summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/mil3/intrarti.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/mil3/intrarti.tex')
-rw-r--r--Master/texmf-dist/doc/latex/mil3/intrarti.tex142
1 files changed, 0 insertions, 142 deletions
diff --git a/Master/texmf-dist/doc/latex/mil3/intrarti.tex b/Master/texmf-dist/doc/latex/mil3/intrarti.tex
deleted file mode 100644
index ae5bc357006..00000000000
--- a/Master/texmf-dist/doc/latex/mil3/intrarti.tex
+++ /dev/null
@@ -1,142 +0,0 @@
-% Introductory sample article with index entries: intrarti.tex
-% Typeset with LaTeX format
-
-\documentclass{article}
-\usepackage{latexsym}
-\newtheorem{theorem}{Theorem}
-\newtheorem{definition}{Definition}
-
-\newtheorem{notation}{Notation}
-\usepackage{makeidx}
-\makeindex
-
-\begin{document}
-\title{A construction of complete-simple\\
- distributive lattices}
-\author{George~A. Menuhin\thanks{Research supported
- by the NSF under grant number 23466.}\\
- Computer Science Department\\
- Winnebago, MN 23714\\
- menuhin@cc.uwinnebago.edu}
-\date{March 15, 1999}
-\maketitle
-
-\begin{abstract}
- In this note, we prove that there exist \emph{complete-simple
- distributive lattices,} that is, complete distributive
- lattices in which there are only two complete congruences.
-\end{abstract}
-
-\section{Introduction}\label{S:intro}
-In this note we prove the following result:
-
-\begin{theorem}\index{Main Theorem}
- There exists an infinite complete distributive lattice~$K$
- with only the two trivial complete congruence relations.
-\end{theorem}
-
-\section{The $\Pi^{*}$ construction}\label{S:P*}
-\index{pistar@$\Pi^{*}$ construction}
-\index{Main Theorem!exposition|(}
-The following construction is crucial in our proof of our Theorem:
-
-\begin{definition}\label{D:P*}
- Let $D_{i}$, $i \in I$, be complete distributive
- lattices satisfying condition~\textup{(J)}. Their
- $\Pi^{*}$ product is defined as follows:
- \[
- \Pi^{*} ( D_{i} \mid i \in I ) =
- \Pi ( D_{i}^{-} \mid i \in I ) + 1;
- \]
- that is, $\Pi^{*} ( D_{i} \mid i \in I )$ is
- $\Pi ( D_{i}^{-} \mid i \in I )$ with a new unit element.
-\end{definition}
-
-\begin{notation}
-\index{<@$\langle \dots, 0, \dots, d, \dots, 0,
- \dots \rangle$|textbf}
- If $i \in I$ and $d \in D_{i}^{-}$, then
- \[
- \langle \ldots, 0, \ldots, d, \ldots, 0, \ldots \rangle
- \]
- is the element of $\Pi^{*} ( D_{i} \mid i \in I )$ whose
- $i$-th component is $d$ and all the other components
- are $0$.
-\end{notation}
-
-See also Ernest~T.
-\index{Moynahan, Ernest~T.}%
-Moynahan~\cite{eM57a}.
-
-Next we verify the following result:
-\index{lattice}%
-\index{lattice!distributive}%
-\index{lattice!distributive!complete}%
-\begin{theorem}\label{T:P*}
- Let $D_{i}$, $i \in I$, be complete distributive
- lattices satisfying condition~\textup{(J)}. Let $\Theta$
- be a complete congruence relation on
- $\Pi^{*} ( D_{i} \mid i \in I )$.
- If there exist $i \in I$ and $d \in D_{i}$ with
- $d < 1_{i}$ such that for all $d \leq c < 1_{i}$,
-\begin{equation}\label{E:cong}
- \langle \ldots, d, \ldots, 0, \ldots \rangle \equiv
- \bigvee ( \langle \ldots, c, \ldots, 0, \ldots \rangle
- \mid d \leq c < 1 ) \pmod{\Theta}.
-\end{equation}
- then $\Theta = \iota$.
-\end{theorem}
-
-\emph{Proof.} Since
-\begin{equation}\label{E:cong2}
- \langle \ldots, d, \ldots, 0, \ldots \rangle \equiv
- \langle \ldots, c, \ldots, 0, \ldots \rangle \pmod{\Theta},
-\end{equation}
-and $\Theta$ is a complete congruence relation, it follows
-from condition~(J) that
-\begin{equation}\label{E:cong}
- \langle \ldots, d, \ldots, 0, \ldots \rangle \equiv
- \bigvee ( \langle \ldots, c, \ldots, 0, \ldots \rangle
- \mid d \leq c < 1 ) \pmod{\Theta}.
-\end{equation}
-
-Let $j \in I$, $j \neq i$, and let $a \in D_{j}^{-}$.
-Meeting both sides of the congruence (\ref{E:cong2}) with
-$\langle \ldots, a, \ldots, 0, \ldots \rangle$, we obtain that
-\begin{equation}\label{E:comp}
- 0 = \langle \ldots, a, \ldots, 0, \ldots \rangle \pmod{\Theta},
-\end{equation}
-Using the completeness of $\Theta$ and (\ref{E:comp}),
-we get:
-\index{<@$\langle \dots, 0, \dots, d, \dots, 0,
- \dots \rangle$}%
-\[
- 0 \equiv \bigvee ( \langle \ldots, a, \ldots, 0, \ldots \rangle
- \mid a \in D_{j}^{-} ) = 1 \pmod{\Theta},
-\]
-hence $\Theta = \iota$.
-\index{Main Theorem!exposition|)}
-
-\begin{thebibliography}{9}
- \bibitem{sF90}\index{Foo, Soo-Key}%
- Soo-Key Foo,
- \emph{Lattice Constructions},
- Ph.D. thesis,
- University of Winnebago, Winnebago, MN, December, 1990.
- \bibitem{gM68}\index{Menuhin, George~A.}%
- George~A. Menuhin,
- \emph{Universal Algebra},
- D.~van Nostrand, Princeton, 1968.
- \bibitem{eM57}\index{Moynahan, Ernest~T.}%
- Ernest~T. Moynahan,
- \emph{On a problem of M. Stone},
- Acta Math. Acad. Sci. Hungar. \textbf{8} (1957), 455--460.
- \bibitem{eM57a}\index{Moynahan, Ernest~T.}%
- Ernest~T. Moynahan,
- \emph{Ideals and congruence relations in lattices.} II,
- Magyar Tud. Akad. Mat. Fiz. Oszt. K\"{o}zl. \textbf{9}
- (1957), 417--434.
-\end{thebibliography}
-\printindex
-\end{document}
-