diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/presentations-en/pd-demo-default.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/presentations-en/pd-demo-default.tex | 57 |
1 files changed, 57 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/presentations-en/pd-demo-default.tex b/Master/texmf-dist/doc/latex/presentations-en/pd-demo-default.tex new file mode 100644 index 00000000000..7598f55549c --- /dev/null +++ b/Master/texmf-dist/doc/latex/presentations-en/pd-demo-default.tex @@ -0,0 +1,57 @@ +\newcommand*\Q[2]{\frac{\partial #1}{\partial #2}} + +\section[slide=false]{Overview} +\begin{slide}[toc=,bm=]{Overview} +\tableofcontents[type=1] +\end{slide} + +\section[slide=false]{Research and studies} +\begin{slide}[toc=The Integral]{The integral and its geometric applications.} +The first Green equation: +\begin{align}\label{green} +\underset{\mathcal{G}\quad}\iiint\! + \left[u\nabla^{2}v+\left(\nabla u,\nabla v\right)\right]d^{3}V + =\underset{\mathcal{S}\quad}\oiint u\Q{v}{n}d^{2}A +\end{align} + +\onslide{1-4}{The Green equation (\ref{green}) will be checked later.} + +\begin{itemize} + \item<1-> A line with \texttt{itemize}. + \begin{itemize} + \item<2> A line with \texttt{itemize}. + \begin{enumerate} + \item<1> A line with \texttt{enumerate}. + \item<-3> Another one \ldots + \end{enumerate} + \item<3-> A line with \texttt{itemize}. + \end{itemize} + \item<4-> A line with \texttt{itemize}. +\end{itemize} +\end{slide} +\subsection{Interval} +\begin{slide}{Definition} +The \emph{interval} $\langle a,b\rangle$ consists of all numbers $x$ that +satisfy the condition $a\le x\le b$. +\end{slide} +\subsection{Sequence of numbers} +\begin{slide}{Definition of a sequence} +A \emph{sequence of numbers} or \emph{sequence} is created by replacing each member +of the infinite sequence of numbers $1,2,3,\ldots$ by some rational or irrational +number, i.\,e.\ each $n$ by a number $x_n$. +\end{slide} +\subsection{Limits} +\begin{slide}{Definition of a limit} +$\lim x_n=g$ means that almost all members of the sequence are within each +neighbourhood of $g$. +\end{slide} +\subsection{Convergence criterion} +\begin{slide}{Definition of convergence} +\textbf{Convergence criterion}: The sequence $x_1,x_2,x_3,\ldots$ converges if and +only if \textbf{each} sub-sequence $x^\prime_1,x^\prime_2, x^\prime_3,\ldots$ +satisfies the relation $\lim(x_n-x^\prime_n)=0$. +\end{slide} + +\endinput + + |