1\{#1[#1\langle
- #3
- #2\rangle#2]#2\}#2)
- #2\rceil#2\rfloor#2\Updownarrow#2\Downarrow
- #2\Uparrow#2\updownarrow#2\downarrow#2\uparrow
- #2\|#2|
-}\\}
-
-\newcommand{\testglyphs}[1]{
-\begin{quote}
- #1a#1b#1c#1d#1e#1f#1g#1h#1i#1j#1k#1l#1m
- #1n#1o#1p#1q#1r#1s#1t#1u#1v#1w#1x#1y#1z
- #1A#1B#1C#1D#1E#1F#1G#1H#1I#1J#1K#1L#1M
- #1N#1O#1P#1Q#1R#1S#1T#1U#1V#1W#1X#1Y#1Z
- #10#11#12#13#14#15#16#17#18#19
- #1\Gammait#1\Deltait#1\Thetait#1\Lambdait#1\Xiit
- #1\Piit#1\Sigmait#1\Upsilonit#1\Phiit#1\Psiit#1\Omegait
- #1\alpha#1\beta#1\gamma#1\digamma#1\delta#1\epsilon
- #1\varepsilon#1\zeta#1\eta#1\theta#1\vartheta
- #1\iota#1\kappa#1\varkappa#1\lambda#1\mu#1\nu#1\xi#1\omicron
- #1\pi#1\varpi#1\rho#1\varrho
- #1\sigma#1\varsigma#1\tau#1\upsilon#1\phi
- #1\varphi#1\chi#1\psi#1\omega
- #1\Gamma#1\Delta#1\Theta#1\Lambda#1\Xi
- #1\Pi#1\Sigma#1\Upsilon#1\Phi#1\Psi#1\Omega
- #1\alphaup#1\betaup#1\gammaup#1\digammaup#1\deltaup#1\epsilonup
- #1\varepsilonup#1\zetaup#1\etaup#1\thetaup#1\varthetaup
- #1\iotaup#1\kappaup#1\varkappaup#1\lambdaup#1\muup#1\nuup#1\xiup#1\omicron
- #1\piup#1\varpiup#1\rhoup#1\varrhoup
- #1\sigmaup#1\varsigmaup#1\tauup#1\upsilonup#1\phiup
- #1\varphiup#1\chiup#1\psiup#1\omegaup
- #1\partial#1\ell#1\imath#1\jmath#1\wp
-\end{quote}
-}
-
-\newcommand{\parenthesis}[1]{ $(#1)$ }
-\newcommand{\sidebearings}[1]{ $|#1|$ }
-\newcommand{\subscripts}[1]{ $#1_\circ$ }
-\newcommand{\supscripts}[1]{ $#1^\_$ }
-\newcommand{\scripts}[1]{ $#1^2_\circ$ }
-\newcommand{\vecaccents}[1]{ $\vec#1$ }
-\newcommand{\tildeaccents}[1]{ $\tilde#1$ }
-
-
-\ifx\omicron\undefined
- \let\omicron=o
-\fi
-
-\parindent 0pt
-\mathindent 1em
-
-\def\test#1{#1}
-
-\def\testnums{%
- \test 0 \test 1 \test 2 \test 3 \test 4 \test 5 \test 6 \test 7
- \test 8 \test 9 }
-\def\testupperi{%
- \test A \test B \test C \test D \test E \test F \test G \test H
- \test I \test J \test K \test L \test M }
-\def\testupperii{%
- \test N \test O \test P \test Q \test R \test S \test T \test U
- \test V \test W \test X \test Y \test Z }
-\def\testupper{%
- \testupperi\testupperii}
-
-\def\testloweri{%
- \test a \test b \test c \test d \test e \test f \test g \test h
- \test \imath \test \jmath \test k \test l \test m }
-\def\testlowerii{%
- \test n \test o \test p \test q \test r \test s \test t \test u
- \test v \test w \test x \test y \test z
- \test\imath \test\jmath }
-\def\testlower{%
- \testloweri\testlowerii}
-
-\def\testupgreeki{%
- \test A \test B \test\Gamma \test\Delta \test E \test Z \test H
- \test\Theta \test I \test K \test\Lambda \test M }
-\def\testupgreekii{%
- \test N \test\Xi \test O \test\Pi \test P \test\Sigma \test T
- \test\Upsilon \test\Phi \test X \test\Psi \test\Omega
- \test\nabla }
-\def\testupgreek{%
- \testupgreeki\testupgreekii}
-
-\def\testlowgreeki{%
- \test\alpha \test\beta \test\gamma \test\delta \test\epsilon
- \test\zeta \test\eta \test\theta \test\iota \test\kappa \test\lambda
- \test\mu }
-\def\testlowgreekii{%
- \test\nu \test\xi \test o \test\pi \test\rho \test\sigma \test\tau
- \test\upsilon \test\phi \test\chi \test\psi \test\omega }
-\def\testlowgreekiii{%
- \test\varepsilon \test\vartheta \test\varpi \test\varrho
- \test\varsigma \test\varphi}
-\def\testlowgreek{%
- \testlowgreeki\testlowgreekii\testlowgreekiii}
-
-\DeclareMathSymbol{\dit}{\mathord}{letters}{`d}
-\DeclareMathSymbol{\dup}{\mathord}{operators}{`d}
-
-\newenvironment{boldface}{\bgroup\mathversion{bold}%
- \def\it{\fontseries{m}\fontshape{it}\selectfont}%
- \fontseries{m}\selectfont }{\egroup}
-
-\begin{document}
-
-\maketitle
-
-\section*{Introduction}
-
-This document tests the math capabilities of the mdugmpackage, and is
-strongly modelled after a similar document by Alan Jeffrey.
-
-This test exercises the {\tt MathDesign mdugm} math fonts combined with the
-{\tt ugm} text fonts.
-
-\section*{Math Alphabets}
-
-Math italic:
-$$
- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz
-$$
-Text italic:
-$$
- \mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz}
-$$
-Roman:
-$$
- \mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz}
-$$
-Bold:
-$$
- \mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz}
-$$
-Typewriter:
-$$
- \mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz}
-$$
-
-AMS like Symbol:
-$$
- \yen \geqq \circeq \daleth \varkappa \leftarrowtail \because
- \eqslantless \eqslantgtr \curlyeqprec
-$$
-
-Greek:
-$$
- \Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega
- \alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta
- \iota\kappa\lambda\mu\nu\xi\omicron\pi\varpi\rho\varrho
- \sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega
-$$
-{\mathversion{bold}
-$$
- \Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega
- \alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta
- \iota\kappa\lambda\mu\nu\xi\omicron\pi\varpi\rho\varrho
- \sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega
-$$}
-
-Calligraphic:
-$$A\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z$$
-Sans:
-$$
- A\mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z \quad
- a\mathsf{abcdefghijklmnopqrstuvwxyz}z
-$$
-Fraktur:
-$$
- A\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z
-$$
-$$
- a\mathfrak{abcdefghijklmnopqrstuvwxyz}z
-$$
-
-Blackboard Bold:
-$$
- A\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z
-$$
-
-\section*{Symbols}
-
-$$ \frac{\partial f}{\partial x} $$
-
-$$
- a \hookrightarrow b \hookleftarrow c \longrightarrow d
- \longleftarrow e \Longrightarrow f \Longleftarrow g
- \longleftrightarrow h \Longleftrightarrow i
- \mapsto j
-$$
-$$\textstyle
- \oint \int \quad
- \bigodot \bigoplus \bigotimes \sum \prod
- \bigcup \bigcap \biguplus \bigwedge \bigvee \coprod
-$$
-$$
- \oint \int \quad
- \bigodot \bigoplus \bigotimes \sum \prod
- \bigcup \bigcap \biguplus \bigwedge \bigvee \coprod
-$$
-$$ \bigodot_{i=1}^n \gamma_i = \bigoplus_{i=1}^n \gamma_i
-=\bigotimes_{i=1}^n \gamma_i = \sum_{i=1}^n \gamma_i = \prod_{i=1}^n
-\gamma_i = \bigcup_{i=1}^n \gamma_i = \bigcap_{i=1}^n \gamma_i =
-\biguplus_{i=1}^n \gamma_i = \bigwedge_{i=1}^n \gamma_i=
-\bigvee_{i=1}^n \gamma_i = \coprod_{i=1}^n \gamma_i
-$$
-
-\clearpage
-
-\section*{Big operators}
-
-\def\testop#1{#1_{i=1}^{n} x^{n} \quad}
-\begin{displaymath}
- \testop\sum
- \testop\prod
- \testop\coprod
- \testop\int
- \testop\oint
-\end{displaymath}
-\begin{displaymath}
- \testop\bigotimes
- \testop\bigoplus
- \testop\bigodot
- \testop\bigwedge
- \testop\bigvee
- \testop\biguplus
- \testop\bigcup
- \testop\bigcap
- \testop\bigsqcup
-% \testop\bigsqcap
-\end{displaymath}
-
-
-\section*{Radicals}
-
-\begin{displaymath}
- \sqrt{x+y} \qquad \sqrt{x^{2}+y^{2}} \qquad
- \sqrt{x_{i}^{2}+y_{j}^{2}} \qquad
- \sqrt{\left(\frac{\cos x}{2}\right)} \qquad
- \sqrt{\left(\frac{\sin x}{2}\right)}
-\end{displaymath}
-
-\begingroup
-\delimitershortfall-1pt
-\begin{displaymath}
- \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{x+y}}}}}}}
-\end{displaymath}
-\endgroup % \delimitershortfall
-
-
-\section*{Over- and underbraces}
-
-\begin{displaymath}
- \overbrace{x} \quad
- \overbrace{x+y} \quad
- \overbrace{x^{2}+y^{2}} \quad
- \overbrace{x_{i}^{2}+y_{j}^{2}} \quad
- \underbrace{x} \quad
- \underbrace{x+y} \quad
- \underbrace{x_{i}+y_{j}} \quad
- \underbrace{x_{i}^{2}+y_{j}^{2}} \quad
-\end{displaymath}
-
-
-\section*{Normal and wide accents}
-
-\begin{displaymath}
- \dot{x} \quad
- \ddot{x} \quad
- \vec{x} \quad
- \bar{x} \quad
- \overline{x} \quad
- \overline{xx} \quad
- \tilde{x} \quad
- \widetilde{x} \quad
- \widetilde{xx} \quad
- \widetilde{xxx} \quad
- \hat{x} \quad
- \widehat{x} \quad
- \widehat{xx} \quad
- \widehat{xxx} \quad
-\end{displaymath}
-
-\def\testwilde#1{
- \begin{displaymath}
- #1{a} \quad
- #1{ab} \quad
- #1{abc} \quad
- #1{abcde} \quad
- #1{abcdefg} \quad
- #1{abcdefghi} \quad
- #1{abcdefghijk} \quad
- \end{displaymath}}
-
-\testwilde\widehat
-\testwilde\widetilde
-\testwilde\widetriangle
-\testwilde\wideparen
-
-
-\section*{Long arrows}
-
-\begin{displaymath}
- \leftrightarrow \quad
- \longleftarrow \quad
- \longrightarrow \quad
- \longleftrightarrow \quad
- \Leftrightarrow \quad
- \Longleftarrow \quad
- \Longrightarrow \quad
- \Longleftrightarrow \quad
-\end{displaymath}
-
-
-\section*{Left and right delimters}
-
-\def\testdelim#1#2{ - #1 f #2 - }
-\begin{displaymath}
- \testdelim()
- \testdelim[]
- \testdelim\lfloor\rfloor
- \testdelim\lceil\rceil
- \testdelim\langle\rangle
- \testdelim\{\}
-\end{displaymath}
-
-\clearpage
-\section*{Big-g-g delimters}
-
-\def\testdelim#1#2{
- -
- \left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1
- #1 -
- #2 \right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2 -}
-
-\begingroup
-\delimitershortfall-1pt
-\begin{displaymath}
- \testdelim\lfloor\rfloor
- \qquad
- \testdelim()
-\end{displaymath}
-\begin{displaymath}
- \testdelim\lceil\rceil
- \qquad
- \testdelim\{\}
-\end{displaymath}
-\begin{displaymath}
- \testdelim\llbracket\rrbracket
- \qquad
- \testdelim\lwave\rwave
-\end{displaymath}
-\begin{displaymath}
- \testdelim[]
- \qquad
- \testdelim\lgroup\rgroup
-\end{displaymath}
-\begin{displaymath}
- \testdelim\langle\rangle
- \qquad
- \testdelim\lmoustache\rmoustache
-\end{displaymath}
-\begin{displaymath}
- \testdelim\uparrow\downarrow \quad
- \testdelim\Uparrow\Downarrow \quad
-\end{displaymath}
-\endgroup % \delimitershortfall
-
-\section*{Delimiters}
-
-Each row should be a different size, but within each row the delimiters
-should be the same size. First with \verb|\big|, etc:
-$$\begin{array}{c}
- \testdelims\relax\relax{J}
- \testdelims\bigl\bigr{J}
- \testdelims\Bigl\Bigr{J}
- \testdelims\biggl\biggr{J}
- \testdelims\Biggl\Biggr{J}
-\end{array}$$
-Then with \verb|\left| and \verb|\right|:
-$$\begin{array}{c}
- \testdelims\left\right{\begin{array}{c} f \end{array}}
- \testdelims\left\right{\begin{array}{c} a\\f \end{array}}
- \testdelims\left\right{\begin{array}{c} a\\a\\f \end{array}}
- \testdelims\left\right{\begin{array}{c} a\\a\\a\\f \end{array}}
-\end{array}$$
-
-\section*{Sizing}
-
-$$
- abcde + x^{abcde} + 2^{x^{abcde}}
-$$
-
-The subscripts should be appropriately sized:
-\begin{quote}
-\testsize\tiny
-\testsize\scriptsize
-\testsize\footnotesize
-\testsize\small
-\testsize\normalsize
-\testsize\large
-\testsize\Large
-\testsize\LARGE
-\testsize\huge
-\testsize\Huge
-
-\end{quote}
-
-\clearpage
-
-\section*{Spacing}
-
-This paragraph should appear to be a monotone grey texture. Suppose
-\(f \in \mathcal{S}_n\) and \(g(x) = (-1)^{|\alpha|}x^\alpha
-f(x)\). Then \(g \in \mathcal{S}_n\); now (\emph{c}) implies
-that \(\hat g = D_\alpha \hat f\) and \(P \cdot D_\alpha\hat
-f = P \cdot \hat g = (P(D)g)\hat{}\), which is a bounded function,
-since \(P(D)g \in L^1(R^n)\). This proves that \(\hat f \in
-\mathcal S_n\). If \(f_i \rightarrow f\) in \(\mathcal S_n\),
-then \(f_i \rightarrow f\) in \(L^1(R^n)\). Therefore \(\hat
-f_i(t) \rightarrow \hat f(t)\) for all \(t \in R^n\). That \(f
-\rightarrow \hat f\) is a \emph{continuous} mapping of
-\(\mathcal S_n\) into \(\mathcal S_n\) follows now from the
-closed graph theorem. And thus for \(x_1\) through \(x_i\).
-\emph{Functional Analysis}, W.~Rudin,
-McGraw--Hill, 1973.
-
-\begin{boldface}
-This paragraph should appear to be a monotone dark texture. Suppose
-\(f \in \mathcal{S}_n\) and \(g(x) = (-1)^{|\alpha|}x^\alpha
-f(x)\). Then \(g \in \mathcal{S}_n\); now (\emph{c}) implies
-that \(\hat g = D_\alpha \hat f\) and \(P \cdot D_\alpha\hat
-f = P \cdot \hat g = (P(D)g)\hat{}\), which is a bounded function,
-since \(P(D)g \in L^1(R^n)\). This proves that \(\hat f \in
-\mathcal S_n\). If \(f_i \rightarrow f\) in \(\mathcal S_n\),
-then \(f_i \rightarrow f\) in \(L^1(R^n)\). Therefore \(\hat
-f_i(t) \rightarrow \hat f(t)\) for all \(t \in R^n\). That \(f
-\rightarrow \hat f\) is a \emph{continuous} mapping of
-\(\mathcal S_n\) into \(\mathcal S_n\) follows now from the
-closed graph theorem. And thus for \(x_1\) through \(x_i\).
-\emph{Functional Analysis}, W.~Rudin, McGraw--Hill, 1973.
-\end{boldface}
-
-{\itshape This paragraph should appear to be a monotone grey texture.
-Suppose \(f \in \mathcal{S}_n\) and \(g(x) =
-(-1)^{|\alpha|}x^\alpha f(x)\). Then \(g \in \mathcal{S}_n\);
-now (\emph{c}) implies that \(\hat g = D_\alpha \hat f\) and
-\(P \cdot D_\alpha\hat f = P \cdot \hat g = (P(D)g)\hat{}\),
-which is a bounded function, since \(P(D)g \in L^1(R^n)\). This
-proves that \(\hat f \in \mathcal S_n\). If \(f_i \rightarrow
-f\) in \(\mathcal S_n\), then \(f_i \rightarrow f\) in
-\(L^1(R^n)\). Therefore \(\hat f_i(t) \rightarrow \hat f(t)\)
-for all \(t \in R^n\). That \(f \rightarrow \hat f\) is a
-\emph{continuous} mapping of \(\mathcal S_n\) into \(\mathcal
-S_n\) follows now from the closed graph theorem. \emph{Functional
-Analysis}, W.~Rudin, McGraw--Hill, 1973.}
-
-The text in these boxes should spread out as much as the math does:
-$$\begin{array}{c}
- \framebox[.95\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[.975\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.025\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.05\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.075\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.1\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.125\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
-\end{array}$$
-\end{document}
-
-%% Local Variables:
-%% mode: latex
-%% End: