diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/rubik')
-rw-r--r-- | Master/texmf-dist/doc/latex/rubik/rubikrotation.pl | 1033 |
1 files changed, 0 insertions, 1033 deletions
diff --git a/Master/texmf-dist/doc/latex/rubik/rubikrotation.pl b/Master/texmf-dist/doc/latex/rubik/rubikrotation.pl deleted file mode 100644 index c09baffa5cc..00000000000 --- a/Master/texmf-dist/doc/latex/rubik/rubikrotation.pl +++ /dev/null @@ -1,1033 +0,0 @@ -#!/usr/bin/perl -W -## rubikrotation.pl (version2.0) -##============================= -# Copyright 20 January 2014 RWD Nickalls and A Syropoulos -# -# This file is part of the LaTeX rubikrotation package, and -# requires rubikcube.sty and rubikrotation.sty -# -# rubikrotation.pl is a Perl-5 program and free software: -# you can redistribute it and/or modify -# it under the terms of the GNU General Public License as published by -# the Free Software Foundation, either version 3 of the License, or -# any later version. -# -# rubikrotation.pl is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. -##============================= - -##--------------------------------------------------------------------- -## OVERVIEW -## This program is part of the rubikrotation package, and is complementary to -## the LaTeX rubikcube package. It processes Rubik rotation sequences on-the-fly. -## The program reads a datafile (rubikstate.dat) output by the rubikcube package -## and writes the new state to the file rubikstateNEW.dat, which is then input -## by the TeX file. Further documentation accompanies the rubikrotation package. - -## Note that all posible state changing rotations of a 3x3x3 cube are -## either conbinations of, or the inverse of, just 9 different rotations, -## three associated with each XYZ axis. -##-------------------------------------------------- - -##=============main=================================================== - -## This main module opens three files, and -## sets up an array for collecting all errors (%error), and sets an error flag to "", -## reads in the rubik state data file =rubikstate.dat (output by TeXfile), -## and calls subs to write the TeX_OUT_FILE, -## and finally closes all files. -## Each line of the input file consists of a comma separated list of arguments. -## The first argument in each line of the file rubikstate.dat is the rubikkeyword. -## Program is documented in the rubikrotation.pdf (see section ``Overview'') - -### start by opening the three working files (last one ``for append'') - - open (IN_FILE, "<rubikstate.dat")||die "ERROR: can't open file rubikstate.dat\n"; - open (TeX_OUT_FILE, ">rubikstateNEW.dat")||die "ERROR: can't open file rubikstateNEW.dat\n"; - open (ERROR_OUT_FILE, ">>rubikstateERRORS.dat")||die "ERROR: can't open file rubikstateERRORS,dat\n"; - - ## use dots for Perl messages (I have used dashes for LaTeX messages in the .sty) - ## gprint sub prints its argument (message) to both the screen and to the TeX_OUT_FILE - - gprint ("...PERL process..................................."); - -## setup global error parameters, so we can write all the errors to a file as an array -%error = (); # setup an array for error messages (was %) -$erroralert = ""; # error flag -$errornumber = 0; #set number of errors to zero - - gprint ("...reading the current rubik state (rubikstate.dat)"); - - LINE: while (<IN_FILE>){ - next LINE if /^#/; #skip comments - next LINE if /^%/; #skip comments - next LINE if /^$/; #skip blank lines - $dataline = $_; # grab the whole line as a string - chomp $dataline; # remove the line-ending characters - #$n++; # count the number of lines - @data=split (/,/, $dataline); # create an array called data - ## we have 10 fields (0--9) - ## check for rubikkeyword= up,down,left,right,front,back,rotation, checkstate: - gprint ("...$dataline"); - $rubikkeyword=$data[0]; - - if ($rubikkeyword eq 'up') { - $Ult[0]=$data[1], $Umt[0]=$data[2],$Urt[0]=$data[3], - $Ulm[0]=$data[4], $Umm[0]=$data[5],$Urm[0]=$data[6], - $Ulb[0]=$data[7], $Umb[0]=$data[8],$Urb[0]=$data[9] - } - - if ($rubikkeyword eq 'down') { - $Dlt[0]=$data[1], $Dmt[0]=$data[2],$Drt[0]=$data[3], - $Dlm[0]=$data[4], $Dmm[0]=$data[5],$Drm[0]=$data[6], - $Dlb[0]=$data[7], $Dmb[0]=$data[8],$Drb[0]=$data[9] - } - if ($rubikkeyword eq 'left') { - $Llt[0]=$data[1], $Lmt[0]=$data[2],$Lrt[0]=$data[3], - $Llm[0]=$data[4], $Lmm[0]=$data[5],$Lrm[0]=$data[6], - $Llb[0]=$data[7], $Lmb[0]=$data[8],$Lrb[0]=$data[9] - } - if ($rubikkeyword eq 'right') { - $Rlt[0]=$data[1], $Rmt[0]=$data[2],$Rrt[0]=$data[3], - $Rlm[0]=$data[4], $Rmm[0]=$data[5],$Rrm[0]=$data[6], - $Rlb[0]=$data[7], $Rmb[0]=$data[8],$Rrb[0]=$data[9] - } - - if ($rubikkeyword eq 'front') { - $Flt[0]=$data[1], $Fmt[0]=$data[2],$Frt[0]=$data[3], - $Flm[0]=$data[4], $Fmm[0]=$data[5],$Frm[0]=$data[6], - $Flb[0]=$data[7], $Fmb[0]=$data[8],$Frb[0]=$data[9] - } - if ($rubikkeyword eq 'back') { - $Blt[0]=$data[1], $Bmt[0]=$data[2],$Brt[0]=$data[3], - $Blm[0]=$data[4], $Bmm[0]=$data[5],$Brm[0]=$data[6], - $Blb[0]=$data[7], $Bmb[0]=$data[8],$Brb[0]=$data[9] - } - -## if the rubikkeyword is `checkstate' we just check the -## state and write the output data to a file. - if ($rubikkeyword eq 'checkstate') { - gprint ("..."); - $rotationcommand=$dataline; ## used in output message - gprint ("...command=$rotationcommand"); - checkstate(); - }; - -## if the rubikkeyword is `rotation' we first check to see if the second argument=random. -## if so, then we check that the third argument is an integer, if so --> random sub -## else --> exit line and get next line. -## finally we write the output data to a file. - - if ($rubikkeyword eq 'rotation') - { - gprint ("..."); - $rotationcommand=$dataline; ## used in output message - gprint ("...command=$rotationcommand"); - - - ## if second argument = random, - ## then we also need to check if third argument is an integer; - ## if so -->random sub. - ## if the 3rd argument is NOT an integer then reject line & get next input line - if ($data[1] eq 'random') - { - if ($data[2] =~/\D/) { - errormessage("[$data[2]] not an integer"); - ## we reject the whole line and look at next line in the file - next - } - else{ - ## data[2] must be an integer (n), so we just do n random rotations - random($data[2]) - }; - } - else { - # the line must be an ordinary rotation sequence line, so send the sequence - # to the rotation sub, BUT, need to first remove the - # rubikkeyword `rotation' from the begining of line (array) - # as we need to send ONLY the sequence string to the rotation sub. - shift (@data); - rotation(@data); - } - } - - }; - - ## we have finished reading in all the lines from the rubikstate.dat file, - ## and doing all the rotations etc, so we now just write the new cube state - ## to the output file = TeX_OUT_FILE (so LaTeX can read it) - writestate(); - close; ##close all files - exit; -##==============end of main========================== - -##=============================subs==================== - -sub errormessage{ -## writes the argument as a standard error message to out file - my $errormess = $_[0]; - $erroralert = "YES"; ## set error alert flag (for use in out message) - $error[$errornumber] = "** ERROR: $errormess"; - $errornumber++; ## increment number -}; - -##====================================== -## prints argument (comments) to screen and also to TeX_OUT_FILE (= rubikstateNEW.dat). -## The typeout commands will find its way into the log file when read by latex -## Important to include trailing % for messages written to the TeX_OUT_FILE -## to stop extra <spaces> being seen by TeX. -sub gprint{ - my $gmess=$_[0]; - print "$gmess\n"; - print (TeX_OUT_FILE "\\typeout{$gmess}\%\n"); - }; -##======================================== - - -sub checkstate{ -### simple check to see if wrong no of colours being used etc -### uses the cubie colours as used by rubikcube package= ROYGBWX - - gprint ("...checking state of cube"); - - my @cubies=($Ult[0],$Umt[0],$Urt[0], $Ulm[0],$Umm[0],$Urm[0], $Ulb[0],$Umb[0],$Urb[0], - $Dlt[0],$Dmt[0],$Drt[0], $Dlm[0],$Dmm[0],$Drm[0], $Dlb[0],$Dmb[0],$Drb[0], - $Llt[0],$Lmt[0],$Lrt[0], $Llm[0],$Lmm[0],$Lrm[0], $Llb[0],$Lmb[0],$Lrb[0], - $Rlt[0],$Rmt[0],$Rrt[0], $Rlm[0],$Rmm[0],$Rrm[0], $Rlb[0],$Rmb[0],$Rrb[0], - $Flt[0],$Fmt[0],$Frt[0], $Flm[0],$Fmm[0],$Frm[0], $Flb[0],$Fmb[0],$Frb[0], - $Blt[0],$Bmt[0],$Brt[0], $Blm[0],$Bmm[0],$Brm[0], $Blb[0],$Bmb[0],$Brb[0]); - -my $R=0,my $O=0,my $Y=0,my $G=0,my $B=0,my $W=0,my $X=0; - -foreach $cubiecolour (@cubies) - { - if ($cubiecolour eq R) {$R = $R+1} - elsif ($cubiecolour eq O) {$O = $O+1} - elsif ($cubiecolour eq Y) {$Y = $Y+1} - elsif ($cubiecolour eq G) {$G = $G+1} - elsif ($cubiecolour eq B) {$B = $B+1} - elsif ($cubiecolour eq W) {$W = $W+1} - elsif ($cubiecolour eq X) {$X = $X+1} - else {print " cubiecolour counting ERROR \n";} - }; -my $cubiesum=0; -$cubiesum = $R+$O+$Y+$G+$B+$W+$X; -gprint ("...cubiesum = $cubiesum (Red=$R, Or=$O, Ye=$Y, Gr=$G, Bl=$B, Wh=$W, X=$X)"); - -if ($cubiesum != 54) { errormessage("cubiesum not = 54")}; -if ($R >9){ errormessage("No of Red cubies > 9 (=$R)")}; -if ($O >9){ errormessage("No of Orange cubies > 9 (=$O)")}; -if ($Y >9){ errormessage("No of Yellow cubies > 9 (=$Y)")}; -if ($G >9){ errormessage("No of Green cubies > 9 (=$G)")}; -if ($B >9){ errormessage("No of Blue cubies > 9 (=$B)")}; -if ($W >9){ errormessage("No of White cubies > 9 (=$W)")}; -}; - -##==================================================== - -# no of arguments passed to the sub = $#_ (black book p 156) - - sub rotation { -## here we process an array (from main) consisting of all -## the rotation commands associated with -## a single RubikRotation command. - - my $m; #multiple associated with the char, eg D2 etc - my $n = ($#_ +1); ##total no of arguments passed - my $originalchar=""; - my $j; - my $numberofchars; ## length of a string - - gprint ("...arguments passed to `rotation' sub = @_ (n= $n)"); - foreach $char (@_) { - $char =~s/^\s+//, $char=~s/\s+$//; ## clean leading and trailing white space - ## grab a copy of the original char for use if m Mod4=0 - $originalchar=$char; - - ## if argument has a leading * then it is a label (not a rotation) so jump to next one - if (substr ($char,0,1) eq "*"){ - gprint ("...$char is a label OK"); - next; - }; - - ## Need to detect any trailing integer associated with a command (eg rotation multiple, eg:U3, L2 etc) - ## NOTES: since we are using mod4, we are only interested in trailing digit - ## if trailing character is a digit, then - ## split char string into front chars (= $char) + trailing digit (= $m) - $m = 1; # initialise m - - ## if terminal char is a digit (d) then d --> m and let frontstring --> char - ## (Black book p 130 & 136) - ## if the frontstring contains any digits then it will be rejected in the filter below anyway. - - if ( substr ($char,-1) =~ /(\d)/) - { - $m = $1; ## grab the trailing digit (only traps a single digit) - $numberofchars = 0; #initialise it - $numberofchars = length $originalchar; - $nfrontchars = $numberofchars-1; - ## reassign the string except the terminal digit - $char = substr($char,0,$nfrontchars); - ## use MOD 4 since we are dealing with Rubik rotations - $m = $m % 4; - ## (if MOD 4 = 0 then nothing will happen as j starts at 1) - ## but should generate an errormessage - if ( $m == 0 ){ - gprint ("...rotation $originalchar equiv 0 MOD 4 (NOT IMPLEMENTED)"); - errormessage ("[$originalchar] in RubikRotation (= 0 MOD 4)"); - next; - }; - }; - ## if single trailing digit present, then we implement the rotation command m times. - ## if more than one trailing digit - ## then the error is trapped at the end (as frontstring will not be recognised - ## ie will not be in the following list, and hence will be trapped as an error, eg R3) - ## - if ($char eq "R") {for($j=1;$j<=$m;$j++) { gprint ("...rotation R OK"); &rrR}} - elsif ($char eq "Rp") {for($j=1;$j<=$m;$j++) { gprint ("...rotation Rp OK (= rrR3)"); &rrRp}} - elsif ($char eq "Rw") {for($j=1;$j<=$m;$j++) { gprint ("...rotation Rw OK (= rrR + rrSr)"); &rrRw}} - elsif ($char eq "Rwp") {for($j=1;$j<=$m;$j++) { gprint ("...rotation Rwp OK (= rrRp + rrSrp)"); &rrRwp}} - elsif ($char eq "Rs") {for($j=1;$j<=$m;$j++) { gprint ("...rotation Rs OK (= rrR + rrLp)"); &rrRs}} - elsif ($char eq "Rsp") {for($j=1;$j<=$m;$j++) { gprint ("...rotation Rsp OK (= rrRp + rrL)"); &rrRsp}} - elsif ($char eq "Ra") {for($j=1;$j<=$m;$j++) { gprint ("...rotation Ra OK (= rrR + rrL)"); &rrRa}} - elsif ($char eq "Rap") {for($j=1;$j<=$m;$j++) { gprint ("...rotation Rap OK (= rrRp + rrLp)"); &rrRap}} - #### - elsif ($char eq "L") {for($j=1;$j<=$m;$j++) {gprint ("...rotation L OK (= rrLp3)"); &rrL}} - elsif ($char eq "Lp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Lp OK"); &rrLp}} - elsif ($char eq "Lw") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Lw OK (= rrLp3 + rrSrp)"); &rrLw}} - elsif ($char eq "Lwp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Lwp OK (= rrLp + rrSr)"); &rrLwp}} - elsif ($char eq "Ls") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Ls OK (= rrL + rrRp)"); &rrLs}} - elsif ($char eq "Lsp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Lsp OK (= rrLp + rrR)"); &rrLsp}} - elsif ($char eq "La") {for($j=1;$j<=$m;$j++) {gprint ("...rotation La OK (= rrL + rrR)"); &rrLa}} - elsif ($char eq "Lap") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Lap OK (= rrLp + rrRp)"); &rrLap}} - #### - elsif ($char eq "U") {for($j=1;$j<=$m;$j++) {gprint ("...rotation U OK"); &rrU}} - elsif ($char eq "Up") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Up OK (= rrU3)"); &rrUp}} - elsif ($char eq "Uw") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Uw OK (= rrU + rrSu)"); &rrUw}} - elsif ($char eq "Uwp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Uwp OK (= rrUp + rrSup)"); &rrUwp}} - elsif ($char eq "Us") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Us OK (= rrU + rrDp)"); &rrUs}} - elsif ($char eq "Usp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Usp OK (= rrUp + rrD)"); &rrUsp}} - elsif ($char eq "Ua") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Ua OK (= rrU + rrD)"); &rrUa}} - elsif ($char eq "Uap") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Uap OK (= rrUp + rrDp)"); &rrUap}} - #### - elsif ($char eq "D") {for($j=1;$j<=$m;$j++) {gprint ("...rotation D OK (= rrDp3)"); &rrD}} - elsif ($char eq "Dp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Dp OK "); &rrDp}} - elsif ($char eq "Dw") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Dw OK (= rrDp3 + rrSup)"); &rrDw}} - elsif ($char eq "Dwp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Dwp OK (= rrDp + rrSu)"); &rrDwp}} - elsif ($char eq "Ds") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Ds OK (= rrD + rrUp)"); &rrDs}} - elsif ($char eq "Dsp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Dsp OK (= rrDp + rrU)"); &rrDsp}} - elsif ($char eq "Da") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Da OK (= rrD + rrU)"); &rrDa}} - elsif ($char eq "Dap") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Dap OK (= rrDp + rrUp)"); &rrDap}} - #### - elsif ($char eq "F") {for($j=1;$j<=$m;$j++) {gprint ("...rotation F OK"); &rrF}} - elsif ($char eq "Fp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Fp OK (= rrF3)"); &rrFp}} - elsif ($char eq "Fw") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Fw OK (= rrF + rrSf)"); &rrFw}} - elsif ($char eq "Fwp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Fwp OK (= rrFp + rrSfp)"); &rrFwp}} - elsif ($char eq "Fs") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Fs OK (= rrF + rrBp)"); &rrFs}} - elsif ($char eq "Fsp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Fsp OK (= rrFp + rrB)"); &rrFsp}} - elsif ($char eq "Fa") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Fa OK (= rrF + rrB)"); &rrFa}} - elsif ($char eq "Fap") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Fap OK (= rrFp + rrBp)"); &rrFap}} - #### - elsif ($char eq "B") {for($j=1;$j<=$m;$j++) {gprint ("...rotation B OK (= rrFp3)"); &rrB}} - elsif ($char eq "Bp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Bp OK"); &rrBp}} - elsif ($char eq "Bw") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Bw OK (= rrFp3 + rrSfp)"); &rrBw}} - elsif ($char eq "Bwp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Bwp OK (= rrFp + rrSf)"); &rrBwp}} - elsif ($char eq "Bs") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Bs OK (= rrB + rrFp)"); &rrBs}} - elsif ($char eq "Bsp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Bsp OK (= rrBp + rrF)"); &rrBsp}} - elsif ($char eq "Ba") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Ba OK (= rrB + rrF)"); &rrBa}} - elsif ($char eq "Bap") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Bap OK (= rrBp + rrFp)"); &rrBap}} - #### - elsif ($char eq "Su") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Su OK "); &rrSu}} - elsif ($char eq "Sup") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Sup OK (= rrSu3)"); &rrSup}} - elsif ($char eq "Sd") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Sd OK (= rrSup)"); &rrSd}} - elsif ($char eq "Sdp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Sdp OK (= rrSu)"); &rrSdp}} - elsif ($char eq "Sl") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Sl OK (= rrSrp)"); &rrSl}} - elsif ($char eq "Slp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Slp OK (= rrSr)"); &rrSlp}} - elsif ($char eq "Sr") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Sr OK"); &rrSr}} - elsif ($char eq "Srp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Srp OK (= rrSr3)"); &rrSrp}} - elsif ($char eq "Sf") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Sf OK"); &rrSf}} - elsif ($char eq "Sfp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Sfp OK (= rrSf3)"); &rrSfp}} - elsif ($char eq "Sb") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Sb OK (= rrSfp)"); &rrSb}} - elsif ($char eq "Sbp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Sbp OK (= rrSf)"); &rrSbp}} - ## XYZ stuff - ## need to include lowercase x,y,x, and also u,d,l,r,f,b equivalents - elsif ($char eq "X" or $char eq "x" or $char eq "r") - {for($j=1;$j<=$m;$j++) {gprint ("...rotation $char OK (= rrR + rrSr + rrLp)"); &rrR;&rrSr;&rrLp}} - elsif ($char eq "Xp" or $char eq "xp" or $char eq "l") - {for($j=1;$j<=$m;$j++) {gprint ("...rotation $char OK (= rrRp + rrSrp + rrL)");&rrRp;&rrSrp;&rrL}} - elsif ($char eq "Y" or $char eq "y" or $char eq "u") - {for($j=1;$j<=$m;$j++) {gprint ("...rotation $char OK (= rrU + rrSu + rrDp)"); &rrU;&rrSu;&rrDp}} - elsif ($char eq "Yp" or $char eq "yp" or $char eq "d") - {for($j=1;$j<=$m;$j++) {gprint ("...rotation $char OK (= rrUp + rrSup + rrD)");&rrUp;&rrSup;&rrD}} - elsif ($char eq "Z" or $char eq "z" or $char eq "f") - {for($j=1;$j<=$m;$j++) {gprint ("...rotation $char OK (= rrF + rrSf + rrBp)"); &rrF;&rrSf;&rrBp}} - elsif ($char eq "Zp" or $char eq "zp" or $char eq "b") - {for($j=1;$j<=$m;$j++) {gprint ("...rotation $char OK (= rrFp + rrSfp + rrB)");&rrFp;&rrSfp;&rrB}} - ## extras - elsif ($char eq "M") {for($j=1;$j<=$m;$j++) {gprint ("...rotation M OK (= Sl) "); &rrSl}} - elsif ($char eq "Mp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Mp OK (= Sr) "); &rrSr}} - elsif ($char eq "E") {for($j=1;$j<=$m;$j++) {gprint ("...rotation E OK (= Sd) "); &rrSd}} - elsif ($char eq "Ep") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Ep OK (= Su) "); &rrSu}} - elsif ($char eq "S") {for($j=1;$j<=$m;$j++) {gprint ("...rotation S OK (= Sf) "); &rrSf}} - elsif ($char eq "Sp") {for($j=1;$j<=$m;$j++) {gprint ("...rotation Sp OK (= Sb) "); &rrSb}} - #### - else { - gprint ("...rotation $originalchar NOT KNOWN"); - errormessage("[$originalchar] in RubikRotation"); - }; - } - }; - -## aNOTE we only defined and determined 9 primary rotation transforms, -## rrR, rrSr, rrLp -## rrU, rrSu, rrDp -## rrF, rrSf, rrBp -## and since all the remaining ones are simply combinations of these 9 -## we now define all the other rotation subs in terms of these 9 primary moves. -## do NOT use multiples here: write each rotation separately -## ------------- -## derivative subs from R and Sr and Lp -sub rrRp{&rrR;&rrR;&rrR}; # (=rrR3) -sub rrRw{&rrR; &rrSr}; # (= rrR + rrSr) -sub rrRwp{&rrR;&rrR;&rrR; &rrSr;&rrSr;&rrSr}; # (= rrRp + rrSrp) -sub rrRs{&rrR;&rrLp}; -sub rrRsp{&rrRp;&rrL}; -sub rrRa{&rrR;&rrL}; -sub rrRap{&rrRp;&rrLp}; -#### -sub rrL{&rrLp;&rrLp;&rrLp}; # (= rrLp3) -sub rrLw{&rrLp;&rrLp;&rrLp;&rrSrp}; # (=rrLp3 + rrSrp) -sub rrLwp{&rrLp;&rrSr}; -sub rrLs{&rrL;&rrRp}; -sub rrLsp{&rrLp;&rrR}; -sub rrLa{&rrL;&rrR}; -sub rrLap{&rrLp;&rrRp}; -##------------- -## derivative subs from U -sub rrUp{&rrU;&rrU;&rrU}; # (=rrU3) -sub rrUw{&rrU;&rrSu}; # -sub rrUwp{&rrUp;&rrSup}; -sub rrUs{&rrU;&rrDp}; -sub rrUsp{&rrUp;&rrD}; -sub rrUa{&rrU;&rrD}; -sub rrUap{&rrUp;&rrDp}; -#### -sub rrD{&rrDp;&rrDp;&rrDp}; # (= rrDp3) -sub rrDw{&rrDp;&rrDp;&rrDp;&rrSup}; # (=rrDp3 + rrSup) -sub rrDwp{&rrDp;&rrSu}; -sub rrDs{&rrD;&rrUp}; -sub rrDsp{&rrDp;&rrU}; -sub rrDa{&rrD;&rrU}; -sub rrDap{&rrDp;&rrUp}; -##------------- -## derivative subs from F -sub rrFw{&rrF; &rrSf}; # (= rrF + rrSf) -sub rrFp{ &rrF;&rrF;&rrF}; # (=rrF3) -sub rrFwp{&rrF;&rrF;&rrF; &rrSf;&rrSf;&rrSf}; # (= rrF3 + rrSf3) -sub rrFs{&rrF;&rrBp}; -sub rrFsp{&rrFp;&rrB}; -sub rrFa{&rrF;&rrB}; -sub rrFap{&rrFp;&rrBp}; -#### -sub rrB{&rrBp;&rrBp;&rrBp}; # (= rrBp3) -sub rrBw{&rrBp;&rrBp;&rrBp; &rrSfp}; # (=rrBp3 + rrSfp) -sub rrBwp{&rrBp;&rrSf}; -sub rrBs{&rrB;&rrFp}; -sub rrBsp{&rrBp;&rrF}; -sub rrBa{&rrB;&rrF}; -sub rrBap{&rrBp;&rrFp}; -#### -## bring all the S versions together -sub rrSup{&rrSu;&rrSu;&rrSu}; # (=rrSu3) -sub rrSd{&rrSup}; # (=rrSup) -sub rrSdp{&rrSu}; # (=rrSu) -sub rrSl{&rrSrp}; # (=rrSrp) -sub rrSlp{&rrSr}; # (=rrSr) -sub rrSrp{&rrSr;&rrSr;&rrSr}; # (=rrSr3) -sub rrSfp{&rrSf;&rrSf;&rrSf}; # (=rrSf3) -sub rrSb{&rrSfp}; # (=rrSfp) -sub rrSbp{&rrSf}; # (=rrSf) - - -##========================================================== -# no of arguments passed to the sub = $#_ (black book p 156) -# parameters passed = $_[0] - -sub random{ -## scramble randomly using n rotations -## example command = RubikRotation{random,74} -## if no n given (second argument = ""), then use default n=50 -## if second argument is some string (not integer) then --> ERROR -## -## asign numbers to the minimal set of rotations to be used using a hash array list -## (perl 5 book page 68) -## ? maybe we should only use the 18 rotations mentioned in Rokicki 2013 paper? -## but here I have included all the S ones too. -@rrlist= ("U", "Up", "Su", "Sup", - "D", "Dp", "Sd", "Sdp", - "L", "Lp", "Sl", "Slp", - "R", "Rp", "Sr", "Srp", - "F", "Fp", "Sf", "Sfp", - "B", "Bp", "Sb", "Sbp"); - -my $rrlistnumber=$#rrlist; -print " rrlistnumber = $rrlistnumber\n"; -# these are numbered 0--$rrlistnumber, - -## let default no of random rotations for scrambling = 50 -my $defaultn = 50; -my $maxn = 200; -## grab the integer passed from the random() command in main -$s = $_[0]; -if ($s >= $maxn) {$s = $maxn; - gprint ("...WARNING: maximum n = 200")} - elsif ($s == 0) {$s = $defaultn; - gprint ("...WARNING: integer = 0 or not given: using default value 50")}; - - -my @rr; ## array to hold all the random rotations -print " randomising the available rotations\n"; - - -## set the seed for the randomisation (BlackBook p 235) -srand; - -## now select s numbers at random (with replacement) from range 0--listnumber+1 -## Since we are using int(rand x), and using nos from 0--lastindex number, -## then max rand vaue = (lastindexnumber -1).99999, the integer of which -## = (lastindexnumber -1). Therefore we need to use the range 0--(lastindexnumber+1) -## in order to randomise all posibilities on our list. - -for ($j = 1; $j <=$s; $j=$j+1) - { - $p= int(rand ($rrlistnumber +1)); - print "Rotation = $p, $rrlist[$p] \n"; - ## push rotation code $rrlist[$p] on to END of array @rr - push (@rr, $rrlist[$p]); - }; - - ## we assume the user is starting from a solved cube (ie use the state given by user) - gprint ("...scrambling Rubik cube using $s random rotations"); - ## now send the array off to the rotation sub - rotation(@rr); -} - -##===================subs================================== - - sub writestate{ -## this just writes the final state to the TeX_OUT_FILE (= rubikstateNEW) will be read by latex. - -print (TeX_OUT_FILE "\%\% file=rubikstateNEW.dat (Perl)\n"); -print (TeX_OUT_FILE "\\RubikFaceUp\{$Ult[0]\}\{$Umt[0]\}\{$Urt[0]\}\{$Ulm[0]\}\{$Umm[0]\}\{$Urm[0]\}\{$Ulb[0]\}\{$Umb[0]\}\{$Urb[0]\}\%\n"); -print (TeX_OUT_FILE "\\RubikFaceDown\{$Dlt[0]\}\{$Dmt[0]\}\{$Drt[0]\}\{$Dlm[0]\}\{$Dmm[0]\}\{$Drm[0]\}\{$Dlb[0]\}\{$Dmb[0]\}\{$Drb[0]\}\%\n"); -print (TeX_OUT_FILE "\\RubikFaceLeft\{$Llt[0]\}\{$Lmt[0]\}\{$Lrt[0]\}\{$Llm[0]\}\{$Lmm[0]\}\{$Lrm[0]\}\{$Llb[0]\}\{$Lmb[0]\}\{$Lrb[0]\}\%\n"); -print (TeX_OUT_FILE "\\RubikFaceRight\{$Rlt[0]\}\{$Rmt[0]\}\{$Rrt[0]\}\{$Rlm[0]\}\{$Rmm[0]\}\{$Rrm[0]\}\{$Rlb[0]\}\{$Rmb[0]\}\{$Rrb[0]\}\%\n"); -print (TeX_OUT_FILE "\\RubikFaceFront\{$Flt[0]\}\{$Fmt[0]\}\{$Frt[0]\}\{$Flm[0]\}\{$Fmm[0]\}\{$Frm[0]\}\{$Flb[0]\}\{$Fmb[0]\}\{$Frb[0]\}\%\n"); -print (TeX_OUT_FILE "\\RubikFaceBack\{$Blt[0]\}\{$Bmt[0]\}\{$Brt[0]\}\{$Blm[0]\}\{$Bmm[0]\}\{$Brm[0]\}\{$Blb[0]\}\{$Bmb[0]\}\{$Brb[0]\}\%\n"); -print (TeX_OUT_FILE "\\typeout{...writing new Rubik state to file rubikstateNEW.dat}\%\n"); - -## now include any error messages generated -## (these are all in an array waiting to be printed out) - -if ($erroralert eq "YES") - { - ## open a separate file just for errors (we append the errrors to end of file) - ## this file (rubikstate.cfg) was opened by the TeX file - my $ne; #number of errors - $ne=$#error; ## number of errors= largest index num since we started at zero - ### do not attach error to a <checkstate> command - if ($rotationcommand eq "checkstate") {} - else { - print (TeX_OUT_FILE "\\typeout{** ERROR: command=$rotationcommand}\%\n"); - print (ERROR_OUT_FILE "** ERROR: $rotationcommand\n"); - }; - ## last index number or array = $#arrayname (Black book p 62) - my $k; - for ($k=0; $k<=$ne; $k=$k+1) { - print (TeX_OUT_FILE "\\typeout{$error[$k]}\%\n"); - print (ERROR_OUT_FILE "$error[$k]\n"); - }; - }; -print " Perl output file written OK\n"; -} -##=========================================== - -##================================================ -## The following 9 (90 degree) rotation transformations are used -## to generate all the rotations used in the `rotation sub' -## each of these is a permutation for both colours and numbers -## of the cubie facelets. -## The following 9 subroutines are named as follows: -## (about X-axis) rrR, rrSr, rrLp -## (about Y-axis) rrU, rrSu, rrDp -## (about Z-axis) rrF, rrSf, rrBp -## see the rubikcube package documentation for full details regarding -## rotation notation and commands. -## METHOD & NOTATION -## each sub (below) starts by making an array[0] for the cubie colour -## and an array[1] for the cubie number. -## Each of the face rotations (rrR, rrLp, rrU, rrDp, rrF, rrBp) is involved with -## two pairs of connected but different permutations/transformations as follows: -## (a) one pair for the 12 Side cubies (arrays = @Xs0 (for Side colours), @Xs1 (for Side numbers)), and -## (b) one pair for the 9 Face cubies (arrays = @Xf0 (for Face colours), @Xf1 (for Face numbers)). -## Each of the center slice rotations (rrSr, rrSu, rrSf) is involved with just one pair of -## permutations for the 12 Side cubies (arrays = @Xs0 (for Side colours), @Xs1 (for Side numbers)). -## We document only the side and face of the first sub (rrR) in detail, since the other subs are of similar form. -##================================================ - sub rrR{ - -## the R (slice + face) transform -## R = RIGHT, s = side; 0=colour, 1= number -## make the clockwise rotation permutation -## In this permutation the Front-right-bottom (Frb) (side)facelet rotates to -## the new position of Up-right-bottom (Urb) (side)facelet. -##-----------SIDE------- -## 12 side cubie facelets in arrays @Rs0 (colours) and @Rs1 (numbers) -## these are the initial positions -@Rs0=($Frb[0],$Frm[0],$Frt[0], - $Urb[0],$Urm[0],$Urt[0], - $Blt[0],$Blm[0],$Blb[0], - $Drb[0],$Drm[0],$Drt[0]); - -@Rs1=($Frb[1],$Frm[1],$Frt[1], - $Urb[1],$Urm[1],$Urt[1], - $Blt[1],$Blm[1],$Blb[1], - $Drb[1],$Drm[1],$Drt[1]); - -## now we reallocate the initial array elements to the new -## post (90 degree clockwise) rotation position. -## Cube is viewed from FRONT. -## positions of side facelets of Right slice are numbered 0-11 in clockwise direction, -## (as seen from Right face) starting with Up-right-bottom facelet. -## first line example: -## variable $Urb[0] (Upface-right-bottom colour) <-- colour of first element in @Rs0 (=Frb[0]) -## variable $Urb[1] (Upface-right-bottom number) <-- number of first element in @Rs1 (=Frb[1]) -$Urb[0]=$Rs0[0]; $Urb[1]=$Rs1[0]; -$Urm[0]=$Rs0[1]; $Urm[1]=$Rs1[1]; -$Urt[0]=$Rs0[2]; $Urt[1]=$Rs1[2]; - -$Blt[0]=$Rs0[3]; $Blt[1]=$Rs1[3]; -$Blm[0]=$Rs0[4]; $Blm[1]=$Rs1[4]; -$Blb[0]=$Rs0[5]; $Blb[1]=$Rs1[5]; - -$Drb[0]=$Rs0[6]; $Drb[1]=$Rs1[6]; -$Drm[0]=$Rs0[7]; $Drm[1]=$Rs1[7]; -$Drt[0]=$Rs0[8]; $Drt[1]=$Rs1[8]; - -$Frb[0]=$Rs0[9]; $Frb[1]=$Rs1[9]; -$Frm[0]=$Rs0[10]; $Frm[1]=$Rs1[10]; -$Frt[0]=$Rs0[11]; $Frt[1]=$Rs1[11]; - -##-------------Right FACE--------------------- -## R FACE (9 cubies in each array) -## (numbered in rows: 1,2,3/4,5,6/7,8,9 from top left(1) to bottom right(9)) -## R=Right, f = face; 0=colour, 1= number -## do the Rface (90 degree) rotation transform -## here the Right-left-bottom (Rlb) facelet rotates to the possn of Right-left-top (Rlt) -## we start with two arrays (one for colours @Rf0, one for numbers @Rf1) with 9 elements each. -@Rf0=($Rlb[0], $Rlm[0], $Rlt[0], $Rmb[0], $Rmm[0], $Rmt[0], $Rrb[0], $Rrm[0], $Rrt[0]); -@Rf1=($Rlb[1], $Rlm[1], $Rlt[1], $Rmb[1], $Rmm[1], $Rmt[1], $Rrb[1], $Rrm[1], $Rrt[1]); - -## now we reallocate the array elements to the new -## post (90 degree clockwise) rotation facelet position. -## Right face is viewed from RIGHT. -## First line example: -## variable $Rlt[0] (=Right-left-top colour) <-- colour of first element in @Rf0 (=Rlb[0]) -## variable $Rlt[1] (=Right-left-top number) <-- number of first element in @Rf1 (=Rlb[1]) -$Rlt[0]=$Rf0[0]; $Rlt[1]=$Rf1[0]; -$Rmt[0]=$Rf0[1]; $Rmt[1]=$Rf1[1]; -$Rrt[0]=$Rf0[2]; $Rrt[1]=$Rf1[2]; - -$Rlm[0]=$Rf0[3]; $Rlm[1]=$Rf1[3]; -$Rmm[0]=$Rf0[4]; $Rmm[1]=$Rf1[4]; -$Rrm[0]=$Rf0[5]; $Rrm[1]=$Rf1[5]; - -$Rlb[0]=$Rf0[6]; $Rlb[1]=$Rf1[6]; -$Rmb[0]=$Rf0[7]; $Rmb[1]=$Rf1[7]; -$Rrb[0]=$Rf0[8]; $Rrb[1]=$Rf1[8]; - -} -#============================ - -sub rrSr { -## Sr = Right middle SLICE rotation (only 12 side facelets) -## modified from rrR (change the U,D,F, r --> m and Back Bl-->Bm; Rs--> ?Srs) -## change only the slice -## s = side; 0=colour, 1= number -## make the post rotation permutation - -@SRs0=($Fmb[0],$Fmm[0],$Fmt[0], - $Umb[0],$Umm[0],$Umt[0], - $Bmt[0],$Bmm[0],$Bmb[0], - $Dmb[0],$Dmm[0],$Dmt[0]); - -@SRs1=($Fmb[1],$Fmm[1],$Fmt[1], - $Umb[1],$Umm[1],$Umt[1], - $Bmt[1],$Bmm[1],$Bmb[1], - $Dmb[1],$Dmm[1],$Dmt[1]); - - -$Umb[0]=$SRs0[0]; $Umb[1]=$SRs1[0]; -$Umm[0]=$SRs0[1]; $Umm[1]=$SRs1[1]; -$Umt[0]=$SRs0[2]; $Umt[1]=$SRs1[2]; - -$Bmt[0]=$SRs0[3]; $Bmt[1]=$SRs1[3]; -$Bmm[0]=$SRs0[4]; $Bmm[1]=$SRs1[4]; -$Bmb[0]=$SRs0[5]; $Bmb[1]=$SRs1[5]; - -$Dmb[0]=$SRs0[6]; $Dmb[1]=$SRs1[6]; -$Dmm[0]=$SRs0[7]; $Dmm[1]=$SRs1[7]; -$Dmt[0]=$SRs0[8]; $Dmt[1]=$SRs1[8]; - -$Fmb[0]=$SRs0[9]; $Fmb[1]=$SRs1[9]; -$Fmm[0]=$SRs0[10]; $Fmm[1]=$SRs1[10]; -$Fmt[0]=$SRs0[11]; $Fmt[1]=$SRs1[11]; - -} - -##=================== -sub rrLp{ - -## Left slice (side + face) anticlockwise rotation -## s = side; 0=colour, 1= number -##-------------side----------- -@LPs0=($Flb[0],$Flm[0],$Flt[0], - $Ulb[0],$Ulm[0],$Ult[0], - $Brt[0],$Brm[0],$Brb[0], - $Dlb[0],$Dlm[0],$Dlt[0]); - -@LPs1=($Flb[1],$Flm[1],$Flt[1], - $Ulb[1],$Ulm[1],$Ult[1], - $Brt[1],$Brm[1],$Brb[1], - $Dlb[1],$Dlm[1],$Dlt[1]); - - -$Ulb[0]=$LPs0[0]; $Ulb[1]=$LPs1[0]; -$Ulm[0]=$LPs0[1]; $Ulm[1]=$LPs1[1]; -$Ult[0]=$LPs0[2]; $Ult[1]=$LPs1[2]; - -$Brt[0]=$LPs0[3]; $Brt[1]=$LPs1[3]; -$Brm[0]=$LPs0[4]; $Brm[1]=$LPs1[4]; -$Brb[0]=$LPs0[5]; $Brb[1]=$LPs1[5]; - -$Dlb[0]=$LPs0[6]; $Dlb[1]=$LPs1[6]; -$Dlm[0]=$LPs0[7]; $Dlm[1]=$LPs1[7]; -$Dlt[0]=$LPs0[8]; $Dlt[1]=$LPs1[8]; - -$Flb[0]=$LPs0[9]; $Flb[1]=$LPs1[9]; -$Flm[0]=$LPs0[10]; $Flm[1]=$LPs1[10]; -$Flt[0]=$LPs0[11]; $Flt[1]=$LPs1[11]; - - -##---------------Left FACE------------- -## do the Lface transform (in rows: 1,2,3//4,5,6//7,8,9) -## f = face; 0=colour, 1= number -## NOTES: not same as for R - -@LPf0=($Lrt[0], $Lrm[0], $Lrb[0], $Lmt[0], $Lmm[0], $Lmb[0], $Llt[0], $Llm[0], $Llb[0]); -@LPf1=($Lrt[1], $Lrm[1], $Lrb[1], $Lmt[1], $Lmm[1], $Lmb[1], $Llt[1], $Llm[1], $Llb[1]); - -$Llt[0]=$LPf0[0]; $Llt[1]=$LPf1[0]; -$Lmt[0]=$LPf0[1]; $Lmt[1]=$LPf1[1]; -$Lrt[0]=$LPf0[2]; $Lrt[1]=$LPf1[2]; - -$Llm[0]=$LPf0[3]; $Llm[1]=$LPf1[3]; -$Lmm[0]=$LPf0[4]; $Lmm[1]=$LPf1[4]; -$Lrm[0]=$LPf0[5]; $Lrm[1]=$LPf1[5]; - -$Llb[0]=$LPf0[6]; $Llb[1]=$LPf1[6]; -$Lmb[0]=$LPf0[7]; $Lmb[1]=$LPf1[7]; -$Lrb[0]=$LPf0[8]; $Lrb[1]=$LPf1[8]; - -} - -##================================== - -##============================== - sub rrU{ - -## Up slice (side + face) -## do the Uside transform -## s = side; 0=colour, 1= number -## ----------SIDE-------------- -@Us0=($Lrt[0],$Lmt[0],$Llt[0], - $Brt[0],$Bmt[0],$Blt[0], - $Rrt[0],$Rmt[0],$Rlt[0], - $Frt[0],$Fmt[0],$Flt[0]); - -@Us1=($Lrt[1],$Lmt[1],$Llt[1], - $Brt[1],$Bmt[1],$Blt[1], - $Rrt[1],$Rmt[1],$Rlt[1], - $Frt[1],$Fmt[1],$Flt[1]); - - -$Brt[0]=$Us0[0]; $Brt[1]=$Us1[0]; -$Bmt[0]=$Us0[1]; $Bmt[1]=$Us1[1]; -$Blt[0]=$Us0[2]; $Blt[1]=$Us1[2]; - -$Rrt[0]=$Us0[3]; $Rrt[1]=$Us1[3]; -$Rmt[0]=$Us0[4]; $Rmt[1]=$Us1[4]; -$Rlt[0]=$Us0[5]; $Rlt[1]=$Us1[5]; - -$Frt[0]=$Us0[6]; $Frt[1]=$Us1[6]; -$Fmt[0]=$Us0[7]; $Fmt[1]=$Us1[7]; -$Flt[0]=$Us0[8]; $Flt[1]=$Us1[8]; - -$Lrt[0]=$Us0[9]; $Lrt[1]=$Us1[9]; -$Lmt[0]=$Us0[10]; $Lmt[1]=$Us1[10]; -$Llt[0]=$Us0[11]; $Llt[1]=$Us1[11]; - -##-------------Up FACE------------------- -## do the Rface transform (in rows: 1,2,3//4,5,6//7,8,9) -## f = face; 0=colour, 1= number -@Uf0=($Ulb[0], $Ulm[0], $Ult[0], $Umb[0], $Umm[0], $Umt[0], $Urb[0], $Urm[0], $Urt[0]); -@Uf1=($Ulb[1], $Ulm[1], $Ult[1], $Umb[1], $Umm[1], $Umt[1], $Urb[1], $Urm[1], $Urt[1]); - -$Ult[0]=$Uf0[0]; $Ult[1]=$Uf1[0]; -$Umt[0]=$Uf0[1]; $Umt[1]=$Uf1[1]; -$Urt[0]=$Uf0[2]; $Urt[1]=$Uf1[2]; - -$Ulm[0]=$Uf0[3]; $Ulm[1]=$Uf1[3]; -$Umm[0]=$Uf0[4]; $Umm[1]=$Uf1[4]; -$Urm[0]=$Uf0[5]; $Urm[1]=$Uf1[5]; - -$Ulb[0]=$Uf0[6]; $Ulb[1]=$Uf1[6]; -$Umb[0]=$Uf0[7]; $Umb[1]=$Uf1[7]; -$Urb[0]=$Uf0[8]; $Urb[1]=$Uf1[8]; - -} - -##============================== - - sub rrSu{ -## middle slice rotation (side only 12 facelets) -## s = side; 0=colour, 1= number -## make the post rotation permutation -##-----------SIDE------------------- -@SUs0=($Lrm[0],$Lmm[0],$Llm[0], - $Brm[0],$Bmm[0],$Blm[0], - $Rrm[0],$Rmm[0],$Rlm[0], - $Frm[0],$Fmm[0],$Flm[0]); - -@SUs1=($Lrm[1],$Lmm[1],$Llm[1], - $Brm[1],$Bmm[1],$Blm[1], - $Rrm[1],$Rmm[1],$Rlm[1], - $Frm[1],$Fmm[1],$Flm[1]); - - -$Brm[0]=$SUs0[0]; $Brm[1]=$SUs1[0]; -$Bmm[0]=$SUs0[1]; $Bmm[1]=$SUs1[1]; -$Blm[0]=$SUs0[2]; $Blm[1]=$SUs1[2]; - -$Rrm[0]=$SUs0[3]; $Rrm[1]=$SUs1[3]; -$Rmm[0]=$SUs0[4]; $Rmm[1]=$SUs1[4]; -$Rlm[0]=$SUs0[5]; $Rlm[1]=$SUs1[5]; - -$Frm[0]=$SUs0[6]; $Frm[1]=$SUs1[6]; -$Fmm[0]=$SUs0[7]; $Fmm[1]=$SUs1[7]; -$Flm[0]=$SUs0[8]; $Flm[1]=$SUs1[8]; - -$Lrm[0]=$SUs0[9]; $Lrm[1]=$SUs1[9]; -$Lmm[0]=$SUs0[10]; $Lmm[1]=$SUs1[10]; -$Llm[0]=$SUs0[11]; $Llm[1]=$SUs1[11]; - -} - - -##============================== - - sub rrDp{ - -## Dpwn Face anticlockwise rotation (side and face) -## s = side; 0=colour, 1= number -## make the post rotation permutation -##--------------SIDE---------------- -@DPs0=($Lrb[0],$Lmb[0],$Llb[0], - $Brb[0],$Bmb[0],$Blb[0], - $Rrb[0],$Rmb[0],$Rlb[0], - $Frb[0],$Fmb[0],$Flb[0]); - -@DPs1=($Lrb[1],$Lmb[1],$Llb[1], - $Brb[1],$Bmb[1],$Blb[1], - $Rrb[1],$Rmb[1],$Rlb[1], - $Frb[1],$Fmb[1],$Flb[1]); - -$Brb[0]=$DPs0[0]; $Brb[1]=$DPs1[0]; -$Bmb[0]=$DPs0[1]; $Bmb[1]=$DPs1[1]; -$Blb[0]=$DPs0[2]; $Blb[1]=$DPs1[2]; - -$Rrb[0]=$DPs0[3]; $Rrb[1]=$DPs1[3]; -$Rmb[0]=$DPs0[4]; $Rmb[1]=$DPs1[4]; -$Rlb[0]=$DPs0[5]; $Rlb[1]=$DPs1[5]; - -$Frb[0]=$DPs0[6]; $Frb[1]=$DPs1[6]; -$Fmb[0]=$DPs0[7]; $Fmb[1]=$DPs1[7]; -$Flb[0]=$DPs0[8]; $Flb[1]=$DPs1[8]; - -$Lrb[0]=$DPs0[9]; $Lrb[1]=$DPs1[9]; -$Lmb[0]=$DPs0[10]; $Lmb[1]=$DPs1[10]; -$Llb[0]=$DPs0[11]; $Llb[1]=$DPs1[11]; - -##---------------Down FACE------------------- -## f = face; 0=colour, 1= number - -@DPf0=($Dlt[0], $Dlm[0], $Dlb[0], $Dmt[0], $Dmm[0], $Dmb[0], $Drt[0], $Drm[0], $Drb[0]); -@DPf1=($Dlt[1], $Dlm[1], $Dlb[1], $Dmt[1], $Dmm[1], $Dmb[1], $Drt[1], $Drm[1], $Drb[1]); - -$Dlb[0]=$DPf0[0]; $Dlb[1]=$DPf1[0]; -$Dmb[0]=$DPf0[1]; $Dmb[1]=$DPf1[1]; -$Drb[0]=$DPf0[2]; $Drb[1]=$DPf1[2]; - -$Dlm[0]=$DPf0[3]; $Dlm[1]=$DPf1[3]; -$Dmm[0]=$DPf0[4]; $Dmm[1]=$DPf1[4]; -$Drm[0]=$DPf0[5]; $Drm[1]=$DPf1[5]; - -$Dlt[0]=$DPf0[6]; $Dlt[1]=$DPf1[6]; -$Dmt[0]=$DPf0[7]; $Dmt[1]=$DPf1[7]; -$Drt[0]=$DPf0[8]; $Drt[1]=$DPf1[8]; - -} - -##============================== - - sub rrF{ - -## do the Fside transform (side and face) -## s = side; 0=colour, 1= number -## -----------SIDE----------------- -@Fs0=($Lrb[0],$Lrm[0],$Lrt[0], - $Ulb[0],$Umb[0],$Urb[0], - $Rlt[0],$Rlm[0],$Rlb[0], - $Drt[0],$Dmt[0],$Dlt[0]); - -@Fs1=($Lrb[1],$Lrm[1],$Lrt[1], - $Ulb[1],$Umb[1],$Urb[1], - $Rlt[1],$Rlm[1],$Rlb[1], - $Drt[1],$Dmt[1],$Dlt[1]); - -$Ulb[0]=$Fs0[0]; $Ulb[1]=$Fs1[0]; -$Umb[0]=$Fs0[1]; $Umb[1]=$Fs1[1]; -$Urb[0]=$Fs0[2]; $Urb[1]=$Fs1[2]; - -$Rlt[0]=$Fs0[3]; $Rlt[1]=$Fs1[3]; -$Rlm[0]=$Fs0[4]; $Rlm[1]=$Fs1[4]; -$Rlb[0]=$Fs0[5]; $Rlb[1]=$Fs1[5]; - -$Drt[0]=$Fs0[6]; $Drt[1]=$Fs1[6]; -$Dmt[0]=$Fs0[7]; $Dmt[1]=$Fs1[7]; -$Dlt[0]=$Fs0[8]; $Dlt[1]=$Fs1[8]; - -$Lrb[0]=$Fs0[9]; $Lrb[1]=$Fs1[9]; -$Lrm[0]=$Fs0[10]; $Lrm[1]=$Fs1[10]; -$Lrt[0]=$Fs0[11]; $Lrt[1]=$Fs1[11]; - -## -------Front FACE------------------- -## f = face; 0=colour, 1= number - -@Lf0=($Flb[0], $Flm[0], $Flt[0], $Fmb[0], $Fmm[0], $Fmt[0], $Frb[0], $Frm[0], $Frt[0]); -@Lf1=($Flb[1], $Flm[1], $Flt[1], $Fmb[1], $Fmm[1], $Fmt[1], $Frb[1], $Frm[1], $Frt[1]); - -$Flt[0]=$Lf0[0]; $Flt[1]=$Lf1[0]; -$Fmt[0]=$Lf0[1]; $Fmt[1]=$Lf1[1]; -$Frt[0]=$Lf0[2]; $Frt[1]=$Lf1[2]; - -$Flm[0]=$Lf0[3]; $Flm[1]=$Lf1[3]; -$Fmm[0]=$Lf0[4]; $Fmm[1]=$Lf1[4]; -$Frm[0]=$Lf0[5]; $Frm[1]=$Lf1[5]; - -$Flb[0]=$Lf0[6]; $Flb[1]=$Lf1[6]; -$Fmb[0]=$Lf0[7]; $Fmb[1]=$Lf1[7]; -$Frb[0]=$Lf0[8]; $Frb[1]=$Lf1[8]; - -} - -##============================== - - sub rrSf{ - -## do the Fs transform (side only) -## s = side; 0=colour, 1= number -##----------SIDE--------------- -@SFs0=($Lmb[0],$Lmm[0],$Lmt[0], - $Ulm[0],$Umm[0],$Urm[0], - $Rmt[0],$Rmm[0],$Rmb[0], - $Drm[0],$Dmm[0],$Dlm[0]); - -@SFs1=($Lmb[1],$Lmm[1],$Lmt[1], - $Ulm[1],$Umm[1],$Urm[1], - $Rmt[1],$Rmm[1],$Rmb[1], - $Drm[1],$Dmm[1],$Dlm[1]); - -$Ulm[0]=$SFs0[0]; $Ulm[1]=$SFs1[0]; -$Umm[0]=$SFs0[1]; $Umm[1]=$SFs1[1]; -$Urm[0]=$SFs0[2]; $Urm[1]=$SFs1[2]; - -$Rmt[0]=$SFs0[3]; $Rmt[1]=$SFs1[3]; -$Rmm[0]=$SFs0[4]; $Rmm[1]=$SFs1[4]; -$Rmb[0]=$SFs0[5]; $Rmb[1]=$SFs1[5]; - -$Drm[0]=$SFs0[6]; $Drm[1]=$SFs1[6]; -$Dmm[0]=$SFs0[7]; $Dmm[1]=$SFs1[7]; -$Dlm[0]=$SFs0[8]; $Dlm[1]=$SFs1[8]; - -$Lmb[0]=$SFs0[9]; $Lmb[1]=$SFs1[9]; -$Lmm[0]=$SFs0[10]; $Lmm[1]=$SFs1[10]; -$Lmt[0]=$SFs0[11]; $Lmt[1]=$SFs1[11]; -} - -##============================== - - sub rrBp{ - -## Back rotation anticlockwise (side + face) -## do the Bp side transform -## s = side; 0=colour, 1= number -## --------------Side----------------- -@BPs0=($Llb[0],$Llm[0],$Llt[0], - $Ult[0],$Umt[0],$Urt[0], - $Rrt[0],$Rrm[0],$Rrb[0], - $Drb[0],$Dmb[0],$Dlb[0]); - -@BPs1=($Llb[1],$Llm[1],$Llt[1], - $Ult[1],$Umt[1],$Urt[1], - $Rrt[1],$Rrm[1],$Rrb[1], - $Drb[1],$Dmb[1],$Dlb[1]); - -$Ult[0]=$BPs0[0]; $Ult[1]=$BPs1[0]; -$Umt[0]=$BPs0[1]; $Umt[1]=$BPs1[1]; -$Urt[0]=$BPs0[2]; $Urt[1]=$BPs1[2]; - -$Rrt[0]=$BPs0[3]; $Rrt[1]=$BPs1[3]; -$Rrm[0]=$BPs0[4]; $Rrm[1]=$BPs1[4]; -$Rrb[0]=$BPs0[5]; $Rrb[1]=$BPs1[5]; - -$Drb[0]=$BPs0[6]; $Drb[1]=$BPs1[6]; -$Dmb[0]=$BPs0[7]; $Dmb[1]=$BPs1[7]; -$Dlb[0]=$BPs0[8]; $Dlb[1]=$BPs1[8]; - -$Llb[0]=$BPs0[9]; $Llb[1]=$BPs1[9]; -$Llm[0]=$BPs0[10]; $Llm[1]=$BPs1[10]; -$Llt[0]=$BPs0[11]; $Llt[1]=$BPs1[11]; - -##-----------------Back FACE------------- -## do the B face transform (in rows: 1,2,3/4,5,6/7,8,9) -## f = face; 0=colour, 1= number -@BPf0=($Brb[0], $Brm[0], $Brt[0], $Bmb[0], $Bmm[0], $Bmt[0], $Blb[0], $Blm[0], $Blt[0]); - -@BPf1=($Brb[1], $Brm[1], $Brt[1], $Bmb[1], $Bmm[1], $Bmt[1], $Blb[1], $Blm[1], $Blt[1]); - -$Brt[0]=$BPf0[0]; $Brt[1]=$BPf1[0]; -$Bmt[0]=$BPf0[1]; $Bmt[1]=$BPf1[1]; -$Blt[0]=$BPf0[2]; $Blt[1]=$BPf1[2]; - -$Brm[0]=$BPf0[3]; $Brm[1]=$BPf1[3]; -$Bmm[0]=$BPf0[4]; $Bmm[1]=$BPf1[4]; -$Blm[0]=$BPf0[5]; $Blm[1]=$BPf1[5]; - -$Brb[0]=$BPf0[6]; $Brb[1]=$BPf1[6]; -$Bmb[0]=$BPf0[7]; $Bmb[1]=$BPf1[7]; -$Blb[0]=$BPf0[8]; $Blb[1]=$BPf1[8]; -} -##=====================end=================================== |