diff options
Diffstat (limited to 'Master/texmf-dist/doc/lualatex')
-rw-r--r-- | Master/texmf-dist/doc/lualatex/bezierplot/README | 21 | ||||
-rw-r--r-- | Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.pdf | bin | 0 -> 251533 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.tex | 181 |
3 files changed, 202 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/lualatex/bezierplot/README b/Master/texmf-dist/doc/lualatex/bezierplot/README new file mode 100644 index 00000000000..f33b78c82fc --- /dev/null +++ b/Master/texmf-dist/doc/lualatex/bezierplot/README @@ -0,0 +1,21 @@ +DESCRIPTION: +bezierplot is a Lua program as well as a (Lua)LaTeX package. +Given a smooth function, bezierplot returns a smooth bezier path written +in TikZ notation (which also matches METAPOST) that approximates the +graph of the function. For polynomial functions of degree <= 3 and +inverses of them, the approximation is exact. bezierplot finds special +points such as extreme points and inflection points and reduces the +number of used points. + +VERSION: +1.0 2018-04-12 + +LICENSE: +The package and the program are distributed on CTAN under the terms of +the LaTeX Project Public License (LPPL) version 1.3c. + +Copyright (c) 2018 Linus Romer + +Please write to +linus dot romer at gmx dot ch +to submit bug reports, request new features, etc. diff --git a/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.pdf b/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.pdf Binary files differnew file mode 100644 index 00000000000..053037e5cef --- /dev/null +++ b/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.pdf diff --git a/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.tex b/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.tex new file mode 100644 index 00000000000..63dfe37c6e4 --- /dev/null +++ b/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.tex @@ -0,0 +1,181 @@ +% !TEX program = pdfLaTeX --shell-escape +\documentclass[a4paper]{article} +\usepackage{tikz,multicol,bezierplot,amsmath,cancel} +\usepackage[margin=3.5cm,top=1.75cm]{geometry} +\usepackage{fetamont} +\title{bezierplot}\author{Linus Romer} +\DeclareDocumentCommand{\graphcomparison}{ m m }{ + \begin{center} + \begin{tikzpicture}[scale=.4] + \draw (0,-5) node[below]{\tiny\texttt{\detokenize{#1}\quad | \detokenize{#2}}}; + \draw[step=1,thin] (-5,-5) grid (5,5); + \draw[thick,->] (-5,0) -- (5.5,0) node[below]{$x$}; + \draw[thick,->] (0,-5) -- (0,5.5) node[left]{$y$}; + \foreach \x in {-4,-3,-2,-1,1,2,3,4} {\draw (\x,1pt) -- (\x,-1pt) node[below]{\tiny \x};} + \foreach \y in {-4,-3,-2,-1,1,2,3,4} {\draw (1pt,\y) -- (-1pt,\y) node[left]{\tiny \y};} + \draw[color=red,domain=-5:5,range=-5:5,samples=1000] plot function{#2}; + \draw \bezierplot{#1}; + \end{tikzpicture} + \end{center} +} +\begin{document} +\maketitle\noindent +\section{Introduction} +\texttt{bezierplot} is a Lua program as well as a (Lua)\LaTeX{} package. This document describes both. + +Given a smooth function, \texttt{bezierplot} returns a smooth bezier path written in Ti\emph{k}Z notation (which also matches \MP{}) that approximates the graph of the function. For polynomial functions of degree $\leq 3$ and inverses of them, the approximation is exact. \texttt{bezierplot} finds special graph points such as extreme points and inflection points and reduces the number of used points. + +The following example will show a comparison of \textsc{gnuplot} with \verb|bezierplot| for the function $y=\sqrt{x}$ for $0\leq x \leq 5$: +\begin{center} + \begin{tikzpicture}[scale=1.4] + \draw (0,0) .. controls (0,0.745) and (1.667,1.491) .. (5,2.236); + \draw (0,0) circle(.02) -- (0,0.745) circle( .02); + \draw (1.667,1.491) circle(.02) -- (5,2.236) circle( .02); + \draw (2.5,.5) node[above]{\verb|bezierplot|}; + \begin{scope}[shift={(5.2,0)}] + \draw[domain=0:5,samples=51] plot function{x**0.5}; + \foreach \x in {0,0.1,...,5.05} {\draw (\x,{\x^0.5}) circle (0.02);} + \draw (2.5,.5) node[above]{\textsc{gnuplot}}; + \end{scope} + \end{tikzpicture} +\end{center} +\textsc{gnuplot} used 51 samples (no smoothing) and is still quite inexact at the beginning, whereas \verb|bezierplot| uses 4 points only and is exact! +\section{Installation} +As \texttt{bezierplot} is written in Lua, the installation depends whether you are using Lua\LaTeX{} or another \LaTeX{} engine. +\subsection{Installation For Lua\LaTeX{}} +If you have installed \texttt{bezierplot} by a package manager, the installation is already complete. The manual installation of \texttt{bezierplot} is done in 2 steps: +\begin{itemize} + \item copy the files \texttt{bezierplot.lua} and \texttt{bezierplot.sty} somewhere in your \texttt{texmf} tree (e.g. to \verb|~/texmf/tex/lualatex/bezierplot/bezierplot.sty| and\\ + \verb|~/texmf/scripts/bezierplot/bezierplot.lua|) + \item update the ls-R databases by running \texttt{mktexlsr} +\end{itemize} +\subsection{Additional Installation Steps For Other \LaTeX{} Engines} +You will have to call \texttt{bezierplot} as an external program via the option \texttt{--shell-escape} (\texttt{--write18} for MiK\TeX{}). Therefore, \texttt{bezierplot.lua} has to be copied with the name \texttt{bezierplot} to a place, where your OS can find it. Under Linux this usually means copying to the directory \texttt{/usr/local/bin/}, but for Windows this will probably include more steps (like adding to the \texttt{PATH}). Of course, Lua has to be installed as well. As soon as you can call \texttt{bezierplot} from a command line (e.g. by typing \verb|bezierplot "x^2"|), it should also work with other \LaTeX{} engines. +\section{Loading} +The \texttt{bezierplot} package is loaded with \verb|\usepackage{bezierplot}|. There are no loading options for the package. +\section{Usage} +\begin{multicols}{2} +\noindent A minimal example of Lua\LaTeX{} document could be: +\begin{verbatim} +\documentclass{article} +\usepackage{tikz,bezierplot} +\begin{document} +\tikz \draw \bezierplot{x^2}; +\end{document} +\end{verbatim} +\begin{center} + \tikz \draw[scale=.7] \bezierplot{x^2}; +\end{center} +\end{multicols} +\noindent +The command \verb|\bezierplot| has 4 optional arguments in the sense of +\begin{center} + \verb|\bezierplot[XMIN][XMAX][YMIN][YMAX]{FUNCTION}| +\end{center} +The defaults are \verb|XMIN| = \verb|YMIN| $= -5$ and \verb|XMAX| = \verb|YMAX| $= 5$. +\begin{center} + \begin{tikzpicture}[scale=.7] + \draw \bezierplot[-1][2]{x^2}; + \draw (0,0) node[below]{\verb|\bezierplot[-1][2]{x^2}|}; + \begin{scope}[shift={(10,0)}] + \draw \bezierplot[-1][2][0.5][3]{x^2}; + \draw (0,0) node[below]{\verb|\bezierplot[-1][2][0.5][3]{x^2}|}; + \end{scope} + \end{tikzpicture} +\end{center} +You may reverse the graph by making \verb|XMIN| bigger than \verb|XMAX|. E.g. +\begin{verbatim} + \bezierplot[-5][5]{0.5*x+1} +\end{verbatim} +returns \verb|(-5,-1.5) -- (5,3.5)|, whereas +\begin{verbatim} + \bezierplot[5][-5]{0.5*x+1} +\end{verbatim} +returns the reversed path \verb|(5,3.5) -- (-5,-1.5)|. This is useful, if you want to cycle a path to a closed area: +\begin{multicols}{2} +\begin{verbatim} +\begin{tikzpicture} + \fill[black!30] \bezierplot[-1][1]{2-x^2} + -- \bezierplot[1][-1]{x^3-x} -- cycle; + \draw \bezierplot[-1.1][1.1]{2-x^2}; + \draw \bezierplot[-1.1][1.1]{x^3-x}; +\end{tikzpicture} +\end{verbatim} +\begin{center} + \begin{tikzpicture} + \fill[black!30] \bezierplot[-1][1]{2-x^2} -- \bezierplot[1][-1]{x^3-x} -- cycle; + \draw \bezierplot[-1.1][1.1]{2-x^2}; + \draw \bezierplot[-1.1][1.1]{x^3-x}; + \end{tikzpicture} +\end{center} +\end{multicols} +\subsection{Running Raw \texttt{bezierplot}} +Of course, you can run \verb|bezierplot.lua| in a terminal without using \LaTeX{}, e.g. +\begin{verbatim} +lua bezierplot.lua "3*x^0.8+2" +\end{verbatim} +will return +\begin{verbatim} +(0,2) .. controls (0.03,2.282) and (0.268,3.244) .. (1,5) +\end{verbatim} +You can set the window of the graph as follows: +\begin{verbatim} +lua bezierplot.lua "FUNCTION" XMIN XMAX YMIN YMAX +\end{verbatim} +e.g. +\begin{verbatim} +lua bezierplot.lua "FUNCTION" 0 1 -3 2.5 +\end{verbatim} +will set $0\leq x\leq 1$ and $-3\leq y\leq 2.5$. You may also omit the $y$--range, hence +\begin{verbatim} +lua bezierplot.lua "FUNCTION" 0 1 +\end{verbatim} +will set $0\leq x\leq 1$ and leave the default $-5\leq y\leq 5$. +\subsection{Notation Of Functions} +The function term given to \verb|bezierplot| must contain at most one variable: $x$. E.g. \verb|"2.3*(x-1)^2-3"|. You must not omit \verb|*| operators: +\begin{center} + wrong:\quad $\cancel{\texttt{2x(x+1)}}$ \hfil correct:\quad \texttt{2*x*(x+1)} +\end{center} +You have two possibilities to write powers: \verb|"x^2"| and \verb|"x**2"| both mean $x^2$. + +\medskip + +The following functions and constants are possible: +\begin{center} +\begin{tabular}{ll} + \verb|abs| & absolute value (remember: your function should still be smooth)\\ + \verb|acos| & $\cos^{-1}$ inverse function of cosine in radians\\ + \verb|asin| & $\sin^{-1}$ inverse function of sine in radians\\ + \verb|atan| & $\tan^{-1}$ inverse function of tangent in radians\\ + \verb|cbrt| & cube root $\sqrt[3]{\quad}$ that works for negative numbers, too\\ + \verb|cos| & cosine for angles in radians\\ + \verb|exp| & the exponential function $e^{(\;)}$\\ + \verb|e| & the euler constant $e=\mathrm{exp}(1)$\\ + \verb|log| & the natural logarithm $\mathrm{log}_e(\;)$\\ + \verb|pi| & Archimedes’ constant $\pi\approx 3.14$\\ + \verb|sgn| & sign function\\ + \verb|sin| & sine for angles in radians\\ + \verb|sqrt| & square root $\sqrt{\quad}$\\ + \verb|tan| & tangent for angles in radians\\ +\end{tabular} +\end{center} +\section{Examples of \texttt{bezierplot} in Comparison with \textsc{gnuplot}} +The following graphs are drawn with \texttt{bezierplot} (black) and \textsc{gnuplot} (red). \textsc{gnuplot} used 1000 samples per example. The functions are given below the pictures (left: bezierplot, right: \textsc{gnuplot}). +\begin{multicols}{3} +\graphcomparison{0.32*x-0.7}{0.32*x-0.7} +\graphcomparison{-x^2+4}{-x**2+4} +\graphcomparison{(x+1)*x*(x-1)}{(x+1)*x*(x-1)} +\graphcomparison{x^0.5}{x**0.5} +%\graphcomparison{x^(1/3)}{x**(1/3.)} +\graphcomparison{cbrt(x)}{sgn(x)*abs(x)**(1/3.)} +\graphcomparison{x^3*(x-1)}{x**3*(x-1)} +\graphcomparison{2*cos(3*x+4)+3}{2*cos(3*x+4)+3} +\graphcomparison{tan(x)}{tan(x)} +\graphcomparison{x+0.5*sin(x)}{x+0.5*sin(x)} +%\graphcomparison{1/(x-2)+1}{1/(x-2)+1} +\graphcomparison{2*x^2/(3*x-3)}{2*x**2/(3*x-3)} +\graphcomparison{4-exp(x)}{4-exp(x)} +\graphcomparison{log(x+4)}{log(x+4)} +\end{multicols} + +\end{document} |