diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/mathexam/sample.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/mathexam/sample.tex | 38 |
1 files changed, 38 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/mathexam/sample.tex b/Master/texmf-dist/doc/latex/mathexam/sample.tex new file mode 100644 index 00000000000..ebdbbe71ecc --- /dev/null +++ b/Master/texmf-dist/doc/latex/mathexam/sample.tex @@ -0,0 +1,38 @@ +\documentclass[fleqn]{article} +\usepackage[left=1in, right=1in, top=1in, bottom=1in]{geometry} +\usepackage{mathexam} +\usepackage{amsmath} + +\ExamClass{Sample Class} +\ExamName{Sample Exam} +\ExamHead{\today} + +\let\ds\displaystyle + +\begin{document} +\ExamInstrBox{ +Please show \textbf{all} your work! Answers without supporting work will not be given credit. Write answers in spaces provided. You have 1 hour and 50 minutes to complete this exam.} +\ExamNameLine +\begin{enumerate} + \item Calculate the following limits. If a limit is $\infty$ or $-\infty$, + please say so. Make sure you show all your work and justify all your + answers. + \begin{enumerate} + \item $\ds{\lim_{x\rightarrow3}\frac{\sqrt{x+1} - 2}{x-3}}$\answer + \item $\ds{\lim_{x\rightarrow0}\frac{\sin(4x)}{8x}}$\answer + \end{enumerate} + \item Use the $\varepsilon$-$\delta$ definition of limit to prove that + \[\lim_{x\rightarrow 2} x^2 - 3x + 2 = 0\]\noanswer[2.5in] + \newpage + \item If $h(x) = \sqrt{x^2 + 2} - 1$, find a \textbf{non-trivial} decomposition of $h$ into $f$ and $g$ such that $h = f\circ g$. + \answer*{$f(x)=$}\addanswer*{$g(x)=$} + \item Find the first two derivatives of the function $f(x) = x^2\cos(x)$. Simplify + your answers as much as possible. Show all your work. + \answer*{$f'(x)=$}\answer*{$f''(x)=$} + \newpage + \item Find the derivative of the function $\ds{f(x) = \int_{x^2}^2 + \frac{\cos(t)}{t} \,dt}$.\answer[1in plus 1fill] + \item Set up, but do not evaluate, the integral for the volume of the solid obtained by rotating the area between the curves $y = x$ and $y = \sqrt{x}$ about the $x$-axis.\noanswer +\end{enumerate} +\end{document} + |