summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/xmltex/passivetex/latextei-fo.xml
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/xmltex/passivetex/latextei-fo.xml')
-rw-r--r--Master/texmf-dist/doc/xmltex/passivetex/latextei-fo.xml647
1 files changed, 0 insertions, 647 deletions
diff --git a/Master/texmf-dist/doc/xmltex/passivetex/latextei-fo.xml b/Master/texmf-dist/doc/xmltex/passivetex/latextei-fo.xml
deleted file mode 100644
index bfc33c1f6bb..00000000000
--- a/Master/texmf-dist/doc/xmltex/passivetex/latextei-fo.xml
+++ /dev/null
@@ -1,647 +0,0 @@
-<?xml version="1.0" encoding="utf-8"?>
-<fo:root xmlns:fo="http://www.w3.org/XSL/Format/1.0" xmlns:fop="http://www.jtauber.com/fop" xmlns:fotex="http://www.tug.org/fotex"><fo:layout-master-set><fo:simple-page-master page-master-name="left" margin-top="75pt" margin-bottom="100pt" margin-left="80pt" margin-right="150pt"><fo:region-body margin-bottom="24pt" margin-top="24pt"/><fo:region-after extent="25pt"/><fo:region-before extent="25pt"/></fo:simple-page-master><fo:simple-page-master page-master-name="right" margin-top="75pt" margin-bottom="100pt" margin-left="80pt" margin-right="150pt"><fo:region-body margin-bottom="24pt" margin-top="24pt"/><fo:region-after extent="25pt"/><fo:region-before extent="25pt"/></fo:simple-page-master><fo:simple-page-master page-master-name="first" margin-top="75pt" margin-bottom="100pt" margin-left="80pt" margin-right="150pt"><fo:region-body margin-bottom="24pt" margin-top="24pt"/><fo:region-after extent="25pt"/><fo:region-before extent="25pt"/></fo:simple-page-master></fo:layout-master-set><fo:page-sequence><fo:static-content flow-name="xsl-after"/><fo:static-content flow-name="xsl-before"/><fo:sequence-specification><fo:sequence-specifier-single page-master="right"/></fo:sequence-specification><fo:flow>
- <fo:block font-size="18pt" space-after="8pt" text-align-last="centered">
- Simulation of Energy Loss Straggling
- </fo:block>
- <fo:block space-after="6pt" font-size="14pt" text-align-last="centered"><fo:inline-sequence font-style="italic">Maria Physicist</fo:inline-sequence></fo:block>
- <fo:block space-after="6pt" font-size="16pt" text-align-last="centered">January 17, 1999</fo:block>
- </fo:flow></fo:page-sequence><fo:page-sequence initial-page-number="1"><fo:sequence-specification><fo:sequence-specifier-alternating page-master-first="first" page-master-odd="right" page-master-even="left"/></fo:sequence-specification><fo:static-content flow-name="xsl-after" fop:master="right"><fo:block font-size="10pt"><fo:inline-rule rule-thickness="0pt"/><fo:page-number/></fo:block></fo:static-content><fo:static-content flow-name="xsl-after" fop:master="left"><fo:block font-size="10pt"><fo:page-number/><fo:inline-rule rule-thickness="0pt"/></fo:block></fo:static-content><fo:static-content flow-name="xsl-before" fop:master="right"><fo:block text-align-last="centered" font-size="10pt"><!--Running Head: title-->Simulation of Energy Loss Straggling</fo:block></fo:static-content><fo:static-content flow-name="xsl-before" fop:master="left"><fo:block text-align-last="centered" font-size="10pt"><!--Running Head: author-->Maria Physicist</fo:block></fo:static-content><fo:static-content flow-name="xsl-before" fop:master="first"/><fo:static-content flow-name="xsl-after" fop:master="first"><fo:block font-size="10pt"><fo:inline-rule rule-thickness="0pt"/><fo:page-number/><fo:inline-rule rule-thickness="0pt"/></fo:block></fo:static-content><fo:flow font-family="Times Roman" font-size="10pt"> <fo:block keep-with-next="true" id="intro" text-align="start" font-size="18pt" text-indent="-3em" font-weight="bold" space-after="6pt" space-before.optimum="12pt">1. Introduction<fotex:bookmark fotex-bookmark-level="0" fotex-bookmark-label="intro">1. Introduction</fotex:bookmark></fo:block> <fo:block font-size="10pt" text-align="justified">Due to
-the statistical nature of ionisation energy loss, large fluctuations
-can occur in the amount of energy deposited by a particle traversing
-an absorber element. Continuous processes such as multiple scattering
-and energy loss play a relevant role in the longitudinal and lateral
-development of electromagnetic and hadronic showers, and in the case
-of sampling calorimeters the measured resolution can be significantly
-affected by such fluctuations in their active layers. The description
-of ionisation fluctuations is characterised by the significance
-parameter <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">κ</mi></fotex:inlinemath>, which is
-proportional to the ratio of mean energy loss to the maximum allowed
-energy transfer in a single collision with an atomic electron
- <fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML"><mrow xmlns="http://www.w3.org/1998/Math/MathML"> <mi>κ</mi><mo>=</mo>
-<mfrac>
- <mrow><mi>ξ</mi></mrow>
- <mrow>
- <msub><mi>E</mi><mi>max</mi></msub>
- </mrow>
-</mfrac>
-</mrow>
-</fotex:displaymath>
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>max</mi></msub></fotex:inlinemath> is the
-maximum transferable energy in a single collision with an atomic electron.
-<fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML"><mrow xmlns="http://www.w3.org/1998/Math/MathML">
- <msub><mi>E</mi><mi>max</mi></msub><mo>=</mo> <mfrac><mrow><mn>2</mn><msub><mi>m</mi><mrow><mi>e</mi></mrow></msub><msup><mi>β</mi><mrow><mn>2</mn></mrow></msup><msup><mi>γ</mi><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>γ</mi><msub><mi>m</mi><mrow><mi>e</mi></mrow></msub><mo>/</mo><msub><mi>m</mi><mrow><mi>x</mi></mrow></msub><mo>+</mo><msup><mfenced open="(" close=")"><msub><mi>m</mi><mrow><mi>e</mi></mrow></msub><mo>/</mo><msub><mi>m</mi><mrow><mi>x</mi></mrow></msub> </mfenced><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>,</mo>
-</mrow></fotex:displaymath> where
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">γ</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">E</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">/</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mrow><mi>x</mi></mrow></msub></fotex:inlinemath>,
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">E</mi></fotex:inlinemath> is energy and
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mrow><mi>x</mi></mrow></msub></fotex:inlinemath> the mass of the
-incident particle, <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msup xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi><mrow><mn>2</mn></mrow></msup><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn><mo xmlns="http://www.w3.org/1998/Math/MathML">-</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn><mo xmlns="http://www.w3.org/1998/Math/MathML">/</mo><msup xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi><mrow><mn>2</mn></mrow></msup></fotex:inlinemath>
-and <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mrow><mi>e</mi></mrow></msub></fotex:inlinemath> is the
-electron mass. <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">ξ</mi></fotex:inlinemath>
-comes from the Rutherford scattering crosss section and is defined as:
- <fotex:eqnarray><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">ξ</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2</mn><mi>π</mi><msup><mi>z</mi><mrow><mn>2</mn></mrow></msup><msup><mi>e</mi><mrow><mn>4</mn></mrow></msup><msub><mi>N</mi><mrow><mi>A</mi><mi>v</mi></mrow></msub><mi>Z</mi><mi>ρ</mi><mi>δ</mi><mi>x</mi></mrow><mrow><msub><mi>m</mi><mrow><mi>e</mi></mrow></msub><msup><mi>β</mi><mrow><mn>2</mn></mrow></msup><msup><mi>c</mi><mrow><mn>2</mn></mrow></msup><mi>A</mi></mrow></mfrac> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">5</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">3</mn><mo xmlns="http://www.w3.org/1998/Math/MathML">.</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">4</mn> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>z</mi><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mi>β</mi><mrow><mn>2</mn></mrow></msup></mrow></mfrac> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>Z</mi></mrow><mrow><mi>A</mi></mrow></mfrac><mi xmlns="http://www.w3.org/1998/Math/MathML">ρ</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">δ</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">x</mi><mspace width="12pt" xmlns="http://www.w3.org/1998/Math/MathML"/><mi xmlns="http://www.w3.org/1998/Math/MathML">keV </mi><mo xmlns="http://www.w3.org/1998/Math/MathML">,</mo> <mtext xmlns="http://www.w3.org/1998/Math/MathML"/>
-</fotex:subeqn></fotex:eqnarray>
-where
-</fo:block><fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt"><fo:inline-included-container><fo:table id="N610"><fo:table-body><fo:table-row><fo:table-cell><fo:inline-sequence><fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">z</mi></fotex:inlinemath></fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence>charge of the incident particle </fo:inline-sequence></fo:table-cell></fo:table-row><fo:table-row><fo:table-cell><fo:inline-sequence><fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mrow><mi>A</mi><mi>v</mi></mrow></msub></fotex:inlinemath></fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence>Avogadro's number </fo:inline-sequence></fo:table-cell></fo:table-row><fo:table-row><fo:table-cell><fo:inline-sequence><fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">Z</mi></fotex:inlinemath></fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence>atomic number of the material</fo:inline-sequence></fo:table-cell></fo:table-row><fo:table-row><fo:table-cell><fo:inline-sequence><fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">A</mi></fotex:inlinemath></fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence>atomic weight of the material </fo:inline-sequence></fo:table-cell></fo:table-row><fo:table-row><fo:table-cell><fo:inline-sequence><fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">ρ</mi></fotex:inlinemath></fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence>density </fo:inline-sequence></fo:table-cell></fo:table-row><fo:table-row><fo:table-cell><fo:inline-sequence><fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">δ</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">x</mi></fotex:inlinemath></fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence>thickness of the material </fo:inline-sequence></fo:table-cell></fo:table-row><fo:table-row><fo:table-cell><fo:inline-sequence> </fo:inline-sequence></fo:table-cell></fo:table-row></fo:table-body></fo:table></fo:inline-included-container>
-</fo:block><fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt"><fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">κ</mi></fotex:inlinemath>
-measures the contribution of the collisions with energy transfer close to
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>max</mi></msub></fotex:inlinemath>. For a given absorber,
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">κ</mi></fotex:inlinemath> tends towards large
-values if <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">δ</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">x</mi></fotex:inlinemath> is large
-and/or if <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">β</mi></fotex:inlinemath> is small.
-Likewise, <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">κ</mi></fotex:inlinemath> tends
-towards zero if <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">δ</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">x</mi></fotex:inlinemath> is
-small and/or if <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">β</mi></fotex:inlinemath>
-approaches 1.
-</fo:block><fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt">The value of <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">κ</mi></fotex:inlinemath>
-distinguishes two regimes which occur in the description of ionisation fluctuations
-:
-</fo:block><fo:list-block font-size="10pt" margin-right="10pt" space-before.optimum="10pt" space-after.optimum="10pt" margin-left="15pt"><fo:list-item><fo:list-item-label><fo:block margin-right="2.5pt" text-align="centered">•</fo:block></fo:list-item-label><fo:list-item-body><fo:block font-weight="normal">
-<fo:block font-size="10pt" text-align="justified">A
-large
-number
-of
-collisions
-involving
-the
-loss
-of
-all
-or
-most
-of
-the
-incident
-particle
-energy
-during
-the
-traversal
-of
-an
-absorber.
-</fo:block><fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt">As
-the
-total
-energy
-transfer
-is
-composed
-of
-a
-multitude
-of
-small
-energy
-losses,
-we
-can
-apply
-the
-central
-limit
-theorem
-and
-describe
-the
-fluctuations
-by
-a
-Gaussian
-distribution.
-This
-case
-is
-applicable
-to
-non-relativistic
-particles
-and
-is
-described
-by
-the
-inequality
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">κ</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">&gt;</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn></fotex:inlinemath>
-(i.e.
-when
-the
-mean
-energy
-loss
-in
-the
-absorber
-is
-greater
-than
-the
-maximum
-energy
-transfer
-in
-a
-single
-collision).
-</fo:block></fo:block></fo:list-item-body></fo:list-item><fo:list-item><fo:list-item-label><fo:block margin-right="2.5pt" text-align="centered">•</fo:block></fo:list-item-label><fo:list-item-body><fo:block font-weight="normal">
-<fo:block font-size="10pt" text-align="justified">Particles
-traversing
-thin
-counters
-and
-incident
-electrons
-under
-any
-conditions.
-</fo:block><fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt">The
-relevant
-inequalities
-and
-distributions
-are
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn><mo xmlns="http://www.w3.org/1998/Math/MathML">.</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn><mo xmlns="http://www.w3.org/1998/Math/MathML">&lt;</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">κ</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">&lt;</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn></fotex:inlinemath>,
-Vavilov
-distribution,
-and
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">κ</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">&lt;</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn><mo xmlns="http://www.w3.org/1998/Math/MathML">.</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn></fotex:inlinemath>,
-Landau
-distribution.</fo:block></fo:block></fo:list-item-body></fo:list-item></fo:list-block>
-<fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt">An additional regime is defined by the contribution of the collisions
-with low energy transfer which can be estimated with the relation
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">ξ</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">/</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mrow><mn>0</mn></mrow></msub></fotex:inlinemath>,
-where <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mrow><mn>0</mn></mrow></msub></fotex:inlinemath>
-is the mean ionisation potential of the atom. Landau theory assumes that
-the number of these collisions is high, and consequently, it has a restriction
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">ξ</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">/</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mrow><mn>0</mn></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">≫</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn></fotex:inlinemath>. In <fo:inline-sequence font-family="Computer-Modern-Typewriter">GEANT</fo:inline-sequence> (see
-URL <fo:inline-sequence font-family="Computer-Modern-Typewriter" color="green"><fo:simple-link external-destination="http://wwwinfo.cern.ch/asdoc/geant/geantall.html">http://wwwinfo.cern.ch/asdoc/geant/geantall.html</fo:simple-link></fo:inline-sequence>), the limit of Landau theory has
-been set at <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">ξ</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">/</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mrow><mn>0</mn></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">5</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn></fotex:inlinemath>.
-Below this limit special models taking into account the atomic structure of the material are
-used. This is important in thin layers and gaseous materials. Figure <fo:inline-sequence color="green"><fo:simple-link internal-destination="fg:phys332-1">1</fo:simple-link></fo:inline-sequence> shows the behaviour
-of <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">ξ</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">/</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mrow><mn>0</mn></mrow></msub></fotex:inlinemath> as
-a function of the layer thickness for an electron of 100 keV and 1 GeV of kinetic
-energy in Argon, Silicon and Uranium.
-</fo:block>
-<fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt"><fo:float id="fg:phys332-1"><fo:block text-align-last="centered"><fo:display-graphic href="phys332-1"/></fo:block><fo:block text-align-last="centered">Figure 1. The variable <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">ξ</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">/</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mrow><mn>0</mn></mrow></msub></fotex:inlinemath>
-can be used to measure the validity range of the Landau
-theory. It depends on the type and energy of the particle,
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">Z</mi></fotex:inlinemath>,
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">A</mi></fotex:inlinemath>
-and the ionisation potential of the material and the layer thickness. </fo:block></fo:float></fo:block>
-<fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt">In the following sections, the different theories and models for the energy loss
-fluctuation are described. First, the Landau theory and its limitations are discussed,
-and then, the Vavilov and Gaussian straggling functions and the methods in the thin
-layers and gaseous materials are presented.
-</fo:block>
-
-<fo:block keep-with-next="true" id="sec:phys332-1" text-align="start" font-size="18pt" text-indent="-3em" font-weight="bold" space-after="6pt" space-before.optimum="12pt">2. Landau theory<fotex:bookmark fotex-bookmark-level="0" fotex-bookmark-label="sec:phys332-1">2. Landau theory</fotex:bookmark></fo:block>
-
-<fo:block font-size="10pt" text-align="justified">For a particle of mass <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mrow><mi>x</mi></mrow></msub></fotex:inlinemath> traversing
-a thickness of material <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">δ</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">x</mi></fotex:inlinemath>,
-the Landau probability distribution may be written in terms of the universal Landau
-function <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">φ</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></fotex:inlinemath>
-as<fo:inline-sequence color="green"><fo:simple-link internal-destination="bib-LAND"> [1]</fo:simple-link></fo:inline-sequence>:
- <fotex:eqnarray><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">f</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>ε</mi><mo>,</mo><mi>δ</mi><mi>x</mi><mo>)</mo></mrow> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn></mrow><mrow><mi>ξ</mi></mrow></mfrac><mi xmlns="http://www.w3.org/1998/Math/MathML">φ</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>λ</mi><mo>)</mo></mrow> <mtext xmlns="http://www.w3.org/1998/Math/MathML"/>
-</fotex:subeqn></fotex:eqnarray>
-where
- <fotex:eqnarray><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">φ</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>λ</mi><mo>)</mo></mrow> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi></mrow></mfrac><msubsup xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo>
- <mrow><mi>c</mi><mo>+</mo><mi>i</mi><mi>∞</mi></mrow><mrow><mi>c</mi><mo>-</mo><mi>i</mi><mi>∞</mi></mrow></msubsup><mo xmlns="http://www.w3.org/1998/Math/MathML">exp</mo><mfenced open="(" close=")" xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>ln</mo><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi></mfenced><mi xmlns="http://www.w3.org/1998/Math/MathML">d</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">u</mi><mspace width="2cm" xmlns="http://www.w3.org/1998/Math/MathML"/><mi xmlns="http://www.w3.org/1998/Math/MathML">c</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">≥</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn> <mtext xmlns="http://www.w3.org/1998/Math/MathML"/>
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML">
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">λ</mi> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>ε</mi><mo>-</mo><munderover accent="true"><mo>̄</mo><mi>ε</mi><mrow/></munderover></mrow><mrow><mi>ξ</mi></mrow></mfrac> <mo xmlns="http://www.w3.org/1998/Math/MathML">-</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">γ</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">′</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">-</mo><msup xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi><mrow><mn>2</mn></mrow></msup><mo xmlns="http://www.w3.org/1998/Math/MathML">-</mo><mo xmlns="http://www.w3.org/1998/Math/MathML">ln</mo> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>ξ</mi></mrow><mrow><msub><mi>E</mi><mi>max</mi></msub></mrow></mfrac> <mtext xmlns="http://www.w3.org/1998/Math/MathML"/>
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML">
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">γ</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">′</mi> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn><mo xmlns="http://www.w3.org/1998/Math/MathML">.</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">4</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">2</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">2</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">7</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">8</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">4</mn><mo xmlns="http://www.w3.org/1998/Math/MathML">.</mo><mo xmlns="http://www.w3.org/1998/Math/MathML">.</mo><mo xmlns="http://www.w3.org/1998/Math/MathML">.</mo><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn><mo xmlns="http://www.w3.org/1998/Math/MathML">-</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">γ</mi> <mtext xmlns="http://www.w3.org/1998/Math/MathML"/>
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML">
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">γ</mi> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn><mo xmlns="http://www.w3.org/1998/Math/MathML">.</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">5</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">7</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">7</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">2</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">5</mn><mo xmlns="http://www.w3.org/1998/Math/MathML">.</mo><mo xmlns="http://www.w3.org/1998/Math/MathML">.</mo><mo xmlns="http://www.w3.org/1998/Math/MathML">.</mo><mtext xmlns="http://www.w3.org/1998/Math/MathML">(Eulers constant)</mtext> <mtext xmlns="http://www.w3.org/1998/Math/MathML"/>
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML">
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML"><munderover accent="true" xmlns="http://www.w3.org/1998/Math/MathML"><mo>̄</mo><mi>ε</mi><mrow/></munderover> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mtext xmlns="http://www.w3.org/1998/Math/MathML">average energy loss</mtext> <mtext xmlns="http://www.w3.org/1998/Math/MathML"/>
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML">
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">ε</mi> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mtext xmlns="http://www.w3.org/1998/Math/MathML">actual energy loss</mtext> <mtext xmlns="http://www.w3.org/1998/Math/MathML"/>
-</fotex:subeqn></fotex:eqnarray>
-</fo:block>
-<fo:block keep-with-next="true" id="N1783" text-align="start" font-size="14pt" text-indent="-3em" font-weight="bold" space-after="3pt" space-before.optimum="9pt">2.1. Restrictions<fotex:bookmark fotex-bookmark-level="1" fotex-bookmark-label="N1783">2.1. Restrictions</fotex:bookmark></fo:block>
-
-<fo:block font-size="10pt" text-align="justified">The Landau formalism makes two restrictive assumptions :
-</fo:block><fo:list-block font-size="10pt" margin-right="10pt" space-before.optimum="10pt" space-after.optimum="10pt" margin-left="15pt"><fo:list-item><fo:list-item-label><fo:block margin-right="2.5pt" text-align="centered">•</fo:block></fo:list-item-label><fo:list-item-body><fo:block font-weight="normal">
-<fo:block font-size="10pt" text-align="justified">The
-typical
-energy
-loss
-is
-small
-compared
-to
-the
-maximum
-energy
-loss
-in
-a
-single
-collision.
-This
-restriction
-is
-removed
-in
-the
-Vavilov
-theory
-(see
-section
-<fo:inline-sequence color="green"><fo:simple-link internal-destination="vavref">3 (Vavilov theory)</fo:simple-link></fo:inline-sequence>).
-</fo:block></fo:block></fo:list-item-body></fo:list-item><fo:list-item><fo:list-item-label><fo:block margin-right="2.5pt" text-align="centered">•</fo:block></fo:list-item-label><fo:list-item-body><fo:block font-weight="normal">
-<fo:block font-size="10pt" text-align="justified">The
-typical
-energy
-loss
-in
-the
-absorber
-should
-be
-large
-compared
-to
-the
-binding
-energy
-of
-the
-most
-tightly
-bound
-electron.
-For
-gaseous
-detectors,
-typical
-energy
-losses
-are
-a
-few
-keV
-which
-is
-comparable
-to
-the
-binding
-energies
-of
-the
-inner
-electrons.
-In
-such
-cases
-a
-more
-sophisticated
-approach
-which
-accounts
-for
-atomic
-energy
-levels<fo:inline-sequence color="green"><fo:simple-link internal-destination="bib-TALM"> [4]</fo:simple-link></fo:inline-sequence>
-is
-necessary
-to
-accurately
-simulate
-data
-distributions.
-In
-<fo:inline-sequence font-family="Computer-Modern-Typewriter">GEANT</fo:inline-sequence>,
-a
-parameterised
-model
-by
-L.
-Urbán
-is
-used
-(see
-section
-<fo:inline-sequence color="green"><fo:simple-link internal-destination="urban">5 (Urbán model)</fo:simple-link></fo:inline-sequence>).</fo:block></fo:block></fo:list-item-body></fo:list-item></fo:list-block>
-<fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt">In addition, the average value of the Landau distribution is infinite.
-Summing the Landau fluctuation obtained to the average energy from the
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">d</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">E</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">/</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">d</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">x</mi></fotex:inlinemath>
-tables, we obtain a value which is larger than the one coming from the table. The
-probability to sample a large value is small, so it takes a large number of steps
-(extractions) for the average fluctuation to be significantly larger than zero. This
-introduces a dependence of the energy loss on the step size which can affect
-calculations.
-</fo:block><fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt">A solution to this has been to introduce a limit on the value of the
-variable sampled by the Landau distribution in order to keep the average
-fluctuation to 0. The value obtained from the <fo:inline-sequence font-family="Computer-Modern-Typewriter">GLANDO</fo:inline-sequence> routine is:
-<fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML"><mrow xmlns="http://www.w3.org/1998/Math/MathML">
- <mi>δ</mi><mi>d</mi><mi>E</mi><mo>/</mo><mi>d</mi><mi>x</mi><mo>=</mo><mi>ε</mi><mo>-</mo><munderover accent="true"><mo>̄</mo><mi>ε</mi><mrow/></munderover><mo>=</mo><mi>ξ</mi><mrow><mo>(</mo><mi>λ</mi><mo>-</mo><mi>γ</mi><mi>′</mi><mo>+</mo><msup><mi>β</mi><mrow><mn>2</mn></mrow></msup><mo>+</mo><mo>ln</mo> <mfrac><mrow><mi>ξ</mi></mrow><mrow><msub><mi>E</mi><mi>max</mi></msub></mrow></mfrac> <mo>)</mo></mrow>
-</mrow></fotex:displaymath>
-In order for this to have average 0, we must impose that:
-<fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML"><mrow xmlns="http://www.w3.org/1998/Math/MathML">
- <munderover accent="true"><mo>̄</mo><mi>λ</mi><mrow/></munderover><mo>=</mo><mo>-</mo><mi>γ</mi><mi>′</mi><mo>-</mo><msup><mi>β</mi><mrow><mn>2</mn></mrow></msup><mo>-</mo><mo>ln</mo> <mfrac><mrow><mi>ξ</mi></mrow><mrow><msub><mi>E</mi><mi>max</mi></msub></mrow></mfrac>
-</mrow></fotex:displaymath>
-</fo:block><fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt">This is realised introducing a <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mrow><mtext>max</mtext></mrow></msub><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><munderover accent="true"><mo>̄</mo><mi>λ</mi><mrow/></munderover><mo>)</mo></mrow></fotex:inlinemath>
-such that if only values of <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">λ</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">≤</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mrow><mtext>max</mtext></mrow></msub></fotex:inlinemath>
-are accepted, the average value of the distribution is
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><munderover accent="true" xmlns="http://www.w3.org/1998/Math/MathML"><mo>̄</mo><mi>λ</mi><mrow/></munderover></fotex:inlinemath>.
-</fo:block><fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt">A parametric fit to the universal Landau distribution has been performed, with following result:
-<fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML"><mrow xmlns="http://www.w3.org/1998/Math/MathML">
- <msub><mi>λ</mi><mrow><mtext>max</mtext></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>6</mn><mn>0</mn><mn>7</mn><mn>1</mn><mn>5</mn><mo>+</mo><mn>1</mn><mo>.</mo><mn>1</mn><mn>9</mn><mn>3</mn><mn>4</mn><munderover accent="true"><mo>̄</mo><mi>λ</mi><mrow/></munderover><mo>+</mo><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>6</mn><mn>7</mn><mn>7</mn><mn>9</mn><mn>4</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>5</mn><mn>2</mn><mn>3</mn><mn>8</mn><mn>2</mn><munderover accent="true"><mi>λ</mi><mrow/><mo>̄</mo></munderover><mo>)</mo></mrow><mo>exp</mo><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>9</mn><mn>4</mn><mn>7</mn><mn>5</mn><mn>3</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>7</mn><mn>4</mn><mn>4</mn><mn>4</mn><mn>2</mn><munderover accent="true"><mi>λ</mi><mrow/><mo>̄</mo></munderover><mo>)</mo></mrow>
-</mrow></fotex:displaymath> only values
-smaller than <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mrow><mtext>max</mtext></mrow></msub></fotex:inlinemath>
-are accepted, otherwise the distribution is resampled.
-</fo:block>
-
-
-<fo:block keep-with-next="true" id="vavref" text-align="start" font-size="18pt" text-indent="-3em" font-weight="bold" space-after="6pt" space-before.optimum="12pt">3. Vavilov theory<fotex:bookmark fotex-bookmark-level="0" fotex-bookmark-label="vavref">3. Vavilov theory</fotex:bookmark></fo:block>
-
-<fo:block font-size="10pt" text-align="justified">Vavilov<fo:inline-sequence color="green"><fo:simple-link internal-destination="bib-VAVI"> [5]</fo:simple-link></fo:inline-sequence> derived a more accurate straggling distribution by introducing the kinematic
-limit on the maximum transferable energy in a single collision, rather than using
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>max</mi></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">∞</mi></fotex:inlinemath>. Now
-we can write<fo:inline-sequence color="green"><fo:simple-link internal-destination="bib-SCH1"> [2]</fo:simple-link></fo:inline-sequence>:
- <fotex:eqnarray><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">f</mi> <mfenced open="(" close=")" xmlns="http://www.w3.org/1998/Math/MathML"><mi>ε</mi><mo>,</mo><mi>δ</mi><mi>s</mi></mfenced> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn></mrow><mrow><mi>ξ</mi></mrow></mfrac><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>φ</mi><mrow><mi>v</mi></mrow></msub> <mfenced open="(" close=")" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mrow><mi>v</mi></mrow></msub><mo>,</mo><mi>κ</mi><mo>,</mo><msup><mi>β</mi><mrow><mn>2</mn></mrow></msup></mfenced> <mtext xmlns="http://www.w3.org/1998/Math/MathML"/>
-</fotex:subeqn></fotex:eqnarray>
-where
- <fotex:eqnarray><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>φ</mi><mrow><mi>v</mi></mrow></msub> <mfenced open="(" close=")" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mrow><mi>v</mi></mrow></msub><mo>,</mo><mi>κ</mi><mo>,</mo><msup><mi>β</mi><mrow><mn>2</mn></mrow></msup></mfenced> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi></mrow></mfrac><msubsup xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo>
- <mrow><mi>c</mi><mo>+</mo><mi>i</mi><mi>∞</mi></mrow><mrow><mi>c</mi><mo>-</mo><mi>i</mi><mi>∞</mi></mrow></msubsup><mi xmlns="http://www.w3.org/1998/Math/MathML">φ</mi><mfenced open="(" close=")" xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></mfenced><msup xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mrow><mi>λ</mi><mi>s</mi></mrow></msup><mi xmlns="http://www.w3.org/1998/Math/MathML">d</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">s</mi><mspace width="2cm" xmlns="http://www.w3.org/1998/Math/MathML"/><mi xmlns="http://www.w3.org/1998/Math/MathML">c</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">≥</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn> <mtext xmlns="http://www.w3.org/1998/Math/MathML"/>
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML">
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">φ</mi><mfenced open="(" close=")" xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></mfenced> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mo xmlns="http://www.w3.org/1998/Math/MathML">exp</mo><mfenced open="[" close="]" xmlns="http://www.w3.org/1998/Math/MathML"><mi>κ</mi><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msup><mi>β</mi><mrow><mn>2</mn></mrow></msup><mi>γ</mi><mo>)</mo></mrow></mfenced><mo xmlns="http://www.w3.org/1998/Math/MathML">exp</mo><mfenced open="[" close="]" xmlns="http://www.w3.org/1998/Math/MathML"><mi>ψ</mi> <mfenced open="(" close=")"><mi>s</mi></mfenced></mfenced><mo xmlns="http://www.w3.org/1998/Math/MathML">,</mo> <mtext xmlns="http://www.w3.org/1998/Math/MathML"/>
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML">
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">ψ</mi> <mfenced open="(" close=")" xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></mfenced> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mi xmlns="http://www.w3.org/1998/Math/MathML">s</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">ln</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">κ</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">+</mo><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>s</mi><mo>+</mo><msup><mi>β</mi><mrow><mn>2</mn></mrow></msup><mi>κ</mi><mo>)</mo></mrow><mfenced open="[" close="]" xmlns="http://www.w3.org/1998/Math/MathML"><mo>ln</mo><mrow><mo>(</mo><mi>s</mi><mo>/</mo><mi>κ</mi><mo>)</mo></mrow><mo>+</mo><msub><mi>E</mi><mrow>
-<mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>s</mi><mo>/</mo><mi>κ</mi><mo>)</mo></mrow></mfenced><mo xmlns="http://www.w3.org/1998/Math/MathML">-</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">κ</mi><msup xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mrow><mo>-</mo><mi>s</mi><mo>/</mo><mi>κ</mi></mrow></msup><mo xmlns="http://www.w3.org/1998/Math/MathML">,</mo> <mtext xmlns="http://www.w3.org/1998/Math/MathML"/>
-</fotex:subeqn></fotex:eqnarray>
-and
- <fotex:eqnarray><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mn>1</mn></mrow></msub><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>z</mi><mo>)</mo></mrow> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><msubsup xmlns="http://www.w3.org/1998/Math/MathML"> <mo>∫</mo>
- <mrow><mi>∞</mi></mrow><mrow><mi>z</mi></mrow></msubsup><msup xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><msup xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mrow><mo>-</mo><mi>t</mi></mrow></msup><mi xmlns="http://www.w3.org/1998/Math/MathML">d</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">t</mi><mspace width="1cm" xmlns="http://www.w3.org/1998/Math/MathML"/><mtext xmlns="http://www.w3.org/1998/Math/MathML">(the exponential integral)</mtext> <mtext xmlns="http://www.w3.org/1998/Math/MathML"/>
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML">
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mrow><mi>v</mi></mrow></msub> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mi xmlns="http://www.w3.org/1998/Math/MathML">κ</mi><mfenced open="[" close="]" xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>ε</mi><mo>-</mo><munderover accent="true"><mo>̄</mo><mi>ε</mi><mrow/></munderover></mrow><mrow><mi>ξ</mi></mrow></mfrac> <mo>-</mo><mi>γ</mi><mi>′</mi><mo>-</mo><msup><mi>β</mi><mrow><mn>2</mn></mrow></msup></mfenced> <mtext xmlns="http://www.w3.org/1998/Math/MathML"/>
-</fotex:subeqn></fotex:eqnarray>
-</fo:block><fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt">The Vavilov parameters are simply related to the Landau parameter by
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mrow><mi>L</mi></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mrow><mi>v</mi></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">/</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">κ</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">-</mo><mo xmlns="http://www.w3.org/1998/Math/MathML">ln</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">κ</mi></fotex:inlinemath>. It can be shown that
-as <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">κ</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">→</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn></fotex:inlinemath>, the distribution of
-the variable <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mrow><mi>L</mi></mrow></msub></fotex:inlinemath> approaches
-that of Landau. For <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">κ</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">≤</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn><mo xmlns="http://www.w3.org/1998/Math/MathML">.</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn></fotex:inlinemath>
-the two distributions are already practically identical. Contrary to what many textbooks
-report, the Vavilov distribution <fo:inline-sequence font-style="italic">does not</fo:inline-sequence> approximate the Landau distribution for small
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">κ</mi></fotex:inlinemath>, but rather the
-distribution of <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mrow><mi>L</mi></mrow></msub></fotex:inlinemath>
-defined above tends to the distribution of the true
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">λ</mi></fotex:inlinemath> from
-the Landau density function. Thus the routine <fo:inline-sequence font-family="Computer-Modern-Typewriter">GVAVIV</fo:inline-sequence> samples the variable
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mrow><mi>L</mi></mrow></msub></fotex:inlinemath> rather
-than <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mrow><mi>v</mi></mrow></msub></fotex:inlinemath>.
-For <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">κ</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">≥</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn></fotex:inlinemath>
-the Vavilov distribution tends to a Gaussian distribution (see next section).
-</fo:block>
-
-<fo:block keep-with-next="true" id="N3325" text-align="start" font-size="18pt" text-indent="-3em" font-weight="bold" space-after="6pt" space-before.optimum="12pt">4. Gaussian Theory<fotex:bookmark fotex-bookmark-level="0" fotex-bookmark-label="N3325">4. Gaussian Theory</fotex:bookmark></fo:block>
-
-<fo:block font-size="10pt" text-align="justified">Various conflicting forms have been proposed for Gaussian straggling functions, but most
-of these appear to have little theoretical or experimental basis. However, it has been shown<fo:inline-sequence color="green"><fo:simple-link internal-destination="bib-SELT"> [3]</fo:simple-link></fo:inline-sequence>
-that for <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">κ</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">≥</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn></fotex:inlinemath>
-the Vavilov distribution can be replaced by a Gaussian of the form:
- <fotex:eqnarray><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">f</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>ε</mi><mo>,</mo><mi>δ</mi><mi>s</mi><mo>)</mo></mrow><mo xmlns="http://www.w3.org/1998/Math/MathML">≈</mo> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn></mrow><mrow><mi>ξ</mi><msqrt><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mi>κ</mi></mrow></mfrac> <mfenced open="(" close=")"><mn>1</mn><mo>-</mo><msup><mi>β</mi><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>2</mn></mfenced></msqrt></mrow></mfrac><mo xmlns="http://www.w3.org/1998/Math/MathML">exp</mo><mfenced open="[" close="]" xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mrow><mo>(</mo><mi>ε</mi><mo>-</mo><munderover accent="true"><mo>̄</mo><mi>ε</mi><mrow/></munderover><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac> <mfrac><mrow><mi>κ</mi></mrow><mrow><msup><mi>ξ</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mn>1</mn><mo>-</mo><msup><mi>β</mi><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>2</mn><mo>)</mo></mrow></mrow></mfrac></mfenced> <mtext xmlns="http://www.w3.org/1998/Math/MathML"/>
-</fotex:subeqn></fotex:eqnarray>
-thus implying
- <fotex:eqnarray><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">mean</mi> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <munderover accent="true" xmlns="http://www.w3.org/1998/Math/MathML"><mo>̄</mo><mi>ε</mi><mrow/></munderover> <mtext xmlns="http://www.w3.org/1998/Math/MathML"/>
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML">
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML"><msup xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mrow><mn>2</mn></mrow></msup> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>ξ</mi><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>κ</mi></mrow></mfrac> <mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>-</mo><msup><mi>β</mi><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>2</mn><mo>)</mo></mrow><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">ξ</mi><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mi>
-max</mi></mrow></msub><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>-</mo><msup><mi>β</mi><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>2</mn><mo>)</mo></mrow> <mtext xmlns="http://www.w3.org/1998/Math/MathML"/>
-</fotex:subeqn></fotex:eqnarray>
-</fo:block>
-
-<fo:block keep-with-next="true" id="urban" text-align="start" font-size="18pt" text-indent="-3em" font-weight="bold" space-after="6pt" space-before.optimum="12pt">5. Urbán model<fotex:bookmark fotex-bookmark-level="0" fotex-bookmark-label="urban">5. Urbán model</fotex:bookmark></fo:block>
-
-<fo:block font-size="10pt" text-align="justified">The method for computing restricted energy losses with
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">δ</mi></fotex:inlinemath>-ray
-production above given threshold energy in <fo:inline-sequence font-family="Computer-Modern-Typewriter">GEANT</fo:inline-sequence> is a Monte Carlo method that
-can be used for thin layers. It is fast and it can be used for any thickness of a
-medium. Approaching the limit of the validity of Landau's theory, the loss
-distribution approaches smoothly the Landau form as shown in Figure <fo:inline-sequence color="green"><fo:simple-link internal-destination="fg:phys332-2">2</fo:simple-link></fo:inline-sequence>.
-</fo:block>
-<fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt"><fo:float id="fg:phys332-2"><fo:block text-align-last="centered"><fo:display-graphic href="phys332-2"/></fo:block><fo:block text-align-last="centered">Figure 2. Energy loss distribution for a 3 GeV electron in Argon as given by
-standard GEANT. The width of the layers is given in centimeters.</fo:block></fo:float></fo:block>
-<fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt">It is assumed that the atoms have only two energy levels with binding energy
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mn>1</mn></mrow></msub></fotex:inlinemath> and
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mn>2</mn></mrow></msub></fotex:inlinemath>.
-The particle--atom interaction will then be an excitation with energy loss
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mn>1</mn></mrow></msub></fotex:inlinemath> or
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mn>2</mn></mrow></msub></fotex:inlinemath>, or
-an ionisation with an energy loss distributed according to a function
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">g</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mo xmlns="http://www.w3.org/1998/Math/MathML">∼</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn><mo xmlns="http://www.w3.org/1998/Math/MathML">/</mo><msup xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mn>2</mn></mrow></msup></fotex:inlinemath>:
-<fotex:equation xmlns:m="http://www.w3.org/1998/Math/MathML">
- <mi xmlns="http://www.w3.org/1998/Math/MathML">g</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo>(</mo><msub><mi>E</mi><mi>max</mi></msub><mo>+</mo><mi>I</mi><mo>)</mo></mrow><mi>I</mi></mrow><mrow><msub><mi>E</mi><mi>max</mi></msub></mrow></mfrac>
-<mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn></mrow><mrow><msup><mi>E</mi><mrow><mn>2</mn></mrow></msup></mrow></mfrac>
-</fotex:equation></fo:block><fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt">The
-macroscopic cross-section for excitations (<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">i</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn><mo xmlns="http://www.w3.org/1998/Math/MathML">,</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">2</mn></fotex:inlinemath>)
-is <fotex:equation id="eq:sigex" xmlns:m="http://www.w3.org/1998/Math/MathML">
- <msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>Σ</mi><mrow><mi>i</mi></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">C</mi> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>f</mi><mrow><mi>i</mi></mrow></msub></mrow><mrow><msub><mi>E</mi><mrow><mi>i</mi></mrow></msub></mrow></mfrac> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>ln</mo><mrow><mo>(</mo><mn>2</mn><mi>m</mi><msup><mi>β</mi><mrow><mn>2</mn></mrow></msup><msup><mi>γ</mi><mrow><mn>2</mn></mrow></msup><mo>/</mo><msub><mi>E</mi><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>-</mo><msup><mi>β</mi><mrow><mn>2</mn></mrow></msup></mrow><mrow><mo>ln</mo><mrow><mo>(</mo><mn>2</mn><mi>m</mi><msup><mi>β</mi><mrow><mn>2</mn></mrow></msup><msup><mi>γ</mi><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>I</mi><mo>)</mo></mrow><mo>-</mo><msup><mi>β</mi><mrow><mn>2</mn></mrow></msup></mrow></mfrac> <mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>-</mo><mi>r</mi><mo>)</mo></mrow> </fotex:equation>and
-the macroscopic cross-section for ionisation is
-<fotex:equation id="eq:sigion" xmlns:m="http://www.w3.org/1998/Math/MathML">
- <msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>Σ</mi><mrow><mn>3</mn></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">C</mi> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>E</mi><mi>max</mi></msub></mrow><mrow><mi>I</mi><mrow><mo>(</mo><msub><mi>E</mi><mi>max</mi></msub><mo>+</mo><mi>I</mi><mo>)</mo></mrow><mo>ln</mo><mrow><mo>(</mo><mfrac><mrow><msub><mi>E</mi><mi>max</mi></msub><mo>+</mo><mi>I</mi></mrow><mrow><mi>I</mi></mrow></mfrac> <mo>)</mo></mrow></mrow></mfrac><mi xmlns="http://www.w3.org/1998/Math/MathML">r</mi> </fotex:equation>
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>max</mi></msub></fotex:inlinemath>
-is the <fo:inline-sequence font-family="Computer-Modern-Typewriter">GEANT</fo:inline-sequence> cut for <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">δ</mi></fotex:inlinemath>-production,
-or the maximum energy transfer minus mean ionisation energy, if it is smaller than
-this cut-off value. The following notation is used:
-</fo:block><fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt"><fo:inline-included-container><fo:table id="N4332"><fo:table-body><fo:table-row><fo:table-cell><fo:inline-sequence><fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">r</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">,</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">C</mi></fotex:inlinemath></fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence>parameters of the model</fo:inline-sequence></fo:table-cell></fo:table-row><fo:table-row><fo:table-cell><fo:inline-sequence><fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mi>i</mi></mrow></msub></fotex:inlinemath></fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence>atomic energy levels </fo:inline-sequence></fo:table-cell></fo:table-row><fo:table-row><fo:table-cell><fo:inline-sequence><fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">I</mi></fotex:inlinemath></fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence>mean ionisation energy </fo:inline-sequence></fo:table-cell></fo:table-row><fo:table-row><fo:table-cell><fo:inline-sequence><fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mrow><mi>i</mi></mrow></msub></fotex:inlinemath></fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence>oscillator strengths </fo:inline-sequence></fo:table-cell></fo:table-row></fo:table-body></fo:table></fo:inline-included-container>
-</fo:block><fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt">The model has the parameters <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mrow><mi>i</mi></mrow></msub></fotex:inlinemath>,
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mi>i</mi></mrow></msub></fotex:inlinemath>,
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">C</mi></fotex:inlinemath> and
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">r</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mn>1</mn><mo>)</mo></mrow></fotex:inlinemath>. The oscillator
-strengths <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mrow><mi>i</mi></mrow></msub></fotex:inlinemath> and the
-atomic level energies <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mi>i</mi></mrow></msub></fotex:inlinemath>
-should satisfy the constraints
- <fotex:eqnarray><fotex:subeqn id="eq:fisum" xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mrow><mn>1</mn></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">+</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mrow><mn>2</mn></mrow></msub> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn>
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML">
- </fotex:subeqn><fotex:subeqn id="eq:flnsum" xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mrow><mn>1</mn></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">ln</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mn>1</mn></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">+</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mrow><mn>2</mn></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">ln</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mn>2</mn></mrow></msub> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mo xmlns="http://www.w3.org/1998/Math/MathML">ln</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">I</mi>
-</fotex:subeqn></fotex:eqnarray>
-The parameter <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">C</mi></fotex:inlinemath>
-can be defined with the help of the mean energy loss
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">d</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">E</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">/</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">d</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">x</mi></fotex:inlinemath> in the following way: The
-numbers of collisions (<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mi>i</mi></mrow></msub></fotex:inlinemath>,
-i = 1,2 for the excitation and 3 for the ionisation) follow the Poisson distribution with a mean
-number <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>&lt;</mo><msub><mi>n</mi><mrow><mi>i</mi></mrow></msub><mo>&gt;;</mo></mrow></fotex:inlinemath>. In a step
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">Δ</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">x</mi></fotex:inlinemath> the mean number
-of collisions is <fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML">
- <mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>&lt;</mo><msub><mi>n</mi><mrow><mi>i</mi></mrow></msub><mo>&gt;;</mo></mrow><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>Σ</mi><mrow><mi>i</mi></mrow></msub><mi xmlns="http://www.w3.org/1998/Math/MathML">Δ</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">x</mi>
-</fotex:displaymath>The
-mean energy loss <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">d</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">E</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">/</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">d</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">x</mi></fotex:inlinemath>
-in a step is the sum of the excitation and ionisation contributions
-<fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML">
- <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>d</mi><mi>E</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac> <mi xmlns="http://www.w3.org/1998/Math/MathML">Δ</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">x</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mfenced open="[" close="]" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Σ</mi><mrow><mn>1</mn></mrow></msub><msub><mi>E</mi><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>Σ</mi><mrow><mn>2</mn></mrow></msub><msub><mi>E</mi><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mi>Σ</mi><mrow><mn>3</mn></mrow></msub><msubsup><mo>∫</mo>
- <mrow><mi>I</mi></mrow><mrow><msub><mi>E</mi><mi>max</mi></msub><mo>+</mo><mi>I</mi></mrow></msubsup><mi>E</mi><mi>g</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mi>d</mi><mi>E</mi></mfenced><mi xmlns="http://www.w3.org/1998/Math/MathML">Δ</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">x</mi>
-</fotex:displaymath>From
-this, using the equations (<fo:inline-sequence color="green"><fo:simple-link internal-destination="eq:sigex">2</fo:simple-link></fo:inline-sequence>), (<fo:inline-sequence color="green"><fo:simple-link internal-destination="eq:sigion">3</fo:simple-link></fo:inline-sequence>), (<fo:inline-sequence color="green"><fo:simple-link internal-destination="eq:fisum">1</fo:simple-link></fo:inline-sequence>) and (<fo:inline-sequence color="green"><fo:simple-link internal-destination="eq:flnsum">1</fo:simple-link></fo:inline-sequence>), one can define the parameter
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">C</mi></fotex:inlinemath>
-<fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML">
- <mi xmlns="http://www.w3.org/1998/Math/MathML">C</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>d</mi><mi>E</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac>
-</fotex:displaymath>
-</fo:block><fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt">The following values have been chosen in <fo:inline-sequence font-family="Computer-Modern-Typewriter">GEANT</fo:inline-sequence> for the other parameters:
-<fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML"><mrow xmlns="http://www.w3.org/1998/Math/MathML">
- <mtable equalrows="false" equalcolumns="false"><mtr><mtd><msub><mi>f</mi><mrow><mn>2</mn></mrow></msub><mo>=</mo><mfenced open="{"><mtable equalrows="false" equalcolumns="false"><mtr><mtd><mn>0</mn> </mtd><mtd><mi>if</mi><mi>Z</mi><mo>≤</mo><mn>2</mn></mtd>
-</mtr><mtr><mtd><mn>2</mn><mo>/</mo><mi>Z</mi></mtd><mtd><mi>if</mi><mi>Z</mi><mo>&gt;</mo><mn>2</mn></mtd>
-</mtr><mtr><mtd> </mtd></mtr></mtable> </mfenced></mtd><mtd><mo>⇒</mo></mtd><mtd><msub><mi>f</mi><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>-</mo><msub><mi>f</mi><mrow><mn>2</mn></mrow></msub> </mtd>
- </mtr><mtr><mtd><msub><mi>E</mi><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn><mn>0</mn><msup><mi>Z</mi><mrow><mn>2</mn></mrow></msup><mi>eV </mi> </mtd><mtd><mo>⇒</mo></mtd><mtd><msub><mi>E</mi><mrow><mn>1</mn></mrow></msub><mo>=</mo><msup><mfenced open="(" close=")"> <mfrac><mrow><mi>I</mi></mrow><mrow><msubsup><mi>E</mi><mrow><mn>2</mn></mrow><mrow><msub><mi>f</mi><mrow><mn>2</mn></mrow></msub></mrow></msubsup></mrow></mfrac> </mfenced><mrow> <mfrac><mrow><mn>1</mn></mrow><mrow><msub><mi>f</mi><mrow><mn>1</mn></mrow></msub></mrow></mfrac> </mrow></msup></mtd>
- </mtr><mtr><mtd><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn> </mtd><mtd> </mtd><mtd> </mtd>
- </mtr><mtr><mtd> </mtd></mtr></mtable>
-</mrow></fotex:displaymath> With these values
-the atomic level <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mn>2</mn></mrow></msub></fotex:inlinemath>
-corresponds approximately the K-shell energy of the atoms and
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">Z</mi><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mrow><mn>2</mn></mrow></msub></fotex:inlinemath> the number of
-K-shell electrons. <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">r</mi></fotex:inlinemath>
-is the only variable which can be tuned freely. It determines the relative contribution
-of ionisation and excitation to the energy loss.
-</fo:block><fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt">The energy loss is computed with the assumption that the step length (or the relative
-energy loss) is small, and---in consequence---the cross-section can be considered
-constant along the path length. The energy loss due to the excitation is
-<fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML">
- <mi xmlns="http://www.w3.org/1998/Math/MathML">Δ</mi><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mi>e</mi></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mn>1</mn></mrow></msub><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mn>1</mn></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">+</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mn>2</mn></mrow></msub><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mn>2</mn></mrow></msub>
-</fotex:displaymath>where
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mn>1</mn></mrow></msub></fotex:inlinemath> and
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mn>2</mn></mrow></msub></fotex:inlinemath>
-are sampled from Poisson distribution as discussed above. The
-loss due to the ionisation can be generated from the distribution
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">g</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>E</mi><mo>)</mo></mrow></fotex:inlinemath> by
-the inverse transformation method:
- <fotex:eqnarray><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">u</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">F</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>E</mi><mo>)</mo></mrow> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><msubsup xmlns="http://www.w3.org/1998/Math/MathML"> <mo>∫</mo>
- <mrow><mi>I</mi></mrow><mrow><mi>E</mi></mrow></msubsup><mi xmlns="http://www.w3.org/1998/Math/MathML">g</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi xmlns="http://www.w3.org/1998/Math/MathML">d</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">x</mi> <mtext xmlns="http://www.w3.org/1998/Math/MathML"/>
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML">
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">E</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><msup xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>u</mi><mo>)</mo></mrow> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>I</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>u</mi> <mfrac><mrow><msub><mi>E</mi><mi>max</mi></msub></mrow><mrow><msub><mi>E</mi><mi>max</mi></msub><mo>+</mo><mi>I</mi></mrow></mfrac> </mrow></mfrac>
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML">
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML">
-</fotex:subeqn></fotex:eqnarray>
-where <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">u</mi></fotex:inlinemath> is a uniform random
-number between <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">F</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>I</mi><mo>)</mo></mrow><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn></fotex:inlinemath> and
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">F</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><msub><mi>E</mi><mi>max</mi></msub><mo>+</mo><mi>I</mi><mo>)</mo></mrow><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn></fotex:inlinemath>. The contribution from the
-ionisations will be <fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML">
- <mi xmlns="http://www.w3.org/1998/Math/MathML">Δ</mi><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mi>i</mi></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><msubsup xmlns="http://www.w3.org/1998/Math/MathML"><mo>∑</mo>
- <mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub></mrow></msubsup> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>I</mi></mrow><mrow><mn>1</mn><mo>-</mo><msub><mi>u</mi><mrow><mi>j</mi></mrow></msub> <mfrac><mrow><msub><mi>E</mi><mi>max</mi></msub></mrow><mrow><msub><mi>E</mi><mi>max</mi></msub><mo>+</mo><mi>I</mi></mrow></mfrac> </mrow></mfrac>
-</fotex:displaymath>where
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mn>3</mn></mrow></msub></fotex:inlinemath> is the
-number of ionisation (sampled from Poisson distribution). The energy loss in a step will
-then be <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">Δ</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">E</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">Δ</mi><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mi>e</mi></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">+</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">Δ</mi><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mi>i</mi></mrow></msub></fotex:inlinemath>.
-</fo:block>
-<fo:block keep-with-next="true" id="N5956" text-align="start" font-size="14pt" text-indent="-3em" font-weight="bold" space-after="3pt" space-before.optimum="9pt">5.1. Fast simulation for <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mn>3</mn></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">≥</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">6</mn></fotex:inlinemath><fotex:bookmark fotex-bookmark-level="1" fotex-bookmark-label="N5956">5.1. Fast simulation for n3≥16</fotex:bookmark></fo:block>
-
-<fo:block font-size="10pt" text-align="justified">If the number of ionisation <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mn>3</mn></mrow></msub></fotex:inlinemath>
-is bigger than 16, a faster sampling method can be used. The possible energy loss
-interval is divided in two parts: one in which the number of collisions is large and the
-sampling can be done from a Gaussian distribution and the other in which
-the energy loss is sampled for each collision. Let us call the former interval
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mi>I</mi><mo>,</mo><mi>α</mi><mi>I</mi><mo>]</mo></mrow></fotex:inlinemath> the interval A,
-and the latter <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mi>α</mi><mi>I</mi><mo>,</mo><msub><mi>E</mi><mi>max</mi></msub><mo>]</mo></mrow></fotex:inlinemath> the
-interval B. <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">α</mi></fotex:inlinemath> lies
-between 1 and <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>max</mi></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">/</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">I</mi></fotex:inlinemath>.
-A collision with a loss in the interval A happens with the probability
-<fotex:displaymath id="eq:phys332-5" xmlns:m="http://www.w3.org/1998/Math/MathML">
- <mi xmlns="http://www.w3.org/1998/Math/MathML">P</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>α</mi><mo>)</mo></mrow><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><msubsup xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo>
- <mrow><mi>I</mi></mrow><mrow><mi>α</mi><mi>I</mi></mrow></msubsup><mi xmlns="http://www.w3.org/1998/Math/MathML">g</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mi xmlns="http://www.w3.org/1998/Math/MathML">d</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">E</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo>(</mo><msub><mi>E</mi><mi>max</mi></msub><mo>+</mo><mi>I</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>α</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mi>E</mi><mi>max</mi></msub><mi>α</mi></mrow></mfrac>
-</fotex:displaymath>The
-mean energy loss and the standard deviation for this type of collision are
-<fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML">
- <mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>&lt;</mo><mi>Δ</mi><mi>E</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow><mo>&gt;;</mo></mrow><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn></mrow><mrow><mi>P</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></mfrac><msubsup xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo>
- <mrow><mi>I</mi></mrow><mrow><mi>α</mi><mi>I</mi></mrow></msubsup><mi xmlns="http://www.w3.org/1998/Math/MathML">E</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">g</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mi xmlns="http://www.w3.org/1998/Math/MathML">d</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">E</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>I</mi><mi>α</mi><mo>ln</mo><mi>α</mi></mrow><mrow><mi>α</mi><mo>-</mo><mn>1</mn></mrow></mfrac>
-</fotex:displaymath>and <fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML"><msup xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mrow><mn>2</mn></mrow></msup><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>α</mi><mo>)</mo></mrow><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn></mrow><mrow><mi>P</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></mfrac><msubsup xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo>
- <mrow><mi>I</mi></mrow><mrow><mi>α</mi><mi>I</mi></mrow></msubsup><msup xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mn>2</mn></mrow></msup><mi xmlns="http://www.w3.org/1998/Math/MathML">g</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mi xmlns="http://www.w3.org/1998/Math/MathML">d</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">E</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><msup xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mrow><mn>2</mn></mrow></msup><mi xmlns="http://www.w3.org/1998/Math/MathML">α</mi><mfenced open="(" close=")" xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo> <mfrac><mrow><mi>α</mi><msup><mo>ln</mo><mrow><mn>2</mn></mrow></msup><mi>α</mi></mrow><mrow><msup><mrow><mo>(</mo><mi>α</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mfenced>
-</fotex:displaymath>If the
-collision number is high, we assume that the number of the type A collisions can be
-calculated from a Gaussian distribution with the following mean value and standard
-deviation:
- <fotex:eqnarray><fotex:subeqn id="eq:phys332-1" xmlns:m="http://www.w3.org/1998/Math/MathML"><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>&lt;</mo><msub><mi>n</mi><mrow><mi>A</mi></mrow></msub><mo>&gt;;</mo></mrow> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mn>3</mn></mrow></msub><mi xmlns="http://www.w3.org/1998/Math/MathML">P</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>α</mi><mo>)</mo></mrow>
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML">
- </fotex:subeqn><fotex:subeqn id="eq:phys332-2" xmlns:m="http://www.w3.org/1998/Math/MathML"><msubsup xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msubsup> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mn>3</mn></mrow></msub><mi xmlns="http://www.w3.org/1998/Math/MathML">P</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>α</mi><mo>)</mo></mrow><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>-</mo><mi>P</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow><mo>)</mo></mrow>
-</fotex:subeqn></fotex:eqnarray>
-It is further assumed that the energy loss in these collisions has a Gaussian
-distribution with
- <fotex:eqnarray><fotex:subeqn id="eq:phys332-3" xmlns:m="http://www.w3.org/1998/Math/MathML"><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>&lt;</mo><mi>Δ</mi><msub><mi>E</mi><mrow><mi>A</mi></mrow></msub><mo>&gt;;</mo></mrow> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mi>A</mi></mrow></msub><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>&lt;</mo><mi>Δ</mi><mi>E</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow><mo>&gt;;</mo></mrow>
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML">
- </fotex:subeqn><fotex:subeqn id="eq:phys332-4" xmlns:m="http://www.w3.org/1998/Math/MathML"><msubsup xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mrow><mi>E</mi><mo>,</mo><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msubsup> <mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mi>A</mi></mrow></msub><msup xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mrow><mn>2</mn></mrow></msup><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>α</mi><mo>)</mo></mrow>
-</fotex:subeqn></fotex:eqnarray>
-The energy loss of these collision can then be sampled from the Gaussian
-distribution.
-</fo:block><fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt">The collisions where the energy loss is in the interval B are sampled directly from
-<fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML">
- <mi xmlns="http://www.w3.org/1998/Math/MathML">Δ</mi><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mi>B</mi></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><msubsup xmlns="http://www.w3.org/1998/Math/MathML"><mo>∑</mo>
- <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mo>-</mo><msub><mi>n</mi><mrow><mi>A</mi></mrow></msub></mrow></msubsup> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>α</mi><mi>I</mi></mrow><mrow><mn>1</mn><mo>-</mo><msub><mi>u</mi><mrow><mi>i</mi></mrow></msub> <mfrac><mrow><msub><mi>E</mi><mi>max</mi></msub><mo>+</mo><mi>I</mi><mo>-</mo><mi>α</mi><mi>I</mi></mrow><mrow><msub><mi>E</mi><mi>max</mi></msub><mo>+</mo><mi>I</mi></mrow></mfrac> </mrow></mfrac>
-</fotex:displaymath>The
-total energy loss is the sum of these two types of collisions:
-<fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML">
- <mi xmlns="http://www.w3.org/1998/Math/MathML">Δ</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">E</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">Δ</mi><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mi>A</mi></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">+</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">Δ</mi><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mi>B</mi></mrow></msub>
-</fotex:displaymath></fo:block>
-<fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt">The approximation of equations (<fo:inline-sequence color="green"><fo:simple-link internal-destination="eq:phys332-1">1</fo:simple-link></fo:inline-sequence>), (<fo:inline-sequence color="green"><fo:simple-link internal-destination="eq:phys332-2">1</fo:simple-link></fo:inline-sequence>), (<fo:inline-sequence color="green"><fo:simple-link internal-destination="eq:phys332-3">1</fo:simple-link></fo:inline-sequence>) and (<fo:inline-sequence color="green"><fo:simple-link internal-destination="eq:phys332-4">1</fo:simple-link></fo:inline-sequence>) can be used under the following
-conditions:
- <fotex:eqnarray><fotex:subeqn id="eq:phys332-6" xmlns:m="http://www.w3.org/1998/Math/MathML"><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>&lt;</mo><msub><mi>n</mi><mrow><mi>A</mi></mrow></msub><mo>&gt;;</mo></mrow><mo xmlns="http://www.w3.org/1998/Math/MathML">-</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">c</mi><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mrow><mi>A</mi></mrow></msub> <mo xmlns="http://www.w3.org/1998/Math/MathML">≥</mo> <mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn>
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML">
- </fotex:subeqn><fotex:subeqn id="eq:phys332-7" xmlns:m="http://www.w3.org/1998/Math/MathML"><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>&lt;</mo><msub><mi>n</mi><mrow><mi>A</mi></mrow></msub><mo>&gt;;</mo></mrow><mo xmlns="http://www.w3.org/1998/Math/MathML">+</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">c</mi><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mrow><mi>A</mi></mrow></msub> <mo xmlns="http://www.w3.org/1998/Math/MathML">≤</mo> <msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mn>3</mn></mrow></msub>
- </fotex:subeqn><fotex:subeqn xmlns:m="http://www.w3.org/1998/Math/MathML">
- </fotex:subeqn><fotex:subeqn id="eq:phys332-8" xmlns:m="http://www.w3.org/1998/Math/MathML"><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>&lt;</mo><mi>Δ</mi><msub><mi>E</mi><mrow><mi>A</mi></mrow></msub><mo>&gt;;</mo></mrow><mo xmlns="http://www.w3.org/1998/Math/MathML">-</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">c</mi><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mrow><mi>E</mi><mo>,</mo><mi>A</mi></mrow></msub> <mo xmlns="http://www.w3.org/1998/Math/MathML">≥</mo> <mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn>
-</fotex:subeqn></fotex:eqnarray>
-where <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">c</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">≥</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">4</mn></fotex:inlinemath>. From
-the equations (<fo:inline-sequence color="green"><fo:simple-link internal-destination="eq:phys332-5">6</fo:simple-link></fo:inline-sequence>), (<fo:inline-sequence color="green"><fo:simple-link internal-destination="eq:phys332-1">1</fo:simple-link></fo:inline-sequence>) and (<fo:inline-sequence color="green"><fo:simple-link internal-destination="eq:phys332-3">1</fo:simple-link></fo:inline-sequence>) and from the conditions (<fo:inline-sequence color="green"><fo:simple-link internal-destination="eq:phys332-6">1</fo:simple-link></fo:inline-sequence>) and (<fo:inline-sequence color="green"><fo:simple-link internal-destination="eq:phys332-7">1</fo:simple-link></fo:inline-sequence>) the following limits can be
-<fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mrow><mi>min</mi></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo>(</mo><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mo>+</mo><msup><mi>c</mi><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mo>(</mo><msub><mi>E</mi><mi>max</mi></msub><mo>+</mo><mi>I</mi><mo>)</mo></mrow></mrow><mrow><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mi>E</mi><mi>max</mi></msub><mo>+</mo><mi>I</mi><mo>)</mo></mrow><mo>+</mo><msup><mi>c</mi><mrow><mn>2</mn></mrow></msup><mi>I</mi></mrow></mfrac> <mo xmlns="http://www.w3.org/1998/Math/MathML">≤</mo><mi xmlns="http://www.w3.org/1998/Math/MathML">α</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">≤</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mrow><mtext>max</mtext></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo>(</mo><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mo>+</mo><msup><mi>c</mi><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mo>(</mo><msub><mi>E</mi><mi>max</mi></msub><mo>+</mo><mi>I</mi><mo>)</mo></mrow></mrow><mrow><msup><mi>c</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msub><mi>E</mi><mi>max</mi></msub><mo>+</mo><mi>I</mi><mo>)</mo></mrow><mo>+</mo><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mi>I</mi></mrow></mfrac>
-</fotex:displaymath>This
-conditions gives a lower limit to number of the ionisations
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mn>3</mn></mrow></msub></fotex:inlinemath> for which the fast
-<fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mn>3</mn></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">≥</mo><msup xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mrow><mn>2</mn></mrow></msup> </fotex:displaymath>As
-in the conditions (<fo:inline-sequence color="green"><fo:simple-link internal-destination="eq:phys332-6">1</fo:simple-link></fo:inline-sequence>), (<fo:inline-sequence color="green"><fo:simple-link internal-destination="eq:phys332-7">1</fo:simple-link></fo:inline-sequence>) and (<fo:inline-sequence color="green"><fo:simple-link internal-destination="eq:phys332-8">1</fo:simple-link></fo:inline-sequence>) the value of
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">c</mi></fotex:inlinemath> is as minimum
-4, one gets <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mn>3</mn></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">≥</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">6</mn></fotex:inlinemath>.
-In order to speed the simulation, the maximum value is used for
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">α</mi></fotex:inlinemath>.
-</fo:block><fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt">The number of collisions with energy loss in the interval B (the number of interactions
-which has to be simulated directly) increases slowly with the total number of collisions
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mn>3</mn></mrow></msub></fotex:inlinemath>.
-The maximum number of these collisions can be estimated as
-<fotex:equation xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mi>B</mi><mo>,</mo><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mn>3</mn></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">-</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mi>A</mi><mo>,</mo><mi>m</mi><mi>i</mi><mi>n</mi></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">≈</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mn>3</mn></mrow></msub><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mrow><mo>&lt;</mo><msub><mi>n</mi><mrow><mi>A</mi></mrow></msub><mo>&gt;;</mo></mrow><mo>-</mo><msub><mi>σ</mi><mrow><mi>A</mi></mrow></msub><mo>)</mo></mrow>
-</fotex:equation>From the previous
-expressions for <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>&lt;</mo><msub><mi>n</mi><mrow><mi>A</mi></mrow></msub><mo>&gt;;</mo></mrow></fotex:inlinemath> and
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mrow><mi>A</mi></mrow></msub></fotex:inlinemath> one can derive the
-<fotex:equation xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mi>B</mi></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">≤</mo><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mi>B</mi><mo>,</mo><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2</mn><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><msup><mi>c</mi><mrow><mn>2</mn></mrow></msup></mrow><mrow><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mo>+</mo><msup><mi>c</mi><mrow><mn>2</mn></mrow></msup></mrow></mfrac>
-</fotex:equation>The following
-values are obtained with <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">c</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">4</mn></fotex:inlinemath>:
-</fo:block><fo:block font-size="10pt" text-align="justified" text-indent="1em" space-before="0pt"><fo:inline-included-container><fo:table id="N7981"><fo:table-body><fo:table-row><fo:table-cell><fo:inline-sequence><fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mn>3</mn></mrow></msub></fotex:inlinemath></fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence><fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mi>B</mi><mo>,</mo><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></fotex:inlinemath></fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence/></fo:table-cell><fo:table-cell><fo:inline-sequence><fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mn>3</mn></mrow></msub></fotex:inlinemath></fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence><fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mrow><mi>B</mi><mo>,</mo><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></fotex:inlinemath></fo:inline-sequence></fo:table-cell></fo:table-row><fo:table-row><fo:table-cell><fo:inline-sequence>16 </fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence>16 </fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence/></fo:table-cell><fo:table-cell><fo:inline-sequence> 200</fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence> 29.63</fo:inline-sequence></fo:table-cell></fo:table-row><fo:table-row><fo:table-cell><fo:inline-sequence>20 </fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence>17.78 </fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence/></fo:table-cell><fo:table-cell><fo:inline-sequence> 500</fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence> 31.01</fo:inline-sequence></fo:table-cell></fo:table-row><fo:table-row><fo:table-cell><fo:inline-sequence>50 </fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence>24.24 </fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence/></fo:table-cell><fo:table-cell><fo:inline-sequence> 1000</fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence> 31.50</fo:inline-sequence></fo:table-cell></fo:table-row><fo:table-row><fo:table-cell><fo:inline-sequence>100 </fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence>27.59 </fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence/></fo:table-cell><fo:table-cell><fo:inline-sequence><fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">∞</mi></fotex:inlinemath></fo:inline-sequence></fo:table-cell><fo:table-cell><fo:inline-sequence> 32.00</fo:inline-sequence></fo:table-cell></fo:table-row></fo:table-body></fo:table></fo:inline-included-container>
-</fo:block>
-
-<fo:block keep-with-next="true" id="N8234" text-align="start" font-size="14pt" text-indent="-3em" font-weight="bold" space-after="3pt" space-before.optimum="9pt">5.2. Special sampling for lower part of the spectrum<fotex:bookmark fotex-bookmark-level="1" fotex-bookmark-label="N8234">5.2. Special sampling for lower part of the spectrum</fotex:bookmark></fo:block>
-
-<fo:block font-size="10pt" text-align="justified">If the step length is very small (<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mo xmlns="http://www.w3.org/1998/Math/MathML">≤</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">5</mn></fotex:inlinemath>
-mm in gases, <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mo xmlns="http://www.w3.org/1998/Math/MathML">≤</mo></fotex:inlinemath>
-2-3 <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">μ</mi></fotex:inlinemath>m in solids)
-the model gives 0 energy loss for some events. To avoid this, the probability of 0 energy loss is
-<fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">P</mi><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>Δ</mi><mi>E</mi><mo>=</mo><mn>0</mn><mo>)</mo></mrow><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><msup xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mrow><mo>-</mo><mrow><mo>(</mo><mrow><mo>&lt;</mo><msub><mi>n</mi><mrow><mn>1</mn></mrow></msub><mo>&gt;</mo></mrow><mo>+</mo><mrow><mo>&lt;</mo><msub><mi>n</mi><mrow><mn>2</mn></mrow></msub><mo>&gt;</mo></mrow><mo>+</mo><mrow><mo>&lt;</mo><msub><mi>n</mi><mrow><mn>3</mn></mrow></msub><mo>&gt;</mo></mrow><mo>)</mo></mrow></mrow></msup>
-</fotex:displaymath>If the
-probability is bigger than 0.01 a special sampling is done, taking into account the fact that in
-these cases the projectile interacts only with the outer electrons of the atom. An energy level
-<fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><msub xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mrow><mn>0</mn></mrow></msub><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><mn xmlns="http://www.w3.org/1998/Math/MathML">1</mn><mn xmlns="http://www.w3.org/1998/Math/MathML">0</mn></fotex:inlinemath> eV is chosen
-to correspond to the outer electrons. The mean number of collisions can be calculated from
-<fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML"><mrow xmlns="http://www.w3.org/1998/Math/MathML"><mo>&lt;</mo><mi>n</mi><mo>&gt;</mo></mrow><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo> <mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn></mrow><mrow><msub><mi>E</mi><mrow><mn>0</mn></mrow></msub></mrow></mfrac>
-</fotex:displaymath>The number
-of collisions <fotex:inlinemath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">n</mi></fotex:inlinemath>
-is sampled from Poisson distribution. In the case of the thin layers, all the
-collisions are considered as ionisations and the energy loss is computed as
-<fotex:displaymath xmlns:m="http://www.w3.org/1998/Math/MathML"><mi xmlns="http://www.w3.org/1998/Math/MathML">Δ</mi><mi xmlns="http://www.w3.org/1998/Math/MathML">E</mi><mo xmlns="http://www.w3.org/1998/Math/MathML">=</mo><msubsup xmlns="http://www.w3.org/1998/Math/MathML"><mo>∑</mo>
- <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup>
-<mfrac xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>E</mi><mrow><mn>0</mn></mrow></msub></mrow><mrow><mn>1</mn><mo>-</mo>
-<mfrac><mrow><msub><mi>E</mi><mi>max</mi></msub></mrow>
-<mrow><msub><mi>E</mi><mi>max</mi></msub><mo>+</mo><msub><mi>E</mi><mrow><mn>0</mn></mrow></msub></mrow></mfrac>
-<msub><mi>u</mi><mrow><mi>i</mi></mrow></msub></mrow></mfrac>
-</fotex:displaymath>
-</fo:block> <fo:block keep-with-next="true" id="N8570" text-align="start" font-size="18pt" text-indent="-3em" font-weight="bold" space-after="6pt" space-before.optimum="12pt">6. References<fotex:bookmark fotex-bookmark-level="0" fotex-bookmark-label="N8570">6. References</fotex:bookmark></fo:block> <fo:list-block font-size="10pt" margin-right="10pt" space-before.optimum="10pt" space-after.optimum="10pt" margin-left="15pt"><fo:list-item><fo:list-item-label id="bib-LAND"><fo:block margin-right="2.5pt" text-align="end"> [1]</fo:block></fo:list-item-label><fo:list-item-body><fo:block font-weight="normal"> <fo:block font-size="10pt" text-align="justified">L.Landau. On the Energy Loss of Fast Particles by
-Ionisation. Originally published in <fo:inline-sequence font-style="italic">J. Phys.</fo:inline-sequence>, 8:201,
-1944. Reprinted in D.ter Haar, Editor, <fo:inline-sequence font-style="italic">L.D.Landau, Collected
-papers</fo:inline-sequence>, page 417. Pergamon Press, Oxford, 1965.
-</fo:block></fo:block></fo:list-item-body></fo:list-item><fo:list-item><fo:list-item-label id="bib-SCH1"><fo:block margin-right="2.5pt" text-align="end"> [2]</fo:block></fo:list-item-label><fo:list-item-body><fo:block font-weight="normal"> <fo:block font-size="10pt" text-align="justified">B.Schorr. Programs for
-the Landau and the Vavilov distributions and the corresponding random
-numbers. <fo:inline-sequence font-style="italic">Comp. Phys. Comm.</fo:inline-sequence>, 7:216, 1974.
-</fo:block></fo:block></fo:list-item-body></fo:list-item><fo:list-item><fo:list-item-label id="bib-SELT"><fo:block margin-right="2.5pt" text-align="end"> [3]</fo:block></fo:list-item-label><fo:list-item-body><fo:block font-weight="normal"> <fo:block font-size="10pt" text-align="justified">S.M.Seltzer and
-M.J.Berger. Energy loss straggling of protons and mesons. In
-<fo:inline-sequence font-style="italic">Studies in Penetration of Charged Particles in Matter</fo:inline-sequence>,
-Nuclear Science Series 39, Nat. Academy of Sciences, Washington DC,
-1964. </fo:block></fo:block></fo:list-item-body></fo:list-item><fo:list-item><fo:list-item-label id="bib-TALM"><fo:block margin-right="2.5pt" text-align="end"> [4]</fo:block></fo:list-item-label><fo:list-item-body><fo:block font-weight="normal"> <fo:block font-size="10pt" text-align="justified">R.Talman. On the
-statistics of particle identification using ionization. <fo:inline-sequence font-style="italic">Nucl.
-Inst. Meth.</fo:inline-sequence>, 159:189, 1979. </fo:block></fo:block></fo:list-item-body></fo:list-item><fo:list-item><fo:list-item-label id="bib-VAVI"><fo:block margin-right="2.5pt" text-align="end"> [5]</fo:block></fo:list-item-label><fo:list-item-body><fo:block font-weight="normal"> <fo:block font-size="10pt" text-align="justified">P.V.Vavilov. Ionisation losses of high energy
-heavy particles. <fo:inline-sequence font-style="italic">Soviet Physics JETP</fo:inline-sequence>, 5:749,
-1957.</fo:block></fo:block></fo:list-item-body></fo:list-item></fo:list-block>
- </fo:flow></fo:page-sequence></fo:root> \ No newline at end of file