diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex')
-rw-r--r-- | Master/texmf-dist/doc/latex/principia/README | 12 | ||||
-rw-r--r-- | Master/texmf-dist/doc/latex/principia/principia.pdf | bin | 0 -> 368370 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/latex/principia/principia.tex | 172 |
3 files changed, 184 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/principia/README b/Master/texmf-dist/doc/latex/principia/README new file mode 100644 index 00000000000..ceed875d85a --- /dev/null +++ b/Master/texmf-dist/doc/latex/principia/README @@ -0,0 +1,12 @@ +principia.sty - a LaTeX2e package for typesetting the "Peanese" notation of Whitehead and Russell's 1910 "Principia Mathematica". + +The file principia.sty is the original work of Landon D. C. Elkind (Copyright (c) 2020). It is released under the LaTeX Project Public License 1.3c. + +This is principia package Version 1.0. It covers typesetting the notations through Volume I of "Principia Mathematica". See the file principia.pdf for information on how to typeset these symbols in LaTeX. + +Updates to include all notations throughout Volumes II and III are planned. Further information and updates can be found at https://logicalatomist.github.io/principia/ + +Comments and suggestions are welcomed by the package maintainer, signed below. + +Landon D. C. Elkind +University of Alberta
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/principia/principia.pdf b/Master/texmf-dist/doc/latex/principia/principia.pdf Binary files differnew file mode 100644 index 00000000000..6d4b5432289 --- /dev/null +++ b/Master/texmf-dist/doc/latex/principia/principia.pdf diff --git a/Master/texmf-dist/doc/latex/principia/principia.tex b/Master/texmf-dist/doc/latex/principia/principia.tex new file mode 100644 index 00000000000..47db6119081 --- /dev/null +++ b/Master/texmf-dist/doc/latex/principia/principia.tex @@ -0,0 +1,172 @@ +\documentclass[12pt]{article} +\NeedsTeXFormat{LaTeX2e} +\ProvidesPackage{principia}[2020/10/20 principia package version 1.0] %Covers typesetting of notation through Volume I +%Licensed under LaTeX Project Public License 1.3c. +%Copyright Landon D. C. Elkind, 2020. + +\usepackage{amssymb} +\usepackage{amsmath} +\usepackage{fullpage} +\usepackage[T1]{fontenc} +\usepackage[utf8]{inputenc} +\usepackage{setspace} + +%Principia package requirements +\usepackage{principia} %The package itself, and its dependencies: +\usepackage{pifont} %This loads the eight-pointed asterisk. +\usepackage{marvosym} %This loads the male and female symbol. +\usepackage{graphicx} %This loads commands that flip iota for definite descriptions, Lambda for the universal class, and so on. The (superseded) graphics package should also work here, but is not recommended. + +\title{\texttt{principia.sty }\\ A \LaTeXe \space Package for Typesetting Whitehead and Russell's \textit{Principia Mathematica} (Version 1.0)} +\author{Landon D. C. Elkind \texttt{elkind@ualberta.ca}} +\date{\today} + +\begin{document} +\maketitle +\onehalfspacing +The \texttt{principia} package is designed for typesetting the Peanese notation of \textit{Principia Mathematica}. ``Peanese'' is something of a misnomer: Whitehead and Russell invented much of the notations used in \textit{Principia Mathematica} even while borrowing from many others. + +\texttt{principia}'s style has antecedents in Kevin C. Klement's excellent \textit{Tractatus} typesetting, to which we owe the device of adding `d's and `t's to typeset further square dots. The device of beginning all \texttt{principia} commands with `\texttt{$\backslash$pm}' is owed to the \texttt{begriff} package, a style that was mimicked in both the \texttt{frege} package and the \texttt{Grundgesetze} package. + +In \textit{Principia Mathematica} some symbols occur with an argument and sometimes that same symbol occurs without an argument. For example, `$\pmsome{x}$' occurs in some formulas, but sometimes `$\pmSome$' occurs in the text when they talk about the symbol itself. \texttt{principia} is designed to accommodate these different occurrences of symbols. When a symbol is to occur without an argument, capitalize the first letter following the `\texttt{$\backslash$pm}' part of the command. E.g. \verb|\pmsome{x}| produces $\pmsome{x}$ and \verb|\pmSome| produces `$\pmSome$'. Note the former command requires an argument and the latter command does not. Not all commands in the \texttt{principia} package admit of such dual use because some symbols in \textit{Principia Mathematica} never occur without an argument or do not take an argument in the usual sense. For example, the propositional connectives do not take an `argument' in the way singular or plural descriptions do. + +Version 1.0 of \texttt{principia} is adequate to typeset all notations throughout Volume I of \textit{Principia}. Updates to include all notations throughout Volumes II and III are planned. + +\texttt{principia}'s dependencies are \texttt{pifont} (for the eight-pointed asterisk), \texttt{marvosym} (for the `$\pmop$' symbol), and \texttt{graphicx} (for singular descriptions, universal classes, and existential quantifiers). Make sure to load these package by typing \texttt{$\backslash$usepackage\{graphicx\}}, etc. + +To load \texttt{principia}, type \texttt{$\backslash$usepackage\{principia\}} in the preamble to the document. + +\noindent \begin{tabular}{@{}p{3cm} | p{5cm} | p{8.25cm}} + \textbf{Symbol} & \textbf{\LaTeX command} & \textbf{Notes} \\ \hline + $\pmthm$ & \verb|\pmthm| & Theorem. \\ + $\pmast$ & \verb|\pmast| & As in $\pmast1$. \\ + $\pmcdot$ & \verb|\pmcdot| & As in, $\pmast1\pmcdot1$. \\ + $\pmpp$ & \verb|\pmpp| & Primitive proposition. \\ + $\pmdf$ & \verb|\pmdf| & Definition. \\ + $\pmdem$ & \verb|\pmdem| & This begins a proof. \\ + $\pmsub{p}{q}$, $\pmsubb{p}{q}{r}{s}$, $\pmsubbb{p}{q}{r}{s}{t}{u}$, ... $\pmSub{\text{Add}}{p}{q}$, ... & \verb|\pmsub{p}{q}|, \verb|\pmsubb{p}{q}{r}{s}|, \verb|\pmsubbb{p}{q}| \par \hfill \verb|{r}{s}{t}{u}|, ... \verb|\pmSub{\text{Add}{p}{q}| & Substitution into theorems. Add `b's to the end of \verb|\pmsub| to increase the number of substitutions (up to four `b's). Each extra `b' adds two arguments. To substitute and specify the theorem as well, capitalize the `s' in \verb|\pmsub|. \\ + $\pmdot$, $\pmdott$, $\pmdottt$, $\pmdotttt$, $\pmdottttt$, $\pmdotttttt$ & \verb|\pmdot|, \verb|\pmdott|, \verb|\pmdottt|, ... & Add `t's to the end of \verb|\pmdot| to increase the number of dots (up to six `t's). Note that the spacing of \verb|\pmand| and \verb|\pmdot| differ. \\ + $\pmand$, $\pmandd$, $\pmanddd$, $\pmandddd$, $\pmanddddd$, $\pmandddddd$ & \verb|\pmand|, \verb|\pmandd|, \verb|\pmanddd|, ...& Add `d's to the end of \verb|\pmand| command to increase the number of dots (up to six `d's). \\ + $\pmor$ & \verb|\pmor| & Disjunction. \\ + $\pmnot$ & \verb|\pmnot| & Negation. Note its spacing differs from \verb|\sim|. \\ + $\pmimp$ & \verb|\pmimp| & Material implication. \\ + $\pmiff$ & \verb|\pmiff| & Material biconditional. \\ + $\pmimp_x, \pmimp_{x,y}$ & \verb|\pmimp_x|, \verb|\pmimp_{x,y}| & And so on for more subscripts. \\ + $\pmiff_x, \pmiff_{x,y}$ & \verb|\pmiff_x|, \verb|\pmiff_{x,y}| & And so on for more subscripts. \\ + $\pmhat{x}$ & \verb|\pmhat{x}| & This command requires one argument. It can be embedded in other commands. E.g., \verb|\pmpf{\phi}{\pmhat{x}}| renders `$\pmpf{\phi}{\pmhat{x}}$'. \\ + $\pmpf{\phi}{x}$ & \verb|\pmpf{\phi}{x}| & This command requires two arguments. \\ + $\pmpff{\phi}{x}{y}$ & \verb|\pmpff{\phi}{x}{y}| & This command requires three arguments. \\ + $\pmpfff{\phi}{x}{y}{z}$ & \verb|\pmpfff{\phi}{x}{y}{z}| & This command requires four arguments. \\ + $\pmall{x}$ &\verb|\pmall{x}| & Universal quantifier. \\ + $\pmsome{x}$, $\pmSome$ & \verb|\pmsome{x}|, \verb|\pmSome| & Existential quantifier. \\ + $\pmshr$ & \verb|\pmshr| & The predicative propositional functions. \\ + $\pmpred{\phi}{x}$ & \verb|\pmpred{\phi}{x}| & This command requires two arguments. \\ + $\pmpredd{\phi}{x}{y}$ & \verb|\pmpredd{\phi}{x}{y}| & This command requires three arguments. \\ + $\pmpreddd{\phi}{x}{y}{z}$ & \verb|\pmpreddd{\phi}{x}{y}{z}| & This command requires four arguments. +\end{tabular} + +\noindent \begin{tabular}{@{}p{3cm} | p{5cm} | p{8.25cm}} + $=$, $\pmnid$ & \verb|=|, \verb|\pmnid| & Identity and its negation. \\ + $\pmdsc{x}$ & \verb|\pmdsc{x}| & Definite description. \\ + $\pmexists$ & \verb|\pmexists| & Existence. \\ + $\pmcls{z}{\psi z}$ & \verb|\pmcls{z}{\psi z}| & The class of $z$s satisfying $\psi$. \\ + $\pmcin$ & \verb|\pmcin| & The class membership symbol. \\ + $\pmClsn{n}$, $\pmCls$ & \verb|\pmClsn{n}|, \verb|\pmCls| & The class of classes of individuals. \\ + $\pmscl{\alpha}$, $\pmsCl$ & \verb|\pmscl{\alpha}|, \verb|\pmsCl| & The subclasses of a class $\alpha$. \\ + $\pmsrl{R}$, $\pmsRl$ & \verb|\pmsrl{R}|, \verb|\pmsRl| & The sub-relations of a relation $R$. \\ + $\pmcuni$ & \verb|\pmcuni| & The universal class. \\ + $\pmcnull$ & \verb|\pmcnull| & The null class. \\ + $\pmcexists$ & \verb|\pmcexists| & The existence of a class. \\ + $\pmccmp{\alpha}$ & \verb|\pmccmp{\alpha}| & This command requires one argument. \\ + $\pmcmin{\alpha}{\beta}$ & \verb|\pmcmin{\alpha}{\beta}| & This command requires two arguments. \\ + $\pmccup$ & \verb|\pmccup| & Class union. \\ + $\pmccap$ & \verb|\pmccap| & Class intersection. \\ + $\pmcinc$ & \verb|\pmcinc| & Class inclusion. \\ + $\pmrel{x}{y}{\phi(x,y)}$ & \verb|\pmrel{x}{y}{\phi(x,y)}| & The relation in extension given by $\phi$. \\ + $\pmrele{a}{x}{y}{R}{b}$ & \verb|\pmrele{a}{x}{y}{R}{b}| & This command requires five arguments. \\ + $\pmrelep{a}{R}{b}$ & \verb|\pmrelep{a}{R}{b}| & This command requires three arguments. \\ + $\pmrin$ & \verb|\pmrin| & The relation membership symbol. \\ + $\pmReln{n}$, $\pmRel$ & \verb|\pmReln{n}|, \verb|\pmRel| & The class of relations ($n$-many `of relations'). \\ + $\pmruni$ & \verb|\pmruni| & The universal relation. \\ + $\pmrnull$ & \verb|\pmrnull| & The null relation. \\ + $\pmrexists$ & \verb|\pmrexists| & This symbol prefixes relations. \\ + $\pmrcmp{R}$ & \verb|\pmrcmp{\alpha}| & This command requires one argument. \\ + $\pmrmin{R}{S}$ & \verb|\pmcmin{R}{S}| & This command requires two arguments. \\ + $\pmrcup$ & \verb|\pmrcup| & Relation union. \\ + $\pmrcap$ & \verb|\pmrcap| & Relation intersection. \\ + $\pmrinc$ & \verb|\pmrinc| & Relation inclusion. \\ + $\pmcrel{R}$ & \verb|\pmcrel{R}| & The converse of a relation. \\ + $\pmCnv$ & \verb|\pmCnv| & The command for `Cnv'. \\ + $\pmdscf{R}{x}$ & \verb|\pmdscf{R}{x}| & A singular descriptive function. \\ + $\pmdscff{R}{\beta}$ & \verb|\pmdscff{R}{\beta}| & A plural descriptive function. \\ + $\pmdscfff{R}{\kappa}$ & \verb|\pmdscfff{R}{\kappa}| & A plural descriptive function. \\ + $\pmdscfe{R}{\beta}$ & \verb|\pmdscfe{R}{\beta}| & The existence of a plural descriptive function. +\end{tabular} + +\noindent \begin{tabular}{@{}p{3cm} | p{5cm} | p{8.25cm}} + $\pmdscfr{R}{x}$, `$\pmdscfR{R}$'& \verb|\pmdscfr{R}{x}|, \verb|\pmdscfR{R}| & The relation of $\pmdscfr{R}{\beta}$ to $\beta$. \\ + $\pmdm{R}$, $\pmDm$ & \verb|\pmdm{R}|, \verb|\pmDm| & The domain of a relation $R$. \\ + $\pmcdm{R}$, $\pmCdm$ & \verb|\pmcdm{R}|, \verb|\pmCdm| & The converse domain of a relation $R$. \\ + $\pmcmp{R}$, $\pmCmp$ & \verb|\pmcmp{R}|, \verb|\pmCmp| & The campus of a relation $R$. \\ + $\pmfld{R}$, $\pmFld$ & \verb|\pmfld{R}|, \verb|\pmFld| & The field of a relation $R$. \\ + $\pmrrf{R}{x}$, $\pmRrf{R}$ & \verb|\pmrrf{R}{x}|, \verb|\pmRrf{R}| & The referents of a given relation. \\ + $\pmrrl{R}{x}$, $\pmRrl{R}$ & \verb|\pmrrl{R}{x}|, \verb|\pmRrl{R}| & The relata of a given relation. \\ + $\pmsg{R}$, $\pmSg$ & \verb|\pmsg{R}|, \verb|\pmSg| & \\ + $\pmgs{R}$, $\pmGs$ & \verb|\pmgs{R}|, \verb|\pmGs| & \\ + $\pmrprd{R}{S}$, $\pmRprd$ & \verb|\pmrprd{R}{S}|, \verb|\pmrprd| & The relative product of $R$ and $S$. \\ + $\pmrprdn{R}{n}$ & \verb|\pmrprdn{R}{n}| & The $n$th relative product of $R$. \\ + $\pmrprdd{R}{S}$, $\pmRprdd$ & \verb|\pmrprdd{R}{S}|, \verb|\pmrprdd| & The double relative product of $R$ and $S$. \\ + $\pmrlcd{\alpha}{R}$ & \verb|\pmrld{\alpha}{R}| & The limitation of $R$'s domain to $\alpha$. \\ + $\pmrlcd{R}{\beta}$ & \verb|\pmrld{R}{\beta}| & The limitation of $R$'s converse domain to $\beta$. \\ + $\pmrlf{\alpha}{R}{\beta}$ & \verb|\pmrlf{\alpha}{R}{\beta}| & The limitation of $R$'s field to $\alpha$ and $\beta$, resp. \\ + $\pmrlF{P}{\alpha}$ & \verb|\pmrlF{\alpha}{R}{\beta}| & The limitation of $P$'s field to $\alpha$. \\ + $\pmrl{\alpha}{\beta}$ & \verb|\pmrl{\alpha}{\beta}| & The relation made of all $x$s in $\alpha$ and $y$s in $\beta$. \\ + $\pmop$ & \verb|\pmop| & The operation symbol. \\ + $\pmopc{\alpha}{y}$ & \verb|\pmopc{\alpha}{y}| & The relation of $x$s in $\alpha$ taken to $y$ by $\pmop$. \\ + $\pmccsum{\alpha}$ & \verb|\pmccsum{\alpha}| & The sum of a class of classes. \\ + $\pmccprd{\alpha}$ & \verb|\pmccprd{\alpha}| & The product of a class of classes. \\ + $\pmcrsum{\alpha}$ & \verb|\pmcrsum{\alpha}| & The sum of a class of relations. \\ + $\pmcrprd{\alpha}$ & \verb|\pmcrprd{\alpha}| & The product of a class of relations. \\ + $\pmrid$, $\pmrdiv$ & \verb|\pmrid|, \verb|\pmrdiv| & The relations of identity and diversity. \\ + $\pmcunit{x}$, $\pmcUnit$ & \verb|\pmcunit{x}|, \verb|\pmcUnit| & The unit class. \\ + $\pmcunits{\alpha}$ & \verb|\pmcunits{\alpha}| & The sum of unit classes of $\alpha$'s elements. \\ + $\pmrn{n}$ & \verb|\pmrn{n}| & The ordinal number $n$. \\ + $\pmdn{n}$ & \verb|\pmdn{n}| & The class of relations equal to an $n$-tuple. \\ + $\pmoc{x}{y}$ & \verb|\pmoc{x}{y}| & The ordinal number restricted to $R=(x,y)$. \\ + $\pmrt{x}$, $\pmrti{n}{x}$ & \verb|\pmrt{x}|, \verb|\pmrti{n}{x}| & The relative type of $x$ ($n$-many `type of's). \\ + $\pmrtc{n}{\alpha}$ & \verb|\pmrtc{n}{\alpha}| & The relative type of $\alpha$ ($n$-many `type of's). \\ + $\pmrtri{n}{R}$, $\pmrtrc{n}{R}$ & \verb|\pmrtri{n}{R}|, \verb|\pmrtrc{n}{R}| & The relative type of (with $n$-many `type of's) $R$ from individuals to individuals, or from classes to classes. `$nm$' can replace `$n$'. +\end{tabular} + +\noindent \begin{tabular}{@{}p{3cm} | p{5cm} | p{8.25cm}} + $\pmrtric{n}{m}{R}$, $\pmrtrci{n}{m}{R}$ & \verb|\pmrtric{n}{R}|, \verb|\pmrtrci{n}{R}| & The relative type of $R$ from individuals to classes, or from classes to individuals. \\ + $\pmrtdi{\alpha}{x}$, $\pmrtdri{R}{(x,y)}$ & \verb|\pmrtdi{\alpha}{x}|, \verb|\pmrtdri{R}{(x,y)}| & The result of determining that the members of $\alpha$ ($R$) belong to the relative type of $x$ (in the domain, and of $y$ in the converse domain). \\ + $\pmrtdc{\alpha}{x}$, $\pmrtdrc{R}{x,y}$ & \verb|\pmrtdc{\alpha}{x}|, \verb|\pmrtdrc{R}{x,y}| & The result of determining that the members of $\alpha$ ($R$) belong to the relative type of $\pmrt{x}$ (in the domain, and of $\pmrt{y}$ in the converse domain). \\ + $\pmrdc{\alpha}{\beta}$ & \verb|\pmrdc{\alpha}{\beta}| & The class of relations $R$ with domain contained in $\alpha$ and converse domain in $\beta$. \\ + $\pmoneone$, $\pmonemany$, $\pmmanyone$ & \verb|\pmoneone|, \verb|\pmonemany|, \verb|\pmmanyone| & The class of one-one, or one-many, or many-one, relations. Note \verb|\pmrdc| can be used here. \\ + $\pmsm$, $\pmsmbar$ & \verb|\pmsm|, \verb|\pmsmbar| & The similarity relation. \\ + $\pmselp{\kappa}$, $\pmSelp$ & \verb|\pmselp{\kappa}|, \verb|\pmSelp| & The $P$-selections from $\kappa$ \\ + $\pmsele{\kappa}$, $\pmSele$ & \verb|\pmsele{\kappa}|, \verb|\pmSele| & The $\pmcin$-selections from $\kappa$ \\ + $\pmself{\kappa}$, $\pmSelf$ & \verb|\pmself{\kappa}|, \verb|\pmSelf| & The $F$-selections from $\kappa$ \\ + $\pmexc$ & \verb|\pmexc| & The class of pairwise-disjoint classes. \\ + $\pmexcn$ & \verb|\pmexcn| & The class of pairwise-disjoint non-null classes. \\ + $\pmexcc{\gamma}$ & \verb|\pmexcc{\gamma}| & A class of mutually exclusive classes in $\gamma$. \\ + $\pmselc{P}{y}$ & \verb|\pmselc{P}{y}| & The class of couples $(y, \pmdscf{P}{y})$. \\ + $\pmmultc$ & \verb|\pmmultc| & The class of multipliable classes. \\ + $\pmmultr$ & \verb|\pmmultr| & The class of multipliable relations. \\ + $\pmmultax$ & \verb|\pmmultax| & The multiplicative axiom. \\ + $\pmanc{R}$, $\pmancc{R}$ & \verb|\pmanc{R}|, \verb|\pmancc{R}| & The ancestral and its converse. \\ + $\pmrst{R}$, $\pmrts{R}$ & \verb|\pmrst{R}|, \verb|\pmrts{R}| & The powers of the ancestral and its converse. \\ + $\pmmin{P}$, $\pmmax{P}$ & \verb|\pmmin{P}|, \verb|\pmmax{P}| & The minimum and maximum under $P$. \\ + $\pmpot{R}$, $\pmpotid{R}$ & \verb|\pmpot{R}|, \verb|\pmpotid{R}| & The products (strict and not) of an ancestral. \\ + $\pmpo{R}$ & \verb|\pmpo{R}| & The product of a class of ancestrals $R$. \\ + $\pmB$ & \verb|\pmB| & The relation of beginning under $P$. \\ + $\pmgen{P}$ & \verb|\pmgen{P}| & The generation of $P$. \\ + $\pmefr{P}{Q}$ & \verb|\pmefr{P}{Q}| & The equi-factor relation. \\ + $\pmipr{R}{x}$ & \verb|\pmipr{R}{x}| & The non-distinct posterity of $x$ under $R$. \\ + $\pmjpr{R}{x}$ & \verb|\pmjpr{R}{x}| & The distinct posterity of $x$ under $R$. \\ + $\pmfr{R}{x}$ & \verb|\pmfr{R}{x}| & The ancestry and posterity of $x$ under $R$. \\ + $\pmnc{\kappa}$, $\pmNc$ & \verb|\pmnc{\kappa}|, \verb|\pmNc| & The cardinal number of $\kappa$. +\end{tabular} + +\end{document}
\ No newline at end of file |