summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/lualatex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/lualatex')
-rw-r--r--Master/texmf-dist/doc/lualatex/bezierplot/README21
-rw-r--r--Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.pdfbin0 -> 251533 bytes
-rw-r--r--Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.tex181
3 files changed, 202 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/lualatex/bezierplot/README b/Master/texmf-dist/doc/lualatex/bezierplot/README
new file mode 100644
index 00000000000..f33b78c82fc
--- /dev/null
+++ b/Master/texmf-dist/doc/lualatex/bezierplot/README
@@ -0,0 +1,21 @@
+DESCRIPTION:
+bezierplot is a Lua program as well as a (Lua)LaTeX package.
+Given a smooth function, bezierplot returns a smooth bezier path written
+in TikZ notation (which also matches METAPOST) that approximates the
+graph of the function. For polynomial functions of degree <= 3 and
+inverses of them, the approximation is exact. bezierplot finds special
+points such as extreme points and inflection points and reduces the
+number of used points.
+
+VERSION:
+1.0 2018-04-12
+
+LICENSE:
+The package and the program are distributed on CTAN under the terms of
+the LaTeX Project Public License (LPPL) version 1.3c.
+
+Copyright (c) 2018 Linus Romer
+
+Please write to
+linus dot romer at gmx dot ch
+to submit bug reports, request new features, etc.
diff --git a/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.pdf b/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.pdf
new file mode 100644
index 00000000000..053037e5cef
--- /dev/null
+++ b/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.tex b/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.tex
new file mode 100644
index 00000000000..63dfe37c6e4
--- /dev/null
+++ b/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.tex
@@ -0,0 +1,181 @@
+% !TEX program = pdfLaTeX --shell-escape
+\documentclass[a4paper]{article}
+\usepackage{tikz,multicol,bezierplot,amsmath,cancel}
+\usepackage[margin=3.5cm,top=1.75cm]{geometry}
+\usepackage{fetamont}
+\title{bezierplot}\author{Linus Romer}
+\DeclareDocumentCommand{\graphcomparison}{ m m }{
+ \begin{center}
+ \begin{tikzpicture}[scale=.4]
+ \draw (0,-5) node[below]{\tiny\texttt{\detokenize{#1}\quad | \detokenize{#2}}};
+ \draw[step=1,thin] (-5,-5) grid (5,5);
+ \draw[thick,->] (-5,0) -- (5.5,0) node[below]{$x$};
+ \draw[thick,->] (0,-5) -- (0,5.5) node[left]{$y$};
+ \foreach \x in {-4,-3,-2,-1,1,2,3,4} {\draw (\x,1pt) -- (\x,-1pt) node[below]{\tiny \x};}
+ \foreach \y in {-4,-3,-2,-1,1,2,3,4} {\draw (1pt,\y) -- (-1pt,\y) node[left]{\tiny \y};}
+ \draw[color=red,domain=-5:5,range=-5:5,samples=1000] plot function{#2};
+ \draw \bezierplot{#1};
+ \end{tikzpicture}
+ \end{center}
+}
+\begin{document}
+\maketitle\noindent
+\section{Introduction}
+\texttt{bezierplot} is a Lua program as well as a (Lua)\LaTeX{} package. This document describes both.
+
+Given a smooth function, \texttt{bezierplot} returns a smooth bezier path written in Ti\emph{k}Z notation (which also matches \MP{}) that approximates the graph of the function. For polynomial functions of degree $\leq 3$ and inverses of them, the approximation is exact. \texttt{bezierplot} finds special graph points such as extreme points and inflection points and reduces the number of used points.
+
+The following example will show a comparison of \textsc{gnuplot} with \verb|bezierplot| for the function $y=\sqrt{x}$ for $0\leq x \leq 5$:
+\begin{center}
+ \begin{tikzpicture}[scale=1.4]
+ \draw (0,0) .. controls (0,0.745) and (1.667,1.491) .. (5,2.236);
+ \draw (0,0) circle(.02) -- (0,0.745) circle( .02);
+ \draw (1.667,1.491) circle(.02) -- (5,2.236) circle( .02);
+ \draw (2.5,.5) node[above]{\verb|bezierplot|};
+ \begin{scope}[shift={(5.2,0)}]
+ \draw[domain=0:5,samples=51] plot function{x**0.5};
+ \foreach \x in {0,0.1,...,5.05} {\draw (\x,{\x^0.5}) circle (0.02);}
+ \draw (2.5,.5) node[above]{\textsc{gnuplot}};
+ \end{scope}
+ \end{tikzpicture}
+\end{center}
+\textsc{gnuplot} used 51 samples (no smoothing) and is still quite inexact at the beginning, whereas \verb|bezierplot| uses 4 points only and is exact!
+\section{Installation}
+As \texttt{bezierplot} is written in Lua, the installation depends whether you are using Lua\LaTeX{} or another \LaTeX{} engine.
+\subsection{Installation For Lua\LaTeX{}}
+If you have installed \texttt{bezierplot} by a package manager, the installation is already complete. The manual installation of \texttt{bezierplot} is done in 2 steps:
+\begin{itemize}
+ \item copy the files \texttt{bezierplot.lua} and \texttt{bezierplot.sty} somewhere in your \texttt{texmf} tree (e.g. to \verb|~/texmf/tex/lualatex/bezierplot/bezierplot.sty| and\\
+ \verb|~/texmf/scripts/bezierplot/bezierplot.lua|)
+ \item update the ls-R databases by running \texttt{mktexlsr}
+\end{itemize}
+\subsection{Additional Installation Steps For Other \LaTeX{} Engines}
+You will have to call \texttt{bezierplot} as an external program via the option \texttt{--shell-escape} (\texttt{--write18} for MiK\TeX{}). Therefore, \texttt{bezierplot.lua} has to be copied with the name \texttt{bezierplot} to a place, where your OS can find it. Under Linux this usually means copying to the directory \texttt{/usr/local/bin/}, but for Windows this will probably include more steps (like adding to the \texttt{PATH}). Of course, Lua has to be installed as well. As soon as you can call \texttt{bezierplot} from a command line (e.g. by typing \verb|bezierplot "x^2"|), it should also work with other \LaTeX{} engines.
+\section{Loading}
+The \texttt{bezierplot} package is loaded with \verb|\usepackage{bezierplot}|. There are no loading options for the package.
+\section{Usage}
+\begin{multicols}{2}
+\noindent A minimal example of Lua\LaTeX{} document could be:
+\begin{verbatim}
+\documentclass{article}
+\usepackage{tikz,bezierplot}
+\begin{document}
+\tikz \draw \bezierplot{x^2};
+\end{document}
+\end{verbatim}
+\begin{center}
+ \tikz \draw[scale=.7] \bezierplot{x^2};
+\end{center}
+\end{multicols}
+\noindent
+The command \verb|\bezierplot| has 4 optional arguments in the sense of
+\begin{center}
+ \verb|\bezierplot[XMIN][XMAX][YMIN][YMAX]{FUNCTION}|
+\end{center}
+The defaults are \verb|XMIN| = \verb|YMIN| $= -5$ and \verb|XMAX| = \verb|YMAX| $= 5$.
+\begin{center}
+ \begin{tikzpicture}[scale=.7]
+ \draw \bezierplot[-1][2]{x^2};
+ \draw (0,0) node[below]{\verb|\bezierplot[-1][2]{x^2}|};
+ \begin{scope}[shift={(10,0)}]
+ \draw \bezierplot[-1][2][0.5][3]{x^2};
+ \draw (0,0) node[below]{\verb|\bezierplot[-1][2][0.5][3]{x^2}|};
+ \end{scope}
+ \end{tikzpicture}
+\end{center}
+You may reverse the graph by making \verb|XMIN| bigger than \verb|XMAX|. E.g.
+\begin{verbatim}
+ \bezierplot[-5][5]{0.5*x+1}
+\end{verbatim}
+returns \verb|(-5,-1.5) -- (5,3.5)|, whereas
+\begin{verbatim}
+ \bezierplot[5][-5]{0.5*x+1}
+\end{verbatim}
+returns the reversed path \verb|(5,3.5) -- (-5,-1.5)|. This is useful, if you want to cycle a path to a closed area:
+\begin{multicols}{2}
+\begin{verbatim}
+\begin{tikzpicture}
+ \fill[black!30] \bezierplot[-1][1]{2-x^2}
+ -- \bezierplot[1][-1]{x^3-x} -- cycle;
+ \draw \bezierplot[-1.1][1.1]{2-x^2};
+ \draw \bezierplot[-1.1][1.1]{x^3-x};
+\end{tikzpicture}
+\end{verbatim}
+\begin{center}
+ \begin{tikzpicture}
+ \fill[black!30] \bezierplot[-1][1]{2-x^2} -- \bezierplot[1][-1]{x^3-x} -- cycle;
+ \draw \bezierplot[-1.1][1.1]{2-x^2};
+ \draw \bezierplot[-1.1][1.1]{x^3-x};
+ \end{tikzpicture}
+\end{center}
+\end{multicols}
+\subsection{Running Raw \texttt{bezierplot}}
+Of course, you can run \verb|bezierplot.lua| in a terminal without using \LaTeX{}, e.g.
+\begin{verbatim}
+lua bezierplot.lua "3*x^0.8+2"
+\end{verbatim}
+will return
+\begin{verbatim}
+(0,2) .. controls (0.03,2.282) and (0.268,3.244) .. (1,5)
+\end{verbatim}
+You can set the window of the graph as follows:
+\begin{verbatim}
+lua bezierplot.lua "FUNCTION" XMIN XMAX YMIN YMAX
+\end{verbatim}
+e.g.
+\begin{verbatim}
+lua bezierplot.lua "FUNCTION" 0 1 -3 2.5
+\end{verbatim}
+will set $0\leq x\leq 1$ and $-3\leq y\leq 2.5$. You may also omit the $y$--range, hence
+\begin{verbatim}
+lua bezierplot.lua "FUNCTION" 0 1
+\end{verbatim}
+will set $0\leq x\leq 1$ and leave the default $-5\leq y\leq 5$.
+\subsection{Notation Of Functions}
+The function term given to \verb|bezierplot| must contain at most one variable: $x$. E.g. \verb|"2.3*(x-1)^2-3"|. You must not omit \verb|*| operators:
+\begin{center}
+ wrong:\quad $\cancel{\texttt{2x(x+1)}}$ \hfil correct:\quad \texttt{2*x*(x+1)}
+\end{center}
+You have two possibilities to write powers: \verb|"x^2"| and \verb|"x**2"| both mean $x^2$.
+
+\medskip
+
+The following functions and constants are possible:
+\begin{center}
+\begin{tabular}{ll}
+ \verb|abs| & absolute value (remember: your function should still be smooth)\\
+ \verb|acos| & $\cos^{-1}$ inverse function of cosine in radians\\
+ \verb|asin| & $\sin^{-1}$ inverse function of sine in radians\\
+ \verb|atan| & $\tan^{-1}$ inverse function of tangent in radians\\
+ \verb|cbrt| & cube root $\sqrt[3]{\quad}$ that works for negative numbers, too\\
+ \verb|cos| & cosine for angles in radians\\
+ \verb|exp| & the exponential function $e^{(\;)}$\\
+ \verb|e| & the euler constant $e=\mathrm{exp}(1)$\\
+ \verb|log| & the natural logarithm $\mathrm{log}_e(\;)$\\
+ \verb|pi| & Archimedes’ constant $\pi\approx 3.14$\\
+ \verb|sgn| & sign function\\
+ \verb|sin| & sine for angles in radians\\
+ \verb|sqrt| & square root $\sqrt{\quad}$\\
+ \verb|tan| & tangent for angles in radians\\
+\end{tabular}
+\end{center}
+\section{Examples of \texttt{bezierplot} in Comparison with \textsc{gnuplot}}
+The following graphs are drawn with \texttt{bezierplot} (black) and \textsc{gnuplot} (red). \textsc{gnuplot} used 1000 samples per example. The functions are given below the pictures (left: bezierplot, right: \textsc{gnuplot}).
+\begin{multicols}{3}
+\graphcomparison{0.32*x-0.7}{0.32*x-0.7}
+\graphcomparison{-x^2+4}{-x**2+4}
+\graphcomparison{(x+1)*x*(x-1)}{(x+1)*x*(x-1)}
+\graphcomparison{x^0.5}{x**0.5}
+%\graphcomparison{x^(1/3)}{x**(1/3.)}
+\graphcomparison{cbrt(x)}{sgn(x)*abs(x)**(1/3.)}
+\graphcomparison{x^3*(x-1)}{x**3*(x-1)}
+\graphcomparison{2*cos(3*x+4)+3}{2*cos(3*x+4)+3}
+\graphcomparison{tan(x)}{tan(x)}
+\graphcomparison{x+0.5*sin(x)}{x+0.5*sin(x)}
+%\graphcomparison{1/(x-2)+1}{1/(x-2)+1}
+\graphcomparison{2*x^2/(3*x-3)}{2*x**2/(3*x-3)}
+\graphcomparison{4-exp(x)}{4-exp(x)}
+\graphcomparison{log(x+4)}{log(x+4)}
+\end{multicols}
+
+\end{document}