summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/presentations-en/04-01-2.ltxb
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/presentations-en/04-01-2.ltxb')
-rw-r--r--Master/texmf-dist/doc/latex/presentations-en/04-01-2.ltxb47
1 files changed, 0 insertions, 47 deletions
diff --git a/Master/texmf-dist/doc/latex/presentations-en/04-01-2.ltxb b/Master/texmf-dist/doc/latex/presentations-en/04-01-2.ltxb
deleted file mode 100644
index d15b1b8965b..00000000000
--- a/Master/texmf-dist/doc/latex/presentations-en/04-01-2.ltxb
+++ /dev/null
@@ -1,47 +0,0 @@
-%%
-%% An UIT Edition example
-%%
-%% Example 04-01-2 on page 69.
-%%
-%% Copyright (C) 2012 Vo\ss
-%%
-%% It may be distributed and/or modified under the conditions
-%% of the LaTeX Project Public License, either version 1.3
-%% of this license or (at your option) any later version.
-%%
-%% See http://www.latex-project.org/lppl.txt for details.
-%%
-
-% Show page(s) 1,2,3
-
-%% ====
-\PassOptionsToClass{}{beamer}
-\documentclass{exabeamer}
-% graphic converted to gray in book
-\usepackage[utf8]{inputenc}
-
-%\StartShownPreambleCommands
-\useoutertheme{infolines}
-%\StopShownPreambleCommands
-
-\begin{document}
-\title{Introduction to Analytic Geometry} \author{Gerhard Kowalewski} \date{1910}
-\frame{\maketitle}
-\section{Research and studies}
-\begin{frame}{The integral and its geometric applications.}
-We assume that the theory of irrational numbers is known.
-
-\begin{enumerate}[<+->]
- \item The \emph{interval} $\langle a,b\rangle$ consists of all numbers $x$
- that satisfy the condition $a\le x\le b$.
- \item A \emph{sequence of numbers} or \emph{sequence} is created by replacing each
- member of the infinite sequence of numbers $1,2,3,\ldots$ by some rational or
- irrational number, i.e.\ each $n$ by a number $x_n$.
- \item $\lim x_n=g$ means that almost all members of the sequence are within each
- neighbourhood of $g$.
- \item \textbf{Convergence criterion}: The sequence $x_1,x_2,x_3,\ldots$ converges
- if and only if \textbf{each} sub-sequence $x^\prime_1,x^\prime_2,
- x^\prime_3,\ldots$ satisfies the relation $\lim(x_n-x^\prime_n)=0$.
-\end{enumerate}
-\end{frame}
-\end{document}