summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/xymtex/xymadd.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/xymtex/xymadd.tex')
-rw-r--r--Master/texmf-dist/doc/latex/xymtex/xymadd.tex2792
1 files changed, 2792 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/xymtex/xymadd.tex b/Master/texmf-dist/doc/latex/xymtex/xymadd.tex
new file mode 100644
index 00000000000..10cfa37c649
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/xymtex/xymadd.tex
@@ -0,0 +1,2792 @@
+%xymadd.tex
+%Copyright (C) 1998, Shinsaku Fujita, All rights reserved.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%This file is a part of xymtx200.tex that is the manual of the macro
+%package `XyMTeX' (Version 2.00) for drawing chemical structural formulas.
+%This file is not permitted to be translated into Japanese and any other
+%languages.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\chapter{Added Commands}
+
+\section{Six-six Fused Carbocycles}
+\subsection{Vertical-Bottom Forms of Decaline Derivatives}
+
+The macro \verb/\decalinevb/ is used to draw
+decaline derivatives of vertical-bottom
+type (added to \textsf{carom.sty}),
+where the numbering of atoms is given from the bottom
+to the left-upper part.
+The word ``vertical'' means that each benzene ring is a vertical type.
+The word ``bottom'' means that the benzene ring with young
+locant numbers is located at the bottom.
+The format of this command is as follows:
+\begin{verbatim}
+ \decalinevb[BONDLIST]{SUBSLIST}
+\end{verbatim}
+%
+% ***************************
+% * decaline derivatives *
+% * (vertical bottom type) *
+% ***************************
+% The following numbering is adopted in this macro.
+%
+% 7
+% *
+% 6 * * 8
+% | |
+% | | 0G (4a)
+% 5 * * *
+% 0F(4a) * * 1
+% | |
+% | |
+% 4 * * 2
+% *
+% 3
+% ^
+% |
+% the original point
+%
+
+Locant numbers for designating substitution positions
+and characters for showing bonds to be doubled
+are represented by the following diagram:
+{\origpttrue
+\begin{center}
+\begin{picture}(1000,1200)(0,0)
+\put(0,0){\decalinevb{%
+1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);%
+3Sb==3Sb(l);3Sa==3Sa(r);4Sb==4Sb(l);4Sa==4Sa(l);%
+5Sb==5Sb(l);5Sa==5Sa(l);6Sb==6Sb(l);6Sa==6Sa(l);%
+7Sb==7Sb(l);7Sa==7Sa(r);8Sb==8Sb(r);8Sa==8Sb(r);%
+0F==0F;0G==0G}}
+{\footnotesize
+\put(171,0){\bdloocant{j}{a}{b}{c}{d}{k}}
+\put(0,303){\bdloocant{h}{i}{}{e}{f}{g}}}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (550,\the\shifti) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{center}
+}
+The handedness for each oriented or double-sided position
+is shown with a character set in parentheses.
+The option argument BONDLIST is based on the
+assignment of characters (a--k) to respective bonds
+as shown in the above diagram.
+A bond modifier in the argument SUBSLIST for $n=1\mbox{--}8$ can be
+one of bond modifiers shown in Table \ref{tt:200a}.
+The substitution at the bridgehead positions is
+designated as shown in Table 4.3 of \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+\decalinevb{1D==O;0FB==H;0GA==H} \qquad
+\decalinevb{1B==CH$_{2}$OSiR$_{3}$;3D==O;4A==CH$_{3}$OCO;%
+0FB==CH$_{3}$;0GA==H}
+\end{verbatim}
+These commands produce:
+\begin{center}
+\decalinevb{1D==O;0FB==H;0GA==H} \qquad
+\decalinevb{1B==CH$_{2}$OSiR$_{3}$;3D==O;4A==CH$_{3}$OCO;%
+0FB==CH$_{3}$;0GA==H}
+\end{center}
+
+The related commands, \verb/\naphdrvb/ and \verb/\tetralinevb/,
+have been defined on the basis of the command \verb/\decalinevb/.
+
+\subsection{Vertical-Top Forms of Decaline Derivatives}
+
+The macro \verb/\decalinevt/ (added to \textsf{carom.sty})
+is used for drawing decaline derivatives
+of vertical-bottom type (numbering from the top to the left-down part).
+The word ``vertical'' means that each benzene ring is a vertical type.
+The word ``top'' means that the benzene ring with young locant
+numbers is located at the top.
+% ************************
+% * decaline derivatives *
+% * (vertical-top type) *
+% ************************
+% The following numbering is adopted in this macro.
+%
+% 2
+% *
+% 1 * * 3
+% | |
+% | |
+% 0G (8a) * * 4
+% 8 * * 0F(4a)
+% | |
+% | |
+% 7 * * 5
+% *
+% 6
+% ^
+% |
+% the original point
+%
+The format of this command is as follows:
+\begin{verbatim}
+ \decalinevt[BONDLIST]{SUBSLIST}
+\end{verbatim}
+
+Locant numbers for designating substitution positions
+and characters for showing bonds to be doubled
+are represented by the following diagram:
+{\origpttrue
+\begin{center}
+\begin{picture}(1000,1200)(0,0)
+\put(0,0){\decalinevt{%
+1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(l);2Sa==2Sa(r);%
+3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4Sb(r);4Sa==4Sa(r);%
+5Sb==5Sb(r);5Sa==5Sa(r);6Sb==6Sb(l);6Sa==6Sa(r);%
+7Sb==7Sb(l);7Sa==7Sa(l);8Sb==8Sb(l);8Sa==8Sb(l);%
+0F==0F;0G==0G}}
+{\footnotesize
+\put(171,303){\bdloocant{b}{c}{d}{k}{j}{a}}
+\put(0,0){\bdloocant{}{e}{f}{g}{h}{i}}}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (400,\the\shifti) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{center}
+}
+
+The handedness for each oriented or double-sided position
+is shown with a character set in parentheses.
+The option argument BONDLIST is based on the
+assignment of characters (a--k) to respective bonds
+as shown in the above diagram.
+A bond modifier in the argument SUBSLIST for $n=1\mbox{--}8$ can be
+one of bond modifiers shown in Table \ref{tt:200a}.
+The substitution at the bridgehead positions is
+designated as shown in Table 4.3 of \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+\decalinevt{1D==O;0FB==H;0GA==H} \qquad
+\decalinevt{1B==R$_{3}$SiOCH$_{2}$;3D==O;4A==COOHCH$_{3}$;%
+0FB==CH$_{3}$;0GA==H}
+\end{verbatim}
+These commands produce:
+\begin{center}
+\decalinevt{1D==O;0FB==H;0GA==H} \qquad
+\decalinevt{1B==R$_{3}$SiOCH$_{2}$;3D==O;4A==COOHCH$_{3}$;%
+0FB==CH$_{3}$;0GA==H}
+\end{center}
+
+The related commands, \verb/\naphdrvt/ and \verb/\tetralinevt/,
+have been defined on the basis of the command \verb/\decalinevt/.
+
+
+\section{Six-six Fused Heterocycles}
+\subsection{Vertical-Bottom Forms}
+
+The macro \verb/\decaheterovb/ is generally used to draw
+six-six-fused heterocycles of vertical-bottom type (\textsf{hetarom.sty}).
+\begin{verbatim}
+ \decaheterovb[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+% ***************************
+% * decahetro derivatives *
+% * (vertical bottom type) *
+% ***************************
+% The following numbering is adopted in this macro.
+%
+% 7
+% *
+% 6 * * 8
+% | |
+% | | 0G (4a)
+% 5 * * *
+% 0F(4a) * * 1
+% | |
+% | |
+% 4 * * 2
+% *
+% 3
+% ^
+% |
+% the original point
+
+
+Locant numbers for designating substitution positions
+as well as characters for setting double bonds
+are shown in the following diagram:
+{
+\begin{xymspec}
+\begin{picture}(1000,1200)(0,0)
+\put(0,0){\decaheterovb[]{1==1;2==2;3==3;4==4;5==5;%
+6==6;7==7;8==8;9==9;{{10}}==10}{%
+1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);%
+3Sb==3Sb(l);3Sa==3Sa(r);4Sb==4Sb(l);4Sa==4Sa(l);%
+5Sb==5Sb(l);5Sa==5Sa(l);6Sb==6Sb(l);6Sa==6Sa(l);%
+7Sb==7Sb(l);7Sa==7Sa(r);8Sb==8Sb(r);8Sa==8Sa(r);%
+9==9;{{10}}==10}}
+{\footnotesize
+\put(171,0){\bdloocant{j}{a}{b}{c}{d}{k}}
+\put(0,303){\bdloocant{h}{i}{}{e}{f}{g}}}
+%\put(0,0){\bdloocant{i}{k}{e}{f}{g}{h}}
+%\put(342,0){\bdloocant{a}{b}{c}{d}{}{j}}}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (550,\the\shifti) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+}
+The handedness for each oriented or double-sided position
+is shown with a character set in parentheses.
+The optional argument BONDLIST is used to specify a bond pattern.
+
+The argument ATOMLIST has a similar format concerning the positions of
+$n$ = 1 to 8. A hetero-atom on the 4a-position is
+designated to be 4a==N or 9==N;
+and a hetero-atom on the 8a-position is given as to be
+8a==N or \{\{10\}\}==N.
+
+The argument SUBSLIST for this macro takes a general format,
+in which the modifiers listed in Table \ref{tt:200a} are used.
+Note that 9 and 10 should be used for designating
+4a and 8a positions.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+\decaheterovb[]{7==O}{6D==O;9A==H;{{10}A}==CH=CH$_{2}$}
+\decaheterovb[]{5==O}{9==HO;{{10}}==OH}
+\decaheterovb[ch]{1==O}{9A==HOCH$_{2}$;{{10}A}==H;%
+4==CH$_{3}$;7==CH$_{3}$}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+\decaheterovb[]{7==O}{6D==O;9A==H;{{10}A}==CH=CH$_{2}$}
+\decaheterovb[]{5==O}{9==HO;{{10}}==OH}
+\decaheterovb[ch]{1==O}{9A==HOCH$_{2}$;{{10}A}==H;%
+4==CH$_{3}$;7==CH$_{3}$}
+\end{center}
+
+Macros for drawing related fused heterocycles are also defined.
+The formats of these commands are as follows:
+\begin{verbatim}
+ \quinolinevb[BONDLIST]{SUBSLIST}
+ \isoquinolinevb[BONDLIST]{SUBSLIST}
+ \quinoxalinevb[BONDLIST]{SUBSLIST}
+ \quinazolinevb[BONDLIST]{SUBSLIST}
+ \cinnolinevb[BONDLIST]{SUBSLIST}
+ \pteridinevb[BONDLIST]{SUBSLIST}
+\end{verbatim}
+
+\subsection{Vertical-Top Forms}
+The macro \verb/\decaheterovt/ is generally used to draw
+six-six-fused heterocycles of vertical-top type (\textsf{hetarom.sty}).
+\begin{verbatim}
+ \decaheterovt[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+% ****************************
+% * decaheterovt derivatives *
+% * (vertical-top type) *
+% ****************************
+% The following numbering is adopted in this macro.
+%
+% 2
+% *
+% 1 * * 3
+% | |
+% | |
+% 0G (8a) * * 4
+% 8 * * 0F(4a)
+% | |
+% | |
+% 7 * * 5
+% *
+% 6
+% ^
+% |
+% the original point
+% \end{verbatim}
+
+Locant numbers for designating substitution positions
+as well as characters for setting double bonds
+are shown in the following diagram:
+{
+\begin{xymspec}
+\begin{picture}(1000,1200)(0,0)
+\put(0,0){\decaheterovt[]{1==1;2==2;3==3;4==4;5==5;%
+6==6;7==7;8==8;9==9;{{10}}==10}{%
+1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(l);2Sa==2Sa(r);%
+3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4Sb(r);4Sa==4Sa(r);%
+5Sb==5Sb(r);5Sa==5Sa(r);6Sb==6Sb(l);6Sa==6Sa(r);%
+7Sb==7Sb(l);7Sa==7Sa(l);8Sb==8Sb(l);8Sa==8Sa(l);%
+9==9;{{10}}==10}}
+{\footnotesize
+\put(171,303){\bdloocant{b}{c}{d}{k}{j}{a}}
+\put(0,0){\bdloocant{}{e}{f}{g}{h}{i}}}
+%\put(171,0){\bdloocant{j}{a}{b}{c}{d}{k}}
+%\put(0,303){\bdloocant{h}{i}{}{e}{f}{g}}}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (400,\the\shifti) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+}
+The handedness for each oriented or double-sided position
+is shown with a character set in parentheses.
+The optional argument BONDLIST is used to specify a bond pattern.
+
+The argument ATOMLIST has a similar format concerning the positions of
+$n$ = 1 to 8. A hetero-atom on the 4a-position is
+designated to be 4a==N or 9==N;
+and a hetero-atom on the 8a-position is given as to be
+8a==N or \{\{10\}\}==N.
+
+The argument SUBSLIST for this macro takes a general format,
+in which the modifiers listed in Table \ref{tt:200a} are used.
+Note that 9 and 10 should be used for designating
+4a and 8a positions.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+\decaheterovt[]{7==O}{6D==O;9A==H;{{10}A}==CH$_{2}$=CH}
+\decaheterovt[]{5==O}{9==OH;{{10}}==HO}
+\decaheterovt[ch]{1==O}{9A==CH$_{2}$OH;{{10}A}==H;%
+4==CH$_{3}$;7==CH$_{3}$}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+\vspace*{1cm}
+\decaheterovt[]{7==O}{6D==O;9A==H;{{10}A}==CH$_{2}$=CH}
+\decaheterovt[]{5==O}{9==OH;{{10}}==HO}
+\decaheterovt[ch]{1==O}{9A==CH$_{2}$OH;{{10}A}==H;%
+4==CH$_{3}$;7==CH$_{3}$}
+\end{center}
+
+Macros for drawing related fused heterocycles are also defined.
+The formats of these commands are as follows:
+\begin{verbatim}
+ \quinolinevt[BONDLIST]{SUBSLIST}
+ \isoquinolinevt[BONDLIST]{SUBSLIST}
+ \quinoxalinevt[BONDLIST]{SUBSLIST}
+ \quinazolinevt[BONDLIST]{SUBSLIST}
+ \cinnolinevt[BONDLIST]{SUBSLIST}
+ \pteridinevt[BONDLIST]{SUBSLIST}
+\end{verbatim}
+
+\section{Three-Membered Carbocycles}
+
+The macro \verb/\cyclopropanev/ (the same command
+as \verb/\cyclopropane/)
+for drawing three-membered carbocycles
+has the following format (\textsf{lowcycle.sty})
+\begin{verbatim}
+ \cyclopropanev[BONDLIST]{SUBSLIST}
+\end{verbatim}
+% ****************************
+% * cyclopropane derivatives *
+% * (vertical type) *
+% ****************************
+% The following numbering is adopted in this macro.
+%
+% b
+% 3--------2
+% c ` / a
+% `1/ <===== the original point
+%
+%
+%
+The locant numbering (1--3)
+and the bond description (a--c) are common as
+shown in the following diagram:
+\begin{xymspec}
+\begin{picture}(1000,600)(0,0)
+\put(0,0){\cyclopropanev[]{%
+1Sb==1Sb(l);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);%
+3Sb==3Sb(l);3Sa==3Sa(l)}}
+\put(0,0){\circle{80}}
+\put(400,240){\circle{80}}
+\put(500,250){a}
+\put(300,250){c}
+\put(380,460){b}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+ \cyclopropanev{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \cyclopropanev{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \cyclopropanev{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+ \cyclopropanev{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \cyclopropanev{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \cyclopropanev{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
+\end{center}
+
+The macro \verb/\cyclopropanevi/
+(the same command as \verb/\cyclopropanei/)
+for drawing three-membered carbocycles of inverse type
+has the following format (\textsf{lowcycle.sty})
+\begin{verbatim}
+ \cyclopropanevi[BONDLIST]{SUBSLIST}
+\end{verbatim}
+% ****************************
+% * cyclopropane derivatives *
+% * (inverse vertical type) *
+% ****************************
+% The following numbering is adopted in this macro.
+%
+% /1` <===== the original point
+% c / ` a
+% 3--------2
+% b
+%
+% \cyclopropanei[BONDLIST]{SUBSLIST}
+% \cyclopropanevi[BONDLIST]{SUBSLIST}
+
+The following diagram shows
+The locant numbering (1--3)
+and the bond description (a--c):
+\begin{xymspec}
+\begin{picture}(1000,600)(0,0)
+\put(0,0){\cyclopropanevi[]{%
+1Sb==1Sb(l);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);%
+3Sb==3Sb(l);3Sa==3Sa(l)}}
+\put(0,0){\circle{80}}
+\put(400,340){\circle{80}}
+\put(500,250){a}
+\put(250,250){c}
+\put(380,50){b}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,340) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+For the arguments, BONDLIST and SUBSLIST, see the counterparts
+of \verb/\cyclopropane/ described in \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+ \cyclopropanevi{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \cyclopropanevi{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \cyclopropanevi{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+ \cyclopropanevi{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \cyclopropanevi{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \cyclopropanevi{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
+\end{center}
+
+The macro \verb/\cyclopropaneh/
+for drawing three-membered carbocycles of horizontal type
+has the following format (\textsf{lowcycle.sty})
+\begin{verbatim}
+ \cyclopropaneh[BONDLIST]{SUBSLIST}
+\end{verbatim}
+% ****************************
+% * cyclopropane derivatives *
+% * (horizontal type) *
+% ****************************
+%
+% aaa fff
+% 3
+% | ` c
+% b | 1 bbb ccc
+% | / a
+% 2/
+% ddd eee
+%
+
+The locant numbering (1--3)
+and the bond description (a--c) are common as
+shown in the following diagram:
+\begin{xymspec}
+\begin{picture}(600,1000)(0,0)
+\put(0,0){\cyclopropaneh[]{%
+1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(l);2Sa==2Sa(r);%
+3Sb==3Sb(l);3Sa==3Sa(r)}}
+\put(0,0){\circle{80}}
+\put(200,240){\circle{80}}
+\put(300,150){a}
+\put(100,320){b}
+\put(300,450){c}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (200,240) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+ \cyclopropaneh{2Sa==COOCH$_{3}$;2Sb==CH$_{3}$OCO}\qquad
+ \cyclopropaneh{2Sa==COOH;2Sb==HOCO}\qquad\qquad
+ \cyclopropaneh{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+ \cyclopropaneh{2Sa==COOCH$_{3}$;2Sb==CH$_{3}$OCO}\qquad
+ \cyclopropaneh{2Sa==COOH;2Sb==HOCO}\qquad\qquad
+ \cyclopropaneh{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
+\end{center}
+
+The macro \verb/\cyclopropanehi/
+for drawing three-membered carbocycles of inverse horizontal type
+has the following format (\textsf{lowcycle.sty})
+\begin{verbatim}
+ \cyclopropanehi[BONDLIST]{SUBSLIST}
+\end{verbatim}
+% ****************************
+% * cyclopropane derivatives *
+% * (inverse horizontal type)*
+% ****************************
+%
+% aaa bbb
+% c 3
+% / |
+% eee 1 | b
+% fff a` |
+% 2 <---original point
+% ccc ddd
+
+The locant numbering (1--3)
+and the bond description (a--c) are common as
+shown in the following diagram:
+\begin{xymspec}
+\begin{picture}(600,1000)(0,0)
+\put(0,0){\cyclopropanehi[]{%
+1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(r);2Sa==2Sa(r);%
+3Sb==3Sb(r);3Sa==3Sa(r)}}
+\put(0,0){\circle{80}}
+\put(400,240){\circle{80}}
+\put(300,150){a}
+\put(450,320){b}
+\put(300,450){c}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (400,240) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+ \cyclopropanehi{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \cyclopropanehi{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \cyclopropanehi{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+ \cyclopropanehi{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \cyclopropanehi{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \cyclopropanehi{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
+\end{center}
+
+\section{Three-Membered Heterocycles}
+
+The macro \verb/\threeheterov/
+(the same command as \verb/\threehetero/)
+for drawing three-membered heterocycles
+has the following format (\textsf{hetarom.sty})
+\begin{verbatim}
+ \threeheterov[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+% ****************************
+% * threeheterov derivatives *
+% * (vertical type) *
+% ****************************
+% The following numbering is adopted in this macro.
+%
+% b
+% 3--------2
+% c ` / a
+% `1/ <===== the original point
+%
+%
+%
+The locant numbering (1--3)
+and the bond description (a--c) are common as
+shown in the following diagram:
+\begin{xymspec}
+\begin{picture}(1000,600)(0,0)
+\put(0,0){\threeheterov[]{1==1;2==2;3==3}{%
+1Sb==1Sb(l);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);%
+3Sb==3Sb(l);3Sa==3Sa(l)}}
+\put(0,0){\circle{80}}
+\put(400,240){\circle{80}}
+\put(500,250){a}
+\put(300,250){c}
+\put(380,460){b}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+ \threeheterov{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \threeheterov{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \threeheterov{2==O}{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+ \threeheterov{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \threeheterov{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \threeheterov{2==O}{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
+\end{center}
+
+The macro \verb/\threeheterovi/
+(the same command as \verb/\threeheteroi/)
+for drawing three-membered heterocycles of inverse type
+has the following format (\textsf{hetarom.sty})
+\begin{verbatim}
+ \threeheterovi[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+% ****************************
+% * threehetero derivatives *
+% * (inverse vertical type) *
+% ****************************
+% The following numbering is adopted in this macro.
+%
+% /1` <===== the original point
+% c / ` a
+% 3--------2
+% b
+%
+% \threeheteroi[BONDLIST]{ATOMLIST}{SUBSLIST}
+% \threeheterovi[BONDLIST]{ATOMLIST}{SUBSLIST}
+
+The following diagram shows
+The locant numbering (1--3)
+and the bond description (a--c):
+\begin{xymspec}
+\begin{picture}(1000,600)(0,0)
+\put(0,0){\threeheterovi[]{1==1;2==2;3==3}{%
+1Sb==1Sb(l);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);%
+3Sb==3Sb(l);3Sa==3Sa(l)}}
+\put(0,0){\circle{80}}
+\put(400,340){\circle{80}}
+\put(500,250){a}
+\put(250,250){c}
+\put(380,50){b}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,340) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+For the arguments, BONDLIST and SUBSLIST, see the counterparts
+of \verb/\threehetero/ described in \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+ \threeheterovi{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \threeheterovi{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \threeheterovi{1==O}{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+ \threeheterovi{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \threeheterovi{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \threeheterovi{1==O}{3Sa==H$_{3}$C;3Sb==H$_{3}$C}
+\end{center}
+
+The macro \verb/\threeheteroh/
+for drawing three-membered heterocycles of horizontal type
+has the following format (\textsf{hetaromh.sty})
+\begin{verbatim}
+ \threeheteroh[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+% ****************************
+% * threehetero derivatives *
+% * (horizontal type) *
+% ****************************
+%
+% aaa fff
+% 3
+% | ` c
+% b | 1 bbb ccc
+% | / a
+% 2/
+% ddd eee
+%
+
+The locant numbering (1--3)
+and the bond description (a--c) are common as
+shown in the following diagram:
+\begin{xymspec}
+\begin{picture}(600,1000)(0,0)
+\put(0,0){\threeheteroh[]{1==1;2==2;3==3}{%
+1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(l);2Sa==2Sa(r);%
+3Sb==3Sb(l);3Sa==3Sa(r)}}
+\put(0,0){\circle{80}}
+\put(200,240){\circle{80}}
+\put(300,150){a}
+\put(100,320){b}
+\put(300,450){c}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (200,240) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+ \threeheteroh{1==O}{2Sa==COOCH$_{3}$;2Sb==CH$_{3}$OCO}\qquad
+ \threeheteroh{1==O}{2Sa==COOH;2Sb==HOCO}\qquad\qquad
+ \threeheteroh{1==O}{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+ \threeheteroh{1==O}{2Sa==COOCH$_{3}$;2Sb==CH$_{3}$OCO}\qquad
+ \threeheteroh{1==O}{2Sa==COOH;2Sb==HOCO}\qquad\qquad
+ \threeheteroh{1==O}{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
+\end{center}
+
+The macro \verb/\threeheterohi/
+for drawing three-membered heterocycles of inverse horizontal type
+has the following format (\textsf{hetatomh.sty})
+\begin{verbatim}
+ \threeheterohi[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+% ****************************
+% * threehetero derivatives *
+% * (inverse horizontal type)*
+% ****************************
+%
+% aaa bbb
+% c 3
+% / |
+% eee 1 | b
+% fff a` |
+% 2 <---original point
+% ccc ddd
+
+The locant numbering (1--3)
+and the bond description (a--c) are common as
+shown in the following diagram:
+\begin{xymspec}
+\begin{picture}(600,1000)(0,0)
+\put(0,0){\threeheterohi[]{1==1;2==2;3==3}{%
+1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(r);2Sa==2Sa(r);%
+3Sb==3Sb(r);3Sa==3Sa(r)}}
+\put(0,0){\circle{80}}
+\put(400,240){\circle{80}}
+\put(300,150){a}
+\put(450,320){b}
+\put(300,450){c}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (400,240) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+ \threeheterohi{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \threeheterohi{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \threeheterohi{1==O}{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+ \threeheterohi{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad
+ \threeheterohi{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad
+ \threeheterohi{1==O}{3Sa==CH$_{3}$;3Sb==CH$_{3}$}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\section{Aliphatic Moieties}
+\subsection{Trigonal Units}
+
+In addition to the macros \verb/\rtrigonal/ and \verb/\ltrigonal/
+(see \XyMTeX book), macros for broader bond angles,
+\verb/\Rtrigonal/ and \verb/\Ltrigonal/, are
+added to the \textsf{aliphat} package (\textsf{aliphat.sty}).
+The formats of these commands are as follows:
+\begin{verbatim}
+ \Rtrigonal[AUXLIST]{SUBSLIST}
+ \Ltrigonal[AUXLIST]{SUBSLIST}
+\end{verbatim}
+% *************************
+% * trigonal unit (right) *
+% *************************
+%
+% 3
+% /
+% /
+% 1 --- 0 120 0 <== the original point
+% `
+% `
+% 2
+% ************************
+% * trigonal unit (left) *
+% ************************
+%
+% 2
+% `
+% `
+% 120 0 --- 1 0 <== the original point
+% /
+% /
+% 3
+
+The bond angles of 2--0--3 are 120$^{\circ}$ in the trigonal units
+printed with these commands. The arguments AUXLIST and SUBSLIST are
+the same as those of \verb/\tetrahedral/.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+\Rtrigonal{0==C;1D==O;2==Cl;3==F}\qquad
+\Ltrigonal{0==C;1D==O;2==Cl;3==F}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+\Rtrigonal{0==C;1D==O;2==Cl;3==F}\qquad
+\Ltrigonal{0==C;1D==O;2==Cl;3==F}
+\end{center}
+
+\subsection{Ethylenes}
+
+The macro \verb/\Ethyleneh/ or \verb/\Ethylene/ is
+a braoder-angled counterpart of
+the macro \verb/\ethyleneh/ or \verb/\ethylene/ (see \XyMTeX book),
+which is used to draw ethylene derivatives with angles 120$^{\circ}$
+(\textsf{aliphat.sty}).
+The format of this command is as follows:
+\begin{verbatim}
+ \Ethyleneh[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \Ethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+% *****************
+% * ethylene unit *
+% *****************
+%
+% The following numbering is adopted in this macro.
+%
+% 1 4
+% ` /
+% ` /
+% 120 (1)===(2) 120 (1) <== the original point
+% / `
+% / `
+% 2 3
+%
+%
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\begin{picture}(800,880)(0,0)
+\put(0,0){\Ethyleneh{1==1;2==2}{1==1;2==2;3==3;4==4;0==0}}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (300,300) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+The argument BONSLIST is used for giving the C--C bond.
+The argument ATOMLIST is used for giving central atoms.
+The argument SUBSLIST is
+the same as that of \verb/\tetrahedral/.
+
+\medskip
+\noindent
+Example:
+\begin{verbatim}
+\Ethyleneh{1==C;2==C}{1==F;2==Cl;3==H;4==Br}\qquad
+\Ethyleneh{1==C;2==C}{1==CH$_{3}$;2==H;3==CH$_{2}$OH;4==H}\par
+\Ethyleneh{1==C;2==N}{1==Ph;2==Ph;3==OH}\qquad
+\Ethyleneh[t{2+}]{1==C;2==N}{1==CH$_{3}$;2==CH$_{3}$;3==H}
+\end{verbatim}
+produce the following structures:
+\begin{center}
+\Ethyleneh{1==C;2==C}{1==F;2==Cl;3==H;4==Br}\qquad
+\Ethyleneh{1==C;2==C}{1==CH$_{3}$;2==H;3==CH$_{2}$OH;4==H}\par
+\Ethyleneh{1==C;2==N}{1==Ph;2==Ph;3==OH}\qquad
+\Ethyleneh[t{2+}]{1==C;2==N}{1==CH$_{3}$;2==CH$_{3}$;3==H}
+\end{center}
+
+A butadiene derivative,
+\begin{center}
+\Ethyleneh{1==C;2==C}{1==F;2==Cl;4==Br;%
+3==\Ethyleneh{1==C;2==C}{1==(yl);2==H;3==H;4==H}}
+\vspace*{1cm}
+\end{center}
+can be drawn by the code,
+\begin{verbatim}
+\Ethyleneh{1==C;2==C}{1==F;2==Cl;4==Br;%
+3==\Ethyleneh{1==C;2==C}{1==(yl);2==H;3==H;4==H}}
+\end{verbatim}
+
+
+\chapter{Zigzag Polymethylene Skeletons}
+
+\section{Dimethylenes}
+
+The macro \verb/\dimethylene/ has two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}):
+%
+% \begin{verbatim}
+%
+% bbb
+% 2
+% a / (or uppercase letters)
+% /
+% 1
+% aaa
+% \end{verbatim}
+%
+\begin{verbatim}
+ \dimethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The BONDLIST argument contains one character a or A,
+each of which indicates the presence of an inner (endo-chain) double
+bond on the corresponding position. A lowercase letter is used
+to typeset a double bond at a lower-side of an outer skeletal bond,
+while an uppercase letter typesets a double bond at a upper-side of
+an outer skeletal bond
+(Note that the option `A' represents an aromatic circle in
+ commands \verb/\sixheterov/ etc. ).
+The ATOMLIST and SUBSLIST arguments follow
+the conventions of the \XyMTeX{} system.
+
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\begin{picture}(500,500)(0,0)
+\put(0,0){\dimethylene{1==1;2==2}{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb}}
+\put(100,250){a}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (50,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+Lowercase vs. uppercase letters (`a' vs. `A') in the BONDLIST of
+the \verb/\dimethylene/ command designate the position of
+an bond added to the bond `a', as shown in the code,
+\begin{verbatim}
+\dimethylene[a]{}{1W==\bzdrv{3==(yl)};1==Cl;2W==H;2==F}
+\hskip2cm
+\bzdrv{3==\dimethylene[A]{}{1W==(yl);1==Cl;2W==H;2==F}}
+\end{verbatim}
+which typesets the following formulas:
+\begin{center}
+\dimethylene[a]{}{1W==\bzdrv{3==(yl)};1==Cl;2W==H;2==F}
+\hskip2cm
+\bzdrv{3==\dimethylene[A]{}{1W==(yl);1==Cl;2W==H;2==F}}
+\end{center}
+
+In addition to the standard bond modifiers
+listed in Table \ref{tt:200a},
+the terminal positions of the \verb/\dimethylene/ command
+can take a bond modifier `W'.
+For example, the code,
+\begin{verbatim}
+\dimethylene{1==S;2==S}{1W==H;2W==H}
+\hskip4cm
+\dimethylene{1==S;2==S}{1W==\bzdrv{3==(yl)};2W==H}
+\hskip1cm
+\bzdrv{3==\dimethylene{1==S;2==S}{1W==(yl);2W==H}}
+\end{verbatim}
+generates the following formulas:
+\begin{center}
+\dimethylene{1==S;2==S}{1W==H;2W==H}
+\hskip4cm
+\dimethylene{1==S;2==S}{1W==\bzdrv{3==(yl)};2W==H}
+\hskip1cm
+\bzdrv{3==\dimethylene{1==S;2==S}{1W==(yl);2W==H}}
+\end{center}
+where the ATOMLIST is used to set two sulfur atoms in
+the dimethylene chain.
+
+The macro \verb/\dimethylenei/ is the inverse counterpart of
+\verb/\dimethylene/, where arguments ATOMLIST, SUBSLIST, and
+BONDLIST take such common formats as found in the
+definition of the latter (\textsf{methylen.sty}):
+\begin{verbatim}
+ \dimethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\begin{picture}(500,500)(0,0)
+\put(0,0){\dimethylenei{1==1;2==2}{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb}}
+\put(150,280){a}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (50,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+Note that the coodinate of position no.~1 is (50, 283),
+where 180 + 103 = 283.
+The following example shows a specification of the SUBSLIST.
+\begin{verbatim}
+\dimethylenei{}{1W==R$^{\prime}$;2W==R$^{\prime}$;1D==O;2==OH}
+\hskip3cm
+\dimethylenei{}{1W==R$^{\prime}$;%
+2Sa==R$^{\prime}$;2Sb==R$^{\prime\prime}$;1D==O;2W==OH}
+\end{verbatim}
+
+\begin{center}
+\dimethylenei{}{1W==R$^{\prime}$;2W==R$^{\prime}$;1D==O;2==OH}
+\hskip3cm
+\dimethylenei{}{1W==R$^{\prime}$;%
+2Sa==R$^{\prime}$;2Sb==R$^{\prime\prime}$;1D==O;2W==OH}
+\end{center}
+
+\section{Trimethylenes}
+
+The macros \verb/\trimethylene/ and \verb/\trimethylenei/
+and have two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}).
+%
+% \begin{verbatim}
+%
+% bbb
+% 2
+% a / ` b (or uppercase letters)
+% / `
+% 1 3
+% aaa ccc
+% \end{verbatim}
+%
+%
+\begin{verbatim}
+ \trimethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \trimethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\begin{picture}(600,500)(0,0)
+\put(0,0){\trimethylene{1==1;2==2;3==3}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa}}
+\put(100,250){a}
+\put(300,250){b}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (50,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\hskip2cm
+\begin{picture}(600,500)(0,0)
+\put(0,0){\trimethylenei{1==1;2==2;3==3}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa}}
+\put(150,250){a}
+\put(250,250){b}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (50,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\end{xymspec}
+
+\vskip1cm
+\noindent
+Examples:
+\begin{verbatim}
+\trimethylene[b]{}{1W==R$^{1}$;1==OH;2==R$^{2}$}
+\hskip2cm
+\trimethylene[a]{}{1W==R$^{1}$;2==R$^{2}$;3W==CHO}
+\hskip2cm
+\trimethylene[B]{}{2==\null;3W==COOEt;3==Br}
+\end{verbatim}
+\begin{center}
+\trimethylene[b]{}{1W==R$^{1}$;1==OH;2==R$^{2}$}
+\hskip2cm
+\trimethylene[a]{}{1W==R$^{1}$;2==R$^{2}$;3W==CHO}
+\hskip2cm
+\trimethylene[B]{}{2==\null;3W==COOEt;3==Br}
+\end{center}
+
+\vskip1cm
+\begin{verbatim}
+\trimethylenei{}{1W==\bzdrv{2==(yl);1==COOH;5==HO;6==HO};%
+3W==CHO;3SA==H;3SB==Me}
+\end{verbatim}
+\begin{center}
+\trimethylenei{}{1W==\bzdrv{2==(yl);1==COOH;5==HO;6==HO};%
+3W==CHO;3SA==H;3SB==Me}
+
+\vspace*{1cm}
+\end{center}
+
+\section{Tetramethylenes}
+
+The macros \verb/\tetramethylene/ and \verb/\tetramethylenei/
+have two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}).
+\begin{verbatim}
+ \tetramethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \tetramethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\vspace*{.5cm}
+\begin{picture}(600,500)(0,0)
+\put(0,0){\tetramethylene{1==1;2==2;3==3;4==4}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;4Sa==4Sa;%
+4Sb==\raise10pt\hbox{4Sb}}}
+\put(250,250){a}
+\put(450,250){b}
+\put(600,250){c}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\hskip3cm
+\begin{picture}(600,500)(0,0)
+\put(0,0){\tetramethylenei{1==1;2==2;3==3;4==4}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;4Sa==4Sa;%
+4Sb==\lower10pt\hbox{4Sb}}}
+\put(280,250){a}
+\put(400,250){b}
+\put(650,250){c}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+
+\vspace*{.5cm}
+\end{xymspec}
+
+\vskip1cm
+\noindent
+Examples:
+\begin{verbatim}
+\tetramethylenei{}{1W==Cl;1D==O;2B==Br;4W==Cl}
+\end{verbatim}
+\begin{center}
+\tetramethylenei{}{1W==Cl;1D==O;2B==Br;4W==Cl}
+
+\vspace*{.5cm}
+\end{center}
+
+
+\begin{verbatim}
+\tetramethylene{}{1W==TBDMS-O;2D==\null;3B==OH;%
+4W==\cyclohexanev[e]{6==(yl);3B==\null}}
+\end{verbatim}
+\begin{center}
+\tetramethylene{}{1W==TBDMS-O;2D==\null;3B==OH;%
+4W==\cyclohexanev[e]{6==(yl);3B==\null}}
+
+\vspace*{1cm}
+\end{center}
+
+\begin{verbatim}
+\tetramethylene[b]{}{1W==\bzdrv{5==\null;3==(yl)};4W==OH}
+\end{verbatim}
+\begin{center}
+\vspace*{.5cm}
+\tetramethylene[b]{}{1W==\bzdrv{5==\null;3==(yl)};4W==OH}
+\vspace*{1cm}
+\end{center}
+
+\section{Pentamethylenes}
+
+The macros \verb/\pentamethylene/ and \verb/\pentamethylenei/
+have two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}).
+\begin{verbatim}
+ \pentamethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \pentamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\vspace*{.5cm}
+\begin{picture}(600,500)(0,0)
+\put(0,0){\pentamethylene{1==1;2==2;3==3;4==4;5==5}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb}%
+}}
+\put(250,250){a}
+\put(450,250){b}
+\put(600,250){c}
+\put(800,250){d}
+\end{picture}
+\qquad\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\hskip2cm
+\begin{picture}(600,500)(0,0)
+\put(0,0){\pentamethylenei{1==1;2==2;3==3;4==4;5==5}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb}%
+}}
+\put(280,250){a}
+\put(400,250){b}
+\put(650,250){c}
+\put(750,250){d}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+
+\vspace*{.5cm}
+\end{xymspec}
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\pentamethylene{}{1W==AcO;2B==\null;4B==\null;5W==OH}
+\end{verbatim}
+\begin{center}
+\pentamethylene{}{1W==AcO;2B==\null;4B==\null;5W==OH}
+\end{center}
+
+\begin{verbatim}
+\pentamethylenei{}{1W==\fiveheterovi{2==N;5==O}{1D==O;2==(yl);3B==Bn};%
+1D==O;2A==OMe;3A==OH;5W==OTBDMS}
+\end{verbatim}
+\begin{center}
+\vspace*{.5cm}
+\pentamethylenei{}{1W==\fiveheterovi{2==N;5==O}{1D==O;2==(yl);3B==Bn};%
+1D==O;2A==OMe;3A==OH;5W==OTBDMS}
+
+\vspace*{.5cm}
+\end{center}
+
+
+\begin{verbatim}
+\pentamethylenei{1==S}{1W==\bzdrv{2==(yl);5==O$_{2}$N};%
+1D==O;3==Cl;5==COO$^{-}$;5W==NH$_{3}^{+}$}
+\end{verbatim}
+\begin{center}
+\vspace*{.5cm}
+\pentamethylenei{1==S}{1W==\bzdrv{2==(yl);5==O$_{2}$N};%
+1D==O;3==Cl;5==COO$^{-}$;5W==NH$_{3}^{+}$}
+
+\vspace*{.5cm}
+\end{center}
+
+\section{Hexamethylenes}
+
+The macros \verb/\hexamethylene/ and \verb/\hexamethylenei/
+have two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}).
+\begin{verbatim}
+ \hexamethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \hexamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\vspace*{.5cm}
+\begin{picture}(800,500)(0,0)
+\put(0,0){\hexamethylene{1==1;2==2;3==3;4==4;5==5;6==6}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb}%
+}}
+\put(250,250){a}
+\put(450,250){b}
+\put(600,250){c}
+\put(800,250){d}
+\put(950,250){e}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\hskip1cm
+\begin{picture}(850,500)(0,0)
+\put(0,0){\hexamethylenei{1==1;2==2;3==3;4==4;5==5;6==6}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb}%
+}}
+\put(280,250){a}
+\put(400,250){b}
+\put(650,250){c}
+\put(750,250){d}
+\put(1000,250){e}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+
+\vspace*{.5cm}
+\end{xymspec}
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\hexamethylene{}{2==\null;4D==O;6D==O;6W==OEt}
+\end{verbatim}
+\begin{center}
+\hexamethylene{}{2==\null;4D==O;6D==O;6W==OEt}
+\end{center}
+
+\begin{verbatim}
+\hexamethylene[a]{}{4B==OH;5B==NHBoc;6W==OTBDPS}
+\end{verbatim}
+\begin{center}
+\hexamethylene[a]{}{4B==OH;5B==NHBoc;6W==OTBDPS}
+\end{center}
+
+\begin{verbatim}
+\hexamethylene{}{1W==PhSO$_{2}$;1B==OMe;2A==OH;5D==\null;6W==SiMe$_{3}$}
+\end{verbatim}
+\begin{center}
+\hexamethylene{}{1W==PhSO$_{2}$;1B==OMe;2A==OH;5D==\null;6W==SiMe$_{3}$}
+\end{center}
+
+\begin{verbatim}
+\hexamethylenei[a]{}{1W==Ph;3B==\null;4A==OTBS;6D==O;6W==H}
+\end{verbatim}
+\begin{center}
+\hexamethylenei[a]{}{1W==Ph;3B==\null;4A==OTBS;6D==O;6W==H}
+\end{center}
+
+\section{Heptamethylenes}
+
+The macros \verb/\heptamethylene/ and \verb/\heptamethylenei/
+have two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}).
+\begin{verbatim}
+ \heptamethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \heptamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\vspace*{.5cm}
+\begin{picture}(1000,500)(0,0)
+\put(0,0){\heptamethylene{1==1;2==2;3==3;4==4;5==5;6==6;7==7}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb};%
+7Sa==7Sa;7Sb==\lower10pt\hbox{7Sb}%
+}}
+\put(250,250){a}
+\put(450,250){b}
+\put(600,250){c}
+\put(800,250){d}
+\put(950,250){e}
+\put(1150,250){f}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\hskip1cm
+\begin{picture}(1050,500)(0,0)
+\put(0,0){\heptamethylenei{1==1;2==2;3==3;4==4;5==5;6==6;7==7}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb};%
+7Sa==7Sa;7Sb==\raise10pt\hbox{7Sb}%
+}}
+\put(280,250){a}
+\put(400,250){b}
+\put(650,250){c}
+\put(750,250){d}
+\put(1000,250){e}
+\put(1100,250){f}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+
+\vspace*{.5cm}
+\end{xymspec}
+
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\heptamethylene[a]{}{1W==\cyclopentanevi[b]{3==(yl);5Sa==\null;5Sb==\null};%
+5D==O;6D==N$_{2}$}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\heptamethylene[a]{}{1W==\cyclopentanevi[b]{3==(yl);5Sa==\null;5Sb==\null};%
+5D==O;6D==N$_{2}$}
+
+\vspace*{1cm}
+\end{center}
+
+
+\begin{verbatim}
+\heptamethylenei{}{1W==\bzdrv{1==COOH;2==(yl);5==HO;6==HO};%
+3B==Me;4B==OH;5A==Me;6D==O;7A==Et;%
+7W==\fiveheterov{1==O}{5==(yl);5SB==H;4GB==Me;2GA==Et;%
+2Su==\sixheterovi{1==O}{6==(yl);6FA==H;3SB==OH;3SA==Et;2A==Me}}}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\heptamethylenei{}{1W==\bzdrv{1==COOH;2==(yl);5==HO;6==HO};%
+3B==Me;4B==OH;5A==Me;6D==O;7A==Et;%
+7W==\fiveheterov{1==O}{5==(yl);5SB==H;4GB==Me;2GA==Et;%
+2Su==\sixheterovi{1==O}{6==(yl);6FA==H;3SB==OH;3SA==Et;2A==Me}}}
+
+\vspace*{1cm}
+\end{center}
+
+
+\section{Octamethylenes}
+
+The macros \verb/\octamethylene/ and \verb/\octamethylenei/
+have two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}).
+\begin{verbatim}
+ \octamethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \octamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\vspace*{.5cm}
+\begin{picture}(1300,700)(0,0)
+\put(0,0){\octamethylene{1==1;2==2;3==3;4==4;5==5;6==6;7==7;8==8}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb};%
+7Sa==7Sa;7Sb==\lower10pt\hbox{7Sb};%
+8Sa==8Sa;8Sb==\raise10pt\hbox{8Sb}%
+}}
+\put(250,250){a}
+\put(450,250){b}
+\put(600,250){c}
+\put(800,250){d}
+\put(950,250){e}
+\put(1150,250){f}
+\put(1250,250){g}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\par
+\begin{picture}(1300,700)(0,0)
+\put(0,0){\octamethylenei{1==1;2==2;3==3;4==4;5==5;6==6;7==7;8==8}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb};%
+7Sa==7Sa;7Sb==\raise10pt\hbox{7Sb};%
+8Sa==8Sa;8Sb==\lower10pt\hbox{8Sb}%
+}}
+\put(280,250){a}
+\put(400,250){b}
+\put(650,250){c}
+\put(750,250){d}
+\put(1000,250){e}
+\put(1100,250){f}
+\put(1300,250){g}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+
+\vspace*{.5cm}
+\end{xymspec}
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\octamethylene[eg]{}{1W==HOHN;1D==O;4B==OBn}
+\end{verbatim}
+\begin{center}
+\octamethylene[eg]{}{1W==HOHN;1D==O;4B==OBn}
+\end{center}
+
+
+\begin{verbatim}
+\octamethylenei[af]{}{1W==Ph;3B==\null;4A==OH;8D==O;%
+8W==\ryl(4==NH){%
+5==\tetramethylene{3==O}{1==(yl);2D==O;4W==CCl$_{3}$;%
+1SA==\ryl{8==\bzdrv{1==(yl);3==Cl;4==OMe}}}}}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\octamethylenei[af]{}{1W==Ph;3B==\null;4A==OH;8D==O;%
+8W==\ryl(4==NH){%
+5==\tetramethylene{3==O}{1==(yl);2D==O;4W==CCl$_{3}$;%
+1SA==\ryl{8==\bzdrv{1==(yl);3==Cl;4==OMe}}}}}
+
+\vspace*{2cm}
+\end{center}
+
+
+\section{Nonamethylenes}
+
+The macros \verb/\nonamethylene/ and \verb/\nonamethylenei/
+have two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}).
+\begin{verbatim}
+ \nonamethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \nonamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\vspace*{.5cm}
+\begin{picture}(1500,700)(0,0)
+\put(0,0){\nonamethylene{1==1;2==2;3==3;4==4;5==5;6==6;7==7;8==8;9==9}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb};%
+7Sa==7Sa;7Sb==\lower10pt\hbox{7Sb};%
+8Sa==8Sa;8Sb==\raise10pt\hbox{8Sb};%
+9Sa==9Sa;9Sb==\lower10pt\hbox{9Sb}%
+}}
+\put(250,250){a}
+\put(450,250){b}
+\put(600,250){c}
+\put(800,250){d}
+\put(950,250){e}
+\put(1150,250){f}
+\put(1250,250){g}
+\put(1450,250){h}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\par
+\begin{picture}(1500,700)(0,0)
+\put(0,0){\nonamethylenei{1==1;2==2;3==3;4==4;5==5;6==6;7==7;8==8;9==9}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb};%
+7Sa==7Sa;7Sb==\raise10pt\hbox{7Sb};%
+8Sa==8Sa;8Sb==\lower10pt\hbox{8Sb};%
+9Sa==9Sa;9Sb==\raise10pt\hbox{9Sb}%
+}}
+\put(280,250){a}
+\put(400,250){b}
+\put(650,250){c}
+\put(750,250){d}
+\put(1000,250){e}
+\put(1100,250){f}
+\put(1300,250){g}
+\put(1450,250){h}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+
+\vspace*{.5cm}
+\end{xymspec}
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\nonamethylene[a]{}{6D==O;9W==COOEt;9==COOEt}
+\end{verbatim}
+\begin{center}
+\nonamethylene[a]{}{6D==O;9W==COOEt;9==COOEt}
+\end{center}
+
+\begin{verbatim}
+\nonamethylenei[a]{}{1W==Ph;4SB==\null;4SA==H;8==\null}
+\end{verbatim}
+\begin{center}
+\nonamethylenei[a]{}{1W==Ph;4SB==\null;4SA==H;8==\null}
+\end{center}
+
+
+\section{Decamethylenes}
+
+The macros \verb/\decamethylene/ and \verb/\decamethylenei/
+have two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}).
+\begin{verbatim}
+ \decamethylene[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \decamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\vspace*{.5cm}
+\begin{picture}(1700,700)(0,0)
+\put(0,0){\decamethylene{1==1;2==2;3==3;4==4;5==5;6==6;7==7;%
+8==8;9==9;{{10}}==10}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb};%
+7Sa==7Sa;7Sb==\lower10pt\hbox{7Sb};%
+8Sa==8Sa;8Sb==\raise10pt\hbox{8Sb};%
+9Sa==9Sa;9Sb==\lower10pt\hbox{9Sb};%
+{10}Sa==10Sa;{10}Sb==\raise10pt\hbox{10Sb}%
+}}
+\put(250,250){a}
+\put(450,250){b}
+\put(600,250){c}
+\put(800,250){d}
+\put(950,250){e}
+\put(1150,250){f}
+\put(1250,250){g}
+\put(1450,250){h}
+\put(1650,250){i}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\par
+\begin{picture}(1700,700)(0,0)
+\put(0,0){\decamethylenei{1==1;2==2;3==3;4==4;5==5;6==6;7==7;%
+8==8;9==9;{{10}}==10}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;%
+4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};%
+5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};%
+6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb};%
+7Sa==7Sa;7Sb==\raise10pt\hbox{7Sb};%
+8Sa==8Sa;8Sb==\lower10pt\hbox{8Sb};%
+9Sa==9Sa;9Sb==\raise10pt\hbox{9Sb};%
+{10}Sa==10Sa;{10}Sb==\lower10pt\hbox{10Sb}%
+}}
+\put(280,250){a}
+\put(400,250){b}
+\put(650,250){c}
+\put(750,250){d}
+\put(1000,250){e}
+\put(1100,250){f}
+\put(1300,250){g}
+\put(1450,250){h}
+\put(1650,250){i}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+
+\vspace*{.5cm}
+\end{xymspec}
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\decamethylene[acf]{}{9==OH}
+\end{verbatim}
+\begin{center}
+\decamethylene[acf]{}{9==OH}
+\end{center}
+
+\begin{verbatim}
+\decamethylenei[b]{}{1==\lmoiety{TBMSO};3==\null;4A==MeO;6A==OTBDMS;%
+9B==\null;{10}D==O;%
+{10}W==\ryl(4==O){5==\dimethylene{}{1==(yl);2D==O;2W==OMe}}}
+\end{verbatim}
+\begin{center}
+\decamethylenei[b]{}{1==\lmoiety{TBMSO};3==\null;4A==MeO;6A==OTBDMS;%
+9B==\null;{10}D==O;%
+{10}W==\ryl(4==O){5==\dimethylene{}{1==(yl);2D==O;2W==OMe}}}
+\end{center}
+
+\begin{verbatim}
+\decamethylenei[b]{}{1==\lmoiety{TBMSO};3==\null;4A==MeO;6A==OTBDMS;%
+9B==\null;{10}D==O;%
+{10}W==\trimethylenei{1==O}{1==(yl);3D==O;3W==OMe}}
+\end{verbatim}
+\begin{center}
+\decamethylenei[b]{}{1==\lmoiety{TBMSO};3==\null;4A==MeO;6A==OTBDMS;%
+9B==\null;{10}D==O;%
+{10}W==\trimethylenei{1==O}{1==(yl);3D==O;3W==OMe}}
+\end{center}
+
+\section{Longer Polymethylene Chains}
+
+A polymethylene chain longer than ten carbons
+should be written by combining two or more units
+selected from the above-mentioned di- to deca-methylenes.
+
+To do this task, we regard one unit
+as a substituent of another unit. In this method,
+the code for the former unit is written in the
+SUBSLIST of the code for the latter. For example, the code,
+\begin{verbatim}
+\decamethylene{}{9D==\null;%
+{10}W==\pentamethylene{}{1==(yl);3==\null;4==OBz}}
+\end{verbatim}
+generates the following formula:
+\begin{center}
+\decamethylene{}{9D==\null;%
+{10}W==\pentamethylene{}{1==(yl);3==\null;4==OBz}}
+\end{center}
+Alternatively, we regard one unit as a
+replacement part of another unit, where
+the code for the former unit is written in the
+BONDLIST of the code for the latter (see spiro compounds).
+The same formula with slightly different appearance
+can be typeset by the code,
+\begin{verbatim}
+\decamethylene{{10}s==\hexamethylenei{}{1==(yl);4==\null;5==OBz}%
+}{9D==\null}
+\end{verbatim}
+which gives
+\begin{center}
+\decamethylene{{10}s==\hexamethylenei{}{1==(yl);4==\null;5==OBz}%
+}{9D==\null}
+\end{center}
+
+\section{Cisoid Tetramethylenes}
+
+The macros \verb/\tetramethylenecup/ and \verb/\tetramethylenecap/
+have two arguments ATOMLIST and SUBSLIST
+as well as an optional argument BONDLIST (\textsf{methylen.sty}).
+\begin{verbatim}
+ \tetramethylenecup[BONDLIST]{ATOMLIST}{SUBSLIST}
+ \tetramethylenecap[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+The following diagram shows the numbering
+for designating substitution positions:
+\begin{xymspec}
+\vspace*{.5cm}
+\begin{picture}(600,500)(0,0)
+\put(0,0){\tetramethylenecup{1==1;2==2;3==3;4==4}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;4Sa==4Sa;4Sb==4Sb}}
+\put(300,250){a}
+\put(450,200){b}
+\put(600,250){c}
+\end{picture}
+\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+\hskip3cm
+\begin{picture}(600,500)(0,0)
+\put(0,0){\tetramethylenecap{1==1;2==2;3==3;4==4}%
+{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;%
+3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;4Sa==4Sa;4Sb==4Sb}}
+\put(200,250){a}
+\put(500,150){b}
+\put(650,250){c}
+\end{picture}
+\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\
+ $\bullet$: (\the\noshift,\the\noshift)}}
+
+\vspace*{.5cm}
+\end{xymspec}
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\tetramethylenecap[b]{1s==\dimethylenei{}{1W==HO;2==(yl)};%
+4s==\trimethylene{}{3W==CN;1==(yl)}}{}
+\end{verbatim}
+\begin{center}
+\tetramethylenecap[b]{1s==\dimethylenei{}{1W==HO;2==(yl)};%
+4s==\trimethylene{}{3W==CN;1==(yl)}}{}
+\end{center}
+
+\begin{verbatim}
+\cyclopentanevi{1D==O;4A==HO;%
+2A==\tetramethylenecup[b]{%
+4s==\trimethylenei{}{1==(yl);3W==COOMe}}{1==(yl)};%
+3B==\trimethylene[a]{}{1==(yl);3A==OH;3W==C$_{5}$H$_{11}$}}
+\end{verbatim}
+\begin{center}
+\cyclopentanevi{1D==O;4A==HO;%
+2A==\tetramethylenecup[b]{%
+4s==\trimethylenei{}{1==(yl);3W==COOMe}}{1==(yl)};%
+3B==\trimethylene[a]{}{1==(yl);3A==OH;3W==C$_{5}$H$_{11}$}}
+\end{center}
+
+\section{Ring Fusion to Polymethylenes}
+
+The BONDLIST of each ``methylene'' command can accept bond fusion.
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\nonamethylene[{h\threefusehi({cA}){3==O}{}{a}}]{}{1W==Me;1A==OH}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\nonamethylene[{h\threefusehi({cA}){3==O}{}{a}}]{}{1W==Me;1A==OH}
+
+\vspace*{1cm}
+\end{center}
+
+\begin{verbatim}
+\tetramethylenecup[{b\threefusev({aB}{cB}){1==O}{}{B}}]%
+{}{1D==O;1W==H$_{2}$N;4D==O;4W==nC$_{8}$H$_{17}$}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\tetramethylenecup[{b\threefusev({aB}{cB}){1==O}{}{B}}]%
+{}{1D==O;1W==H$_{2}$N;4D==O;4W==nC$_{8}$H$_{17}$}
+
+\vspace*{1cm}
+\end{center}
+
+
+\begin{verbatim}
+\pentamethylenei[{c\threefusehi({bA}{cA}){3==O}{}{a}}]{}{1W==Ph;5W==OH}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\pentamethylenei[{c\threefusehi({bA}{cA}){3==O}{}{a}}]{}{1W==Ph;5W==OH}
+
+\vspace*{1cm}
+\end{center}
+
+
+\section{Ring Replacement to Polymethylenes}
+
+
+The ATOMLIST of each ``methylene'' command can accept atom or
+ring replacement.
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\trimethylenei{3s==\fiveheterov{2==O;5==O}{1==(yl)}}{1W==PhSO$_{2}$;3W==R}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\trimethylenei{3s==\fiveheterov{2==O;5==O}{1==(yl)}}{1W==PhSO$_{2}$;3W==R}
+
+\vspace*{1cm}
+\end{center}
+
+
+\begin{verbatim}
+\tetramethylenecup[b]{%
+1s==\nonamethylenei{3s==\fiveheterov{2==O;5==O}{1==(yl)}}{9==(yl)};%
+4s==\ryl{5A==\sixheterovi{1==N}{1==Bn;%
+2B==\ryl{8==OBn};3A==OBn;6==(yl)}}}{}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\tetramethylenecup[b]{%
+1s==\nonamethylenei{3s==\fiveheterov{2==O;5==O}{1==(yl)}}{9==(yl)};%
+4s==\ryl{5A==\sixheterovi{1==N}{1==Bn;%
+2B==\ryl{8==OBn};3A==OBn;6==(yl)}}}{}
+
+\vspace*{1cm}
+\end{center}
+
+\begin{verbatim}
+\tetramethylene{%
+2s==\sixheterovi{2==O;6==O}{4Sa==\null;4Sb==\null;1==(yl)};%
+4s==\ryl{5B==\cyclohexanev[d]{6==(yl);1A==\null;%
+5==\Utrigonal{0==C;1D==O;2==(yl);3==H}}}}{}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\tetramethylene{%
+2s==\sixheterovi{2==O;6==O}{4Sa==\null;4Sb==\null;1==(yl)};%
+4s==\ryl{5B==\cyclohexanev[d]{6==(yl);1A==\null;%
+5==\Utrigonal{0==C;1D==O;2==(yl);3==H}}}}{}
+
+\vspace*{1cm}
+\end{center}
+
+\section{Branched Chains}
+
+Branched chains can be drawn by using a ``methylene'' command
+with the ``yl''-function.
+
+\vskip1cm
+\noindent
+Examples:\nobreak
+\begin{verbatim}
+\decamethylene[bf]{}{%
+2==\dimethylene{}{1==(yl)};6==\dimethylene{}{1==(yl)};%
+{10}W==OH;{{10}}==\null}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\decamethylene[bf]{}{%
+2==\dimethylene{}{1==(yl)};6==\dimethylene{}{1==(yl)};%
+{10}W==OH;{{10}}==\null}
+
+\vspace*{1cm}
+\end{center}
+
+\begin{verbatim}
+\tetramethylene{}{1W==BuO;1D==O;4W==OTBDPS;%
+2==\dimethylene{}{1==(yl);2D==O;2W==H}}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\tetramethylene{}{1W==BuO;1D==O;4W==OTBDPS;%
+2==\dimethylene{}{1==(yl);2D==O;2W==H}}
+
+\vspace*{1cm}
+\end{center}
+
+
+\begin{verbatim}
+\octamethylene[bd]{}{1W==MEMO;%
+6==\tetramethylenei[a]{}{4==(yl);1W==EtOCO}}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\octamethylene[bd]{}{1W==MEMO;%
+6==\tetramethylenei[a]{}{4==(yl);1W==EtOCO}}
+
+\vspace*{1cm}
+\end{center}
+
+
+\chapter{Enhanced Functions of Commands for General Use}
+
+\section{Expanded Format}
+
+Commands for general use, e.g. \verb/\sixheterov/, have originally
+taken a comman format:
+\begin{verbatim}
+\genCOM[BONDLIST]{ATOMLIST}{SUBSLIST}
+\end{verbatim}
+where \verb/\genCOM/ represents a command name such as
+\verb/\sixheterov/. In \XyMTeX{} version 2.00,
+we add a top optional argument SKBONDLIST
+to treat stereochemical information as well as
+an end optional argument OMIT to treat a bond-deleted skeleton.
+Thus, the expanded format of each command for general use
+is represented by
+\begin{verbatim}
+\genCOM(SKBONDLIST)[BONDLIST]{ATOMLIST}{SUBSLIST}[OMIT]
+\end{verbatim}
+The argument SKBONDLIST contains pairs of two alphabets in braces,
+where each pair consists of a bond specifier (a lowercase letter)
+and an uppercase letter (A or B).
+The letter A represents an $\alpha$ (downward) bond,
+while B represents a $\beta$ (upward) bond. For example,
+an SKBONDLIST, \verb/({aA}{cB})/, represents that
+bond `a' is an $\alpha$ bond in a dotted form and
+that bond `c' is a $\beta$ bond in a boldfaced form.
+The argument OMIT is a list of bond specifiers, each of
+which designates a bond to be deleted. As a matter of course,
+SKBONDLIST and OMIT take no common bond specifiers.
+
+\section{Boldfaced and Dotted Bonds}
+
+The following example shows that
+the \verb/\sixheterov/ command takes an optional SKBONDLIST,
+\verb/({eB})/, which typesets a boldfaced bond at `e' in
+the resulting tetrahydropyran ring.
+\begin{verbatim}
+\sixheterov({eB}){6==O}{1D==O;2A==\null;4A==\null;%
+5==\tetramethylenei{}{1W==HO;1D==O;2B==\null;3B==OH;4B==\null;4==(yl)}}
+\end{verbatim}
+\begin{center}
+\sixheterov({eB}){6==O}{1D==O;2A==\null;4A==\null;%
+5==\tetramethylenei{}{1W==HO;1D==O;2B==\null;3B==OH;4B==\null;4==(yl)}}
+\end{center}
+This is an example of the substitution technique in which
+the side-chain is based on \verb/\tetramethylenei/ written in the
+SUBSLIST of the outer \verb/\sixheterov/ command.
+
+The same structural formula can alternatively drawn by
+means of the replacement technique, in which
+the BONDLIST of the \verb/\sixheterov/ command is used
+for specifying the side-chain. Thus, the code,
+\begin{verbatim}
+\sixheterov({eB}){6==O;%
+5s==\pentamethylenei{}{1W==HO;1D==O;2B==\null;3B==OH;4B==\null;5==(yl)}%
+}{1D==O;2A==\null;4A==\null}
+\end{verbatim}
+generates the following formula:
+\begin{center}
+\sixheterov({eB}){6==O;%
+5s==\pentamethylenei{}{1W==HO;1D==O;2B==\null;3B==OH;4B==\null;5==(yl)}%
+}{1D==O;2A==\null;4A==\null}
+\end{center}
+
+We have further examples in which the \verb/\sixheterov/ command
+takes an optional SKBONDLIST.
+The following two examples show the comparison between
+the substitution and the replacement technique,
+giving formulas of chemically equivalence with
+slightly different bond lengthes.
+\begin{verbatim}
+\sixheterov({bA}{eB}){3==O;5==O}{1A==Me;4Sa==\null;4Sb==\null;%
+6==\hexamethylene{}{1W==MeS;1==Cl;3B==OMe;4B==Me;5A==OAc;6A==Me;6==(yl)};
+2==\hexamethylenei[bd]{}{1==(yl);1B==Me;5==COOMe}}
+\end{verbatim}
+\begin{center}
+\sixheterov({bA}{eB}){3==O;5==O}{1A==Me;4Sa==\null;4Sb==\null;%
+6==\hexamethylene{}{1W==MeS;1==Cl;3B==OMe;4B==Me;5A==OAc;6A==Me;6==(yl)};
+2==\hexamethylenei[bd]{}{1==(yl);1B==Me;5==COOMe}}
+\end{center}
+
+
+\begin{verbatim}
+\sixheterov({bA}{eB}){3==O;5==O;%
+6s==\heptamethylene{}{1W==MeS;1==Cl;3B==OMe;4B==Me;5A==OAc;6A==Me;7==(yl)};
+2s==\heptamethylene[ce]{}{1==(yl);2B==Me;6==COOMe}%
+}{1A==Me;4Sa==\null;4Sb==\null}
+\end{verbatim}
+\begin{center}
+\sixheterov({bA}{eB}){3==O;5==O;%
+6s==\heptamethylene{}{1W==MeS;1==Cl;3B==OMe;4B==Me;5A==OAc;6A==Me;7==(yl)};
+2s==\heptamethylene[ce]{}{1==(yl);2B==Me;6==COOMe}%
+}{1A==Me;4Sa==\null;4Sb==\null}
+\end{center}
+
+The following structure shows the use of SKBONDLIST in
+drawing a spiro ring.
+
+\begin{verbatim}
+\sixheterov[be]{%
+1s==\fiveheterov({aA}{eB}){4==N}%
+{4==PhCH$_{2}$OCO;3SB==H;3SA==COOCH$_{2}$Ph;5D==O;1==(yl)}%
+}{4D==O}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\sixheterov[be]{%
+1s==\fiveheterov({aA}{eB}){4==N}%
+{4==PhCH$_{2}$OCO;3SB==H;3SA==COOCH$_{2}$Ph;5D==O;1==(yl)}%
+}{4D==O}
+\end{center}
+
+\section{Bond Deletion}
+
+The OMIT argument of each command for general use is used
+to draw a large ring. The following example is
+a simple case in which one bond is deleted:
+\begin{verbatim}
+\decaheterov{9==O}{4==O;8D==O;5==CH$_{3}$}[k]
+\end{verbatim}
+\begin{center}
+\decaheterov{9==O}{4==O;8D==O;5==CH$_{3}$}[k]
+\end{center}
+
+The absence and presence of the OMIT argument
+give different formulas as follows.
+\begin{verbatim}
+\decaheterov[{k\threefuseh{}{}{b}}]{}{}
+\decaheterov[{k\threefuseh{}{}{b}}]{}{}[k]
+\end{verbatim}
+\begin{center}
+\decaheterov[{k\threefuseh{}{}{b}}]{}{}
+\decaheterov[{k\threefuseh{}{}{b}}]{}{}[k]
+\end{center}
+
+A complicated case contains a ring fusion as follows.
+First, the code
+\begin{verbatim}
+\decaheterov[cegi]{2==\null}{6==MeO;8==OMe;1D==O}[b]
+\end{verbatim}
+generates the follwing formula:
+\begin{center}
+\decaheterov[cegi]{2==\null}{6==MeO;8==OMe;1D==O}[b]
+\end{center}
+where \verb/[b]/ indicates the deletion of bond `b'.
+A similar mechanism is also available in a fusing unit,
+\verb/\sixunitv/. The code,
+\begin{verbatim}
+\sixfusev{6==O}{}{E}[b]
+\end{verbatim}
+generates a formula:
+\begin{center}
+\sixfusev{6==O}{}{E}[b]
+
+\vspace*{2cm}
+\end{center}
+where bond `e' is deleted by means of the FUSE argument (E)
+and bond `b' is deleted by means of the OMIT argument (b).
+Finally, we have the structural formula of zearalenone:
+\begin{verbatim}
+\decaheterov[cegi%
+{b\sixfusev[%
+{b\sixfusev{}{3D==O}{E}}%
+]{6==O}{}{E}[b]}%
+]{2==\null%
+}{6==MeO;8==OMe;1D==O}[b]
+\end{verbatim}
+\begin{center}
+\decaheterov[cegi%
+{b\sixfusev[%
+{b\sixfusev{}{3D==O}{E}}%
+]{6==O}{}{E}[b]}%
+]{2==\null%
+}{6==MeO;8==OMe;1D==O}[b]
+\end{center}
+
+Intermediates for steroid synthesis via intermolecular
+cycloadditions of $o$-quinodimethane derivatives
+(Kametani, et al. {\em J. Org. Chem.}, 1980, {\bf 45}, 2204;
+Grieco, et al. {\em J. Org. Chem.}, 1980, {\bf 45}, 2247)
+can be drawn by the bond deletion of \verb/\decaheterov/ and
+\verb/\nonaheterov/.
+\begin{verbatim}
+\decaheterov({jA}{dB}){%
+2s==\fourhetero[{b\sixfusev[ace]{}{2==OMe}{e}}]%
+{}{1==(yl)}%
+}{6B==HO;9A==H;{10}B==\null;1D==\null}[a]
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\decaheterov({jA}{dB}){%
+2s==\fourhetero[{b\sixfusev[ace]{}{2==OMe}{e}}]%
+{}{1==(yl)}%
+}{6B==HO;9A==H;{10}B==\null;1D==\null}[a]
+\end{center}
+
+
+\begin{verbatim}
+\nonaheterov({dA}{hB}){%
+6s==\fourhetero[%
+{d\sixfusev[bdf]{}{5==MeO}{b}}]%
+{}{3==(yl)}%
+}{3B==OH;8B==\null;7D==\null;9A==H}[g]
+\end{verbatim}
+\begin{center}
+\nonaheterov({dA}{hB}){%
+6s==\fourhetero[%
+{d\sixfusev[bdf]{}{5==MeO}{b}}]%
+{}{3==(yl)}%
+}{3B==OH;8B==\null;7D==\null;9A==H}[g]
+
+\vspace*{1cm}
+\end{center}
+
+A remarkable merit of using a skeleton with deleted bonds
+appears in drawing a starting compound with an acyclic part
+along with the resulting product via cyclization,
+since their codes are akin to each other.
+\begin{verbatim}
+\decaheterov[{4+}%
+{c\fivefusevi[e]{5==\null}{4D==O}{E}}%
+]{4==N}{1D==\null;9B==H;{10}B==H}[ab]
+\hskip2cm
+\decaheterov[%
+{c\fivefusevi{5==\null}{4D==O}{E}}%
+]{4==N}{1B==OCHO;9B==H;{10}B==H;3FA==H}
+\end{verbatim}
+\begin{center}
+\decaheterov[{4+}%
+{c\fivefusevi[e]{5==\null}{4D==O}{E}}%
+]{4==N}{1D==\null;9B==H;{10}B==H}[ab]
+\hskip2cm
+\decaheterov[%
+{c\fivefusevi{5==\null}{4D==O}{E}}%
+]{4==N}{1B==OCHO;9B==H;{10}B==H;3FA==H}
+
+\vspace*{1cm}
+\end{center}
+The latter compound was obtained by
+the cyclization of the former
+(D. J. Hart, et al., {\em J. Am. Chem. Soc.}, 1980, {\bf 102},
+397).
+
+Some polymethylene chains are drawn in a folded form.
+The bond-deletion technique can be applied to
+drawing such folded formulas.
+
+\begin{verbatim}
+\sixheterov{%
+3s==\fiveheterovi{1==O;4==O}{5==(yl)};%
+6s==\dimethylenei{}{1D==\null;2==(yl)};%
+5s==\trimethylenei{}{1W==EtO;1D==O;3==(yl)}%
+}{}[e]
+\end{verbatim}
+\begin{center}
+\sixheterov{%
+3s==\fiveheterovi{1==O;4==O}{5==(yl)};%
+6s==\dimethylenei{}{1D==\null;2==(yl)};%
+5s==\trimethylenei{}{1W==EtO;1D==O;3==(yl)}%
+}{}[e]
+\end{center}
+
+The following formula, which is an intermediate for
+synthesizing steroid skeletons, can also been
+drawn by this technique.
+
+\begin{verbatim}
+\decaheterov[k%
+{f\fivefusevi{2==\null;5==O}{}{A}}%
+{a\sixfusev[d%
+{b\fivefusevi[d%
+{a\sixfusev{%
+3s==\trimethylenei[a]{}{1==(yl);2==\null}%
+}{6==\null}{D}[c]}%
+]{}{}{D}}%
+]{}{3G==\null}{D}[c]}%
+]{5==O}{{10}Sb==\null;2G==\null}[ej]
+\end{verbatim}
+\begin{center}
+\vspace*{2cm}
+\decaheterov[k%
+{f\fivefusevi{2==\null;5==O}{}{A}}%
+{a\sixfusev[d%
+{b\fivefusevi[d%
+{a\sixfusev{%
+3s==\trimethylenei[a]{}{1==(yl);2==\null}%
+}{6==\null}{D}[c]}%
+]{}{}{D}}%
+]{}{3G==\null}{D}[c]}%
+]{5==O}{{10}Sb==\null;2G==\null}[ej]
+\end{center}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\chapter{Enhanced Functions of Commands for Ring Fusion}
+
+\section{Expanded Format}
+
+Commands for ring fusion, e.g. \verb/\sixfusev/, have originally
+taken a comman format (version 1.02 not released):
+\begin{verbatim}
+\fuseCOM[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
+\end{verbatim}
+where \verb/\fuseCOM/ represents a command name such as
+\verb/\sixfusev/. In \XyMTeX{} version 2.00,
+we add a top optional argument SKBONDLIST
+to treat stereochemical information as well as
+an end optional argument OMIT to treat a bond-deleted skeleton.
+Thus, the expanded format of each command for general use
+is represented by
+\begin{verbatim}
+\fuseCOM(SKBONDLIST)[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}[OMIT]
+\end{verbatim}
+The argument SKBONDLIST contains pairs of two alphabets in braces,
+where (1) each pair consists of a bond specifier (a lowercase letter)
+and an uppercase letter (A or B); and (2) the letter A represents
+an $\alpha$ (downward) bond,
+while B represents a $\beta$ (upward) bond.
+The argument OMIT is a list of bond specifiers, each of
+which designates a bond to be deleted. As a matter of course,
+SKBONDLIST takes no common bond specifiers with FUSE and OMIT.
+
+\section{Boldfaced and Dotted Bonds}
+
+The first example shows that the command
+\verb/\fivefusev/ with a SKBONDLIST
+generates a formula with dotted bonds at fused positions.
+\begin{verbatim}
+\nonaheterov[%
+{e\fivefusev({bA}{eA}){5==O}{3B==\null;4D==O}{A}}%
+]{1==N}{1==COOMe;8A==H;9B==H;%
+6B==\trimethylene[a]{}{3==(yl)};%
+7A==\dimethylene{}{2==(yl);1==OH}}
+\end{verbatim}
+\begin{center}
+\vspace*{1cm}
+\nonaheterov[%
+{e\fivefusev({bA}{eA}){5==O}{3B==\null;4D==O}{A}}%
+]{1==N}{1==COOMe;8A==H;9B==H;%
+6B==\trimethylene[a]{}{3==(yl)};%
+7A==\dimethylene{}{2==(yl);1==OH}}
+
+\vspace*{1cm}
+\end{center}
+
+The next example shows the use of the SKBONDLISTS of
+\verb/\threefuseh/ and \verb/\fivefusevi/
+to indicate stereochemical information.
+\begin{verbatim}
+\sixheterov[%
+{b\threefuseh({aA}{cA}){1==O}{}{B}}%
+{d\fivefusevi({bB}{eB}){3==N;5==O}{3==BOM;4D==O}{A}}%
+]{1==O}{6A==PMPO-CH$_{2}$}
+\end{verbatim}
+\begin{center}
+\sixheterov[%
+{b\threefuseh({aA}{cA}){1==O}{}{B}}%
+{d\fivefusevi({bB}{eB}){3==N;5==O}{3==BOM;4D==O}{A}}%
+]{1==O}{6A==PMPO-CH$_{2}$}
+\end{center}
+
+\section{Bond Deletion}
+\subsection{Larger Rings from Two or More Three-Membered Rings}
+To draw a fused four-membered ring, we can
+use two \verb/\threefuseh(i)/ commands in a nested fashion.
+Four example, the code
+\begin{verbatim}
+\threefusehi[{b\threefuseh{1==O}{}{b}}]{}{}{c}[b]%
+\end{verbatim}
+generates a four-membered unit:
+\begin{center}
+\threefusehi[{b\threefuseh{1==O}{}{b}}]{}{}{c}[b]%
+
+\vspace*{1cm}
+\end{center}
+The resulting unit is used to draw a four-membered
+fused ring, as shown below:
+\begin{verbatim}
+\sixheterov[%
+{c\threefusehi[{b\threefuseh{1==O}{}{b}}%
+]{}{}{c}[b]}%
+]{}{}
+\end{verbatim}
+\begin{center}
+\sixheterov[%
+{c\threefusehi[{b\threefuseh{1==O}{}{b}}%
+]{}{}{c}[b]}%
+]{}{}
+\end{center}
+
+In a similar way,
+a five-membered fusing usit can be drawn
+by combining three \verb/\threefuseh(i)/ commands,
+as shown in the following example:
+\begin{verbatim}
+\decaheterov[%
+{d\threefuseh[%
+{a\threefusehi[%
+{a\threefuseh{1==\null;3==\null}{2D==O}{c}}%
+]{2==O;1==\null}{}{c}[a]}%
+]{2==O}{}{C}[a]}%
+]{}{}
+\end{verbatim}
+\begin{center}
+\decaheterov[%
+{d\threefuseh[%
+{a\threefusehi[%
+{a\threefuseh{1==\null;3==\null}{2D==O}{c}}%
+]{2==O;1==\null}{}{c}[a]}%
+]{2==O}{}{C}[a]}%
+]{}{}
+
+\vspace*{1cm}
+\end{center}
+
+\subsection{Further Rings}
+
+A six-membered ring fused by a four-membered unit
+gives an eight-membered ring as follows:
+\begin{verbatim}
+\sixheterov[{b\fourfuse{}{}{d}}]{}{}[b]
+\end{verbatim}
+\begin{center}
+\sixheterov[{b\fourfuse{}{}{d}}]{}{}[b]
+\end{center}
+The bond `b' of the four-membered unit in
+the resulting ring is deleted and used
+as an acceptor ring of a six-membered fusing
+unit. Then, we have a twelve-membered ring:
+\begin{verbatim}
+\sixheterov[{b\fourfuse[{b\sixfusev{}{}{e}}]{}{}{d}[b]}]{}{}[b]
+\end{verbatim}
+\begin{center}
+\sixheterov[{b\fourfuse[{b\sixfusev{}{}{e}}]{}{}{d}[b]}]{}{}[b]
+\end{center}
+After applying the bond-deletion technique to the
+twelve-membered ring, this is used as an acceptor of
+a five-membered fusing unit. Then we have a
+fifteen-membered ring:
+\begin{verbatim}
+\sixheterov[{b\fourfuse[{b\sixfusev[%
+{b\fivefusev{}{}{d}}%
+]{}{}{e}[b]}]{}{}{d}[b]}]{}{}[b]
+\end{verbatim}
+\begin{center}
+\sixheterov[{b\fourfuse[{b\sixfusev[%
+{b\fivefusev{}{}{d}}%
+]{}{}{e}[b]}]{}{}{d}[b]}]{}{}[b]
+\end{center}
+A further fusion of a six-membered unit gives
+a ninteen-membered ring:
+\begin{verbatim}
+\sixheterov[{b\fourfuse[{b\sixfusev[%
+{b\fivefusev[%
+{a\sixfusev{}{}{f}}%
+]{}{}{d}[a]}%
+]{}{}{e}[b]}]{}{}{d}[b]}]{}{}[b]
+\end{verbatim}
+\begin{center}
+\sixheterov[{b\fourfuse[{b\sixfusev[%
+{b\fivefusev[%
+{a\sixfusev{}{}{f}}%
+]{}{}{d}[a]}%
+]{}{}{e}[b]}]{}{}{d}[b]}]{}{}[b]
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\chapter{Reaction Schemes}
+\section{Compound Numbers}
+
+\begingroup
+%%%%%%%%%%%%%%%
+\makeatletter
+\def\DeclareMathVersion#1{}
+\def\SetSymbolFont#1#2#3#4#5#6{}
+\@@input chemist.sty
+\makeatother
+%%%%%%%%%%%%%%%
+
+The XyMcompd environment has two functions:
+\begin{enumerate}
+\itemsep=0pt \parskip=0pt
+\item for giving a compound number and specifying a reference key and
+\item for specifyin the size of a domain to draw a structural formula.
+\end{enumerate}
+For example, the code:
+\begin{verbatim}
+\begin{XyMcompd}(400,750)(220,200){cPhCL}{}
+\bzdrv{1==Cl}
+\end{XyMcompd}
+\end{verbatim}
+produces the following formula,
+\begin{center}
+\begin{XyMcompd}(400,750)(220,200){cPhCL}{}
+\bzdrv{1==Cl}
+\end{XyMcompd}
+\end{center}
+The compound number (\cref{cPhCL}) can be referred to
+by designating \verb/\cref{cPhCL}/.
+The code \verb/(400,750)/ specifies the size of
+the drawing domain and the code \verb/(220,200)/ represents
+x- and y-shift values.
+When the XyMcompd environment is
+surrounded by a frame generated by the \verb/\fbox/ command,
+we obtain the following diagram:
+\begin{center}
+\fbox{%
+\begin{XyMcompd}(400,750)(220,200){c1PhCL}{}
+\bzdrv{1==Cl}
+\end{XyMcompd}}
+\end{center}
+The original \verb/\bzdrv/ command
+has a domain to accomodate substituents as follows:
+\begin{center}
+\fbox{\bzdrv{1==Cl}}
+\end{center}
+If such adjustment and cross-reference are unnecessary,
+we write the code:
+\begin{verbatim}
+\begin{XyMcompd}(,)(,){}{}
+\sixheterov{1==S;4==S}{}
+\end{XyMcompd}
+\end{verbatim}
+Thereby, we obtain the formula of the original
+specification:
+\begin{center}
+\begin{XyMcompd}(,)(,){}{}
+\sixheterov{1==S;4==S}{}
+\end{XyMcompd}
+\end{center}
+which is the same formula generated by the code:
+\begin{verbatim}
+\sixheterov{1==S;4==S}{}
+\end{verbatim}
+The last argument of the XyMcompd environment is
+to specify the subnumber of a compound number.
+For example, the code:
+\begin{verbatim}
+\begin{XyMcompd}(400,750)(220,200){PhF}{a}
+\bzdrv{1==F}
+\end{XyMcompd}
+\end{verbatim}
+produces the following formula,
+\begin{center}
+\begin{XyMcompd}(400,750)(220,200){PhF}{a}
+\bzdrv{1==F}
+\end{XyMcompd}
+\end{center}
+
+Derivatives of a compound
+numbered in the XyMderiv environment
+are designated by
+subnumbering using a \verb/\derivlist/ command
+in the XyMderiv environment.
+For example, the code:
+\begin{verbatim}
+\begin{XyMderiv}
+\begin{XyMcompd}(400,750)(220,200){PhX}{}
+\bzdrv{1==X}
+\end{XyMcompd}
+\derivlist{X = Cl;X = NO$_{2}$;X = F}
+\end{XyMderiv}
+\end{verbatim}
+produces the following formula:
+\begin{center}
+\begin{XyMderiv}
+\begin{XyMcompd}(400,750)(220,200){PhX}{}
+\bzdrv{1==X}
+\end{XyMcompd}
+\derivlist{X = Cl;X = NO$_{2}$;X = F}
+\end{XyMderiv}
+\end{center}
+
+\section{Reaction Arrows}
+
+In addition of the reaction arrows described in
+Ref.\ \cite{fujita2}, we have added
+further reaction arrows shown in Fig.\ \ref{FFA1KKKR}.
+They are defined in the package {\sf chemist.sty}.
+Each arrow command is the following format:
+\begin{verbatim}
+\ARROWNAME[xshift]{yshift}{length}{itemover}{itemunder}
+\end{verbatim}
+where \verb/\ARROWNAME/ represents a command name;
+\verb/xshift/ is an optional argument to show a
+horizontal adjustment value;
+\verb/yshift/ is an argument to show a vertical adjustment value;
+\verb/length/ is an argument to desiginate the length of the arrow;
+and the arguments
+\verb/itemover/ and \verb/itemunder/
+represent items placed over and under the arrow.
+The name (\verb/\ARROWNAME/) of each reaction arrow take the format of
+\verb/\react/$\ldots$\verb/arrow/ in which $\ldots$
+is selected from the following list:
+r = right arrow, l = left arrow, lr = leftright arrow,
+d = down arrow, u = up arrow, du = down up arrow,
+eq = equilibium arrow, veq = vertical equiliblium arrow,
+deq = down equiliblium arrow, leq = up equilibium arrow,
+dlr = down leftright arrow, ulr = up leftright arrow,
+sw = southwest arrow, se = southeast arrow,
+nw = northwest arrow, and ne = northeast arrow.
+
+\begin{figure}
+\begin{center}
+\begin{center}\begin{tabular}{ccccccccc}
+(r) &
+\hskip0\unitlength
+\reactrarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(l) &
+\hskip0\unitlength
+\reactlarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(d) &
+\hskip0\unitlength
+\reactdarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(u) &
+\hskip0\unitlength
+\reactuarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&\\(sw) &
+\hskip0\unitlength
+\reactswarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(se)&
+\hskip0\unitlength
+\reactsearrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(nw) &
+\hskip0\unitlength
+\reactnwarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(ne) &
+\hskip0\unitlength
+\reactnearrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&\\(du)&
+\hskip0\unitlength
+\reactduarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(lr) &
+\hskip0\unitlength
+\reactlrarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(ulr)&
+\hskip0\unitlength
+\reactulrarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(dlr)&
+\hskip0\unitlength
+\reactdlrarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&\\(eq) &
+\hskip0\unitlength
+\reacteqarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(ueq) &
+\hskip0\unitlength
+\reactueqarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(deq)&
+\hskip0\unitlength
+\reactdeqarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(veq) &
+\hskip0\unitlength
+\reactveqarrow{0\unitlength}{400\unitlength}
+{\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&\\\end{tabular}\end{center}\end{center}
+\def\tblref{FFA1KKKR}
+\caption{Reaction arrows of various types}
+\label{\expandafter\tblref}
+\end{figure}
+
+\section{Display Formulas and Tabular Schemes}
+
+Display formulas containing structural formulas and
+reaction arrows are
+drawn by using the equation environment of \LaTeX{} or
+the chemeqn environment of the {\sf chemist} package.
+For example, the code,
+\begin{verbatim}
+\begin{equation}\label{EQ1}
+\begin{XyMcompd}(400,750)(220,200){BPHOH}{}
+\bzdrv{1==OH}
+\end{XyMcompd}
+\reactrarrow[10\unitlength]{60\unitlength}{500\unitlength}
+{CH\mbox{$_{3}$}OH\\}{HCl\\}
+\begin{XyMcompd}(400,750)(220,200){PHOME}{}
+\bzdrv{1==OCH\mbox{$_{3}$}}
+\end{XyMcompd}
+\end{equation}
+\end{verbatim}
+produces the following display formula:
+\begin{equation}\label{EQ1}
+\begin{XyMcompd}(400,750)(220,200){AAPHOH}{}
+\bzdrv{1==OH}
+\end{XyMcompd}
+\reactrarrow[10\unitlength]{60\unitlength}{500\unitlength}
+{CH\mbox{$_{3}$}OH\\}{HCl\\}
+\begin{XyMcompd}(400,750)(220,200){PHOME}{}
+\bzdrv{1==OCH\mbox{$_{3}$}}
+\end{XyMcompd}
+\end{equation}
+
+Tabular schemes containing structural formulas and
+reaction arrows are drawn by using
+the XyMtab environment of the {\sf chemist} package.
+For example, the code,
+\begin{verbatim}
+\begin{XyMtab}{cccccc}
+\begin{XyMcompd}(400,750)(220,200){AAPHCL}{}
+\bzdrv{{1}==Cl;}
+\end{XyMcompd}
+&
+\reactrarrow[10\unitlength]{60\unitlength}{600\unitlength}
+{\strut{}H\mbox{$_{2}$}O\\}{\strut{}High press.\\}&
+%
+\begin{XyMcompd}(400,750)(220,200){AAPHOH}{}
+\bzdrv{{1}==OH;}
+\end{XyMcompd}
+&
+\reactrarrow[10\unitlength]{60\unitlength}{500\unitlength}
+{\strut{}CH\mbox{$_{3}$}I\\}{\strut{}NaOH\\}&
+%
+\begin{XyMcompd}(400,750)(220,200){AAPHOME}{}
+\bzdrv{{1}==OCH\mbox{$_{3}$};}
+\end{XyMcompd}
+%
+&\\&&&
+\reactswarrow[0\unitlength]{300\unitlength}{400\unitlength}
+{\strut{}HNO\mbox{$_{3}$}\\}{\strut{}}&
+%
+\begin{XyMcompd}(400,850)(220,0){APHNO2}{}
+\bzdrv{{1}==OH;{4}==NO\mbox{$_{2}$};}
+\end{XyMcompd}
+&\\
+\end{XyMtab}
+\end{verbatim}
+generates a tabular scheme as follows:
+\begin{XyMtab}{cccccc}
+\begin{XyMcompd}(400,750)(220,200){AAPHCL}{}
+\bzdrv{{1}==Cl;}
+\end{XyMcompd}
+&
+\reactrarrow[10\unitlength]{60\unitlength}{600\unitlength}
+{\strut{}H\mbox{$_{2}$}O\\}{\strut{}High press.\\}&
+%
+\begin{XyMcompd}(400,750)(220,200){AAPHOH}{}
+\bzdrv{{1}==OH;}
+\end{XyMcompd}
+&
+\reactrarrow[10\unitlength]{60\unitlength}{500\unitlength}
+{\strut{}CH\mbox{$_{3}$}I\\}{\strut{}NaOH\\}&
+%
+\begin{XyMcompd}(400,750)(220,200){AAPHOME}{}
+\bzdrv{{1}==OCH\mbox{$_{3}$};}
+\end{XyMcompd}
+%
+&\\&&&
+\reactswarrow[0\unitlength]{300\unitlength}{400\unitlength}
+{\strut{}HNO\mbox{$_{3}$}\\}{\strut{}}&
+%
+\begin{XyMcompd}(400,850)(220,0){APHNO2}{}
+\bzdrv{{1}==OH;{4}==NO\mbox{$_{2}$};}
+\end{XyMcompd}
+&\\
+\end{XyMtab}
+
+
+\endgroup
+
+
+
+
+\begin{thebibliography}{99}
+
+\bibitem{fujita2a} NIFTY-Serve achives,
+FPRINT library No. 7, Item Nos. 201, 202, 204.
+\bibitem{fujita2b} CTAN,
+tex-archive/macros/latex209/contrib/xymtex/.
+\bibitem{fujita1} Fujita S., ``Typesetting structural formulas with
+the text formatter \TeX{}/\LaTeX{}'',
+{\em Comput. Chem.}, {\bf 18}, 109 (1994).
+\bibitem{fujita1a} Fujita S., ``\XyMTeX{} for Drawing Chemical
+Structural Formulas'',
+{\em TUGboat}, {\bf 16} (1), 80 (1995).
+\bibitem{lamport2}
+Lamport L., {\em \LaTeX{}. A document Preparation System},
+2nd ed. for \LaTeXe{}, Addison-Wesley, Reading (1994).
+See also
+Lamport L., {\em \LaTeX{}. A document Preparation System},
+Addison-Wesley, Reading (1986).
+\bibitem{goossens}
+Goossens, M., Mittelbach, F., \& Samarin, A.,
+{\em The \LaTeX{} Companion},
+Addison-Wesley, Reading (1994).
+\bibitem{fujita2c} NIFTY-Serve achives,
+FPRINT library No. 7, Item Nos. 385, 386.
+\bibitem{fujita2d}
+http://www.chem.kit.ac.jp/fujita/fujitas/fujita.html
+\bibitem{XyMTeXbook}
+Fujita, S., {\em \XyMTeX{}---Typesetting Chemical Structural
+Formulas}, Addison-Wesley, Tokyo (1997).
+The book title is abbreviated as ``\XyMTeX book'' in
+the present manual.
+\bibitem{knuth}
+For the \TeX{} system, see
+ Knuth D. E., {\em The \TeX{}book},
+Addison-Wesley, Reading (1984).
+\bibitem{haas}
+For the Chem\TeX{} macros, see
+ Haas R. T. \& O'Kane K. C., {\em Comput. Chem.}, {\bf 11}, 251 (1987).
+\bibitem{ramek}
+For drawing chemical formulas by \TeX{}, see
+Ramek, M., in Clark, M. (ed), \TeX: Applications, Uses, Methods,
+Ellis Horwood, London (1990), p. 277.
+\bibitem{fujita2}
+For chemical application of the \LaTeX{} system, see
+Fujita S., {\em Kagakusha-Seikagakusha no tame no
+\LaTeX{} (\LaTeX{} for Chemists and Biochemists)},
+Tokyo Kagaku Dozin, Tokyo (1993).
+\bibitem{podar}
+For epic macros, see
+Podar S., ``Enhancements to the picture environment
+of \LaTeX{}'', Manual for Version 1.2 dated July 14, 1986.
+\bibitem{graphic}
+For graphic applications of \TeX{}, \LaTeX{} and relevant systems,
+see Goossens, M., Rahtz, S., \& Mittelbach, F.,
+{\em \LaTeX{} Graphics Companion},
+Addison Wesley Longman, Reading (1997).
+\end{thebibliography}
+
+\endinput
+
+\begin{verbatim}
+\end{verbatim}
+\begin{center}
+\end{center}
+
+ \ No newline at end of file