diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/presentations-en/04-01-1.ltxb')
-rw-r--r-- | Master/texmf-dist/doc/latex/presentations-en/04-01-1.ltxb | 49 |
1 files changed, 0 insertions, 49 deletions
diff --git a/Master/texmf-dist/doc/latex/presentations-en/04-01-1.ltxb b/Master/texmf-dist/doc/latex/presentations-en/04-01-1.ltxb deleted file mode 100644 index 6ae1f0fd912..00000000000 --- a/Master/texmf-dist/doc/latex/presentations-en/04-01-1.ltxb +++ /dev/null @@ -1,49 +0,0 @@ -%% -%% An UIT Edition example -%% -%% Example 04-01-1 on page 68. -%% -%% Copyright (C) 2012 Vo\ss -%% -%% It may be distributed and/or modified under the conditions -%% of the LaTeX Project Public License, either version 1.3 -%% of this license or (at your option) any later version. -%% -%% See http://www.latex-project.org/lppl.txt for details. -%% - -% Show page(s) 1,2 - -%% ==== -\PassOptionsToClass{british,xcolor={table,dvipsnames}, smaller,compress,hyperref={bookmarks,colorlinks}}{beamer} -\documentclass{exabeamer} -\usepackage[utf8]{inputenc} - -%\StartShownPreambleCommands -\documentclass[british,xcolor={table,dvipsnames},smaller,compress, - hyperref={bookmarks,colorlinks}]{beamer} -%\StopShownPreambleCommands - -\begin{document} -\title{Introduction to Analytic Geometry} -\author{Gerhard Kowalewski} -\date{1910} -\frame{\maketitle} -\section{Research and studies} -\begin{frame}{The integral and its geometric applications.} -We assume that the theory of irrational numbers is known. - -\begin{enumerate} - \item The \emph{interval} $\langle a,b\rangle$ consists of all numbers $x$ - that satisfy the condition $a\le x\le b$. - \item A \emph{sequence of numbers} or \emph{sequence} is created by replacing each - member of the infinite sequence of numbers $1,2,3,\ldots$ by some rational or - irrational number, i.e.\ each $n$ by a number $x_n$. - \item $\lim x_n=g$ means that almost all members of the sequence are within each - neighbourhood of $g$. - \item \textbf{Convergence criterion}: The sequence $x_1,x_2,x_3,\ldots$ converges - if and only if \textbf{each} sub-sequence $x^\prime_1,x^\prime_2, - x^\prime_3,\ldots$ satisfies the relation $\lim(x_n-x^\prime_n)=0$. -\end{enumerate} -\end{frame} -\end{document} |