diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/stex/example/paper/paper.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/stex/example/paper/paper.tex | 149 |
1 files changed, 149 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/stex/example/paper/paper.tex b/Master/texmf-dist/doc/latex/stex/example/paper/paper.tex new file mode 100644 index 00000000000..5451a828f20 --- /dev/null +++ b/Master/texmf-dist/doc/latex/stex/example/paper/paper.tex @@ -0,0 +1,149 @@ +\documentclass{omdoc} +\usepackage[showmods]{stex} +\usepackage{amssymb} +\usepackage{alltt} +\usepackage{hyperref} +\usepackage{listings} +\def\omdoc{OMDoc} +\def\latexml{LaTeXML} +\defpath{backmods}{../background} +%% defining the author metadata +\WAperson[id=miko, + affiliation=JUB, + url=http://kwarc.info/kohlhase] + {Michael Kohlhase} +\WAinstitution[id=JUB, + url=http://jacobs-university.de, + streetaddress={Campus Ring 1}, + townzip={28759 Bremen}, + countryshort=D, + country=Germany, + type=University, + acronym=JACU, + shortname=Jacobs Univ.] + {Jacobs University Bremen} + +\begin{document} + +% metadata and title page +% \begin{DCmetadata}[maketitle] +% \DCMcreators{miko} +% \DCMrights{Copyright (c) 2009 Michael Kohlhase} +% \DCMtitle{An example of semantic Markup in {\sTeX}} +% \DCMabstract{In this note we give an example of semantic markup in {\sTeX}: +% Continuous and differentiable functions are introduced using real numbers, sets and +% functions as an assumed background.} +% \end{DCmetadata} + +\inputref{intro} + +\begin{omgroup}[id=sec.math]{Mathematical Content} + \begin{omgroup}{Calculus} + We present some standard mathematical definitions, here from calculus. + \inputref{continuous} + \inputref{differentiable} +\end{omgroup} + +\begin{omgroup}[id=sec.math]{A Theory Graph for Elementary Algebra} + Here we show an example for more advanced theory graph manipulations, in particular + imports via morphisms. + +\begin{module}[id=magma] + \importmodule[\backmods{functions}]{functions} + \symdef{magbase}{G} + \symdef[name=magmaop]{magmaopOp}{\circ} + \symdef{magmaop}[2]{\infix\magmaopOp{#1}{#2}} + \begin{definition}[id=magma.def] + A \defi{magma} is a structure $\tup{\magbase,\magmaopOp}$, such that $\magbase$ is + closed under the operation $\fun\magmaopOp{\cart{\magbase,\magbase}}\magbase$. + \end{definition} +\end{module} + +\begin{module}[id=semigroup] + \importmodule{magma} + \begin{definition}[id=semigroup.def] + A \trefi[magma]{magma} $\tup{\magbase,\magmaopOp}$, is called a \defi{semigroup}, iff + $\magmaopOp$ is associative. + \end{definition} +\end{module} + +\begin{module}[id=monoid] + \importmodule{semigroup} + \symdef{monneut}{e} + \symdef{noneut}[1]{#1^*} + \begin{definition}[id=monoid.def] + A \defi{monoid} is a structure $\tup{\magbase,\magmaopOp,\monneut}$, such that + $\tup{\magbase,\magmaopOp}$ is a \trefi[semigroup]{semigroup} and $\monneut$ is a + \defii{neutral}{element}, i.e. that $\magmaop{x}\monneut=x$ for all $\inset{x}\magbase$. + \end{definition} + + \begin{definition}[id=noneut.def] + In a monoid $\tup{\magbase,\magmaopOp,\monneut}$, we use denote the set + $\setst{\inset{x}S}{x\ne\monneut}$ with $\noneut{S}$. + \end{definition} +\end{module} + +\begin{module}[id=group] + \importmodule{monoid} + \symdef{ginvOp}{i} + \symdef{ginv}[1]{\prefix\ginvOp{#1}} + \begin{definition}[id=group.def] + A \defi{group} is a structure $\tup{\magbase,\magmaopOp,\monneut,\ginvOp}$, such that + $\tup{\magbase,\magmaopOp,\monneut}$ is a \trefi[monoid]{monoid} and $\ginvOp$ acts as + a \defi{inverse}, i.e. that $\magmaop{x}{\ginv{x}}=\monneut$ for all + $\inset{x}\magbase$. + \end{definition} +\end{module} + +\begin{module}[id=cgroup] +\importmodule{group} +\begin{definition}[id=cgroup.def] + We call a \trefi[group]{group} $\tup{\magbase,\magmaopOp,\monneut,\ginvOp}$ a + \defii{commutative}{group}, iff $\magmaopOp$ is commutative. +\end{definition} +\end{module} + +\begin{module}[id=ring] +\symdef{rbase}{R} +\symdef[name=rtimes]{rtimesOp}{\cdot} +\symdef{rtimes}[2]{\infix\rtimesOp{#1}{#2}} +\symdef{rone}{1} +\begin{importmodulevia}{monoid} + \vassign{rbase}\magbase + \vassign{rtimesOp}\magmaopOp + \vassign{rone}\monneut +\end{importmodulevia} +\symdef[name=rplus]{rplusOp}{+} +\symdef{rplus}[2]{\infix\rplusOp{#1}{#2}} +\symdef{rzero}{0} +\symdef[name=rminus]{rminusOp}{-} +\symdef{rminus}[1]{\prefix\rminusOp{#1}} +\begin{importmodulevia}{cgroup} + \vassign{rplus}\magmaopOp + \vassign{rzero}\monneut + \vassign{rminusOp}\ginvOp +\end{importmodulevia} +\begin{definition} + A \defi{ring} is a structure $\tup{\rbase,\rplusOp,\rzero,\rtimesOp,\rone,\rminusOp}$, + such that $\tup{\noneut\rbase,\rtimesOp,\rone}$ is a monoid and + $\tup{\rbase,\rplusOp,\rzero,\rminusOp}$ is a commutative group. +\end{definition} +\end{module} +\end{omgroup} +\end{omgroup} + +\begin{omgroup}[id=concl]{Conclusion} + In this note we have given an example of standard mathematical markup and shown how a a + {\sTeX} collection can be set up for automation. +\end{omgroup} +\bibliographystyle{alpha} +\bibliography{kwarc} +\end{document} + +%%% Local Variables: +%%% mode: LaTeX +%%% TeX-master: t +%%% End: + +% LocalWords: miko Makefiles tex contfuncs modf sms pdflatex latexml Makefile +% LocalWords: latexmlpost omdoc STEXDIR BUTFILES DIRS |