summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc')
-rw-r--r--Master/texmf-dist/doc/generic/pst-3dplot/Changes18
-rw-r--r--Master/texmf-dist/doc/generic/pst-3dplot/doc/pst-3dplot-doc.pdfbin1024842 -> 1303195 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pst-3dplot/doc/pst-3dplot-doc.tex431
-rw-r--r--Master/texmf-dist/doc/generic/pst-3dplot/examples/spherCoor.pdfbin12639 -> 10375 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pst-3dplot/examples/spherCoor.tex51
5 files changed, 357 insertions, 143 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-3dplot/Changes b/Master/texmf-dist/doc/generic/pst-3dplot/Changes
index 2b62d2de1b3..ccdcca1878d 100644
--- a/Master/texmf-dist/doc/generic/pst-3dplot/Changes
+++ b/Master/texmf-dist/doc/generic/pst-3dplot/Changes
@@ -1,9 +1,27 @@
pst-3dplot.pro --------
+0.22 2006-01-11 add code for left-Handed coor (experimental)
+0.21 2005-10-10 add code for 3D sphere
0.20 2005-01-14 add rotPoint subroutine with RotSequenz option
0.11 2005-01-11 add rotPoint subroutine
pst-3dplot.tex --------
+1.72 2006-02-07 - allow negative direction for ellipse
+ - add code for left-Handed coor (experimental
+ and not documented)
+1.71 2005-11-10 - latest xcolor needs ...={[cmyk]{.3,.4,.1,0}}
+ - fix a bug with Dx
+ - new macro for pstThreeDSphere which needs no pst-vue3d
+1.70 2005-10-16 fixes a bug with \pst@tempa
+1.69 2005-09-25 - add macro \pstParaboloid
+ - some modifications to the code
+1.68 2005-08-02 fix a bug in \pstRotIIIDPoint
+1.67 2005-07-23 add an option zCoor, to plot Lines like const=f(x,y)
+1.66 2005-06-21 use the trig macros of trig.sty to prevent wrong values
+ for sin/cos(90) and 270 degrees
+1.65 2005-02-24 set \def\pst@linetype{2} to prevent a undefined macro
+1.64 2005-02-21 fix bug in pstThreeDPlaneGrid with the start
+ values, which should be in pt
1.63 2005-02-19 spurious blank
1.62 2005-02-16 some modifications to \pstThreeDEllipse
1.61 2005-02-08 spurious blanks in drawStyle
diff --git a/Master/texmf-dist/doc/generic/pst-3dplot/doc/pst-3dplot-doc.pdf b/Master/texmf-dist/doc/generic/pst-3dplot/doc/pst-3dplot-doc.pdf
index b79c271118c..9141e91335c 100644
--- a/Master/texmf-dist/doc/generic/pst-3dplot/doc/pst-3dplot-doc.pdf
+++ b/Master/texmf-dist/doc/generic/pst-3dplot/doc/pst-3dplot-doc.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pst-3dplot/doc/pst-3dplot-doc.tex b/Master/texmf-dist/doc/generic/pst-3dplot/doc/pst-3dplot-doc.tex
index dba7c9eab15..33c35b47f43 100644
--- a/Master/texmf-dist/doc/generic/pst-3dplot/doc/pst-3dplot-doc.tex
+++ b/Master/texmf-dist/doc/generic/pst-3dplot/doc/pst-3dplot-doc.tex
@@ -6,7 +6,6 @@
\usepackage{geometry}
\usepackage{pstricks}
\usepackage{pst-grad}
-\usepackage{pst-example}
\usepackage{showexpl}
\lstset{wide=true}
\usepackage{pst-3dplot}
@@ -18,6 +17,7 @@
\usepackage{calc}
\usepackage{comment}
\usepackage{prettyref}
+\usepackage[scaled=0.8]{luximono}
\pagestyle{fancy}
\usepackage{url}
\usepackage{longtable}
@@ -25,6 +25,7 @@
\makeatletter
\def\verbatim@font{\small\normalfont\ttfamily}
\makeatother
+\def\Lcs#1{{\ttfamily\textbackslash #1}}
\lfoot{\small\ttfamily\jobname.tex}
\cfoot{}
\rfoot{\thepage}
@@ -35,13 +36,8 @@
\newcommand{\PS}{PostScript}
\newcommand\CMD[1]{\texttt{\textbackslash#1}}
\newcommand\verbI[1]{\small\texttt{#1}}
-\makeatletter
-\def\verbatim@font{\small\normalfont\ttfamily}
-\makeatother
-\xdefinecolor{gray85}{gray}{0.85}
-\xdefinecolor{gray90}{gray}{0.9}
-\psset{subgriddiv=0,gridlabels=7pt,gridcolor=gray85}
-\usepackage[pdfauthor={Herbert Voss},pdftitle={3D Plots},linktocpage]{hyperref}
+\psset{subgriddiv=0,gridlabels=7pt,gridcolor=black!15}
+\usepackage[pdfauthor={Herbert Voss},pdftitle={3D Plots},linktocpage,colorlinks]{hyperref}
%
\begin{document}
\author{Herbert Voß\thanks{voss@perce.de}}
@@ -270,7 +266,7 @@ nameX & <string> & \$x\$\\
spotX & <angle> & 180\\
nameY & <string> & \$y\$\\
spotY & <angle> & 0\\
-nameZ & <string> & \$x\$\\
+nameZ & <string> & \$z\$\\
spotZ & <angle> & 90\\
IIIDticks & false|true & false\\
Dx & <value> & 1\\
@@ -292,11 +288,11 @@ RotSequence & xyz|xzy|yxz|yzx|zxy|zyx & xyz\\
-\begin{example}[width=6cm]
+\begin{LTXexample}[width=6cm]
\begin{pspicture}(-3,-2.5)(3,4.25)\psgrid
\pstThreeDCoor
\end{pspicture}
-\end{example}
+\end{LTXexample}
There are no restrictions for the angles and the max and min values for the axes; all \verb|pstricks|
options are possible as well. The following example changes the color and the width of the axes.
@@ -310,7 +306,7 @@ other macros. Otherwise they are only local inside the macro to which they are p
\verb+Alpha+ ist the horizontal and \verb+Beta+ the vertical rotation angle of the
Cartesian coordinate system.
-\begin{example}[width=4.25cm]
+\begin{LTXexample}[width=4.25cm]
\begin{pspicture}(-2,-1.25)(1,2.25)\psgrid
\pstThreeDCoor[%
linewidth=1.5pt,linecolor=blue,%
@@ -319,53 +315,53 @@ Cartesian coordinate system.
zMin=-1,zMax=2,%
Alpha=-60,Beta=30]
\end{pspicture}
-\end{example}
+\end{LTXexample}
-\begin{example}[width=4.25cm]
+\begin{LTXexample}[width=4.25cm]
\begin{pspicture}(-2,-2)(2,2)\psgrid
\pstThreeDCoor[xMin=-2,xMax=2,yMin=-2,yMax=2,%
zMin=-2,zMax=2]
\end{pspicture}
-\end{example}
+\end{LTXexample}
-\begin{example}[width=4.25cm]
+\begin{LTXexample}[width=4.25cm]
\begin{pspicture}(-2,-2)(2,2)\psgrid
\pstThreeDCoor[xMin=-2,xMax=2,yMin=-2,yMax=2,zMin=-2,zMax=2,%
Alpha=30,Beta=60]
\end{pspicture}
-\end{example}
+\end{LTXexample}
-\begin{example}[width=4.25cm]
+\begin{LTXexample}[width=4.25cm]
\begin{pspicture}(-2,-2)(2,2)\psgrid
\pstThreeDCoor[xMin=-2,xMax=2,yMin=-2,yMax=2,zMin=-2,zMax=2,%
Alpha=30,Beta=-60]
\end{pspicture}
-\end{example}
+\end{LTXexample}
-\begin{example}[width=4.25cm]
+\begin{LTXexample}[width=4.25cm]
\begin{pspicture}(-2,-2)(2,2)\psgrid
\pstThreeDCoor[
xMin=-2,xMax=2,yMin=-2,yMax=2,%
zMin=-2,zMax=2,Alpha=90,Beta=60]
\end{pspicture}
-\end{example}
+\end{LTXexample}
-\begin{example}[width=4.25cm]
+\begin{LTXexample}[width=4.25cm]
\begin{pspicture}(-2,-2)(2,2)\psgrid
\pstThreeDCoor[linewidth=1.5pt,%
xMin=-1,xMax=2,yMin=-1,yMax=2,%
zMin=-1,zMax=2,Alpha=40,Beta=0]
\end{pspicture}
-\end{example}
+\end{LTXexample}
@@ -379,22 +375,22 @@ With the option \verb+IIIDticks+ the axes get ticks and labels. There are severa
\psset{unit=1.25,gridlabels=0pt}
-\begin{example}[width=7.25cm]
+\begin{LTXexample}[width=7.25cm]
\begin{pspicture}(-3,-2.5)(3,4)
\psgrid
\pstThreeDCoor[IIIDticks]%
\pstThreeDPut(3,0,3){\Huge default}
\end{pspicture}
-\end{example}
+\end{LTXexample}
-\begin{example}[width=7.25cm]
+\begin{LTXexample}[width=7.25cm]
\begin{pspicture}(-3,-2.5)(3,4)\psgrid
\pstThreeDCoor[linecolor=black,%
IIIDticks,xMin=-2,yMin=-2,zMin=-2]%
\end{pspicture}
-\end{example}
+\end{LTXexample}
-\begin{example}[width=7.25cm]
+\begin{LTXexample}[width=7.25cm]
\begin{pspicture}(-3,-2.5)(3,4)\psgrid
\pstThreeDCoor[linecolor=black,%
IIIDticks,IIIDzTicksPlane=xz,IIIDzticksep=-0.2,%
@@ -402,20 +398,20 @@ With the option \verb+IIIDticks+ the axes get ticks and labels. There are severa
IIIDyTicksPlane=xy,,IIIDyticksep=0.2,%
Dx=2,Dy=1,Dz=0.25,Alpha=-135,Beta=-30]%
\end{pspicture}
-\end{example}
+\end{LTXexample}
The following example shows a wrong placing of the labels, the planes should be changed.
-\begin{example}[width=7.25cm]
+\begin{LTXexample}[width=7.25cm]
\psset{Alpha=-60,Beta=60}
\begin{pspicture}(-4,-2.25)(1,3)
\psgrid
\pstThreeDCoor[linecolor=black,%
IIIDticks,Dx=2,Dy=1,Dz=0.25]%
\end{pspicture}
-\end{example}
+\end{LTXexample}
-\begin{example}[width=7.25cm]
+\begin{LTXexample}[width=7.25cm]
\begin{pspicture}(-3,-2.25)(2,3)
\psgrid
\psset{Alpha=30,Beta=30}
@@ -427,7 +423,7 @@ The following example shows a wrong placing of the labels, the planes should be
\pstThreeDDot[linecolor=red,drawCoor=true](2,1,2.5)% the center
\pstThreeDEllipse(2,1,2.5)(-0.5,0.5,0.5)(0.5,0.5,-1)
\end{pspicture}
-\end{example}
+\end{LTXexample}
@@ -437,15 +433,15 @@ The coordinate system can be rotated independent from the given Alpha and Beta v
the axes in any direction and any order. There are the three options \verb+RotX+, \verb+RotY+, \verb+RotZ+ and an
additional one for the rotating sequence, which can be any combination of the three letters \verb+xyz+.
-\begin{example}[pos=a]
-\begin{pspicture}(-6,-3)(6,5)
+\begin{LTXexample}[pos=t]
+\begin{pspicture}(-6,-3)(6,3)
\multido{\iA=0+10}{18}{%
- \pstThreeDCoor[RotZ=\iA,xMin=0,xMax=5,yMin=0,yMax=5,zMin=-1,zMax=5]%
+ \pstThreeDCoor[RotZ=\iA,xMin=0,xMax=5,yMin=0,yMax=5,zMin=-1,zMax=3]%
}
\end{pspicture}
-\end{example}
+\end{LTXexample}
-\begin{example}[pos=a]
+\begin{LTXexample}[pos=t]
\psset{unit=2,linewidth=1.5pt}
\begin{pspicture}(-2,-1.5)(2,2.5)%
\pstThreeDCoor[xMin=0,xMax=2,yMin=0,yMax=2,zMin=0,zMax=2]%
@@ -464,9 +460,9 @@ additional one for the rotating sequence, which can be any combination of the th
\pstThreeDBox[fillstyle=gradient,RotX=0](0,0,0)(.5,0,0)(0,1,0)(0,0,1.5)
\pstThreeDCoor[xMin=0,xMax=2,yMin=0,yMax=2,zMin=0,zMax=2]%
\end{pspicture}%
-\end{example}
+\end{LTXexample}
-\begin{example}[pos=a]
+\begin{LTXexample}[pos=t]
\begin{pspicture}(-2,-1.5)(2,2.5)%
\pstThreeDCoor[xMin=0,xMax=2,yMin=0,yMax=2,zMin=0,zMax=2]%
\pstThreeDBox(0,0,0)(.5,0,0)(0,1,0)(0,0,1.5)
@@ -474,7 +470,7 @@ additional one for the rotating sequence, which can be any combination of the th
\pstThreeDBox[RotX=90,RotY=90,linecolor=green](0,0,0)(.5,0,0)(0,1,0)(0,0,1.5)
\pstThreeDBox[RotX=90,RotY=90,RotZ=90,linecolor=blue](0,0,0)(.5,0,0)(0,1,0)(0,0,1.5)
\end{pspicture}%
-\end{example}
+\end{LTXexample}
@@ -500,7 +496,7 @@ This macro is a special one for the coordinate system to show the units, but can
be used in any way. \verb+subticks+ defines the number of ticklines for both axes and
\verb+xsubticks+ and \verb+ysubticks+ for each one.
-\begin{example}[pos=a]
+\begin{LTXexample}[pos=t]
\begin{pspicture}(-5,-5)(5,6.5)
\pstThreeDCoor[xMin=0,yMin=0,zMin=0,xMax=7,yMax=7,zMax=7,linewidth=2pt]
\psset{linewidth=0.1pt,linecolor=lightgray}
@@ -508,9 +504,9 @@ be used in any way. \verb+subticks+ defines the number of ticklines for both axe
\pstThreeDPlaneGrid[planeGrid=xz](0,0)(7,7)
\pstThreeDPlaneGrid[planeGrid=yz](0,0)(7,7)
\end{pspicture}
-\end{example}
+\end{LTXexample}
-\begin{example}[pos=a]
+\begin{LTXexample}[pos=t]
\begin{pspicture}(-1,-2)(10,10)
\psset{Beta=20,Alpha=160,subticks=7}
\pstThreeDCoor[xMin=0,yMin=0,zMin=0,xMax=7,yMax=7,zMax=7,linewidth=1pt]
@@ -534,10 +530,10 @@ be used in any way. \verb+subticks+ defines the number of ticklines for both axe
}
\pstThreeDPlaneGrid[planeGrid=yz,planeGridOffset=7](0,0)(7,7)
\end{pspicture}
-\end{example}
+\end{LTXexample}
-\begin{example}[pos=a]
+\begin{LTXexample}[pos=t]
\begin{pspicture}(-6,-2)(4,7)
\psset{Beta=10,Alpha=30,subticks=7}
\pstThreeDCoor[xMin=0,yMin=0,zMin=0,xMax=7,yMax=7,zMax=7,linewidth=1.5pt]
@@ -562,7 +558,7 @@ be used in any way. \verb+subticks+ defines the number of ticklines for both axe
\pstThreeDPlaneGrid[planeGrid=xz,planeGridOffset=7](0,0)(7,7)
\pstThreeDPlaneGrid[planeGrid=yz,planeGridOffset=7](0,0)(7,7)
\end{pspicture}
-\end{example}
+\end{LTXexample}
\medskip
The equation for the examples is
@@ -627,7 +623,7 @@ The syntax is similiar to the \verb|\rput| macro:
\pstThreeDPut[options](x,y,z){<any stuff>}
\end{verbatim}}
-\begin{example}[width=3.25cm]
+\begin{LTXexample}[width=3.25cm]
\begin{pspicture}(-2,-1.25)(1,2.25)
\psgrid
\psset{Alpha=-60,Beta=30}
@@ -636,7 +632,7 @@ The syntax is similiar to the \verb|\rput| macro:
\pstThreeDPut(1,0.5,1.25){pst-3dplot}
\pstThreeDDot[drawCoor=true](1,0.5,1.25)
\end{pspicture}
-\end{example}
+\end{LTXexample}
\medskip
@@ -664,7 +660,7 @@ Possible values for the two dimensional plane are \verb| xy xz yz |. If this par
The object can be of any type, in most cases it will be some kind of text. The reference point for the object is the left side and vertically centered, often abbreviated as \verb|lB|. The following examples show for all three planes the same textbox.
-\begin{example}[width=7.25cm]
+\begin{LTXexample}[width=7.25cm]
\begin{pspicture}(-4,-4)(3,4)
\psgrid
\psset{Alpha=30}
@@ -673,9 +669,9 @@ The object can be of any type, in most cases it will be some kind of text. The r
\pstPlanePut[plane=xy](0,0,0){\fbox{\Huge\red xy plane}}
\pstPlanePut[plane=xy](0,0,3){\fbox{\Huge\red xy plane}}
\end{pspicture}
-\end{example}
+\end{LTXexample}
-\begin{example}[width=7.25cm]
+\begin{LTXexample}[width=7.25cm]
\begin{pspicture}(-5,-3)(2,3)
\psgrid
\pstThreeDCoor[xMin=2,yMin=-4,zMin=-3,zMax=2]
@@ -683,10 +679,10 @@ The object can be of any type, in most cases it will be some kind of text. The r
\pstPlanePut[plane=xz](0,0,0){\fbox{\Huge\green\textbf{xz plane}}}
\pstPlanePut[plane=xz](0,3,0){\fbox{\Huge\green\textbf{xz plane}}}
\end{pspicture}
-\end{example}
+\end{LTXexample}
-\begin{example}[width=7.25cm]
+\begin{LTXexample}[width=7.25cm]
\begin{pspicture}(-2,-4)(6,2)
\psgrid
\pstThreeDCoor[xMin=-4,yMin=-4,zMin=-4,xMax=2,zMax=2]
@@ -694,7 +690,7 @@ The object can be of any type, in most cases it will be some kind of text. The r
\pstPlanePut[plane=yz](0,0,0){\fbox{\Huge\blue\textbf{yz plane}}}
\pstPlanePut[plane=yz](3,0,0){\fbox{\Huge\blue\textbf{yz plane}}}
\end{pspicture}
-\end{example}
+\end{LTXexample}
\bigskip
@@ -703,7 +699,7 @@ The following examples use the \verb|origin| option to show that there are still
% Einfuegung Erlaeuterug examplee und Abbildungen
% - raus: --------------------------------------------------------------
%
-% \begin{example}[width=6.25cm]
+% \begin{LTXexample}[width=6.25cm]
% \begin{pspicture}(-3,-2)(3,4)\psgrid
% \psset{origin=lb}
% \pstThreeDCoor
@@ -714,7 +710,7 @@ The following examples use the \verb|origin| option to show that there are still
% \pstThreeDDot[drawCoor=true,linecolor=blue](-2,1,3)
% \pstPlanePut[plane=yz](-2,1,3){\fbox{\Huge\blue\textbf{YZ}}}
% \end{pspicture}
-% \end{example}
+% \end{LTXexample}
% %
% - rein: --------------------------------------------------------------
The second parameter is \verb|planecorr|. As first the values:
@@ -734,7 +730,7 @@ What kind off correction is ment? In the plots above labels for the $xy$ plane
If you want to keep the labels readable for every view, i.\,e.\ for every value of \verb|Alpha| and \verb|Beta|, you should set the value of the parameter \verb|planecorr| to \verb|normal|; just like in next example:
\medskip
-\begin{example}[width=6cm]
+\begin{LTXexample}[width=6cm]
\begin{pspicture}(-3,-2)(3,4)\psgrid
\psset{origin=lb}
\pstThreeDCoor[xMax=3.2,yMax=3.2,zMax=4]
@@ -748,7 +744,7 @@ If you want to keep the labels readable for every view, i.\,e.\ for every value
\pstPlanePut[plane=yz,planecorr=normal](-1.5,0.5,3)
{\fbox{\Huge\blue\textbf{YZ}}}
\end{pspicture}
-\end{example}
+\end{LTXexample}
\medskip
But, why we have a third value \verb|xyrot| of \verb|planecorr|?
@@ -759,7 +755,7 @@ letters is parallel to the $y$ axis. It's done by setting
\medskip
-\begin{example}[width=6cm]
+\begin{LTXexample}[width=6cm]
\begin{pspicture}(-2,-2)(4,4)\psgrid
\psset{origin=lb}
\psset{Alpha=69.3,Beta=19.43}
@@ -774,7 +770,7 @@ letters is parallel to the $y$ axis. It's done by setting
\pstPlanePut[plane=yz,planecorr=xyrot](-2,1,3)
{\fbox{\Huge\blue\textbf{YZ}}}
\end{pspicture}
-\end{example}
+\end{LTXexample}
% --- ende ------------------------------------------------------------
@@ -799,26 +795,26 @@ Dots can be drawn with dashed lines for the three coordinates, when the option \
with the option \verb|dotstyle=none|.\index{dotstyle} In this case the macro draws only the coordinates\index{coordinates}
when the \verb|drawCoor| option is set to true.
-\begin{example}[width=4.25cm]
+\begin{LTXexample}[width=4.25cm]
\begin{pspicture}(-2,-2)(2,2)\psgrid
\pstThreeDCoor[xMin=-2,xMax=2,yMin=-2,yMax=2,zMin=-2,zMax=2]
\psset{dotstyle=*,dotscale=2,linecolor=red,drawCoor=true}
\pstThreeDDot(-1,1,1)
\pstThreeDDot(1.5,-1,-1)
\end{pspicture}
-\end{example}
+\end{LTXexample}
In the following figure the coordinates of the dots are $(a,a,a)$ where a is $-2,-1,0,1,2$.
-\begin{example}[width=5.25cm]
+\begin{LTXexample}[width=5.25cm]
\begin{pspicture}(-3,-3.25)(2,3.25)\psgrid
\psset{Alpha=30,Beta=60,dotstyle=square*,dotsize=3pt,%
linecolor=blue,drawCoor=true}
\pstThreeDCoor[xMin=-3,xMax=3,yMin=-3,yMax=3,zMin=-3,zMax=3]
\multido{\n=-2+1}{5}{\pstThreeDDot(\n,\n,\n)}
\end{pspicture}
-\end{example}
+\end{LTXexample}
\section{Lines}
@@ -834,7 +830,7 @@ All options for lines from \verb|pstricks| are possible, there are no special on
There is no special \verb+polygon+ macro, because you can get nearlx the same with
\verb+\pstThreeDLine+.
-\begin{example}[width=4.25cm]
+\begin{LTXexample}[width=4.25cm]
\begin{pspicture}(-2,-2.25)(2,2.25)\psgrid
\pstThreeDCoor[xMin=-2,xMax=2,yMin=-2,yMax=2,zMin=-2,zMax=2]
\psset{dotstyle=*,linecolor=red,drawCoor=true}
@@ -843,12 +839,12 @@ There is no special \verb+polygon+ macro, because you can get nearlx the same wi
\pstThreeDLine[linewidth=3pt,linecolor=blue,arrows=->]%
(-1,1,0.5)(1.5,-1,-1)
\end{pspicture}
-\end{example}
+\end{LTXexample}
-\begin{example}[width=4.25cm]
+\begin{LTXexample}[width=4.25cm]
\begin{pspicture}(-2,-2.25)(2,2.25)\psgrid
\pstThreeDCoor[xMin=-2,xMax=2,yMin=-2,yMax=2,zMin=-2,zMax=2]
\psset{dotstyle=*,linecolor=red,drawCoor=true}
@@ -856,10 +852,10 @@ There is no special \verb+polygon+ macro, because you can get nearlx the same wi
\pstThreeDDot(1.5,-1,-1)
\pstThreeDLine[linewidth=3pt,linecolor=blue](-1,1,1)(1.5,-1,-1)
\end{pspicture}
-\end{example}
+\end{LTXexample}
-\begin{example}[width=4.25cm]
+\begin{LTXexample}[width=4.25cm]
\begin{pspicture}(-2,-2.25)(2,2.25)\psgrid
\psset{Alpha=30,Beta=60,dotstyle=pentagon*,dotsize=5pt,%
linecolor=red,drawCoor=true}
@@ -868,9 +864,9 @@ There is no special \verb+polygon+ macro, because you can get nearlx the same wi
\pstThreeDDot(1.5,-1,-1)
\pstThreeDLine[linewidth=3pt,linecolor=blue](-1,1,1)(1.5,-1,-1)
\end{pspicture}
-\end{example}
+\end{LTXexample}
-\begin{example}[width=4.25cm]
+\begin{LTXexample}[width=4.25cm]
\begin{pspicture}(-2,-2.25)(2,2.25)\psgrid
\psset{Alpha=30,Beta=-60}
\pstThreeDCoor[xMin=-2,xMax=2,yMin=-2,yMax=2,zMin=-2,zMax=2]
@@ -878,10 +874,10 @@ There is no special \verb+polygon+ macro, because you can get nearlx the same wi
\pstThreeDDot[drawCoor=true](1.5,-1,-1)
\pstThreeDLine[linewidth=3pt,linecolor=blue](-1,1,1)(1.5,-1,-1)
\end{pspicture}
-\end{example}
+\end{LTXexample}
-\begin{example}[width=4.25cm]
+\begin{LTXexample}[width=4.25cm]
\begin{pspicture}(-2,-2.25)(2,2.25)\psgrid
\psset{Alpha=30,Beta=-60}
\pstThreeDCoor[xMin=-2,xMax=2,yMin=-2,yMax=2,zMin=-2,zMax=2]
@@ -890,9 +886,9 @@ There is no special \verb+polygon+ macro, because you can get nearlx the same wi
\pstThreeDLine[linewidth=3pt,arrowscale=1.5,%
linecolor=magenta,linearc=0.5]{<->}(-1,1,1)(1.5,2,-1)(1.5,-1,-1)
\end{pspicture}
-\end{example}
+\end{LTXexample}
-\begin{example}[pos=a]
+\begin{LTXexample}[pos=t]
\begin{pspicture}(-3,-2)(4,5)\label{lines}
\pstThreeDCoor[xMin=-3,xMax=3,yMin=-1,yMax=4,zMin=-1,zMax=3]
\multido{\iA=1+1,\iB=60+-10}{5}{%
@@ -909,7 +905,7 @@ There is no special \verb+polygon+ macro, because you can get nearlx the same wi
\pstThreeDLine[SphericalCoor=true,linestyle=dashed]%
(0,0,0)(1,\iA,60)(2,\iA,50)(3,\iA,40)(4,\iA,30)(5,\iA,20)}
\end{pspicture}
-\end{example}
+\end{LTXexample}
\section{Triangles}
@@ -920,7 +916,7 @@ A triangle is given with its three points:
When the option \verb|fillstyle| is set to another value than \verb|none| the triangle is filled with the active color or with the one which is set with the option \verb|fillcolor|.
-\begin{example}[width=6.25cm]
+\begin{LTXexample}[width=6.25cm]
\begin{pspicture}(-3,-4.25)(3,3.25)\psgrid
\pstThreeDCoor[xMin=-4,xMax=4,yMin=-3,yMax=5,zMin=-4,zMax=3]
\pstThreeDTriangle[fillcolor=yellow,fillstyle=solid,%
@@ -928,7 +924,7 @@ When the option \verb|fillstyle| is set to another value than \verb|none| the tr
\pstThreeDTriangle[drawCoor=true,linecolor=black,%
linewidth=2pt](3,1,-2)(1,4,-1)(-2,2,0)
\end{pspicture}
-\end{example}
+\end{LTXexample}
Especially for triangles the option \verb|linejoin| is important. The default value is $1$, which gives rounded edges.
@@ -956,7 +952,7 @@ The syntax for a 3D square is:
\pstThreeDSquare(<vector o>)(<vector u>)(<vector v>)
\end{verbatim}
-\begin{example}[width=5cm]
+\begin{LTXexample}[width=5cm]
\begin{pspicture}(-1,-1)(4,3)\psgrid
\pstThreeDCoor[xMin=-3,xMax=1,yMin=-1,yMax=2,zMin=-1,zMax=3]
\psset{arrows=->,arrowsize=0.2,linecolor=blue,linewidth=1.5pt}
@@ -964,19 +960,19 @@ The syntax for a 3D square is:
\pstThreeDLine(-2,2,3)(2,2,3)\uput[0](3,2){$\vec{u}$}
\pstThreeDLine(-2,2,3)(-2,3,3)\uput[180](1,2){$\vec{v}$}
\end{pspicture}
-\end{example}
+\end{LTXexample}
\medskip
Squares are nothing else than a polygon with the starting point $P_o$ given with the origin vector $\vec{o}$ and the two direction vectors $\vec{u}$ and $\vec{v}$, which build the sides of the square.
-\begin{example}[width=7.25cm]
+\begin{LTXexample}[width=7.25cm]
\begin{pspicture}(-3,-2)(4,3)\psgrid
\pstThreeDCoor[xMin=-3,xMax=3,yMin=-1,yMax=4,zMin=-1,zMax=3]
{\psset{fillcolor=blue,fillstyle=solid,drawCoor=true,dotstyle=*}
\pstThreeDSquare(-2,2,3)(4,0,0)(0,1,0)}
\end{pspicture}
-\end{example}
+\end{LTXexample}
\section{Boxes}
@@ -990,7 +986,7 @@ A box is a special case of a square and has the syntax
These are the origin vector $\vec{o}$ and three direction vectors $\vec{u}$, $\vec{v}$ and $\vec{w}$, which are for example shown in the following figure.
-\begin{example}[width=5.25cm]
+\begin{LTXexample}[width=5.25cm]
\begin{pspicture}(-2,-1.25)(3,4.25)\psgrid
\psset{Alpha=30,Beta=30}
\pstThreeDCoor[xMin=-3,xMax=1,yMin=-1,yMax=2,zMin=-1,zMax=4]
@@ -1005,16 +1001,16 @@ These are the origin vector $\vec{o}$ and three direction vectors $\vec{u}$, $\v
\pstThreeDLine[linecolor=blue](-1,1,2)(1,1,2)
\pstThreeDLine[linecolor=blue](-1,1,2)(-1,2,2)
\end{pspicture}
-\end{example}
+\end{LTXexample}
-\begin{example}[width=5.25cm]
+\begin{LTXexample}[width=5.25cm]
\begin{pspicture}(-2,-1.25)(3,4.25)\psgrid
\psset{Alpha=30,Beta=30}
\pstThreeDCoor[xMin=-3,xMax=1,yMin=-1,yMax=2,zMin=-1,zMax=4]
\pstThreeDBox(-1,1,2)(0,0,2)(2,0,0)(0,1,0)
\pstThreeDDot[drawCoor=true](-1,1,2)
\end{pspicture}
-\end{example}
+\end{LTXexample}
@@ -1057,7 +1053,9 @@ e:\frac{\left(x-x_{M}\right)^{2}}{a^{2}}+\frac{\left(y-y_{M}\right)^{2}}{b^{2}}=
$\left(x_m;y_m\right)$ is the center, $a$
and $b$ the semi major and semi minor axes
-respectively and $e$ the excentricity. For $a=b=1$ in equation \ref{gl.600} we get the one for the circle, which is nothing else than a special ellipse. The equation written in the parameterform is
+respectively and $e$ the excentricity. For $a=b=1$ in equation~\ref{gl.600} we get the one for the circle,
+which is nothing else than a special ellipse.
+The equation written in the parameterform is
\begin{equation}\label{gl601}
\begin{split}
@@ -1071,18 +1069,21 @@ or the same with vectors to get an ellipse in a 3D system:
e:\vec{x} &=\vec{m}+\cos\alpha\cdot\vec{u}+\sin\alpha\cdot\vec{v}\qquad 0\leq\alpha\leq360
\end{align}
-where $\vec{m}$ is the center, $\vec{u}$ and $\vec{v}$ the directions vectors which are perpendicular to each other.
+where $\vec{m}$ is the center, $\vec{u}$ and $\vec{v}$ the directions vectors which are
+perpendicular to each other.
\subsection{Options}
-In addition to all possible options from \verb|pst-plot| there are two special options to allow drawing of an arc (with predefined values for a full ellipse/circle):
+In addition to all possible options from \verb|pst-plot| there are two special
+options to allow drawing of an arc (with predefined values for a full ellipse/circle):
%
\begin{verbatim}
beginAngle=0
endAngle=360
\end{verbatim}
-Ellipses and circles are drawn with the in section \ref{subsec:parametricplotThreeD} described \verb|parametricplotThreeD| macro with a default setting of $50$ points for a full ellipse/circle.
+Ellipses and circles are drawn with the in section~\ref{subsec:parametricplotThreeD} described
+\verb|parametricplotThreeD| macro with a default setting of $50$ points for a full ellipse/circle.
\subsection{Ellipse}
It is very difficult to see in a 3D coordinate system the difference of an ellipse and a circle. Depending to the view point an ellipse maybe seen as a circle and vice versa. The syntax of the ellipse macro is:
@@ -1091,8 +1092,33 @@ It is very difficult to see in a 3D coordinate system the difference of an ellip
\end{verbatim}
where \verb|c| is for center and \verb|u| and \verb|v| for the two direction vectors.
+The order of these two vectors is important for the drawing if it
+is a left or right turn. It follows the right hand rule: flap the first vector $\vec{u}$ on the
+shortest way into the second one $\vec{u}$, then you'll get the positive rotating.
+
+
+\begin{LTXexample}[pos=t]
+\begin{pspicture}(-3,-2)(3,3)
+ \pstThreeDCoor[IIIDticks]
+ \psset{arrowscale=2,arrows=->}
+ \pstThreeDLine(0,0,0)(3,0,0)\pstThreeDLine(0,0,0)(0,3,0)\pstThreeDLine(0,0,0)(0,0,3)
+ \psset{linecolor=blue,linewidth=1.5pt,beginAngle=0,endAngle=90}
+ \pstThreeDEllipse(0,0,0)(3,0,0)(0,3,0) \pstThreeDEllipse(0,0,0)(0,0,3)(3,0,0)
+ \pstThreeDEllipse(0,0,0)(0,3,0)(0,0,3)
+\end{pspicture}\hspace{2em}
+\begin{pspicture}(-3,-2)(3,3)
+ \pstThreeDCoor[IIIDticks]
+ \psset{arrowscale=2,arrows=->}
+ \pstThreeDLine(0,0,0)(3,0,0)\pstThreeDLine(0,0,0)(0,3,0)\pstThreeDLine(0,0,0)(0,0,3)
+ \psset{linecolor=blue,linewidth=1.5pt,beginAngle=0,endAngle=90}
+ \pstThreeDEllipse(0,0,0)(0,3,0)(3,0,0) \pstThreeDEllipse(0,0,0)(3,0,0)(0,0,3)
+ \pstThreeDEllipse(0,0,0)(0,0,3)(0,3,0)
+\end{pspicture}
+\end{LTXexample}
+
-\begin{example}[width=4.25cm]
+
+\begin{LTXexample}[width=4.25cm]
\begin{pspicture}(-2,-2.25)(2,2.25)\psgrid
\pstThreeDCoor[xMax=2,yMax=2,zMax=2]
\pstThreeDDot[linecolor=red,drawCoor=true](1,0.5,0.5)
@@ -1102,20 +1128,21 @@ where \verb|c| is for center and \verb|u| and \verb|v| for the two direction vec
\pstThreeDEllipse(1,0.5,0.5)(-0.5,0.5,0.5)(0.5,0.5,-1)
\pstThreeDEllipse[RotZ=45,linecolor=red](1,0.5,0.5)(-0.5,0.5,0.5)(0.5,0.5,-1)
\end{pspicture}
-\end{example}
+\end{LTXexample}
\subsection{Circle}
-The circle is a special case of an ellipse (equ. \ref{gl.6}) with the vectors
+The circle is a special case of an ellipse (equ.~\ref{gl.6}) with the vectors
$\vec{u}$ and $\vec{v}$ which are perpendicular
to each other: $\left|\vec{u}\right|=\left|\vec{v}\right|=r$.
with
$\vec{u}\cdot\vec{v}=\vec{0}$
-The macro \verb|\pstThreeDCircle| is nothing else than a synonym for \verb|\pstThreeDEllipse|. In the following example the circle is drawn with only $20$ plotpoints and the option \verb|showpoints=true|.
+The macro \verb|\pstThreeDCircle| is nothing else than a synonym for \verb|\pstThreeDEllipse|.
+In the following example the circle is drawn with only $20$ plotpoints and the option \verb|showpoints=true|.
-\begin{example}[width=4.25cm]
+\begin{LTXexample}[width=4.25cm]
\begin{pspicture}(-2,-1.25)(2,2.25)\psgrid
\pstThreeDCoor[xMax=2,yMax=2,zMax=2,linecolor=black]
\psset{linecolor=red,linewidth=2pt,plotpoints=20,showpoints=true}
@@ -1124,28 +1151,206 @@ The macro \verb|\pstThreeDCircle| is nothing else than a synonym for \verb|\pstT
\pstThreeDCircle[RotY=15,linecolor=blue](1.6,+0.6,1.7)(0.8,0.4,0.8)(0.8,-0.8,-0.4)
\pstThreeDDot[RotY=15,drawCoor=true,linecolor=blue](1.6,+0.6,1.7)
\end{pspicture}
-\end{example}
+\end{LTXexample}
+
+
+\begin{center}
+\bgroup
+\makebox[\linewidth]{%
+\def\radius{4 }\def\PhiI{20 }\def\PhiII{50 }
+%
+\def\RadIs{\radius \PhiI sin mul}
+\def\RadIc{\radius \PhiI cos mul}
+\def\RadIIs{\radius \PhiII sin mul}
+\def\RadIIc{\radius \PhiII cos mul}
+\begin{pspicture}(-4,-4)(4,5)
+ \psset{Alpha=45,Beta=30,linestyle=dashed}
+ \pstThreeDCoor[linestyle=solid,xMin=-5,xMax=5,yMax=5,zMax=5,IIIDticks]
+ \pstThreeDEllipse[linecolor=red](0,0,0)(0,\radius,0)(0,0,\radius)
+ \pstThreeDEllipse(\RadIs,0,0)(0,\RadIc,0)(0,0,\RadIc)
+ \pstThreeDEllipse(\RadIIs,0,0)(0,\RadIIc,0)(0,0,\RadIIc)
+%
+ \pstThreeDEllipse[linestyle=dotted,SphericalCoor](0,0,0)(\radius,90,\PhiI)(\radius,0,0)
+ \pstThreeDEllipse[SphericalCoor,
+ beginAngle=-90,endAngle=90](0,0,0)(\radius,90,\PhiI)(\radius,0,0)
+ \pstThreeDEllipse[linestyle=dotted,SphericalCoor](0,0,0)(\radius,90,\PhiII)(\radius,0,0)
+ \pstThreeDEllipse[SphericalCoor,
+ beginAngle=-90,endAngle=90](0,0,0)(\radius,90,\PhiII)(\radius,0,0)
+%
+ \psset{linecolor=blue,arrows=->,arrowscale=2,linewidth=1.5pt,linestyle=solid}
+ \pstThreeDEllipse[SphericalCoor,beginAngle=\PhiI,endAngle=\PhiII]%
+ (0,0,0)(\radius,90,\PhiII)(\radius,0,0)
+ \pstThreeDEllipse[beginAngle=\PhiII,endAngle=\PhiI](\RadIIs,0,0)(0,\RadIIc,0)(0,0,\RadIIc)
+ \pstThreeDEllipse[SphericalCoor,beginAngle=\PhiII,endAngle=\PhiI]%
+ (0,0,0)(\radius,90,\PhiI)(\radius,0,0)
+ \pstThreeDEllipse[beginAngle=\PhiI,endAngle=\PhiII](\RadIs,0,0)(0,\RadIc,0)(0,0,\RadIc)
+\end{pspicture}
+\begin{pspicture}(-4,-4)(4,5)
+ \psset{Alpha=45,Beta=30,linestyle=dashed}
+ \pstThreeDCoor[linestyle=solid,xMin=-5,xMax=5,yMax=5,zMax=5,IIIDticks]
+ \pstThreeDEllipse[linecolor=red](0,0,0)(0,\radius,0)(0,0,\radius)
+ \pstThreeDEllipse(\RadIs,0,0)(0,\RadIc,0)(0,0,\RadIc)
+ \pstThreeDEllipse(\RadIIs,0,0)(0,\RadIIc,0)(0,0,\RadIIc)
+%
+ \pstThreeDEllipse[linestyle=dotted,SphericalCoor](0,0,0)(\radius,90,\PhiI)(\radius,0,0)
+ \pstThreeDEllipse[SphericalCoor,
+ beginAngle=-90,endAngle=90](0,0,0)(\radius,90,\PhiI)(\radius,0,0)
+ \pstThreeDEllipse[linestyle=dotted,SphericalCoor](0,0,0)(\radius,90,\PhiII)(\radius,0,0)
+ \pstThreeDEllipse[SphericalCoor,
+ beginAngle=-90,endAngle=90](0,0,0)(\radius,90,\PhiII)(\radius,0,0)
+%
+ \pscustom[fillstyle=solid,fillcolor=blue]{
+ \pstThreeDEllipse[SphericalCoor,beginAngle=\PhiI,endAngle=\PhiII]%
+ (0,0,0)(\radius,90,\PhiII)(\radius,0,0)
+ \pstThreeDEllipse[beginAngle=\PhiII,endAngle=\PhiI](\RadIIs,0,0)(0,\RadIIc,0)(0,0,\RadIIc)
+ \pstThreeDEllipse[SphericalCoor,beginAngle=\PhiII,endAngle=\PhiI]%
+ (0,0,0)(\radius,90,\PhiI)(\radius,0,0)
+ \pstThreeDEllipse[beginAngle=\PhiI,endAngle=\PhiII](\RadIs,0,0)(0,\RadIc,0)(0,0,\RadIc)
+ }
+\end{pspicture}
+}
+\egroup
+\end{center}
+\begin{lstlisting}
+\def\radius{4 }\def\PhiI{20 }\def\PhiII{50 }
+%
+\def\RadIs{\radius \PhiI sin mul}
+\def\RadIc{\radius \PhiI cos mul}
+\def\RadIIs{\radius \PhiII sin mul}
+\def\RadIIc{\radius \PhiII cos mul}
+\begin{pspicture}(-4,-4)(4,5)
+ \psset{Alpha=45,Beta=30,linestyle=dashed}
+ \pstThreeDCoor[linestyle=solid,xMin=-5,xMax=5,yMax=5,zMax=5,IIIDticks]
+ \pstThreeDEllipse[linecolor=red](0,0,0)(0,\radius,0)(0,0,\radius)
+ \pstThreeDEllipse(\RadIs,0,0)(0,\RadIc,0)(0,0,\RadIc)
+ \pstThreeDEllipse(\RadIIs,0,0)(0,\RadIIc,0)(0,0,\RadIIc)
+%
+ \pstThreeDEllipse[linestyle=dotted,SphericalCoor](0,0,0)(\radius,90,\PhiI)(\radius,0,0)
+ \pstThreeDEllipse[SphericalCoor,
+ beginAngle=-90,endAngle=90](0,0,0)(\radius,90,\PhiI)(\radius,0,0)
+ \pstThreeDEllipse[linestyle=dotted,SphericalCoor](0,0,0)(\radius,90,\PhiII)(\radius,0,0)
+ \pstThreeDEllipse[SphericalCoor,
+ beginAngle=-90,endAngle=90](0,0,0)(\radius,90,\PhiII)(\radius,0,0)
+%
+ \psset{linecolor=blue,arrows=->,arrowscale=2,linewidth=1.5pt,linestyle=solid}
+ \pstThreeDEllipse[SphericalCoor,beginAngle=\PhiI,endAngle=\PhiII]%
+ (0,0,0)(\radius,90,\PhiII)(\radius,0,0)
+ \pstThreeDEllipse[beginAngle=\PhiII,endAngle=\PhiI](\RadIIs,0,0)(0,\RadIIc,0)(0,0,\RadIIc)
+ \pstThreeDEllipse[SphericalCoor,beginAngle=\PhiII,endAngle=\PhiI]%
+ (0,0,0)(\radius,90,\PhiI)(\radius,0,0)
+ \pstThreeDEllipse[beginAngle=\PhiI,endAngle=\PhiII](\RadIs,0,0)(0,\RadIc,0)(0,0,\RadIc)
+\end{pspicture}
+\begin{pspicture}(-4,-4)(4,5)
+
+[ ... ]
+
+ \pstThreeDEllipse[linestyle=dotted,SphericalCoor](0,0,0)(\radius,90,\PhiI)(\radius,0,0)
+ \pstThreeDEllipse[SphericalCoor,
+ beginAngle=-90,endAngle=90](0,0,0)(\radius,90,\PhiI)(\radius,0,0)
+ \pstThreeDEllipse[linestyle=dotted,SphericalCoor](0,0,0)(\radius,90,\PhiII)(\radius,0,0)
+ \pstThreeDEllipse[SphericalCoor,
+ beginAngle=-90,endAngle=90](0,0,0)(\radius,90,\PhiII)(\radius,0,0)
+%
+ \pscustom[fillstyle=solid,fillcolor=blue]{
+ \pstThreeDEllipse[SphericalCoor,beginAngle=\PhiI,endAngle=\PhiII]%
+ (0,0,0)(\radius,90,\PhiII)(\radius,0,0)
+ \pstThreeDEllipse[beginAngle=\PhiII,endAngle=\PhiI](\RadIIs,0,0)(0,\RadIIc,0)(0,0,\RadIIc)
+ \pstThreeDEllipse[SphericalCoor,beginAngle=\PhiII,endAngle=\PhiI]%
+ (0,0,0)(\radius,90,\PhiI)(\radius,0,0)
+ \pstThreeDEllipse[beginAngle=\PhiI,endAngle=\PhiII](\RadIs,0,0)(0,\RadIc,0)(0,0,\RadIc)
+ }
+\end{pspicture}
+\end{lstlisting}
+
+% ---------------------------------------------------------------------------------------
+\subsection{\CMD{pstParaboloid}}
+% ---------------------------------------------------------------------------------------
+The syntax is
+
+\begin{verbatim}
+\pstParaboloid[Parameter]{height}{radius}
+\end{verbatim}
+
+\verb+height+ and \verb+radius+ depend to each other, it is the radius of the circle
+at the height. By default the paraboloid is placed in the origin of coordinate system, but
+with \verb+\pstThreeDput+ it can be placed anywhere. The possible options are listed in
+table~\ref{tab:paraboloid}.
+The segment color must be set as a cmyk color \verb|SegmentColor={[cmyk]{c,m,y,k}}| in parenthesis,
+otherwise \verb|xcolor| cannot read the values. A white color is given by \verb|SegmentColor={[cmyk]{0,0,0,0}}|.
+
+\begin{table}[htb]
+\centering
+\caption{Options for the \Lcs{pstParaboloid} macro}\label{tab:paraboloid}
+\smallskip
+\begin{tabular}{l|l}
+\textbf{Option name} & \textbf{value}\\\hline
+\verb|SegmentColor| & cmyk color for the segments (0.2,0.6,1,0)\\
+\verb|showInside| & show inside (true)\\
+\verb|increment| & number for the segments (10)
+\end{tabular}
+\end{table}
+
+
+
+% x=radius/sqrt(h)*V*cos(V)
+% y=radius/sqrt(h)*V*sin(V)
+% z=radius/sqrt(h)*V*V
+\begin{LTXexample}[width=4cm]
+\begin{pspicture}(-2,-1)(2,5)
+\pstThreeDCoor[xMax=2,yMax=2,zMin=0,zMax=6,IIIDticks]%
+\pstParaboloid{5}{1}% Höhe 5 und Radius 1
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[pos=t]
+\begin{pspicture}(-.5\linewidth,-1)(.5\linewidth,7.5)
+\pstParaboloid[showInside=false,SegmentColor={[cmyk]{0.8,0.1,.11,0}}]{4}{5}%
+\pstThreeDCoor[xMax=3,yMax=3,zMax=7.5,IIIDticks]
+\end{pspicture}
+\end{LTXexample}
\section{Spheres}\label{sec:spheres}
-To draw spheres \verb|pst-3dplot| uses the macros from the \verb|pst-vue3d| package and places it with internally the \verb|\rput| macro at the right place.\footnote{%
-This package is available CTAN %
-\url{ftp://ftp.dante.de/pub/tex/graphics/pstricks/contrib/pst-vue3d/}. The documentation is in french, but it is mostly self explanatory} The syntax for this macro is
+\begin{LTXexample}[width=6.25cm]
+\begin{pspicture}(-4,-2.25)(2,4.25)\psgrid
+ \pstThreeDCoor[xMin=-3,yMax=2]
+ \pstThreeDSphere(1,-1,2){2}
+ \pstThreeDDot[dotstyle=x,linecolor=red,drawCoor=true](1,-1,2)
+\end{pspicture}
+\end{LTXexample}
+
\begin{verbatim}
\pstThreeDSphere[<options>](x,y,z){Radius}
\end{verbatim}
-\verb|(x,y,z)| is the center of the sphere. For all the other possible options or the possibility to draw demispheres, have a look at the documentation.\cite{vue3d:2002}
+\verb|(x,y,z)| is the center of the sphere and possible options are listed in table~\ref{tab:sphereOptions}.
+The segment color must be set as a cmyk color \verb|SegmentColor={[cmyk]{c,m,y,k}}| in parenthesis,
+otherwise \verb|xcolor| cannot read the values. A white color is given by \verb|SegmentColor={[cmyk]{0,0,0,0}}|.
+
+\begin{table}[htb]
+\centering
+\caption{Options for the sphere macro}\label{tab:sphereOptions}
+\smallskip
+\begin{tabular}{l|l}
+\textbf{Option name} & \textbf{value}\\\hline
+\verb|SegmentColor| & cmyk color for the segments (0.2,0.6,1,0)\\
+\verb|increment| & number for the segments (10)
+\end{tabular}
+\end{table}
+
-\begin{example}[width=6.25cm]
+\begin{LTXexample}[width=6.25cm]
\begin{pspicture}(-4,-2.25)(2,4.25)\psgrid
\pstThreeDCoor[xMin=-3,yMax=2]
- \pstThreeDSphere[linecolor=blue](1,-1,2){2}
+ \pstThreeDSphere[SegmentColor={[cmyk]{0,0,0,0}}](1,-1,2){2}
\pstThreeDDot[dotstyle=x,linecolor=red,drawCoor=true](1,-1,2)
\end{pspicture}
-\end{example}
+\end{LTXexample}
+
+
+
\section{Mathematical functions}
@@ -1395,14 +1600,14 @@ In the example the $t$ value is divided by $600$ for the \verb|z| coordinate, be
which is the same as \verb|(0,0)| for the parameter \verb|u|.
-\begin{example}[width=6.75cm]
+\begin{LTXexample}[width=6.75cm]
\begin{pspicture}(-3.25,-2.25)(3.25,5.25)\psgrid
\parametricplotThreeD[xPlotpoints=200,linecolor=blue,%
linewidth=1.5pt,plotstyle=curve](0,2160){%
2.5 t cos mul 2.5 t sin mul t 600 div}
\pstThreeDCoor[zMax=5]
\end{pspicture}
-\end{example}
+\end{LTXexample}
Instead of using the \verb|\pstThreeDSphere| macro (see section \ref{sec:spheres}) it is also possible to use parametric functions for a sphere. The macro plots continous lines only for the \verb|t| parameter, so a sphere plotted with the longitudes need the parameter equations as
@@ -1523,13 +1728,13 @@ The syntax is very easy
If the data file is not in the same directory than the document, insert the file name with the full path. Figure \ref{fig:fileplot} shows a file plot with the option \texttt{linestyle=line}.
\begin{figure}[htb]
-\begin{example}[pos=a]
+\begin{LTXexample}[pos=t]
\begin{pspicture}(-6,-3)(6,10)
\psset{xunit=0.5cm,yunit=0.75cm,Alpha=30,Beta=30}% the global parameters
\pstThreeDCoor[xMin=-10,xMax=10,yMin=-10,yMax=10,zMin=-2,zMax=10]
\fileplotThreeD[plotstyle=line]{data3D.Roessler}
\end{pspicture}%
-\end{example}%
+\end{LTXexample}%
\caption{Demonstration of \texttt{\textbackslash fileplotThreeD} with \texttt{Alpha=30} and \texttt{Beta=15}}\label{fig:fileplot}
\end{figure}
@@ -1549,13 +1754,13 @@ In difference to the macro \CMD{fileplotThreeD} the \CMD{dataplotThreeD} cannot
\readdata{\dataThreeD}{data3D.Roessler}
\begin{figure}[htb]
-\begin{example}[width=8.5cm]
+\begin{LTXexample}[width=8.5cm]
\begin{pspicture}(-4.5,-3.5)(4,11)
\psset{xunit=0.5cm,yunit=0.75cm,Alpha=-30}
\pstThreeDCoor[xMin=-10,xMax=10,yMin=-10,yMax=10,zMin=-2,zMax=10]
\dataplotThreeD[plotstyle=line]{\dataThreeD}
\end{pspicture}%
-\end{example}
+\end{LTXexample}
\caption{Demonstration of \texttt{\textbackslash dataplotThreeD} with \texttt{Alpha=-30} and \texttt{Beta=30}}\label{fig:fileplot}
\end{figure}
@@ -1593,13 +1798,13 @@ The syntax is
\end{lstlisting}
\begin{figure}[htb]
-\begin{example}[pos=a]
+\begin{LTXexample}[pos=t]
\begin{pspicture}(-5,-4)(5,4)
\psset{xunit=0.5cm,yunit=0.5cm,Alpha=0,Beta=90}
\pstThreeDCoor[xMin=-10,xMax=10,yMin=-10,yMax=7.5,zMin=-2,zMax=10]
\listplotThreeD[plotstyle=line]{\dataThreeDDraft}
\end{pspicture}%
-\end{example}%
+\end{LTXexample}%
\caption{Demonstration of \texttt{\textbackslash listplotThreeD} with a view from above (\texttt{Alpha=0} and \texttt{Beta=90}) and some additional PostScript code}\label{fig:listplot}
\end{figure}
@@ -1742,7 +1947,7 @@ error. In this case save prevent expanding with e.g.: \verb+\psset{nameX=$\noexp
\section{Credits}
-Bruce Burton | Christophe Jorssen | Chris Kuklewicz | Thorsten Suhling
+Bruce Burlton | Christophe Jorssen | Chris Kuklewicz | Thorsten Suhling
\bibliographystyle{plain}
diff --git a/Master/texmf-dist/doc/generic/pst-3dplot/examples/spherCoor.pdf b/Master/texmf-dist/doc/generic/pst-3dplot/examples/spherCoor.pdf
index 52fcf2fdaf2..bdf3fa1cd29 100644
--- a/Master/texmf-dist/doc/generic/pst-3dplot/examples/spherCoor.pdf
+++ b/Master/texmf-dist/doc/generic/pst-3dplot/examples/spherCoor.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pst-3dplot/examples/spherCoor.tex b/Master/texmf-dist/doc/generic/pst-3dplot/examples/spherCoor.tex
index 3112ee123c9..6b54d12fb1f 100644
--- a/Master/texmf-dist/doc/generic/pst-3dplot/examples/spherCoor.tex
+++ b/Master/texmf-dist/doc/generic/pst-3dplot/examples/spherCoor.tex
@@ -1,41 +1,32 @@
-\documentclass[12pt,a4paper]{article}
+\documentclass[]{article}
\usepackage{pstricks}
\usepackage{pst-3dplot}
+\pagestyle{empty}
+\parindent=0pt
\begin{document}
-\begin{pspicture}(-6,-6)(6,6)
-\psset{unit=7.5cm,hiddenLine=true,drawCoor=true}
-\def\oA{%
- \pstThreeDLine[linecolor=blue,linewidth=3pt,%
- SphericalCoor=true,arrows=c-> ](0,0,0)(1,60,70)%
-}
-\def\oB{%
- \pstThreeDLine[linecolor=red,linewidth=3pt,%
- SphericalCoor=true,arrows=c->](0,0,0)(1,10,50)%
-}
-\def\oAB{%
- \pstThreeDEllipse[beginAngle=90,endAngle=122,fillcolor=green,%
- SphericalCoor=true](0,0,0)(1,140,40)(1,10,50)%
-}
-\pstThreeDCoor[drawing=true, linewidth=1pt,linecolor=black,%
+\begin{center}
+\begin{pspicture}(-4.8,-1.5)(4.8,3.5)
+\psset{unit=5cm,drawCoor,beginAngle=90,endAngle=180,linestyle=dotted}
+\def\oA{\pstThreeDLine[linecolor=blue,linewidth=3pt,arrows=c-> ](0,0,0)(1,60,70)}
+\def\oB{\pstThreeDLine[linecolor=red,linewidth=3pt,arrows=c->](0,0,0)(1,10,50)}
+\def\oAB{\pstThreeDEllipse[beginAngle=58,endAngle=90](0,0,0)(1,140,40)(1,10,50)}
+\pstThreeDCoor[drawing=true, linewidth=1pt,linecolor=black,linestyle=solid,%
xMin=0,xMax=1.1, yMin=0,yMax=1.1, zMin=0,zMax=1.1]
-\pstThreeDEllipse[beginAngle=0, endAngle=90,linestyle=dotted]%
- (0,0,0)(-1,0,0)(0,1,0)
-\pstThreeDEllipse[beginAngle=0, endAngle=90,linestyle=dotted]%
- (0,0,0)(-1,0,0)(0,0,1)
-\pstThreeDEllipse[beginAngle=180, endAngle=90,linestyle=dotted]%
- (0,0,0)(0,0,1)(0,1,0)
-
-\psset{SphericalCoor=true}
+\pstThreeDEllipse(0,0,0)(-1,0,0)(0,1,0)
+\pstThreeDEllipse(0,0,0)(-1,0,0)(0,0,1)
+\pstThreeDEllipse[beginAngle=0,endAngle=90](0,0,0)(0,0,1)(0,1,0)
+\psset{SphericalCoor,linestyle=solid}
\pstThreeDDot[dotstyle=none](1,10,50)
\pstThreeDDot[dotstyle=none](1,60,70)
-\pscustom[fillstyle=crosshatch,hatchcolor=yellow,%
- linestyle=none]{\oA\oB\oAB}
+\pscustom[fillstyle=crosshatch,hatchcolor=yellow,linestyle=none]{\oB\oAB\oA}
\oA \oB \oAB
-\pstThreeDPut[origin=lb](1,60,70){\Large $\vec\Omega_1$}
-\pstThreeDPut[origin=rb](1,10,50){\Large $\vec\Omega_2 \,$}
-\pstThreeDPut[origin=lb](1,10,65){\Large $\gamma_{12}$}
-
+\pstThreeDPut[origin=lb](1,60,70){$\vec\Omega_1$}
+\pstThreeDPut[origin=rb](1,10,50){$\vec\Omega_2 \,$}
+\pstThreeDPut[origin=lb](1,10,65){$\gamma_{12}$}
\end{pspicture}
+\end{center}
+
\end{document}
+